NeuronBlocks/train.py

390 строки
18 KiB
Python

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.
from settings import ProblemTypes, version, Setting as st
import os
import argparse
import logging
import shutil
import time
import numpy as np
import copy
import torch
import torch.nn as nn
from ModelConf import ModelConf
from problem import Problem
from utils.common_utils import dump_to_pkl, load_from_pkl, load_from_json, dump_to_json, prepare_dir, md5
from utils.philly_utils import HDFSDirectTransferer
from losses import *
from optimizers import *
from LearningMachine import LearningMachine
class Cache:
def __init__(self):
self.dictionary_invalid = True
self.embedding_invalid = True
self.encoding_invalid = True
def _check_dictionary(self, conf, params):
# init status
self.dictionary_invalid = True
self.embedding_invalid = True
if not conf.pretrained_model_path:
# cache_conf
cache_conf = None
cache_conf_path = os.path.join(conf.cache_dir, 'conf_cache.json')
if os.path.isfile(cache_conf_path):
params_cache = copy.deepcopy(params)
try:
cache_conf = ModelConf('cache', cache_conf_path, version, params_cache)
except Exception as e:
cache_conf = None
if cache_conf is None or not self._verify_conf(cache_conf, conf):
return False
# problem
if not os.path.isfile(conf.problem_path):
return False
# embedding
if conf.emb_pkl_path:
if not os.path.isfile(conf.emb_pkl_path):
return False
self.embedding_invalid = False
self.dictionary_invalid = False
logging.info('[Cache] dictionary found')
return True
def _check_encoding(self, conf):
self.encoding_invalid = True
if not conf.pretrained_model_path and self.dictionary_invalid:
return False
# Calculate the MD5 of problem
problem_path = conf.problem_path if not conf.pretrained_model_path else conf.saved_problem_path
try:
conf.problem_md5 = md5([problem_path])
except Exception as e:
conf.problem_md5 = None
logging.info('Can not calculate md5 of problem.pkl from %s'%(problem_path))
return False
# check the valid of encoding cache
## encoding cache dir
conf.encoding_cache_dir = os.path.join(conf.cache_dir, conf.train_data_md5 + conf.problem_md5)
logging.debug('[Cache] conf.encoding_cache_dir %s' % (conf.encoding_cache_dir))
if not os.path.exists(conf.encoding_cache_dir):
return False
## encoding cache index
conf.encoding_cache_index_file_path = os.path.join(conf.encoding_cache_dir, st.cencodig_index_file_name)
conf.encoding_cache_index_file_md5_path = os.path.join(conf.encoding_cache_dir, st.cencoding_index_md5_file_name)
if not os.path.exists(conf.encoding_cache_index_file_path) or not os.path.exists(conf.encoding_cache_index_file_md5_path):
return False
if md5([conf.encoding_cache_index_file_path]) != load_from_json(conf.encoding_cache_index_file_md5_path):
return False
cache_index = load_from_json(conf.encoding_cache_index_file_path)
## encoding cache content
for index in cache_index[st.cencoding_key_index]:
file_name, file_md5 = index[0], index[1]
if file_md5 != md5([os.path.join(conf.encoding_cache_dir, file_name)]):
return False
if (st.cencoding_key_legal_cnt in cache_index) and (st.cencoding_key_illegal_cnt in cache_index):
conf.encoding_cache_legal_line_cnt = cache_index[st.cencoding_key_legal_cnt]
conf.encoding_cache_illegal_line_cnt = cache_index[st.cencoding_key_illegal_cnt]
self.encoding_invalid = False
logging.info('[Cache] encoding found')
logging.info('%s: %d legal samples, %d illegal samples' % (conf.train_data_path, conf.encoding_cache_legal_line_cnt, conf.encoding_cache_illegal_line_cnt))
return True
def check(self, conf, params):
# dictionary
if not self._check_dictionary(conf, params):
self._renew_cache(params, conf.cache_dir)
return
# encoding
if not self._check_encoding(conf):
self._renew_cache(params, conf.encoding_cache_dir)
def load(self, conf, problem, emb_matrix):
# load dictionary when (not finetune) and (cache valid)
if not conf.pretrained_model_path and not self.dictionary_invalid:
problem.load_problem(conf.problem_path)
if not self.embedding_invalid:
emb_matrix = np.array(load_from_pkl(conf.emb_pkl_path))
logging.info('[Cache] loading dictionary successfully')
if not self.encoding_invalid:
self._prepare_encoding_cache(conf, problem, build=False)
logging.info('[Cache] preparing encoding successfully')
return problem, emb_matrix
def save(self, conf, params, problem, emb_matrix):
# make cache dir
if not os.path.exists(conf.cache_dir):
os.makedirs(conf.cache_dir)
shutil.copy(params.conf_path, os.path.join(conf.cache_dir, 'conf_cache.json'))
# dictionary
if self.dictionary_invalid:
if conf.mode == 'philly' and conf.emb_pkl_path.startswith('/hdfs/'):
with HDFSDirectTransferer(conf.problem_path, with_hdfs_command=True) as transferer:
transferer.pkl_dump(problem.export_problem(conf.problem_path, ret_without_save=True))
else:
problem.export_problem(conf.problem_path)
logging.info("[Cache] problem is saved to %s" % conf.problem_path)
if emb_matrix is not None and conf.emb_pkl_path is not None:
if conf.mode == 'philly' and conf.emb_pkl_path.startswith('/hdfs/'):
with HDFSDirectTransferer(conf.emb_pkl_path, with_hdfs_command=True) as transferer:
transferer.pkl_dump(emb_matrix)
else:
dump_to_pkl(emb_matrix, conf.emb_pkl_path)
logging.info("[Cache] Embedding matrix saved to %s" % conf.emb_pkl_path)
# encoding
if self.encoding_invalid:
self._prepare_encoding_cache(conf, problem, build=params.make_cache_only)
def back_up(self, conf, problem):
cache_bakup_path = os.path.join(conf.save_base_dir, 'necessary_cache/')
logging.debug('Prepare dir: %s' % cache_bakup_path)
prepare_dir(cache_bakup_path, True, allow_overwrite=True, clear_dir_if_exist=True)
problem.export_problem(cache_bakup_path+'problem.pkl')
logging.debug("Problem %s is backed up to %s" % (conf.problem_path, cache_bakup_path))
def _renew_cache(self, params, cache_path):
if not os.path.exists(cache_path):
return
logging.info('Found cache that is ineffective')
renew_option = 'yes'
if params.mode != 'philly' and params.force is not True:
renew_option = input('There exists ineffective cache %s for old models. Input "yes" to renew cache and "no" to exit. (default:no): ' % os.path.abspath(cache_path))
if renew_option.lower() != 'yes':
exit(0)
else:
shutil.rmtree(cache_path)
time.sleep(2) # sleep 2 seconds since the deleting is asynchronous
logging.info('Old cache is deleted')
def _verify_conf(self, cache_conf, cur_conf):
""" To verify if the cache is appliable to current configuration
Args:
cache_conf (ModelConf):
cur_conf (ModelConf):
Returns:
"""
if cache_conf.tool_version != cur_conf.tool_version:
return False
attribute_to_cmp = ['file_columns', 'object_inputs', 'answer_column_name', 'input_types', 'language']
flag = True
for attr in attribute_to_cmp:
if not (hasattr(cache_conf, attr) and hasattr(cur_conf, attr) and getattr(cache_conf, attr) == getattr(cur_conf, attr)):
logging.error('configuration %s is inconsistent with the old cache' % attr)
flag = False
return flag
def _prepare_encoding_cache(self, conf, problem, build=False):
# encoding cache dir
problem_path = conf.problem_path if not conf.pretrained_model_path else conf.saved_problem_path
conf.problem_md5 = md5([problem_path])
conf.encoding_cache_dir = os.path.join(conf.cache_dir, conf.train_data_md5 + conf.problem_md5)
if not os.path.exists(conf.encoding_cache_dir):
os.makedirs(conf.encoding_cache_dir)
# encoding cache files
conf.encoding_cache_index_file_path = os.path.join(conf.encoding_cache_dir, st.cencodig_index_file_name)
conf.encoding_cache_index_file_md5_path = os.path.join(conf.encoding_cache_dir, st.cencoding_index_md5_file_name)
conf.load_encoding_cache_generator = self._load_encoding_cache_generator
if build:
prepare_dir(conf.encoding_cache_dir, True, allow_overwrite=True, clear_dir_if_exist=True)
problem.build_encode_cache(conf)
self.encoding_invalid = False
if not self.encoding_invalid:
cache_index = load_from_json(conf.encoding_cache_index_file_path)
conf.encoding_file_index = cache_index[st.cencoding_key_index]
@staticmethod
def _load_encoding_cache_generator(cache_dir, file_index):
for index in file_index:
file_path = os.path.join(cache_dir, index[0])
yield load_from_pkl(file_path)
def main(params):
# init
conf = ModelConf("train", params.conf_path, version, params, mode=params.mode)
problem = Problem("train", conf.problem_type, conf.input_types, conf.answer_column_name,
with_bos_eos=conf.add_start_end_for_seq, tagging_scheme=conf.tagging_scheme, tokenizer=conf.tokenizer,
remove_stopwords=conf.remove_stopwords, DBC2SBC=conf.DBC2SBC, unicode_fix=conf.unicode_fix)
if conf.pretrained_model_path:
### when finetuning, load previous saved problem
problem.load_problem(conf.saved_problem_path)
# cache verification
emb_matrix = None
cache = Cache()
if conf.use_cache:
## check
cache.check(conf, params)
## load
problem, emb_matrix = cache.load(conf, problem, emb_matrix)
# data preprocessing
## build dictionary when (not in finetune model) and (not use cache or cache invalid)
if (not conf.pretrained_model_path) and ((conf.use_cache == False) or cache.dictionary_invalid):
logging.info("="*100)
logging.info("Preprocessing... Depending on your corpus size, this step may take a while.")
# modify train_data_path to [train_data_path, valid_data_path, test_data_path]
# remember the test_data may be None
data_path_list = [conf.train_data_path, conf.valid_data_path, conf.test_data_path]
emb_matrix = problem.build(data_path_list, conf.file_columns, conf.input_types, conf.file_with_col_header,
conf.answer_column_name, word2vec_path=conf.pretrained_emb_path,
word_emb_dim=conf.pretrained_emb_dim, format=conf.pretrained_emb_type,
file_type=conf.pretrained_emb_binary_or_text, involve_all_words=conf.involve_all_words_in_pretrained_emb,
show_progress=True if params.mode == 'normal' else False, cpu_num_workers = conf.cpu_num_workers,
max_vocabulary=conf.max_vocabulary, word_frequency=conf.min_word_frequency, max_building_lines=conf.max_building_lines)
# environment preparing
## cache save
if conf.use_cache:
cache.save(conf, params, problem, emb_matrix)
if params.make_cache_only:
if conf.use_cache:
logging.info("Finish building cache!")
else:
logging.info('Please set parameters "use_cache" is true')
return
## back up the problem.pkl to save_base_dir/.necessary_cache.
## During test phase, we would load cache from save_base_dir/.necessary_cache/problem.pkl
conf.back_up(params)
cache.back_up(conf, problem)
if problem.output_dict:
logging.debug("Problem target cell dict: %s" % (problem.output_dict.cell_id_map))
# train phase
## init
### model
vocab_info, initialize = None, False
if not conf.pretrained_model_path:
vocab_info, initialize = get_vocab_info(conf, problem, emb_matrix), True
lm = LearningMachine('train', conf, problem, vocab_info=vocab_info, initialize=initialize, use_gpu=conf.use_gpu)
if conf.pretrained_model_path:
logging.info('Loading the pretrained model: %s...' % conf.pretrained_model_path)
lm.load_model(conf.pretrained_model_path)
### loss
if len(conf.metrics_post_check) > 0:
for metric_to_chk in conf.metrics_post_check:
metric, target = metric_to_chk.split('@')
if not problem.output_dict.has_cell(target):
raise Exception("The target %s of %s does not exist in the training data." % (target, metric_to_chk))
loss_conf = conf.loss
loss_conf['output_layer_id'] = conf.output_layer_id
loss_conf['answer_column_name'] = conf.answer_column_name
# loss_fn = eval(loss_conf['type'])(**loss_conf['conf'])
loss_fn = Loss(**loss_conf)
if conf.use_gpu is True:
loss_fn.cuda()
### optimizer
if isinstance(lm.model, nn.DataParallel):
if isinstance(lm.model.module.layers['embedding'].embeddings, nn.ModuleDict):
optimizer = eval(conf.optimizer_name)(list(lm.model.parameters()), **conf.optimizer_params)
else:
optimizer = eval(conf.optimizer_name)(
list(lm.model.parameters()) + list(lm.model.module.layers['embedding'].get_parameters()),
**conf.optimizer_params)
else:
if isinstance(lm.model.layers['embedding'].embeddings, nn.ModuleDict):
optimizer = eval(conf.optimizer_name)(
list(lm.model.parameters()), **conf.optimizer_params)
else:
optimizer = eval(conf.optimizer_name)(
list(lm.model.parameters()) + list(lm.model.layers['embedding'].get_parameters()),
**conf.optimizer_params)
## train
lm.train(optimizer, loss_fn)
## test the best model with the best model saved
lm.load_model(conf.model_save_path)
if conf.test_data_path is not None:
test_path = conf.test_data_path
elif conf.valid_data_path is not None:
test_path = conf.valid_data_path
logging.info('Testing the best model saved at %s, with %s' % (conf.model_save_path, test_path))
if not test_path.endswith('pkl'):
lm.test(loss_fn, test_path, predict_output_path=conf.predict_output_path)
else:
lm.test(loss_fn, test_path)
def get_vocab_info(conf, problem, emb_matrix):
vocab_info = dict() # include input_type's vocab_size & init_emd_matrix
vocab_sizes = problem.get_vocab_sizes()
for input_cluster in vocab_sizes:
vocab_info[input_cluster] = dict()
vocab_info[input_cluster]['vocab_size'] = vocab_sizes[input_cluster]
# add extra info for char_emb
if input_cluster.lower() == 'char':
for key, value in conf.input_types[input_cluster].items():
if key != 'cols':
vocab_info[input_cluster][key] = value
if input_cluster == 'word' and emb_matrix is not None:
vocab_info[input_cluster]['init_weights'] = emb_matrix
else:
vocab_info[input_cluster]['init_weights'] = None
return vocab_info
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Training')
parser.add_argument("--conf_path", type=str, help="configuration path")
parser.add_argument("--train_data_path", type=str)
parser.add_argument("--valid_data_path", type=str)
parser.add_argument("--test_data_path", type=str)
parser.add_argument("--pretrained_emb_path", type=str)
parser.add_argument("--pretrained_emb_type", type=str, default='glove', help='glove|word2vec|fasttext')
parser.add_argument("--pretrained_emb_binary_or_text", type=str, default='text', help='text|binary')
parser.add_argument("--involve_all_words_in_pretrained_emb", type=bool, default=False, help='By default, only words that show up in the training data are involved.')
parser.add_argument("--pretrained_model_path", type=str, help='load pretrained model, and then finetune it.')
parser.add_argument("--cache_dir", type=str, help='where stores the built problem.pkl where there are dictionaries like word2id, id2word. CAUTION: if there is a previous model, the dictionaries would be loaded from os.path.dir(previous_model_path)/.necessary_cache/problem.pkl')
parser.add_argument("--model_save_dir", type=str, help='where to store models')
parser.add_argument("--predict_output_path", type=str, help='specify another prediction output path, instead of conf[outputs][save_base_dir] + conf[outputs][predict_output_name] defined in configuration file')
parser.add_argument("--log_dir", type=str, help='If not specified, logs would be stored in conf_bilstmlast.json/outputs/save_base_dir')
parser.add_argument("--make_cache_only", type=bool, default=False, help='make cache without training')
parser.add_argument("--max_epoch", type=int, help='maximum number of epochs')
parser.add_argument("--batch_size", type=int, help='batch_size of each gpu')
parser.add_argument("--learning_rate", type=float, help='learning rate')
parser.add_argument("--mode", type=str, default='normal', help='normal|philly')
parser.add_argument("--force", type=bool, default=False, help='Allow overwriting if some files or directories already exist.')
parser.add_argument("--disable_log_file", type=bool, default=False, help='If True, disable log file')
parser.add_argument("--debug", type=bool, default=False)
params, _ = parser.parse_known_args()
# use for debug, remember delete
# params.conf_path = 'configs_example/conf_debug_charemb.json'
assert params.conf_path, 'Please specify a configuration path via --conf_path'
if params.pretrained_emb_path and not os.path.isabs(params.pretrained_emb_path):
params.pretrained_emb_path = os.path.join(os.getcwd(), params.pretrained_emb_path)
if params.debug is True:
import debugger
main(params)