97 строки
2.7 KiB
Python
97 строки
2.7 KiB
Python
# Copyright (c) Microsoft Corporation. All rights reserved.
|
|
# Licensed under the MIT license.
|
|
|
|
import nltk
|
|
|
|
def get_pairs(word):
|
|
""" Return set of symbol pairs in a word.
|
|
word is represented as tuple of symbols (symbols being variable-length strings)
|
|
"""
|
|
pairs = set()
|
|
prev_char = word[0]
|
|
for char in word[1:]:
|
|
pairs.add((prev_char, char))
|
|
prev_char = char
|
|
return pairs
|
|
|
|
class BPEEncoder(object):
|
|
""" Byte Pair Encoding
|
|
"""
|
|
def __init__(self, bpe_path):
|
|
merges = open(bpe_path, encoding='utf-8').read().split('\n')[1:-1]
|
|
merges = [tuple(merge.split()) for merge in merges]
|
|
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
|
self.cache = dict()
|
|
|
|
def encode(self, sentence):
|
|
tokens = nltk.word_tokenize(sentence)
|
|
bpe_tokens = []
|
|
for token in tokens:
|
|
bpe_tokens.extend(self.bpe(token))
|
|
|
|
return bpe_tokens
|
|
|
|
def bpe(self, token):
|
|
"""
|
|
|
|
Args:
|
|
token (string): a word token
|
|
|
|
Returns:
|
|
list: byte pair encodings
|
|
|
|
"""
|
|
word = tuple(token[:-1]) + (token[-1] + '</w>',)
|
|
if token in self.cache:
|
|
return self.cache[token]
|
|
pairs = get_pairs(word)
|
|
|
|
if not pairs:
|
|
return token+'</w>'
|
|
|
|
while True:
|
|
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
|
if bigram not in self.bpe_ranks:
|
|
break
|
|
first, second = bigram
|
|
new_word = []
|
|
i = 0
|
|
while i < len(word):
|
|
try:
|
|
j = word.index(first, i)
|
|
new_word.extend(word[i:j])
|
|
i = j
|
|
except:
|
|
new_word.extend(word[i:])
|
|
break
|
|
|
|
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
|
new_word.append(first+second)
|
|
i += 2
|
|
else:
|
|
new_word.append(word[i])
|
|
i += 1
|
|
new_word = tuple(new_word)
|
|
word = new_word
|
|
if len(word) == 1:
|
|
break
|
|
else:
|
|
pairs = get_pairs(word)
|
|
word = ' '.join(word)
|
|
if word == '\n </w>':
|
|
word = '\n</w>'
|
|
self.cache[token] = word
|
|
return word.split(' ')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
sentences = 'trip cost to beijing'
|
|
import nltk
|
|
tokens = nltk.word_tokenize(sentences)
|
|
bpe_encoder = BPEEncoder('../dataset/bpe/vocab_40000.bpe')
|
|
bpe_tokens = []
|
|
for token in tokens:
|
|
print(token)
|
|
bpe_tokens.extend(bpe_encoder.bpe(token))
|
|
print(bpe_tokens)
|