NeuronBlocks/ModelConf.py

619 строки
34 KiB
Python

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.
import codecs
import json
import os
import tempfile
import random
import string
import copy
import torch
import logging
import shutil
from losses.BaseLossConf import BaseLossConf
#import traceback
from settings import LanguageTypes, ProblemTypes, TaggingSchemes, SupportedMetrics, PredictionTypes, DefaultPredictionFields, ConstantStatic
from utils.common_utils import log_set, prepare_dir, md5, load_from_json, dump_to_json
from utils.exceptions import ConfigurationError
import numpy as np
class ConstantStaticItems(ConstantStatic):
@staticmethod
def concat_key_desc(key_prefix_desc, key):
return key_prefix_desc + '.' + key
@staticmethod
def get_value_by_key(json, key, key_prefix='', use_default=False, default=None):
"""
Args:
json: a json object
key: a key pointing to the value wanted to acquire
use_default: if you really want to use default value when key can not be found in json object, set use_default=True
default: if key is not found and default is None, we would raise an Exception, except that use_default is True
Returns:
value:
"""
try:
value = json[key]
except:
if not use_default:
raise ConfigurationError("key[%s] can not be found in configuration file" % (key_prefix + key))
else:
value = default
return value
@staticmethod
def add_item(item_name, use_default=False, default=None):
def add_item_loading_func(use_default, default, func_get_value_by_key):
@classmethod
def load_data(cls, obj, json, key_prefix_desc='', use_default=use_default, default=default, func_get_value_by_key=func_get_value_by_key):
obj.__dict__[cls.__name__] = func_get_value_by_key(json, cls.__name__, key_prefix_desc, use_default, default)
return obj
return load_data
return type(item_name, (ConstantStatic, ), dict(load_data=add_item_loading_func(use_default, default, __class__.get_value_by_key)))
@classmethod
def load_data(cls, obj, json, key_prefix_desc=''):
if cls.__name__ in json.keys():
json = json[cls.__name__]
for key in cls.__dict__.keys():
if not hasattr(cls.__dict__[key], 'load_data'):
continue
item = cls.__dict__[key]
obj = item.load_data(obj, json, cls.concat_key_desc(key_prefix_desc, item.__name__))
return obj
class ModelConf(object):
def __init__(self, phase, conf_path, nb_version, params=None, mode='normal'):
""" loading configuration from configuration file and argparse parameters
Args:
phase: train/test/predict/cache
specially, 'cache' phase is used for verifying old cache
conf_path:
params:
mode: 'normal', 'philly'
"""
self.phase = phase
assert self.phase in set(['train', 'test', 'predict', 'cache'])
self.conf_path = conf_path
self.params = params
self.mode = mode.lower()
assert self.mode in set(['normal', 'philly']), 'Your mode %s is illegal, supported modes are: normal and philly!'
self.load_from_file(conf_path)
self.check_version_compat(nb_version, self.tool_version)
if phase != 'cache':
self.check_conf()
logging.debug('Print ModelConf below:')
logging.debug('=' * 80)
# print ModelConf
for name, value in vars(self).items():
if name.startswith("__") is False:
logging.debug('%s: %s' % (str(name), str(value)))
logging.debug('=' * 80)
class Conf(ConstantStaticItems):
license = ConstantStaticItems.add_item('license')
tool_version = ConstantStaticItems.add_item('tool_version')
model_description = ConstantStaticItems.add_item('model_description')
language = ConstantStaticItems.add_item('language', use_default=True, default='english')
class inputs(ConstantStaticItems):
use_cache = ConstantStaticItems.add_item('use_cache', use_default=True, default=True)
dataset_type = ConstantStaticItems.add_item('dataset_type')
tagging_scheme = ConstantStaticItems.add_item('tagging_scheme', use_default=True, default=None)
class data_paths(ConstantStaticItems):
train_data_path = ConstantStaticItems.add_item('train_data_path', use_default=True, default=None)
valid_data_path = ConstantStaticItems.add_item('valid_data_path', use_default=True, default=None)
test_data_path = ConstantStaticItems.add_item('test_data_path', use_default=True, default=None)
predict_data_path = ConstantStaticItems.add_item('predict_data_path', use_default=True, default=None)
pre_trained_emb = ConstantStaticItems.add_item('pre_trained_emb', use_default=True, default=None)
pretrained_model_path = ConstantStaticItems.add_item('pretrained_model_path', use_default=True, default=None)
file_with_col_header = ConstantStaticItems.add_item('file_with_col_header', use_default=True, default=False)
pretrained_emb_type = ConstantStaticItems.add_item('pretrained_emb_type', use_default=True, default='glove')
pretrained_emb_binary_or_text = ConstantStaticItems.add_item('pretrained_emb_binary_or_text', use_default=True, default='text')
involve_all_words_in_pretrained_emb = ConstantStaticItems.add_item('involve_all_words_in_pretrained_emb', use_default=True, default=False)
add_start_end_for_seq = ConstantStaticItems.add_item('add_start_end_for_seq', use_default=True, default=False)
file_header = ConstantStaticItems.add_item('file_header', use_default=True, default=None)
predict_file_header = ConstantStaticItems.add_item('predict_file_header', use_default=True, default=None)
model_inputs = ConstantStaticItems.add_item('model_inputs')
target = ConstantStaticItems.add_item('target', use_default=True, default=None)
positive_label = ConstantStaticItems.add_item('positive_label', use_default=True, default=None)
class outputs(ConstantStaticItems):
save_base_dir = ConstantStaticItems.add_item('save_base_dir', use_default=True, default=None)
model_name = ConstantStaticItems.add_item('model_name')
train_log_name = ConstantStaticItems.add_item('train_log_name', use_default=True, default=None)
test_log_name = ConstantStaticItems.add_item('test_log_name', use_default=True, default=None)
predict_log_name = ConstantStaticItems.add_item('predict_log_name', use_default=True, default=None)
predict_fields = ConstantStaticItems.add_item('predict_fields', use_default=True, default=None)
predict_output_name = ConstantStaticItems.add_item('predict_output_name', use_default=True, default='predict.tsv')
cache_dir = ConstantStaticItems.add_item('cache_dir', use_default=True, default=None)
class training_params(ConstantStaticItems):
class vocabulary(ConstantStaticItems):
min_word_frequency = ConstantStaticItems.add_item('min_word_frequency', use_default=True, default=3)
max_vocabulary = ConstantStaticItems.add_item('max_vocabulary', use_default=True, default=800 * 1000)
max_building_lines = ConstantStaticItems.add_item('max_building_lines', use_default=True, default=1000 * 1000)
optimizer = ConstantStaticItems.add_item('optimizer', use_default=True, default=None)
clip_grad_norm_max_norm = ConstantStaticItems.add_item('clip_grad_norm_max_norm', use_default=True, default=-1)
chunk_size = ConstantStaticItems.add_item('chunk_size', use_default=True, default=1000 * 1000)
lr_decay = ConstantStaticItems.add_item('lr_decay', use_default=True, default=1)
minimum_lr = ConstantStaticItems.add_item('minimum_lr', use_default=True, default=0)
epoch_start_lr_decay = ConstantStaticItems.add_item('epoch_start_lr_decay', use_default=True, default=1)
use_gpu = ConstantStaticItems.add_item('use_gpu', use_default=True, default=False)
cpu_num_workers = ConstantStaticItems.add_item('cpu_num_workers', use_default=True, default=-1) #by default, use all workers cpu supports
batch_size = ConstantStaticItems.add_item('batch_size', use_default=True, default=1)
batch_num_to_show_results = ConstantStaticItems.add_item('batch_num_to_show_results', use_default=True, default=10)
max_epoch = ConstantStaticItems.add_item('max_epoch', use_default=True, default=float('inf'))
valid_times_per_epoch = ConstantStaticItems.add_item('valid_times_per_epoch', use_default=True, default=None)
steps_per_validation = ConstantStaticItems.add_item('steps_per_validation', use_default=True, default=10)
text_preprocessing = ConstantStaticItems.add_item('text_preprocessing', use_default=True, default=list())
max_lengths = ConstantStaticItems.add_item('max_lengths', use_default=True, default=None)
fixed_lengths = ConstantStaticItems.add_item('fixed_lengths', use_default=True, default=None)
tokenizer = ConstantStaticItems.add_item('tokenizer', use_default=True, default=None)
architecture = ConstantStaticItems.add_item('architecture')
loss = ConstantStaticItems.add_item('loss', use_default=True, default=None)
metrics = ConstantStaticItems.add_item('metrics', use_default=True, default=None)
def raise_configuration_error(self, key):
raise ConfigurationError(
"The configuration file %s is illegal. the item [%s] is not found." % (self.conf_path, key))
def load_from_file(self, conf_path):
# load file
self.conf = load_from_json(conf_path, debug=False)
self = self.Conf.load_data(self, {'Conf' : self.conf}, key_prefix_desc='Conf')
self.language = self.language.lower()
self.configurate_outputs()
self.configurate_inputs()
self.configurate_training_params()
self.configurate_architecture()
self.configurate_loss()
self.configurate_cache()
def configurate_outputs(self):
def configurate_logger(self):
if self.phase == 'cache':
return
# dir
if hasattr(self.params, 'log_dir') and self.params.log_dir:
self.log_dir = self.params.log_dir
prepare_dir(self.log_dir, True, allow_overwrite=True)
else:
self.log_dir = self.save_base_dir
# path
self.train_log_path = os.path.join(self.log_dir, self.train_log_name)
self.test_log_path = os.path.join(self.log_dir, self.test_log_name)
self.predict_log_path = os.path.join(self.log_dir, self.predict_log_name)
if self.phase == 'train':
log_path = self.train_log_path
elif self.phase == 'test':
log_path = self.test_log_path
elif self.phase == 'predict':
log_path = self.predict_log_path
if log_path is None:
self.raise_configuration_error(self.phase + '_log_name')
# log level
if self.mode == 'philly' or self.params.debug:
log_set(log_path, console_level='DEBUG', console_detailed=True, disable_log_file=self.params.disable_log_file)
else:
log_set(log_path, disable_log_file=self.params.disable_log_file)
# save base dir
if hasattr(self.params, 'model_save_dir') and self.params.model_save_dir:
self.save_base_dir = self.params.model_save_dir
elif self.save_base_dir is None:
self.raise_configuration_error('save_base_dir')
# prepare save base dir
if self.phase != 'cache':
prepare_dir(self.save_base_dir, True, allow_overwrite=self.params.force or self.mode == 'philly',
extra_info='will overwrite model file and train.log' if self.phase=='train' else 'will add %s.log and predict file'%self.phase)
# logger
configurate_logger(self)
# predict output path
if self.phase != 'cache':
if self.params.predict_output_path:
self.predict_output_path = self.params.predict_output_path
else:
self.predict_output_path = os.path.join(self.save_base_dir, self.predict_output_name)
logging.debug('Prepare dir for: %s' % self.predict_output_path)
prepare_dir(self.predict_output_path, False, allow_overwrite=self.params.force or self.mode == 'philly')
if self.predict_fields is None:
self.predict_fields = DefaultPredictionFields[ProblemTypes[self.problem_type]]
self.model_save_path = os.path.join(self.save_base_dir, self.model_name)
def configurate_inputs(self):
def configurate_data_path(self):
self.pretrained_emb_path =self.pre_trained_emb
if self.mode != "normal":
self.train_data_path = None
self.valid_data_path = None
self.test_data_path = None
self.predict_data_path = None
self.pretrained_emb_path = None
if hasattr(self.params, 'train_data_path') and self.params.train_data_path:
self.train_data_path = self.params.train_data_path
if hasattr(self.params, 'valid_data_path') and self.params.valid_data_path:
self.valid_data_path = self.params.valid_data_path
if hasattr(self.params, 'test_data_path') and self.params.test_data_path:
self.test_data_path = self.params.test_data_path
if hasattr(self.params, 'predict_data_path') and self.params.predict_data_path:
self.predict_data_path = self.params.predict_data_path
if hasattr(self.params, 'pretrained_emb_path') and self.params.pretrained_emb_path:
self.pretrained_emb_path = self.params.pretrained_emb_path
if self.phase == 'train' or self.phase == 'cache':
if self.valid_data_path is None and self.test_data_path is not None:
# We support test_data_path == None, if someone set valid_data_path to None while test_data_path is not None,
# swap the valid_data_path and test_data_path
self.valid_data_path = self.test_data_path
self.test_data_path = None
elif self.phase == 'predict':
if self.predict_data_path is None and self.test_data_path is not None:
self.predict_data_path = self.test_data_path
self.test_data_path = None
return self
def configurate_data_format(self):
# file columns
if self.phase == 'train' or self.phase == 'test' or self.phase == 'cache':
self.file_columns = self.file_header
if self.file_columns is None:
self.raise_configuration_error('file_columns')
if self.phase == 'predict':
self.file_columns, self.predict_file_columns = self.file_header, self.predict_file_header
if self.file_columns is None and self.predict_file_columns is None:
self.raise_configuration_error('predict_file_columns')
if self.file_columns and self.predict_file_columns is None:
self.predict_file_columns = self.file_columns
# target
if self.phase != 'predict':
self.answer_column_name = self.target
if self.target is None and self.phase != 'cache':
self.raise_configuration_error('target')
if ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging and self.add_start_end_for_seq is None:
self.add_start_end_for_seq = True
# pretrained embedding
if 'word' in self.architecture[0]['conf'] and self.pretrained_emb_path:
if hasattr(self.params, 'involve_all_words_in_pretrained_emb') and self.params.involve_all_words_in_pretrained_emb:
self.involve_all_words_in_pretrained_emb = self.params.involve_all_words_in_pretrained_emb
if hasattr(self.params, 'pretrained_emb_type') and self.params.pretrained_emb_type:
self.pretrained_emb_type = self.params.pretrained_emb_type
if hasattr(self.params, 'pretrained_emb_binary_or_text') and self.params.pretrained_emb_binary_or_text:
self.pretrained_emb_binary_or_text = self.params.pretrained_emb_binary_or_text
self.pretrained_emb_dim = self.architecture[0]['conf']['word']['dim']
else:
self.pretrained_emb_path = None
self.involve_all_words_in_pretrained_emb = None
self.pretrained_emb_type = None
self.pretrained_emb_binary_or_text = None
self.pretrained_emb_dim = None
return self
def configurate_model_input(self):
self.object_inputs = self.model_inputs
self.object_inputs_names = [name for name in self.object_inputs]
return self
self.problem_type = self.dataset_type.lower()
# previous model path
if hasattr(self.params, 'previous_model_path') and self.params.previous_model_path:
self.previous_model_path = self.params.previous_model_path
else:
self.previous_model_path = os.path.join(self.save_base_dir, self.model_name)
# pretrained model path
if hasattr(self.params, 'pretrained_model_path') and self.params.pretrained_model_path:
self.pretrained_model_path = self.params.pretrained_model_path
# saved problem path
model_path = None
if self.phase == 'train':
model_path = self.pretrained_model_path
elif self.phase == 'test' or self.phase == 'predict':
model_path = self.previous_model_path
if model_path:
model_path_dir = os.path.dirname(model_path)
self.saved_problem_path = os.path.join(model_path_dir, '.necessary_cache', 'problem.pkl')
if not os.path.isfile(self.saved_problem_path):
self.saved_problem_path = os.path.join(model_path_dir, 'necessary_cache', 'problem.pkl')
if not (os.path.isfile(model_path) and os.path.isfile(self.saved_problem_path)):
raise Exception('Previous trained model %s or its dictionaries %s does not exist!' % (model_path, self.saved_problem_path))
configurate_data_path(self)
configurate_data_format(self)
configurate_model_input(self)
def configurate_training_params(self):
# optimizer
if self.phase == 'train':
if self.optimizer is None:
self.raise_configuration_error('training_params.optimizer')
if 'name' not in self.optimizer.keys():
self.raise_configuration_error('training_params.optimizer.name')
self.optimizer_name = self.optimizer['name']
if 'params' not in self.optimizer.keys():
self.raise_configuration_error('training_params.optimizer.params')
self.optimizer_params = self.optimizer['params']
if hasattr(self.params, 'learning_rate') and self.params.learning_rate:
self.optimizer_params['lr'] = self.params.learning_rate
# batch size
self.batch_size_each_gpu = self.batch_size # the batch_size in conf file is the batch_size on each GPU
if hasattr(self.params, 'batch_size') and self.params.batch_size:
self.batch_size_each_gpu = self.params.batch_size
if self.batch_size_each_gpu is None:
self.raise_configuration_error('training_params.batch_size')
self.batch_size_total = self.batch_size_each_gpu
if torch.cuda.device_count() > 1:
self.batch_size_total = torch.cuda.device_count() * self.batch_size_each_gpu
self.batch_num_to_show_results = self.batch_num_to_show_results // torch.cuda.device_count()
if hasattr(self.params, 'max_epoch') and self.params.max_epoch:
self.max_epoch = self.params.max_epoch
if self.valid_times_per_epoch is not None:
logging.info("configuration[training_params][valid_times_per_epoch] is deprecated, please use configuration[training_params][steps_per_validation] instead")
# sequence length
if self.fixed_lengths:
self.max_lengths = None
if ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging:
self.fixed_lengths = None
self.max_lengths = None
# text preprocessing
self.__text_preprocessing = self.text_preprocessing
self.DBC2SBC = True if 'DBC2SBC' in self.__text_preprocessing else False
self.unicode_fix = True if 'unicode_fix' in self.__text_preprocessing else False
self.remove_stopwords = True if 'remove_stopwords' in self.__text_preprocessing else False
# tokenzier
if self.tokenizer is None:
self.tokenizer = 'jieba' if self.language == 'chinese' else 'nltk'
# GPU/CPU
if self.phase != 'cache':
if torch.cuda.is_available() and torch.cuda.device_count() > 0 and self.use_gpu:
logging.info("Activating GPU mode, there are %d GPUs available" % torch.cuda.device_count())
else:
self.use_gpu = False
logging.info("Activating CPU mode")
def configurate_architecture(self):
self.input_types = self.architecture[0]['conf']
# extra feature
feature_all = set([_.lower() for _ in self.input_types.keys()])
formal_feature = set(['word', 'char'])
extra_feature_num = feature_all - formal_feature
self.extra_feature = len(extra_feature_num) != 0
if self.extra_feature:
if self.DBC2SBC:
logging.warning("Detect the extra feature %s, set the DBC2sbc is False." % ''.join(list(extra_feature_num)))
if self.unicode_fix:
logging.warning("Detect the extra feature %s, set the unicode_fix is False." % ''.join(list(extra_feature_num)))
if self.remove_stopwords:
logging.warning("Detect the extra feature %s, set the remove_stopwords is False." % ''.join(list(extra_feature_num)))
# output layer
self.output_layer_id = []
for single_layer in self.architecture:
if 'output_layer_flag' in single_layer and single_layer['output_layer_flag']:
self.output_layer_id.append(single_layer['layer_id'])
# check CNN layer & change min sentence length
cnn_rele_layers = ['Conv', 'ConvPooling']
self.min_sentence_len = 0
for layer_index, single_layer in enumerate(self.architecture):
if layer_index == 0:
continue
if sum([_ == single_layer['layer'] for _ in cnn_rele_layers]):
# get window_size conf: type maybe int or list
for single_conf, single_conf_value in single_layer['conf'].items():
if 'window' in single_conf.lower():
self.min_sentence_len = max(self.min_sentence_len, np.max(np.array([single_conf_value])))
break
def configurate_loss(self):
if self.phase != 'train' and self.phase != 'test':
return
if self.loss is None or self.metrics is None:
self.raise_configuration_error('loss/metrics')
self.loss = BaseLossConf.get_conf(**self.loss)
if 'auc' in self.metrics and ProblemTypes[self.problem_type] == ProblemTypes.classification:
self.pos_label = self.positive_label
def configurate_cache(self):
# whether use cache
if self.mode == 'philly':
self.use_cache = True
# cache dir
if self.phase == 'train':
if hasattr(self.params, 'cache_dir') and self.params.cache_dir:
self.cache_dir = self.params.cache_dir
else:
if self.mode == 'normal':
if self.use_cache is False:
self.cache_dir = os.path.join(tempfile.gettempdir(), 'neuron_blocks', ''.join(random.sample(string.ascii_letters+string.digits, 16)))
else:
# for philly mode, we can only save files in model_path or scratch_path
self.cache_dir = os.path.join(self.save_base_dir, 'cache')
self.problem_path = os.path.join(self.cache_dir, 'problem.pkl')
if self.pretrained_emb_path is not None:
self.emb_pkl_path = os.path.join(self.cache_dir, 'emb.pkl')
else:
self.emb_pkl_path = None
else:
tmp_problem_path = os.path.join(self.save_base_dir, '.necessary_cache', 'problem.pkl')
self.problem_path = tmp_problem_path if os.path.isfile(tmp_problem_path) else os.path.join(self.save_base_dir, 'necessary_cache', 'problem.pkl')
# md5 of training data and problem
self.train_data_md5 = None
if self.phase == 'train' and self.train_data_path:
logging.info("Calculating the md5 of traing data ...")
self.train_data_md5 = md5([self.train_data_path])
logging.info("the md5 of traing data is %s"%(self.train_data_md5))
self.problem_md5 = None
# encoding
self.encoding_cache_dir = None
self.encoding_cache_index_file_path = None
self.encoding_cache_index_file_md5_path = None
self.encoding_file_index = None
self.encoding_cache_legal_line_cnt = 0
self.encoding_cache_illegal_line_cnt = 0
self.load_encoding_cache_generator = None
def check_conf(self):
""" verify if the configuration is legal or not
Returns:
"""
# In philly mode, ensure the data and model etc. are not the local paths defined in configuration file.
if self.mode == 'philly':
assert not (hasattr(self.params, 'train_data_path') and self.params.train_data_path is None and hasattr(self, 'train_data_path') and self.train_data_path), 'In philly mode, but you define a local train_data_path:%s in your configuration file' % self.train_data_path
assert not (hasattr(self.params, 'valid_data_path') and self.params.valid_data_path is None and hasattr(self, 'valid_data_path') and self.valid_data_path), 'In philly mode, but you define a local valid_data_path:%s in your configuration file' % self.valid_data_path
assert not (hasattr(self.params, 'test_data_path') and self.params.test_data_path is None and hasattr(self, 'test_data_path') and self.test_data_path), 'In philly mode, but you define a local test_data_path:%s in your configuration file' % self.test_data_path
if self.phase == 'train':
assert hasattr(self.params, 'model_save_dir') and self.params.model_save_dir, 'In philly mode, you must define a model save dir through the training params'
assert not (self.params.pretrained_model_path is None and self.pretrained_model_path), 'In philly mode, but you define a local pretrained model path:%s in your configuration file' % self.pretrained_model_path
assert not (self.pretrained_model_path is None and self.params.pretrained_emb_path is None and self.pretrained_emb_path), 'In philly mode, but you define a local pretrained embedding:%s in your configuration file' % self.pretrained_emb_path
elif self.phase == 'test' or self.phase == 'predict':
assert not (self.params.previous_model_path is None and self.previous_model_path), 'In philly mode, but you define a local model trained previously %s in your configuration file' % self.previous_model_path
# check inputs
# it seems that os.path.isfile cannot detect hdfs files
if self.phase == 'train':
assert self.train_data_path is not None, "Please define train_data_path"
assert os.path.isfile(self.train_data_path), "Training data %s does not exist!" % self.train_data_path
assert self.valid_data_path is not None, "Please define valid_data_path"
assert os.path.isfile(self.valid_data_path), "Training data %s does not exist!" % self.valid_data_path
if hasattr(self, 'pretrained_emb_type') and self.pretrained_emb_type:
assert self.pretrained_emb_type in set(['glove', 'word2vec', 'fasttext']), 'Embedding type %s is not supported! We support glove, word2vec, fasttext now.'
if hasattr(self, 'pretrained_emb_binary_or_text') and self.pretrained_emb_binary_or_text:
assert self.pretrained_emb_binary_or_text in set(['text', 'binary']), 'Embedding file type %s is not supported! We support text and binary.'
elif self.phase == 'test':
assert self.test_data_path is not None, "Please define test_data_path"
assert os.path.isfile(self.test_data_path), "Training data %s does not exist!" % self.test_data_path
elif self.phase == 'predict':
assert self.predict_data_path is not None, "Please define predict_data_path"
assert os.path.isfile(self.predict_data_path), "Training data %s does not exist!" % self.predict_data_path
# check language types
SUPPORTED_LANGUAGES = set(LanguageTypes._member_names_)
assert self.language in SUPPORTED_LANGUAGES, "Language type %s is not supported now. Supported types: %s" % (self.language, ",".join(SUPPORTED_LANGUAGES))
# check problem types
SUPPORTED_PROBLEMS = set(ProblemTypes._member_names_)
assert self.problem_type in SUPPORTED_PROBLEMS, "Data type %s is not supported now. Supported types: %s" % (self.problem_type, ",".join(SUPPORTED_PROBLEMS))
if ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging:
SUPPORTED_TAGGING_SCHEMES = set(TaggingSchemes._member_names_)
assert self.tagging_scheme is not None, "For sequence tagging proble, tagging scheme must be defined at configuration[\'inputs\'][\'tagging_scheme\']!"
assert self.tagging_scheme in SUPPORTED_TAGGING_SCHEMES, "Tagging scheme %s is not supported now. Supported schemes: %s" % (self.tagging_scheme, ",".join(SUPPORTED_TAGGING_SCHEMES))
# the max_lengths of all the inputs and targets should be consistent
if self.max_lengths:
max_lengths = list(self.max_lengths.values())
for i in range(len(max_lengths) - 1):
assert max_lengths[i] == max_lengths[i + 1], "For sequence tagging tasks, the max_lengths of all the inputs and targets should be consistent!"
# check appliable metrics
if self.phase == 'train' or self.phase == 'test':
self.metrics_post_check = set() # saved to check later
diff = set(self.metrics) - SupportedMetrics[ProblemTypes[self.problem_type]]
illegal_metrics = []
for diff_metric in diff:
if diff_metric.find('@') != -1:
field, target = diff_metric.split('@')
#if not field in PredictionTypes[ProblemTypes[self.problem_type]]:
if field != 'auc':
illegal_metrics.append(diff_metric)
else:
if target != 'average':
self.metrics_post_check.add(diff_metric)
if len(illegal_metrics) > 0:
raise Exception("Metrics %s are not supported for %s tasks!" % (",".join(list(illegal_metrics)), self.problem_type))
# check predict fields
if self.phase == 'predict':
self.predict_fields_post_check = set() # saved to check later
diff = set(self.predict_fields) - PredictionTypes[ProblemTypes[self.problem_type]]
illegal_fields = []
for diff_field in diff:
if diff_field.find('@') != -1 and diff_field.startswith('confidence'):
field, target = diff_field.split('@')
#if not field in PredictionTypes[ProblemTypes[self.problem_type]]:
if field != 'confidence':
illegal_fields.append(diff_field)
else:
# don't know if the target exists in the output dictionary, check after problem loaded
self.predict_fields_post_check.add(diff_field)
else:
illegal_fields.append(diff_field)
if len(illegal_fields) > 0:
raise Exception("The prediction fields %s is/are not supported!" % ",".join(illegal_fields))
def check_version_compat(self, nb_version, conf_version):
""" check if the version of toolkit and configuration file is compatible
Args:
nb_version: x.y.z
conf_version: x.y.z
Returns:
If the x field and y field are both the same, return True, else return False
"""
nb_version_split = nb_version.split('.')
conf_version_split = conf_version.split('.')
if len(nb_version_split) != len(conf_version_split):
raise ConfigurationError('The tool_version field of your configuration is illegal!')
if not (nb_version_split[0] == conf_version_split[0] and nb_version_split[1] == conf_version_split[1]):
raise ConfigurationError('The NeuronBlocks version is %s, but the configuration version is %s, please update your configuration to %s.%s.X' % (nb_version, conf_version, nb_version_split[0], nb_version_split[1]))
def back_up(self, params):
shutil.copy(params.conf_path, self.save_base_dir)
logging.info('Configuration file is backed up to %s' % (self.save_base_dir))