NeuronBlocks/ModelConf.py

548 строки
31 KiB
Python

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.
import codecs
import json
import os
import tempfile
import random
import string
import copy
import torch
import logging
import shutil
from losses.BaseLossConf import BaseLossConf
#import traceback
from settings import LanguageTypes, ProblemTypes, TaggingSchemes, SupportedMetrics, PredictionTypes, DefaultPredictionFields
from utils.common_utils import log_set, prepare_dir, md5
from utils.exceptions import ConfigurationError
import numpy as np
class ModelConf(object):
def __init__(self, phase, conf_path, nb_version, params=None, mode='normal'):
""" loading configuration from configuration file and argparse parameters
Args:
phase: train/test/predict/cache
specially, 'cache' phase is used for verifying old cache
conf_path:
params:
mode: 'normal', 'philly'
"""
self.phase = phase
assert self.phase in set(['train', 'test', 'predict', 'cache'])
self.conf_path = conf_path
self.params = params
self.mode = mode.lower()
assert self.mode in set(['normal', 'philly']), 'Your mode %s is illegal, supported modes are: normal and philly!'
self.load_from_file(conf_path)
self.check_version_compat(nb_version, self.tool_version)
if phase != 'cache':
self.check_conf()
logging.debug('Print ModelConf below:')
logging.debug('=' * 80)
# print ModelConf
for name, value in vars(self).items():
if name.startswith("__") is False:
logging.debug('%s: %s' % (str(name), str(value)))
logging.debug('=' * 80)
def load_from_file(self, conf_path):
with codecs.open(conf_path, 'r', encoding='utf-8') as fin:
try:
self.conf = json.load(fin)
except Exception as e:
raise ConfigurationError("%s is not a legal JSON file, please check your JSON format!" % conf_path)
self.tool_version = self.get_item(['tool_version'])
self.language = self.get_item(['language'], default='english').lower()
self.problem_type = self.get_item(['inputs', 'dataset_type']).lower()
#if ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging:
self.tagging_scheme = self.get_item(['inputs', 'tagging_scheme'], default=None, use_default=True)
if self.mode == 'normal':
self.use_cache = self.get_item(['inputs', 'use_cache'], True)
elif self.mode == 'philly':
self.use_cache = True
# OUTPUTS
if hasattr(self.params, 'model_save_dir') and self.params.model_save_dir:
self.save_base_dir = self.params.model_save_dir
else:
self.save_base_dir = self.get_item(['outputs', 'save_base_dir'])
if self.phase == 'train':
# in train.py, it is called pretrained_model_path
if hasattr(self.params, 'pretrained_model_path') and self.params.pretrained_model_path:
self.pretrained_model_path = self.previous_model_path = self.params.pretrained_model_path
else:
self.pretrained_model_path = self.previous_model_path = self.get_item(['inputs', 'data_paths', 'pretrained_model_path'], default=None, use_default=True)
elif self.phase == 'test' or self.phase == 'predict':
# in test.py and predict.py, it is called pretrained_model_path
if hasattr(self.params, 'previous_model_path') and self.params.previous_model_path:
self.previous_model_path = self.pretrained_model_path = self.params.previous_model_path
else:
self.previous_model_path = self.pretrained_model_path = os.path.join(self.save_base_dir, self.get_item(['outputs', 'model_name'])) # namely, the model_save_path
if hasattr(self, 'pretrained_model_path') and self.pretrained_model_path: # namely self.previous_model_path
tmp_saved_problem_path = os.path.join(os.path.dirname(self.pretrained_model_path), '.necessary_cache', 'problem.pkl')
self.saved_problem_path = tmp_saved_problem_path if os.path.isfile(tmp_saved_problem_path) \
else os.path.join(os.path.dirname(self.pretrained_model_path), 'necessary_cache', 'problem.pkl')
if not (os.path.isfile(self.pretrained_model_path) and os.path.isfile(self.saved_problem_path)):
raise Exception('Previous trained model %s or its dictionaries %s does not exist!' % (self.pretrained_model_path, self.saved_problem_path))
if self.phase != 'cache':
prepare_dir(self.save_base_dir, True, allow_overwrite=self.params.force or self.mode == 'philly',
extra_info='will overwrite model file and train.log' if self.phase=='train' else 'will add %s.log and predict file'%self.phase)
if hasattr(self.params, 'log_dir') and self.params.log_dir:
self.log_dir = self.params.log_dir
if self.phase != 'cache':
prepare_dir(self.log_dir, True, allow_overwrite=True)
else:
self.log_dir = self.save_base_dir
if self.phase == 'train':
self.train_log_path = os.path.join(self.log_dir, self.get_item(['outputs', 'train_log_name']))
if self.mode == 'philly' or self.params.debug:
log_set(self.train_log_path, console_level='DEBUG', console_detailed=True, disable_log_file=self.params.disable_log_file)
else:
log_set(self.train_log_path, disable_log_file=self.params.disable_log_file)
elif self.phase == 'test':
self.test_log_path = os.path.join(self.log_dir, self.get_item(['outputs', 'test_log_name']))
if self.mode == 'philly' or self.params.debug:
log_set(self.test_log_path, console_level='DEBUG', console_detailed=True, disable_log_file=self.params.disable_log_file)
else:
log_set(self.test_log_path, disable_log_file=self.params.disable_log_file)
elif self.phase == 'predict':
self.predict_log_path = os.path.join(self.log_dir, self.get_item(['outputs', 'predict_log_name']))
if self.mode == 'philly' or self.params.debug:
log_set(self.predict_log_path, console_level='DEBUG', console_detailed=True, disable_log_file=self.params.disable_log_file)
else:
log_set(self.predict_log_path, disable_log_file=self.params.disable_log_file)
if self.phase != 'cache':
self.predict_output_path = self.params.predict_output_path if self.params.predict_output_path else os.path.join(self.save_base_dir, self.get_item(['outputs', 'predict_output_name'], default='predict.tsv'))
logging.debug('Prepare dir for: %s' % self.predict_output_path)
prepare_dir(self.predict_output_path, False, allow_overwrite=self.params.force or self.mode == 'philly')
self.predict_fields = self.get_item(['outputs', 'predict_fields'], default=DefaultPredictionFields[ProblemTypes[self.problem_type]])
self.model_save_path = os.path.join(self.save_base_dir, self.get_item(['outputs', 'model_name']))
# INPUTS
if hasattr(self.params, 'train_data_path') and self.params.train_data_path:
self.train_data_path = self.params.train_data_path
else:
if self.mode == 'normal':
self.train_data_path = self.get_item(['inputs', 'data_paths', 'train_data_path'], default=None, use_default=True)
else:
self.train_data_path = None
if hasattr(self.params, 'valid_data_path') and self.params.valid_data_path:
self.valid_data_path = self.params.valid_data_path
else:
if self.mode == 'normal':
self.valid_data_path = self.get_item(['inputs', 'data_paths', 'valid_data_path'], default=None, use_default=True)
else:
self.valid_data_path = None
if hasattr(self.params, 'test_data_path') and self.params.test_data_path:
self.test_data_path = self.params.test_data_path
else:
if self.mode == 'normal':
self.test_data_path = self.get_item(['inputs', 'data_paths', 'test_data_path'], default=None, use_default=True)
else:
self.test_data_path = None
if self.phase == 'predict':
if self.params.predict_data_path:
self.predict_data_path = self.params.predict_data_path
else:
if self.mode == 'normal':
self.predict_data_path = self.get_item(['inputs', 'data_paths', 'predict_data_path'], default=None, use_default=True)
else:
self.predict_data_path = None
if self.phase == 'train' or self.phase == 'cache':
if self.valid_data_path is None and self.test_data_path is not None:
# We support test_data_path == None, if someone set valid_data_path to None while test_data_path is not None,
# swap the valid_data_path and test_data_path
self.valid_data_path = self.test_data_path
self.test_data_path = None
elif self.phase == 'predict':
if self.predict_data_path is None and self.test_data_path is not None:
self.predict_data_path = self.test_data_path
self.test_data_path = None
if self.phase == 'train' or self.phase == 'test' or self.phase == 'cache':
self.file_columns = self.get_item(['inputs', 'file_header'])
else:
self.file_columns = self.get_item(['inputs', 'file_header'], default=None, use_default=True)
if self.phase == 'predict':
if self.file_columns is None:
self.predict_file_columns = self.get_item(['inputs', 'predict_file_header'])
else:
self.predict_file_columns = self.get_item(['inputs', 'predict_file_header'], default=None, use_default=True)
if self.predict_file_columns is None:
self.predict_file_columns = self.file_columns
if self.phase != 'predict':
if self.phase == 'cache':
self.answer_column_name = self.get_item(['inputs', 'target'], default=None, use_default=True)
else:
self.answer_column_name = self.get_item(['inputs', 'target'])
self.input_types = self.get_item(['architecture', 0, 'conf'])
# add extra feature
feature_all = set([_.lower() for _ in self.input_types.keys()])
formal_feature = set(['word', 'char'])
self.extra_feature = len(feature_all - formal_feature) != 0
# add char embedding config
# char_emb_type = None
# char_emb_type_cols = None
# for single_type in self.input_types:
# if single_type.lower() == 'char':
# char_emb_type = single_type
# char_emb_type_cols = [single_col.lower() for single_col in self.input_types[single_type]['cols']]
# break
self.object_inputs = self.get_item(['inputs', 'model_inputs'])
# if char_emb_type and char_emb_type_cols:
# for single_input in self.object_inputs:
# for single_col in char_emb_type_cols:
# if single_input.lower() in single_col:
# self.object_inputs[single_input].append(single_col)
self.object_inputs_names = [name for name in self.object_inputs]
# vocabulary setting
self.max_vocabulary = self.get_item(['training_params', 'vocabulary', 'max_vocabulary'], default=800000, use_default=True)
self.min_word_frequency = self.get_item(['training_params', 'vocabulary', 'min_word_frequency'], default=3, use_default=True)
# file column header setting
self.file_with_col_header = self.get_item(['inputs', 'file_with_col_header'], default=False, use_default=True)
if ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging:
self.add_start_end_for_seq = self.get_item(['inputs', 'add_start_end_for_seq'], default=True)
else:
self.add_start_end_for_seq = self.get_item(['inputs', 'add_start_end_for_seq'], default=False)
if hasattr(self.params, 'pretrained_emb_path') and self.params.pretrained_emb_path:
self.pretrained_emb_path = self.params.pretrained_emb_path
else:
if self.mode == 'normal':
self.pretrained_emb_path = self.get_item(['inputs', 'data_paths', 'pre_trained_emb'], default=None, use_default=True)
else:
self.pretrained_emb_path = None
if 'word' in self.get_item(['architecture', 0, 'conf']) and self.pretrained_emb_path:
if hasattr(self.params, 'involve_all_words_in_pretrained_emb') and self.params.involve_all_words_in_pretrained_emb:
self.involve_all_words_in_pretrained_emb = self.params.involve_all_words_in_pretrained_emb
else:
self.involve_all_words_in_pretrained_emb = self.get_item(['inputs', 'involve_all_words_in_pretrained_emb'], default=False)
if hasattr(self.params, 'pretrained_emb_type') and self.params.pretrained_emb_type:
self.pretrained_emb_type = self.params.pretrained_emb_type
else:
self.pretrained_emb_type = self.get_item(['inputs', 'pretrained_emb_type'], default='glove')
if hasattr(self.params, 'pretrained_emb_binary_or_text') and self.params.pretrained_emb_binary_or_text:
self.pretrained_emb_binary_or_text = self.params.pretrained_emb_binary_or_text
else:
self.pretrained_emb_binary_or_text = self.get_item(['inputs', 'pretrained_emb_binary_or_text'], default='text')
self.pretrained_emb_dim = self.get_item(['architecture', 0, 'conf', 'word', 'dim'])
else:
self.pretrained_emb_path = None
self.involve_all_words_in_pretrained_emb = None
self.pretrained_emb_binary_or_text = None
self.pretrained_emb_dim = None
self.pretrained_emb_type = None
if self.phase == 'train':
if hasattr(self.params, 'cache_dir') and self.params.cache_dir:
# for aether
self.cache_dir = self.params.cache_dir
else:
if self.mode == 'normal':
if self.use_cache:
self.cache_dir = self.get_item(['outputs', 'cache_dir'])
else:
self.cache_dir = os.path.join(tempfile.gettempdir(), 'neuron_blocks', ''.join(random.sample(string.ascii_letters+string.digits, 16)))
else:
# for philly mode, we can only save files in model_path or scratch_path
self.cache_dir = os.path.join(self.save_base_dir, 'cache')
self.problem_path = os.path.join(self.cache_dir, 'problem.pkl')
if self.pretrained_emb_path is not None:
self.emb_pkl_path = os.path.join(self.cache_dir, 'emb.pkl')
else:
self.emb_pkl_path = None
else:
tmp_problem_path = os.path.join(self.save_base_dir, '.necessary_cache', 'problem.pkl')
self.problem_path = tmp_problem_path if os.path.isfile(tmp_problem_path) else os.path.join(self.save_base_dir, 'necessary_cache', 'problem.pkl')
# cache configuration
self._load_cache_config_from_conf()
# training params
self.training_params = self.get_item(['training_params'])
if self.phase == 'train':
self.optimizer_name = self.get_item(['training_params', 'optimizer', 'name'])
self.optimizer_params = self.get_item(['training_params', 'optimizer', 'params'])
self.clip_grad_norm_max_norm = self.get_item(['training_params', 'clip_grad_norm_max_norm'], default=5)
if hasattr(self.params, 'learning_rate') and self.params.learning_rate:
self.optimizer_params['lr'] = self.params.learning_rate
if hasattr(self.params, 'batch_size') and self.params.batch_size:
self.batch_size_each_gpu = self.params.batch_size
else:
self.batch_size_each_gpu = self.get_item(['training_params', 'batch_size']) #the batch_size in conf file is the batch_size on each GPU
self.lr_decay = self.get_item(['training_params', 'lr_decay'], default=1) # by default, no decay
self.minimum_lr = self.get_item(['training_params', 'minimum_lr'], default=0)
self.epoch_start_lr_decay = self.get_item(['training_params', 'epoch_start_lr_decay'], default=1)
if hasattr(self.params, 'max_epoch') and self.params.max_epoch:
self.max_epoch = self.params.max_epoch
else:
self.max_epoch = self.get_item(['training_params', 'max_epoch'], default=float('inf'))
self.valid_times_per_epoch = self.get_item(['training_params', 'valid_times_per_epoch'], default=1)
self.batch_num_to_show_results = self.get_item(['training_params', 'batch_num_to_show_results'], default=10)
self.max_lengths = self.get_item(['training_params', 'max_lengths'], default=None, use_default=True)
self.fixed_lengths = self.get_item(['training_params', 'fixed_lengths'], default=None, use_default=True)
if self.fixed_lengths:
self.max_lengths = None
if torch.cuda.device_count() > 1:
self.batch_size_total = torch.cuda.device_count() * self.training_params['batch_size']
self.batch_num_to_show_results = self.batch_num_to_show_results // torch.cuda.device_count()
else:
self.batch_size_total = self.batch_size_each_gpu
self.cpu_num_workers = self.get_item(['training_params', 'cpu_num_workers'], default=-1) #by default, use all workers cpu supports
# text preprocessing
self.__text_preprocessing = self.get_item(['training_params', 'text_preprocessing'], default=list())
self.DBC2SBC = True if 'DBC2SBC' in self.__text_preprocessing else False
self.unicode_fix = True if 'unicode_fix' in self.__text_preprocessing else False
self.remove_stopwords = True if 'remove_stopwords' in self.__text_preprocessing else False
# tokenzier
if self.language == 'chinese':
self.tokenizer = self.get_item(['training_params', 'tokenizer'], default='jieba')
else:
self.tokenizer = self.get_item(['training_params', 'tokenizer'], default='nltk')
if self.extra_feature:
if self.DBC2SBC:
logging.warning("Detect the extra feature %s, set the DBC2sbc is False." % ''.join(list(feature_all-formal_feature)))
if self.unicode_fix:
logging.warning("Detect the extra feature %s, set the unicode_fix is False." % ''.join(list(feature_all-formal_feature)))
if self.remove_stopwords:
logging.warning("Detect the extra feature %s, set the remove_stopwords is False." % ''.join(list(feature_all-formal_feature)))
if ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging:
if self.unicode_fix:
logging.warning('For sequence tagging task, unicode_fix may change the number of words.')
if self.remove_stopwords:
self.remove_stopwords = True
logging.warning('For sequence tagging task, remove stopwords is forbidden! It is disabled now.')
if self.phase != 'cache':
if torch.cuda.is_available() and torch.cuda.device_count() > 0 and self.training_params.get('use_gpu', True):
self.use_gpu = True
logging.info("Activating GPU mode, there are %d GPUs available" % torch.cuda.device_count())
else:
self.use_gpu = False
logging.info("Activating CPU mode")
self.architecture = self.get_item(['architecture'])
self.output_layer_id = []
for single_layer in self.architecture:
if 'output_layer_flag' in single_layer and single_layer['output_layer_flag']:
self.output_layer_id.append(single_layer['layer_id'])
# check CNN layer & change min sentence length
cnn_rele_layers = ['Conv', 'ConvPooling']
self.min_sentence_len = 0
for layer_index, single_layer in enumerate(self.architecture):
if layer_index == 0:
continue
if sum([_ == single_layer['layer'] for _ in cnn_rele_layers]):
# get window_size conf: type maybe int or list
for single_conf, single_conf_value in single_layer['conf'].items():
if 'window' in single_conf.lower():
self.min_sentence_len = max(self.min_sentence_len, np.max(np.array([single_conf_value])))
break
if self.phase == 'train' or self.phase == 'test':
self.loss = BaseLossConf.get_conf(**self.get_item(['loss']))
self.metrics = self.get_item(['metrics'])
if 'auc' in self.metrics and ProblemTypes[self.problem_type] == ProblemTypes.classification:
self.pos_label = self.get_item(['inputs', 'positive_label'], default=None, use_default=True)
def get_item(self, keys, default=None, use_default=False):
"""
Args:
keys:
default: if some key is not found and default is None, we would raise an Exception, except that use_default is True
use_default: if you really want to set default to None, set use_default=True
Returns:
"""
item = self.conf
valid_keys = []
try:
for key in keys:
item = item[key]
valid_keys.append(key)
except:
error_keys = copy.deepcopy(valid_keys)
error_keys.append(key)
if default is None and use_default is False:
raise ConfigurationError(
"The configuration file %s is illegal. There should be an item configuration[%s], "
"but the item %s is not found." % (self.conf_path, "][".join(error_keys), key))
else:
print("configuration[%s] is not found in %s, use default value %s" % ("][".join(error_keys), self.conf_path, repr(default)))
item = default
return item
def check_conf(self):
""" verify if the configuration is legal or not
Returns:
"""
# In philly mode, ensure the data and model etc. are not the local paths defined in configuration file.
if self.mode == 'philly':
assert not (hasattr(self.params, 'train_data_path') and self.params.train_data_path is None and hasattr(self, 'train_data_path') and self.train_data_path), 'In philly mode, but you define a local train_data_path:%s in your configuration file' % self.train_data_path
assert not (hasattr(self.params, 'valid_data_path') and self.params.valid_data_path is None and hasattr(self, 'valid_data_path') and self.valid_data_path), 'In philly mode, but you define a local valid_data_path:%s in your configuration file' % self.valid_data_path
assert not (hasattr(self.params, 'test_data_path') and self.params.test_data_path is None and hasattr(self, 'test_data_path') and self.test_data_path), 'In philly mode, but you define a local test_data_path:%s in your configuration file' % self.test_data_path
if self.phase == 'train':
assert hasattr(self.params, 'model_save_dir') and self.params.model_save_dir, 'In philly mode, you must define a model save dir through the training params'
assert not (self.params.pretrained_model_path is None and self.pretrained_model_path), 'In philly mode, but you define a local pretrained model path:%s in your configuration file' % self.pretrained_model_path
assert not (self.pretrained_model_path is None and self.params.pretrained_emb_path is None and self.pretrained_emb_path), 'In philly mode, but you define a local pretrained embedding:%s in your configuration file' % self.pretrained_emb_path
elif self.phase == 'test' or self.phase == 'predict':
assert not (self.params.previous_model_path is None and self.previous_model_path), 'In philly mode, but you define a local model trained previously %s in your configuration file' % self.previous_model_path
# check inputs
# it seems that os.path.isfile cannot detect hdfs files
if self.phase == 'train':
assert self.train_data_path is not None, "Please define train_data_path"
assert os.path.isfile(self.train_data_path), "Training data %s does not exist!" % self.train_data_path
assert self.valid_data_path is not None, "Please define valid_data_path"
assert os.path.isfile(self.valid_data_path), "Training data %s does not exist!" % self.valid_data_path
if hasattr(self, 'pretrained_emb_type') and self.pretrained_emb_type:
assert self.pretrained_emb_type in set(['glove', 'word2vec', 'fasttext']), 'Embedding type %s is not supported! We support glove, word2vec, fasttext now.'
if hasattr(self, 'pretrained_emb_binary_or_text') and self.pretrained_emb_binary_or_text:
assert self.pretrained_emb_binary_or_text in set(['text', 'binary']), 'Embedding file type %s is not supported! We support text and binary.'
elif self.phase == 'test':
assert self.test_data_path is not None, "Please define test_data_path"
assert os.path.isfile(self.test_data_path), "Training data %s does not exist!" % self.test_data_path
elif self.phase == 'predict':
assert self.predict_data_path is not None, "Please define predict_data_path"
assert os.path.isfile(self.predict_data_path), "Training data %s does not exist!" % self.predict_data_path
# check language types
SUPPORTED_LANGUAGES = set(LanguageTypes._member_names_)
assert self.language in SUPPORTED_LANGUAGES, "Language type %s is not supported now. Supported types: %s" % (self.language, ",".join(SUPPORTED_LANGUAGES))
# check problem types
SUPPORTED_PROBLEMS = set(ProblemTypes._member_names_)
assert self.problem_type in SUPPORTED_PROBLEMS, "Data type %s is not supported now. Supported types: %s" % (self.problem_type, ",".join(SUPPORTED_PROBLEMS))
if ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging:
SUPPORTED_TAGGING_SCHEMES = set(TaggingSchemes._member_names_)
assert self.tagging_scheme is not None, "For sequence tagging proble, tagging scheme must be defined at configuration[\'inputs\'][\'tagging_scheme\']!"
assert self.tagging_scheme in SUPPORTED_TAGGING_SCHEMES, "Tagging scheme %s is not supported now. Supported schemes: %s" % (self.tagging_scheme, ",".join(SUPPORTED_TAGGING_SCHEMES))
# the max_lengths of all the inputs and targets should be consistent
if self.max_lengths:
max_lengths = list(self.max_lengths.values())
for i in range(len(max_lengths) - 1):
assert max_lengths[i] == max_lengths[i + 1], "For sequence tagging tasks, the max_lengths of all the inputs and targets should be consistent!"
# check appliable metrics
if self.phase == 'train' or self.phase == 'test':
self.metrics_post_check = set() # saved to check later
diff = set(self.metrics) - SupportedMetrics[ProblemTypes[self.problem_type]]
illegal_metrics = []
for diff_metric in diff:
if diff_metric.find('@') != -1:
field, target = diff_metric.split('@')
#if not field in PredictionTypes[ProblemTypes[self.problem_type]]:
if field != 'auc':
illegal_metrics.append(diff_metric)
else:
if target != 'average':
self.metrics_post_check.add(diff_metric)
if len(illegal_metrics) > 0:
raise Exception("Metrics %s are not supported for %s tasks!" % (",".join(list(illegal_metrics)), self.problem_type))
# check predict fields
if self.phase == 'predict':
self.predict_fields_post_check = set() # saved to check later
diff = set(self.predict_fields) - PredictionTypes[ProblemTypes[self.problem_type]]
illegal_fields = []
for diff_field in diff:
if diff_field.find('@') != -1 and diff_field.startswith('confidence'):
field, target = diff_field.split('@')
#if not field in PredictionTypes[ProblemTypes[self.problem_type]]:
if field != 'confidence':
illegal_fields.append(diff_field)
else:
# don't know if the target exists in the output dictionary, check after problem loaded
self.predict_fields_post_check.add(diff_field)
else:
illegal_fields.append(diff_field)
if len(illegal_fields) > 0:
raise Exception("The prediction fields %s is/are not supported!" % ",".join(illegal_fields))
def check_version_compat(self, nb_version, conf_version):
""" check if the version of toolkit and configuration file is compatible
Args:
nb_version: x.y.z
conf_version: x.y.z
Returns:
If the x field and y field are both the same, return True, else return False
"""
nb_version_split = nb_version.split('.')
conf_version_split = conf_version.split('.')
if len(nb_version_split) != len(conf_version_split):
raise ConfigurationError('The tool_version field of your configuration is illegal!')
if not (nb_version_split[0] == conf_version_split[0] and nb_version_split[1] == conf_version_split[1]):
raise ConfigurationError('The NeuronBlocks version is %s, but the configuration version is %s, please update your configuration to %s.%s.X' % (nb_version, conf_version, nb_version_split[0], nb_version_split[1]))
def back_up(self, params):
shutil.copy(params.conf_path, self.save_base_dir)
logging.info('Configuration file is backed up to %s' % (self.save_base_dir))
def _load_cache_config_from_conf(self):
# training data
self.train_data_md5 = None
if self.phase == 'train' and self.train_data_path:
self.train_data_md5 = md5([self.train_data_path])
# problem
self.problem_md5 = None
# encoding
self.encoding_cache_dir = None
self.encoding_cache_index_file_path = None
self.encoding_cache_index_file_md5_path = None
self.encoding_file_index = None
self.encoding_cache_legal_line_cnt = 0
self.encoding_cache_illegal_line_cnt = 0
self.load_encoding_cache_generator = None