NeuronBlocks/problem.py

955 строки
47 KiB
Python

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.
import logging
import numpy as np
from core.CellDict import CellDict
from tqdm import tqdm
from utils.corpus_utils import load_embedding
import nltk
nltk.download('punkt', quiet=True)
nltk.download('stopwords', quiet=True)
from utils.BPEEncoder import BPEEncoder
import os
import pickle as pkl
from utils.common_utils import load_from_pkl, dump_to_pkl, load_from_json, dump_to_json, prepare_dir, md5
from settings import ProblemTypes, Setting as st
import math
from utils.ProcessorsScheduler import ProcessorsScheduler
from core.EnglishTokenizer import EnglishTokenizer
from core.ChineseTokenizer import ChineseTokenizer
from core.EnglishTextPreprocessor import EnglishTextPreprocessor
from utils.exceptions import PreprocessError
import torch
import torch.nn as nn
class Problem():
def __init__(self, phase, problem_type, input_types, answer_column_name=None, lowercase=False, with_bos_eos=True,
tagging_scheme=None, tokenizer="nltk", remove_stopwords=False, DBC2SBC=True, unicode_fix=True):
"""
Args:
input_types: {
"word": ["word1", "word1"],
"postag": ["postag_feature1", "postag_feature2"]
}
answer_column_name: "label" after v1.0.0 answer_column_name change to list
source_with_start:
source_with_end:
source_with_unk:
source_with_pad:
target_with_start:
target_with_end:
target_with_unk:
target_with_pad:
same_length:
with_bos_eos: whether to add bos and eos when encoding
"""
# init
source_with_start, source_with_end, source_with_unk, source_with_pad, \
target_with_start, target_with_end, target_with_unk, target_with_pad, \
same_length = (True, ) * 9
if ProblemTypes[problem_type] == ProblemTypes.sequence_tagging:
pass
elif \
ProblemTypes[problem_type] == ProblemTypes.classification or \
ProblemTypes[problem_type] == ProblemTypes.regression:
target_with_start, target_with_end, target_with_unk, target_with_pad, same_length = (False, ) * 5
if phase != 'train':
same_length = True
elif ProblemTypes[problem_type] == ProblemTypes.mrc:
target_with_start, target_with_end, target_with_unk, target_with_pad, same_length = (False, ) * 5
with_bos_eos = False
if ProblemTypes[problem_type] == ProblemTypes.sequence_tagging:
target_with_start = False
target_with_end = False
target_with_unk = False
self.lowercase = lowercase
self.problem_type = problem_type
self.tagging_scheme = tagging_scheme
self.with_bos_eos = with_bos_eos
self.source_with_start = source_with_start
self.source_with_end = source_with_end
self.source_with_unk = source_with_unk
self.source_with_pad = source_with_pad
self.target_with_start = target_with_start
self.target_with_end = target_with_end
self.target_with_unk = target_with_unk
self.target_with_pad = target_with_pad
self.input_dicts = dict()
for input_type in input_types:
self.input_dicts[input_type] = CellDict(with_unk=source_with_unk, with_pad=source_with_pad,
with_start=source_with_start, with_end=source_with_end)
if ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging or \
ProblemTypes[self.problem_type] == ProblemTypes.classification :
self.output_dict = CellDict(with_unk=target_with_unk, with_pad=target_with_pad,
with_start=target_with_start, with_end=target_with_end)
elif ProblemTypes[self.problem_type] == ProblemTypes.regression or \
ProblemTypes[self.problem_type] == ProblemTypes.mrc:
self.output_dict = None
self.file_column_num = None
if tokenizer in ['nltk']:
self.tokenizer = EnglishTokenizer(tokenizer=tokenizer, remove_stopwords=remove_stopwords)
elif tokenizer in ['jieba']:
self.tokenizer = ChineseTokenizer(tokenizer=tokenizer, remove_stopwords=remove_stopwords)
self.text_preprocessor = EnglishTextPreprocessor(DBC2SBC=DBC2SBC, unicode_fix=unicode_fix)
def input_word_num(self):
return self.input_word_dict.cell_num()
def output_target_num(self):
if ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging or ProblemTypes[self.problem_type] == ProblemTypes.classification:
return self.output_dict.cell_num()
else:
return None
def get_data_generator_from_file(self, data_path, file_with_col_header, chunk_size=1000000):
data_list = list()
with open(data_path, "r", encoding='utf-8') as f:
if file_with_col_header:
f.readline()
for index, line in enumerate(f):
line = line.rstrip()
if not line:
break
data_list.append(line)
if (index + 1) % chunk_size == 0:
yield data_list
data_list = list()
if len(data_list) > 0:
yield data_list
def build_training_data_list(self, training_data_list, file_columns, input_types, answer_column_name, bpe_encoder=None):
docs = dict() # docs of each type of input
col_index_types = dict() # input type of each column, col_index_types[0] = 'word'/'postag'
target_docs = {} # after v1.0.0, the target_docs change to dict for support multi_label
columns_to_target = {}
for single_target in answer_column_name:
target_docs[single_target] = []
columns_to_target[file_columns[single_target]] = single_target
for input_type in input_types:
docs[input_type] = []
# char is not in file_columns
if input_type == 'char':
continue
for col in input_types[input_type]['cols']:
col_index_types[file_columns[col]] = input_type
cnt_legal = 0
cnt_illegal = 0
for line in training_data_list:
# line_split = list(filter(lambda x: len(x) > 0, line.rstrip().split('\t')))
line_split = line.rstrip().split('\t')
if len(line_split) != len(file_columns):
logging.warning("Current line is inconsistent with configuration/inputs/file_header. Ingore now. %s" % line)
cnt_illegal += 1
continue
cnt_legal += 1
for i in range(len(line_split)):
if i in col_index_types:
if self.lowercase:
line_split[i] = line_split[i].lower()
line_split[i] = self.text_preprocessor.preprocess(line_split[i])
if col_index_types[i] == 'word':
if ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging:
token_list = line_split[i].split(" ")
else:
token_list = self.tokenizer.tokenize(line_split[i])
docs[col_index_types[i]].append(token_list)
if 'char' in docs:
# add char
docs['char'].append([single_char for single_char in ''.join(token_list)])
elif col_index_types[i] == 'bpe':
bpe_tokens = []
for token in self.tokenizer.tokenize(line_split[i]):
bpe_tokens.extend(bpe_encoder.bpe(token))
docs[col_index_types[i]].append(bpe_tokens)
else:
docs[col_index_types[i]].append(line_split[i].split(" "))
# target_docs change to dict
elif i in columns_to_target.keys():
curr_target = columns_to_target[i]
if ProblemTypes[self.problem_type] == ProblemTypes.classification:
target_docs[curr_target].append(line_split[i])
elif ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging:
target_docs[curr_target].append(line_split[i].split(" "))
elif ProblemTypes[self.problem_type] == ProblemTypes.regression or \
ProblemTypes[self.problem_type] == ProblemTypes.mrc:
pass
return docs, target_docs, cnt_legal, cnt_illegal
def build_training_multi_processor(self, training_data_generator, cpu_num_workers, file_columns, input_types, answer_column_name, bpe_encoder=None):
for data in training_data_generator:
# multi-Processing
scheduler = ProcessorsScheduler(cpu_num_workers)
func_args = (data, file_columns, input_types, answer_column_name, bpe_encoder)
res = scheduler.run_data_parallel(self.build_training_data_list, func_args)
# aggregate
docs = dict() # docs of each type of input
target_docs = []
cnt_legal = 0
cnt_illegal = 0
for (index, j) in res:
#logging.info("collect proccesor %d result" % index)
tmp_docs, tmp_target_docs, tmp_cnt_legal, tmp_cnt_illegal = j.get()
if len(docs) == 0:
docs = tmp_docs
else:
for key, value in tmp_docs.items():
docs[key].extend(value)
if len(target_docs) == 0:
target_docs = tmp_target_docs
else:
for single_type in tmp_target_docs:
target_docs[single_type].extend(tmp_target_docs[single_type])
# target_docs.extend(tmp_target_docs)
cnt_legal += tmp_cnt_legal
cnt_illegal += tmp_cnt_illegal
yield docs, target_docs, cnt_legal, cnt_illegal
def build(self, data_path_list, file_columns, input_types, file_with_col_header, answer_column_name, word2vec_path=None, word_emb_dim=None,
format=None, file_type=None, involve_all_words=None, file_format="tsv", show_progress=True,
cpu_num_workers=-1, max_vocabulary=800000, word_frequency=3, max_building_lines=1000*1000):
"""
Args:
data_path_list:
file_columns: {
"word1": 0,
"word2": 1,
"label": 2,
"postag_feature1": 3,
"postag_feature2": 4
},
input_types:
e.g.
{
"word": {
"cols": ["word1", "word2"],
"dim": 300
},
"postag": {
"cols": ["postag_feature1", "postag_feature2"],
"dim": 20
},
}
or
{
"bpe": {
"cols": ["word1", "word2"],
"dim": 100
"bpe_path": "xxx.bpe"
}
}
word2vec_path:
word_emb_dim:
involve_all_word: involve all words that show up in the pretrained embedding
file_format: "tsv", or "json". Note "json" means each sample is represented by a json string.
Returns:
"""
# parameter check
bpe_encoder = self._check_bpe_encoder(input_types)
self.file_column_num = len(file_columns)
for data_path in data_path_list:
if data_path:
progress = self.get_data_generator_from_file(data_path, file_with_col_header, chunk_size=max_building_lines)
preprocessed_data_generator= self.build_training_multi_processor(progress, cpu_num_workers, file_columns, input_types, answer_column_name, bpe_encoder=bpe_encoder)
# update symbol universe
docs, target_docs, cnt_legal, cnt_illegal = next(preprocessed_data_generator)
# input_type
for input_type in input_types:
self.input_dicts[input_type].update(docs[input_type])
# problem_type
if ProblemTypes[self.problem_type] == ProblemTypes.classification or \
ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging:
self.output_dict.update(list(target_docs.values())[0])
elif ProblemTypes[self.problem_type] == ProblemTypes.regression or \
ProblemTypes[self.problem_type] == ProblemTypes.mrc:
pass
logging.info("[Building Dictionary] in %s at most %d lines imported: %d legal lines, %d illegal lines." % (data_path, max_building_lines, cnt_legal, cnt_illegal))
# build dictionary
for input_type in input_types:
self.input_dicts[input_type].build(threshold=word_frequency, max_vocabulary_num=max_vocabulary)
logging.info("%d types in %s column" % (self.input_dicts[input_type].cell_num(), input_type))
if self.output_dict:
self.output_dict.build(threshold=0)
if ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging:
self.output_dict.cell_id_map["<start>"] = len(self.output_dict.cell_id_map)
self.output_dict.id_cell_map[len(self.output_dict.id_cell_map)] = "<start>"
self.output_dict.cell_id_map["<eos>"] = len(self.output_dict.cell_id_map)
self.output_dict.id_cell_map[len(self.output_dict.id_cell_map)] = "<eos>"
logging.info("%d types in target column" % (self.output_dict.cell_num()))
logging.debug("training data dict built")
# embedding
word_emb_matrix = None
if word2vec_path:
logging.info("Getting pre-trained embeddings...")
word_emb_dict = None
if involve_all_words is True:
word_emb_dict = load_embedding(word2vec_path, word_emb_dim, format, file_type, with_head=False, word_set=None)
self.input_dicts['word'].update([list(word_emb_dict.keys())])
self.input_dicts['word'].build(threshold=0, max_vocabulary_num=len(word_emb_dict))
else:
extend_vocabulary = set()
for single_word in self.input_dicts['word'].cell_id_map.keys():
extend_vocabulary.add(single_word)
if single_word.lower() != single_word:
extend_vocabulary.add(single_word.lower())
word_emb_dict = load_embedding(word2vec_path, word_emb_dim, format, file_type, with_head=False, word_set=extend_vocabulary)
for word in word_emb_dict:
loaded_emb_dim = len(word_emb_dict[word])
break
assert loaded_emb_dim == word_emb_dim, "The dimension of defined word embedding is inconsistent with the pretrained embedding provided!"
logging.info("constructing embedding table")
if self.input_dicts['word'].with_unk:
word_emb_dict['<unk>'] = np.random.random(size=word_emb_dim)
if self.input_dicts['word'].with_pad:
word_emb_dict['<pad>'] = np.random.random(size=word_emb_dim)
word_emb_matrix = []
unknown_word_count = 0
scale = np.sqrt(3.0 / word_emb_dim)
for i in range(self.input_dicts['word'].cell_num()):
single_word = self.input_dicts['word'].id_cell_map[i]
if single_word in word_emb_dict:
word_emb_matrix.append(word_emb_dict[single_word])
elif single_word.lower() in word_emb_dict:
word_emb_matrix.append(word_emb_dict[single_word.lower()])
else:
word_emb_matrix.append(np.random.uniform(-scale, scale, word_emb_dim))
unknown_word_count += 1
word_emb_matrix = np.array(word_emb_matrix)
logging.info("word embedding matrix shape:(%d, %d); unknown word count: %d;" %
(len(word_emb_matrix), len(word_emb_matrix[0]), unknown_word_count))
logging.info("Word embedding loaded")
return word_emb_matrix
@staticmethod
def _merge_encode_data(dest_dict, src_dict):
if len(dest_dict) == 0:
dest_dict = src_dict
else:
for branch in src_dict:
for input_type in dest_dict[branch]:
dest_dict[branch][input_type].extend(src_dict[branch][input_type])
return dest_dict
@staticmethod
def _merge_encode_lengths(dest_dict, src_dict):
def judge_dict(obj):
return True if isinstance(obj, dict) else False
if len(dest_dict) == 0:
dest_dict = src_dict
else:
for branch in src_dict:
if judge_dict(src_dict[branch]):
for type_branch in src_dict[branch]:
dest_dict[branch][type_branch].extend(src_dict[branch][type_branch])
else:
dest_dict[branch].extend(src_dict[branch])
return dest_dict
@staticmethod
def _merge_target(dest_dict, src_dict):
if not src_dict:
return src_dict
if len(dest_dict) == 0:
dest_dict = src_dict
else:
for single_type in src_dict:
dest_dict[single_type].extend(src_dict[single_type])
return dest_dict
def encode_data_multi_processor(self, data_generator, cpu_num_workers, file_columns, input_types, object_inputs,
answer_column_name, min_sentence_len, extra_feature, max_lengths=None, fixed_lengths=None, file_format="tsv", bpe_encoder=None):
for data in data_generator:
scheduler = ProcessorsScheduler(cpu_num_workers)
func_args = (data, file_columns, input_types, object_inputs,
answer_column_name, min_sentence_len, extra_feature, max_lengths, fixed_lengths, file_format, bpe_encoder)
res = scheduler.run_data_parallel(self.encode_data_list, func_args)
output_data, lengths, target = dict(), dict(), dict()
cnt_legal, cnt_illegal = 0, 0
for (index, j) in res:
# logging.info("collect proccesor %d result"%index)
tmp_data, tmp_lengths, tmp_target, tmp_cnt_legal, tmp_cnt_illegal = j.get()
output_data = self._merge_encode_data(output_data, tmp_data)
lengths = self._merge_encode_lengths(lengths, tmp_lengths)
target = self._merge_target(target, tmp_target)
cnt_legal += tmp_cnt_legal
cnt_illegal += tmp_cnt_illegal
yield output_data, lengths, target, cnt_legal, cnt_illegal
def encode_data_list(self, data_list, file_columns, input_types, object_inputs, answer_column_name, min_sentence_len,
extra_feature, max_lengths=None, fixed_lengths=None, file_format="tsv", bpe_encoder=None, predict_mode='batch'):
data = dict()
lengths = dict()
char_emb = True if 'char' in [single_input_type.lower() for single_input_type in input_types] else False
if answer_column_name is not None and len(answer_column_name)>0:
target = {}
lengths['target'] = {}
columns_to_target = {}
for single_target in answer_column_name:
target[single_target] = []
columns_to_target[file_columns[single_target]] = single_target
lengths['target'][single_target] = []
else:
target = None
col_index_types = dict() # input type of each column, namely the inverse of file_columns, e.g. col_index_types[0] = 'query_index'
type2cluster = dict() # e.g. type2cluster['query_index'] = 'word'
type_branches = dict() # branch of input type, e.g. type_branches['query_index'] = 'query'
# for char: don't split these word
word_no_split = ['<start>', '<pad>', '<eos>', '<unk>']
for branch in object_inputs:
data[branch] = dict()
lengths[branch] = dict()
lengths[branch]['sentence_length'] = []
temp_branch_char = False
for input_type in object_inputs[branch]:
type_branches[input_type] = branch
data[branch][input_type] = []
if 'char' in input_type.lower():
temp_branch_char = True
if char_emb and temp_branch_char:
lengths[branch]['word_length'] = []
# for extra_info for mrc task
if ProblemTypes[self.problem_type] == ProblemTypes.mrc:
extra_info_type = 'passage'
if extra_info_type not in object_inputs:
raise Exception('MRC task need passage for model_inputs, given: {0}'.format(';'.join(list(object_inputs.keys()))))
data[extra_info_type]['extra_passage_text'] = []
data[extra_info_type]['extra_passage_token_offsets'] = []
for input_type in input_types:
for col_name in input_types[input_type]['cols']:
type2cluster[col_name] = input_type
if col_name in file_columns:
col_index_types[file_columns[col_name]] = col_name
cnt_legal = 0
cnt_illegal = 0
# cnt_length_unconsistent = 0
cnt_all = 0
for line in data_list:
# line_split = list(filter(lambda x: len(x) > 0, line.rstrip().split('\t')))
line_split = line.rstrip().split('\t')
cnt_all += 1
if len(line_split) != len(file_columns):
if predict_mode == 'batch':
cnt_illegal += 1
if cnt_illegal / cnt_all > 0.33:
raise PreprocessError('The illegal data is too much. Please check the number of data columns or text token version.')
continue
else:
print('\tThe case is illegal! Please check your case and input again!')
return [None]*5
# cnt_legal += 1
length_appended_set = set() # to store branches whose length have been appended to lengths[branch]
if ProblemTypes[self.problem_type] == ProblemTypes.mrc:
passage_token_offsets = None
for i in range(len(line_split)):
line_split[i] = line_split[i].strip()
if i in col_index_types:
# these are data
branch = type_branches[col_index_types[i]]
input_type = []
input_type.append(col_index_types[i])
if(type2cluster[col_index_types[i]] == 'word' and char_emb):
temp_col_char = col_index_types[i].split('_')[0] + '_' + 'char'
if temp_col_char in input_types['char']['cols']:
input_type.append(temp_col_char)
if type2cluster[col_index_types[i]] == 'word' or type2cluster[col_index_types[i]] == 'bpe':
if self.lowercase:
line_split[i] = line_split[i].lower()
line_split[i] = self.text_preprocessor.preprocess(line_split[i])
if type2cluster[col_index_types[i]] == 'word':
if ProblemTypes[self.problem_type] == ProblemTypes.mrc:
token_offsets = self.tokenizer.span_tokenize(line_split[i])
tokens = [line_split[i][span[0]:span[1]] for span in token_offsets]
if branch == 'passage':
passage_token_offsets = token_offsets
data[extra_info_type]['extra_passage_text'].append(line_split[i])
data[extra_info_type]['extra_passage_token_offsets'].append(passage_token_offsets)
else:
if extra_feature == False and ProblemTypes[self.problem_type] != ProblemTypes.sequence_tagging:
tokens = self.tokenizer.tokenize(line_split[i])
else:
tokens = line_split[i].split(' ')
elif type2cluster[col_index_types[i]] == 'bpe':
tokens = bpe_encoder.encode(line_split[i])
else:
tokens = line_split[i].split(' ')
# for sequence labeling task, the length must be record the corpus truth length
if ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging:
if not branch in length_appended_set:
lengths[branch]['sentence_length'].append(len(tokens))
length_appended_set.add(branch)
else:
if len(tokens) != lengths[branch]['sentence_length'][-1]:
# logging.warning(
# "The length of inputs are not consistent. Ingore now. %s" % line)
cnt_illegal += 1
if cnt_illegal / cnt_all > 0.33:
raise PreprocessError(
"The illegal data is too much. Please check the number of data columns or text token version.")
lengths[branch]['sentence_length'].pop()
true_len = len(lengths[branch]['sentence_length'])
# need delete the last example
check_list = ['data', 'lengths', 'target']
for single_check in check_list:
single_check = eval(single_check)
self.delete_example(single_check, true_len)
break
if fixed_lengths and type_branches[input_type[0]] in fixed_lengths:
if len(tokens) >= fixed_lengths[type_branches[input_type[0]]]:
tokens = tokens[:fixed_lengths[type_branches[input_type[0]]]]
else:
tokens = tokens + ['<pad>'] * (fixed_lengths[type_branches[input_type[0]]] - len(tokens))
else:
if max_lengths and type_branches[input_type[0]] in max_lengths: # cut sequences which are too long
tokens = tokens[:max_lengths[type_branches[input_type[0]]]]
if len(tokens) < min_sentence_len:
tokens = tokens + ['<pad>'] * (min_sentence_len - len(tokens))
if self.with_bos_eos is True:
tokens = ['<start>'] + tokens + ['<eos>'] # so that source_with_start && source_with_end should be True
# for other tasks, length must be same as data length because fix/max_length operation
if not ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging:
if not branch in length_appended_set:
lengths[branch]['sentence_length'].append(len(tokens))
length_appended_set.add(branch)
else:
if len(tokens) != lengths[branch]['sentence_length'][-1]:
# logging.warning(
# "The length of inputs are not consistent. Ingore now. %s" % line)
cnt_illegal += 1
if cnt_illegal / cnt_all > 0.33:
raise PreprocessError(
"The illegal data is too much. Please check the number of data columns or text token version.")
lengths[branch]['sentence_length'].pop()
true_len = len(lengths[branch]['sentence_length'])
# need delete the last example
check_list = ['data', 'lengths', 'target']
for single_check in check_list:
single_check = eval(single_check)
self.delete_example(single_check, true_len)
break
for single_input_type in input_type:
if 'char' in single_input_type:
temp_word_char = []
temp_word_length = []
for single_token in tokens:
if single_token in word_no_split:
# temp_word_length.append(1)
temp_id = [self.input_dicts[type2cluster[single_input_type]].id(single_token)]
else:
temp_id = self.input_dicts[type2cluster[single_input_type]].lookup(single_token)
if fixed_lengths and 'word' in fixed_lengths:
if len(temp_id) >= fixed_lengths['word']:
temp_id = temp_id[:fixed_lengths['word']]
else:
temp_id = temp_id + [self.input_dicts[type2cluster[single_input_type]].id('<pad>')] * (fixed_lengths['word'] - len(temp_id))
temp_word_char.append(temp_id)
temp_word_length.append(len(temp_id))
data[branch][single_input_type].append(temp_word_char)
lengths[branch]['word_length'].append(temp_word_length)
else:
data[branch][single_input_type].\
append(self.input_dicts[type2cluster[single_input_type]].lookup(tokens))
else:
# judge target
if answer_column_name is not None and len(answer_column_name) > 0:
if i in columns_to_target.keys():
# this is target
curr_target = columns_to_target[i]
if ProblemTypes[self.problem_type] == ProblemTypes.mrc:
try:
trans2int = int(line_split[i])
except(ValueError):
target[curr_target].append(line_split[i])
else:
target[curr_target].append(trans2int)
lengths['target'][curr_target].append(1)
if ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging:
target_tags = line_split[i].split(" ")
if fixed_lengths and "target" in fixed_lengths:
if len(target_tags) >= fixed_lengths[type_branches[input_type[0]]]:
target_tags = target_tags[:fixed_lengths[type_branches[input_type[0]]]]
else:
target_tags = target_tags + ['<pad>'] * (fixed_lengths[type_branches[input_type[0]]] - len(target_tags))
else:
if max_lengths and "target" in max_lengths: # cut sequences which are too long
target_tags = target_tags[:max_lengths["target"]]
if self.with_bos_eos is True:
target_tags = ['O'] + target_tags + ['O']
target[curr_target].append(self.output_dict.lookup(target_tags))
lengths['target'][curr_target].append(len(target_tags))
elif ProblemTypes[self.problem_type] == ProblemTypes.classification:
target[curr_target].append(self.output_dict.id(line_split[i]))
lengths['target'][curr_target].append(1)
elif ProblemTypes[self.problem_type] == ProblemTypes.regression:
target[curr_target].append(float(line_split[i]))
lengths['target'][curr_target].append(1)
else:
# these columns are useless in the configuration
pass
cnt_legal += 1
if ProblemTypes[self.problem_type] == ProblemTypes.mrc and target is not None:
if passage_token_offsets:
if 'start_label' not in target or 'end_label' not in target:
raise Exception('MRC task need start_label and end_label.')
start_char_label = target['start_label'][-1]
end_char_label = target['end_label'][-1]
start_word_label = 0
end_word_label = len(passage_token_offsets) - 1
# for i in range(len(passage_token_offsets)):
# token_s, token_e = passage_token_offsets[i]
# if token_s > start_char_label:
# break
# start_word_label = i
# for i in range(len(passage_token_offsets)):
# token_s, token_e = passage_token_offsets[i]
# end_word_label = i
# if token_e >= end_char_label:
# break
for i in range(len(passage_token_offsets)):
token_s, token_e = passage_token_offsets[i]
if token_s <= start_char_label <= token_e:
start_word_label = i
if token_s <= end_char_label - 1 <= token_e:
end_word_label = i
target['start_label'][-1] = start_word_label
target['end_label'][-1] = end_word_label
else:
raise Exception('MRC task need passage.')
return data, lengths, target, cnt_legal, cnt_illegal
def encode(self, data_path, file_columns, input_types, file_with_col_header, object_inputs, answer_column_name,
min_sentence_len, extra_feature, max_lengths=None, fixed_lengths=None, file_format="tsv", show_progress=True,
cpu_num_workers=-1, chunk_size=1000*1000):
"""
Args:
data_path:
file_columns: {
"word1": 0,
"word2": 1,
"label": 2,
"postag_feature1": 3,
"postag_feature2": 4
},
input_types:
{
"word": {
"cols": [
"word1",
"word2"
],
"dim": 300
},
"postag": {
"cols": ["postag_feature1", "postag_feature2"],
"dim": 20
}
}
or
{
"bpe": {
"cols": ["word1", "word2"],
"dim": 100
"bpe_path": "xxx.bpe"
}
}
object_inputs: {
"string1": [
"word1",
"postag_feature1"
],
"string2": [
"word2",
"postag_feature2"
]
},
answer_column_name: 'label' / None. None means there is no target and it is used for prediction only.
max_lengths: if it is a dict, firstly cut the sequences if they exceed the max length. Then, pad all the sequences to the length of longest string.
{
"string1": 25,
"string2": 100
}
fixed_lengths: if it is a dict, cut or pad the sequences to the fixed lengths.
{
"string1": 25,
"string2": 100
}
file_format:
Returns:
data: indices, padded
{
'string1': {
'word1': [...],
'postage_feature1': [..]
}
'string2': {
'word1': [...],
'postage_feature1': [..]
}
lengths: real length of data
{
'string1': [...],
'string2': [...]
}
target: [...]
"""
bpe_encoder = self._check_bpe_encoder(input_types)
progress = self.get_data_generator_from_file(data_path, file_with_col_header, chunk_size=chunk_size)
encode_generator = self.encode_data_multi_processor(progress, cpu_num_workers,
file_columns, input_types, object_inputs, answer_column_name, min_sentence_len, extra_feature, max_lengths,
fixed_lengths, file_format, bpe_encoder=bpe_encoder)
data, lengths, target = dict(), dict(), dict()
cnt_legal, cnt_illegal = 0, 0
for temp_data, temp_lengths, temp_target, temp_cnt_legal, temp_cnt_illegal in tqdm(encode_generator):
data = self._merge_encode_data(data, temp_data)
lengths = self._merge_encode_lengths(lengths, temp_lengths)
target = self._merge_target(target, temp_target)
cnt_legal += temp_cnt_legal
cnt_illegal += temp_cnt_illegal
logging.info("%s: %d legal samples, %d illegal samples" % (data_path, cnt_legal, cnt_illegal))
return data, lengths, target
def build_encode_cache(self, conf, file_format="tsv"):
logging.info("[Cache] building encoding cache")
build_encode_cache_generator = self.get_encode_generator(conf, build_cache=True, file_format=file_format)
for _ in build_encode_cache_generator:
continue
logging.info("[Cache] encoding is saved to %s" % conf.encoding_cache_dir)
def get_encode_generator(self, conf, build_cache=True, file_format="tsv"):
# parameter check
if build_cache:
assert conf.encoding_cache_dir, 'There is no property encoding_cache_dir in object conf'
assert conf.encoding_cache_index_file_path, 'There is no property encoding_cache_index_file_path in object conf'
assert conf.encoding_cache_index_file_md5_path, 'There is no property encoding_cache_index_file_md5_path in object conf'
bpe_encoder = self._check_bpe_encoder(conf.input_types)
data_generator = self.get_data_generator_from_file(conf.train_data_path, conf.file_with_col_header, chunk_size=conf.chunk_size)
encode_generator = self.encode_data_multi_processor(data_generator, conf.cpu_num_workers,
conf.file_columns, conf.input_types, conf.object_inputs, conf.answer_column_name,
conf.min_sentence_len, conf.extra_feature, conf.max_lengths,
conf.fixed_lengths, file_format, bpe_encoder=bpe_encoder)
file_index = []
total_cnt_legal, total_cnt_illegal = 0, 0
for part_number, encode_data in enumerate(encode_generator):
data, lengths, target, cnt_legal, cnt_illegal = encode_data
if build_cache:
total_cnt_legal = total_cnt_legal + cnt_legal
total_cnt_illegal = total_cnt_illegal + cnt_illegal
file_name = st.cencoding_file_name_pattern % (part_number)
file_path = os.path.join(conf.encoding_cache_dir, file_name)
dump_to_pkl((data, lengths, target), file_path)
file_index.append([file_name, md5([file_path])])
logging.info("Up to now, in %s: %d legal samples, %d illegal samples" % (conf.train_data_path, total_cnt_legal, total_cnt_illegal))
yield data, lengths, target
if build_cache:
cache_index = dict()
cache_index[st.cencoding_key_index] = file_index
cache_index[st.cencoding_key_legal_cnt] = total_cnt_legal
cache_index[st.cencoding_key_illegal_cnt] = total_cnt_illegal
dump_to_json(cache_index, conf.encoding_cache_index_file_path)
dump_to_json(md5([conf.encoding_cache_index_file_path]), conf.encoding_cache_index_file_md5_path)
@staticmethod
def _check_bpe_encoder(input_types):
bpe_encoder = None
if 'bpe' in input_types:
try:
bpe_encoder = BPEEncoder(input_types['bpe']['bpe_path'])
except KeyError:
raise Exception('Please define a bpe path at the embedding layer.')
return bpe_encoder
def decode(self, model_output, lengths=None, batch_data=None):
""" decode the model output, either a batch of output or a single output
Args:
model_output: target indices.
if is 1d array, it is an output of a sample;
if is 2d array, it is outputs of a batch of samples;
lengths: if not None, the shape of length should be consistent with model_output.
Returns:
the original output
"""
if ProblemTypes[self.problem_type] == ProblemTypes.classification:
if isinstance(model_output, int): # output of a sample
return self.output_dict.cell(model_output)
else: # output of a batch
return self.output_dict.decode(model_output)
elif ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging:
if isinstance(model_output, dict):
model_output = list(model_output.values())[0]
if not isinstance(model_output, np.ndarray):
model_output = np.array(model_output)
if len(model_output.shape) == 1: # output of a sample
if lengths is None:
outputs = np.array(self.output_dict.decode(model_output))
else:
outputs = np.array(self.output_dict.decode(model_output[:lengths]))
if self.with_bos_eos:
outputs = outputs[1:-1]
elif len(model_output.shape) == 2: # output of a batch of sequence
outputs = []
if lengths is None:
for sample in model_output:
if self.with_bos_eos:
outputs.append(self.output_dict.decode(sample[1:-1]))
else:
outputs.append(self.output_dict.decode(sample))
else:
for sample, length in zip(model_output, lengths):
if self.with_bos_eos:
outputs.append(self.output_dict.decode(sample[:length][1:-1]))
else:
outputs.append(self.output_dict.decode(sample[:length]))
return outputs
elif ProblemTypes[self.problem_type] == ProblemTypes.mrc:
# for mrc, model_output is dict
answers = []
p1, p2 = list(model_output.values())[0], list(model_output.values())[1]
batch_size, c_len = p1.size()
passage_length = lengths.numpy()
padding_mask = np.ones((batch_size, c_len))
for i, single_len in enumerate(passage_length):
padding_mask[i][:single_len] = 0
device = p1.device
padding_mask = torch.from_numpy(padding_mask).byte().to(device)
p1.data.masked_fill_(padding_mask.data, float('-inf'))
p2.data.masked_fill_(padding_mask.data, float('-inf'))
ls = nn.LogSoftmax(dim=1)
mask = (torch.ones(c_len, c_len) * float('-inf')).to(device).tril(-1).unsqueeze(0).expand(batch_size, -1, -1)
score = (ls(p1).unsqueeze(2) + ls(p2).unsqueeze(1)) + mask
score, s_idx = score.max(dim=1)
score, e_idx = score.max(dim=1)
s_idx = torch.gather(s_idx, 1, e_idx.view(-1, 1)).squeeze()
# encode mrc answer text
passage_text = 'extra_passage_text'
passage_token_offsets = 'extra_passage_token_offsets'
for i in range(batch_size):
char_s_idx, _ = batch_data[passage_token_offsets][i][s_idx[i]]
_, char_e_idx = batch_data[passage_token_offsets][i][e_idx[i]]
answer = batch_data[passage_text][i][char_s_idx:char_e_idx]
answers.append(answer)
return answers
def get_vocab_sizes(self):
""" get size of vocabs: including word embedding, postagging ...
Returns:
{
'word': xxx,
'postag': xxx,
}
"""
vocab_sizes = dict()
for input in self.input_dicts:
vocab_sizes[input] = self.input_dicts[input].cell_num()
return vocab_sizes
def export_problem(self, save_path, ret_without_save=False):
if not os.path.exists(os.path.dirname(save_path)):
os.makedirs(os.path.dirname(save_path))
problem = dict()
for name, value in vars(self).items():
if name.startswith("__") is False:
if isinstance(value, CellDict):
problem[name] = value.export_cell_dict()
else:
problem[name] = value
if ret_without_save is False:
with open(save_path, 'wb') as fout:
pkl.dump(problem, fout, protocol=pkl.HIGHEST_PROTOCOL)
logging.debug("Problem saved to %s" % save_path)
return None
else:
return problem
def load_problem(self, problem_path):
info_dict = load_from_pkl(problem_path)
for name in info_dict:
if isinstance(getattr(self, name), CellDict):
getattr(self, name).load_cell_dict(info_dict[name])
else:
setattr(self, name, info_dict[name])
# the type of input_dicts is dict
# elif name == 'input_dicts' and isinstance(getattr(self, name), type(info_dict[name])):
# setattr(self, name, info_dict[name])
logging.debug("Problem loaded")
def delete_example(self, data, true_len):
if isinstance(data, list):
if len(data)>true_len:
data.pop()
else:
# data is dict
for single_value in data.values():
self.delete_example(single_value, true_len)