Changes made by ChangeHttpURLsToHttps.py

This commit is contained in:
Mustafa Bal 2019-10-21 14:43:08 -07:00
Родитель e29f6edb75
Коммит afa5f35fe2
58 изменённых файлов: 93 добавлений и 93 удалений

Просмотреть файл

@ -16,7 +16,7 @@ typedef MANAGED_CALLBACK_PTR(bool, GETLABELS)(DataSourceBlock *source, int col,
// REVIEW: boost_python is not updated at the same speed as swig or pybind11.
// Both have a larger audience now, see about pybind11 https://github.com/davisking/dlib/issues/293
// It handles csr_matrix: http://pybind11-rtdtest.readthedocs.io/en/stable/advanced.html#transparent-conversion-of-dense-and-sparse-eigen-data-types.
// It handles csr_matrix: https://pybind11-rtdtest.readthedocs.io/en/stable/advanced.html#transparent-conversion-of-dense-and-sparse-eigen-data-types.
using namespace boost::python;
// The data source wrapper used for managed interop. Some of the fields of this are visible to managed code.

Просмотреть файл

@ -45,10 +45,10 @@
<https://en.wikipedia.org/wiki/Perceptron>`_
`Large Margin Classification Using the Perceptron Algorithm
<http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.8200>`_
<https://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.8200>`_
`Discriminative Training Methods for Hidden Markov Models
<http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.6725>`_
<https://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.6725>`_
:param loss: The default is :py:class:`'hinge' <nimbusml.loss.Hinge>`. Other

Просмотреть файл

@ -22,7 +22,7 @@
`Field Aware Factorization Machines
<https://www.csie.ntu.edu.tw/~r01922136/slides/ffm.pdf>`_,
`Field-aware Factorization Machines for CTR Prediction
<http://www.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf>`_,
<https://www.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf>`_,
`Adaptive Subgradient Methods for Online Learning and Stochastic
Optimization
<http://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_

Просмотреть файл

@ -33,7 +33,7 @@
**Reference**
`Wikipedia: Random forest
<http://en.wikipedia.org/wiki/Random_forest>`_
<https://en.wikipedia.org/wiki/Random_forest>`_
`Quantile regression forest
<http://jmlr.org/papers/volume7/meinshausen06a/meinshausen06a.pdf>`_

Просмотреть файл

@ -43,7 +43,7 @@
**Reference**
`Wikipedia: Random forest
<http://en.wikipedia.org/wiki/Random_forest>`_
<https://en.wikipedia.org/wiki/Random_forest>`_
`Quantile regression forest
<http://jmlr.org/papers/volume7/meinshausen06a/meinshausen06a.pdf>`_

Просмотреть файл

@ -57,7 +57,7 @@
<https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting>`_
`Greedy function approximation: A gradient boosting machine.
<http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1013203451>`_
<https://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1013203451>`_
:param optimizer: Default is ``sgd``.

Просмотреть файл

@ -62,7 +62,7 @@
<https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting>`_
`Greedy function approximation: A gradient boosting machine.
<http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1013203451>`_
<https://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1013203451>`_
:param optimizer: Default is ``sgd``.

Просмотреть файл

@ -14,7 +14,7 @@
<https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting>`_
`Greedy function approximation: A gradient boosting machine.
<http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1013203451>`_
<https://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1013203451>`_
:param optimizer: Default is ``sgd``.

Просмотреть файл

@ -21,7 +21,7 @@
functions learned will step between the discretization boundaries.
This implementation is based on the this `paper
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.7619>`_,
<https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.7619>`_,
but diverges from it in several important respects: most
significantly,
in each round of boosting, rather than do one feature at a time, it
@ -57,7 +57,7 @@
`Generalized additive models
<https://en.wikipedia.org/wiki/Generalized_additive_model>`_,
`Intelligible Models for Classification and Regression
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.7619>`_
<https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.7619>`_
:param normalize: Specifies the type of automatic normalization used:

Просмотреть файл

@ -21,7 +21,7 @@
functions learned will step between the discretization boundaries.
This implementation is based on the this `paper
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.7619>`_,
<https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.7619>`_,
but diverges from it in several important respects: most
significantly,
in each round of boosting, rather than do one feature at a time, it
@ -57,7 +57,7 @@
`Generalized additive models
<https://en.wikipedia.org/wiki/Generalized_additive_model>`_,
`Intelligible Models for Classification and Regression
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.7619>`_
<https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.7619>`_
:param normalize: Specifies the type of automatic normalization used:

Просмотреть файл

@ -10,7 +10,7 @@
topical vectors. LightLDA is an extremely
efficient implementation of LDA developed in MSR-Asia that
incorporates a number of optimization techniques
`(http://arxiv.org/abs/1412.1576) <http://arxiv.org/abs/1412.1576>`_.
`(https://arxiv.org/abs/1412.1576) <https://arxiv.org/abs/1412.1576>`_.
With the LDA transform, we can
train a topic model to produce 1 million topics with 1 million
vocabulary on a 1-billion-token document set one

Просмотреть файл

@ -39,14 +39,14 @@
More details about LD-SVM can be found in this paper `Local deep
kernel
learning for efficient non-linear SVM prediction
<http://research.microsoft.com/en-
<https://research.microsoft.com/en-
us/um/people/manik/pubs/Jose13.pdf>`_.
**Reference**
`Local deep kernel learning for efficient non-linear SVM prediction
<http://research.microsoft.com/en-
<https://research.microsoft.com/en-
us/um/people/manik/pubs/Jose13.pdf>`_

Просмотреть файл

@ -69,14 +69,14 @@
**Reference**
`Wikipedia: L-BFGS <http://en.wikipedia.org/wiki/L-BFGS>`_
`Wikipedia: L-BFGS <https://en.wikipedia.org/wiki/L-BFGS>`_
`Wikipedia: Logistic
regression <http://en.wikipedia.org/wiki/Logistic_regression>`_
regression <https://en.wikipedia.org/wiki/Logistic_regression>`_
`Scalable
Training of L1-Regularized Log-Linear Models
<http://research.microsoft.com/apps/pubs/default.aspx?id=78900>`_
<https://research.microsoft.com/apps/pubs/default.aspx?id=78900>`_
`Test Run - L1
and L2 Regularization for Machine Learning

Просмотреть файл

@ -70,14 +70,14 @@
**Reference**
`Wikipedia: L-BFGS <http://en.wikipedia.org/wiki/L-BFGS>`_
`Wikipedia: L-BFGS <https://en.wikipedia.org/wiki/L-BFGS>`_
`Wikipedia: Logistic
regression <http://en.wikipedia.org/wiki/Logistic_regression>`_
regression <https://en.wikipedia.org/wiki/Logistic_regression>`_
`Scalable
Training of L1-Regularized Log-Linear Models
<http://research.microsoft.com/apps/pubs/default.aspx?id=78900>`_
<https://research.microsoft.com/apps/pubs/default.aspx?id=78900>`_
`Test Run - L1
and L2 Regularization for Machine Learning

Просмотреть файл

@ -29,10 +29,10 @@
us/library/azure/dn913103.aspx>`_
`Estimating the Support of a High-Dimensional Distribution
<http://research.microsoft.com/pubs/69731/tr-99-87.pdf>`_
<https://research.microsoft.com/pubs/69731/tr-99-87.pdf>`_
`New Support Vector Algorithms
<http://www.stat.purdue.edu/~yuzhu/stat598m3/Papers/NewSVM.pdf>`_
<https://www.stat.purdue.edu/~yuzhu/stat598m3/Papers/NewSVM.pdf>`_
`LIBSVM: A Library for Support Vector Machines
<https://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf>`_

Просмотреть файл

@ -36,7 +36,7 @@
`Randomized Methods for Computing the Singular Value Decomposition
(SVD) of very large matrices
<http://web.stanford.edu/group/mmds/slides2010/Martinsson.pdf>`_
<https://web.stanford.edu/group/mmds/slides2010/Martinsson.pdf>`_
`A randomized algorithm for principal component analysis
<https://arxiv.org/abs/0809.2274>`_,
`Finding Structure with Randomness: Probabilistic Algorithms for

Просмотреть файл

@ -13,14 +13,14 @@
associated optimization problem is sparse, then Hogwild SGD achieves
a
nearly optimal rate of convergence. For a detailed reference, please
refer to `http://arxiv.org/pdf/1106.5730v2.pdf
<http://arxiv.org/pdf/1106.5730v2.pdf>`_.
refer to `https://arxiv.org/pdf/1106.5730v2.pdf
<https://arxiv.org/pdf/1106.5730v2.pdf>`_.
**Reference**
`http://arxiv.org/pdf/1106.5730v2.pdf
<http://arxiv.org/pdf/1106.5730v2.pdf>`_
`https://arxiv.org/pdf/1106.5730v2.pdf
<https://arxiv.org/pdf/1106.5730v2.pdf>`_
:param normalize: Specifies the type of automatic normalization used:

Просмотреть файл

@ -11,7 +11,7 @@
input time-series where each component in the spectrum corresponds to a
trend, seasonal or noise component in the time-series. For details of the
Singular Spectrum Analysis (SSA), refer to `this document
<http://arxiv.org/pdf/1206.6910.pdf>`_.
<https://arxiv.org/pdf/1206.6910.pdf>`_.
.. seealso::
:py:func:`IIDChangePointDetector

Просмотреть файл

@ -7,12 +7,12 @@
versions of `GloVe Models
<https://nlp.stanford.edu/projects/glove/>`_, `FastText
<https://en.wikipedia.org/wiki/FastText>`_, and `Sswe
<http://anthology.aclweb.org/P/P14/P14-1146.pdf>`_.
<https://anthology.aclweb.org/P/P14/P14-1146.pdf>`_.
.. remarks::
Sentiment-specific word embedding (SSWE) is a DNN featurizer
developed
by MSRA (`paper <http://anthology.aclweb.org/P/P14/P14-1146.pdf>`_).
by MSRA (`paper <https://anthology.aclweb.org/P/P14/P14-1146.pdf>`_).
It
incorporates sentiment information into the neural network to learn
sentiment specific word embedding. It proves to be useful in various

Просмотреть файл

@ -24,7 +24,7 @@
the default is to normalize features before training.
``SupervisedBinner`` implements the `Entropy-Based Discretization
<http://www.aaai.org/Papers/KDD/1996/KDD96-019.pdf>`_.
<https://www.aaai.org/Papers/KDD/1996/KDD96-019.pdf>`_.
Partition of the data is performed recursively to select the split
with highest entropy gain with respect to the label.
Therefore, the final binned features will have high correlation with

Просмотреть файл

@ -10,7 +10,7 @@
available options are various versions of `GloVe Models
<https://nlp.stanford.edu/projects/glove/>`_, `FastText
<https://en.wikipedia.org/wiki/FastText>`_, and `Sswe
<http://anthology.aclweb.org/P/P14/P14-1146.pdf>`_.
<https://anthology.aclweb.org/P/P14/P14-1146.pdf>`_.
:param model_kind: Pre-trained model used to create the vocabulary.

Просмотреть файл

@ -8432,7 +8432,7 @@ label {
padding: 0px;
}
/* Flexible box model classes */
/* Taken from Alex Russell http://infrequently.org/2009/08/css-3-progress/ */
/* Taken from Alex Russell https://infrequently.org/2009/08/css-3-progress/ */
/* This file is a compatability layer. It allows the usage of flexible box
model layouts accross multiple browsers, including older browsers. The newest,
universal implementation of the flexible box model is used when available (see

Просмотреть файл

@ -128,8 +128,8 @@ sphinx_gallery_conf = {
'relative': True,
'reference_url': {
'nimbusml': None,
'matplotlib': 'http://matplotlib.org',
'numpy': 'http://www.numpy.org/',
'matplotlib': 'https://matplotlib.org',
'numpy': 'https://www.numpy.org/',
'scipy': 'https://www.scipy.org/'},
}

Просмотреть файл

@ -145,8 +145,8 @@ sphinx_gallery_conf = {
'relative': True,
'reference_url': {
'nimbusml': None,
'matplotlib': 'http://matplotlib.org',
'numpy': 'http://www.numpy.org/',
'matplotlib': 'https://matplotlib.org',
'numpy': 'https://www.numpy.org/',
'scipy': 'https://www.scipy.org/'},
}

Просмотреть файл

@ -44,7 +44,7 @@ class FactorizationMachineBinaryClassifier(
`Field Aware Factorization Machines
<https://www.csie.ntu.edu.tw/~r01922136/slides/ffm.pdf>`_,
`Field-aware Factorization Machines for CTR Prediction
<http://www.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf>`_,
<https://www.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf>`_,
`Adaptive Subgradient Methods for Online Learning and Stochastic
Optimization
<http://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_

Просмотреть файл

@ -57,7 +57,7 @@ class PcaAnomalyDetector(core, BasePredictor, ClassifierMixin):
`Randomized Methods for Computing the Singular Value Decomposition
(SVD) of very large matrices
<http://web.stanford.edu/group/mmds/slides2010/Martinsson.pdf>`_
<https://web.stanford.edu/group/mmds/slides2010/Martinsson.pdf>`_
`A randomized algorithm for principal component analysis
<https://arxiv.org/abs/0809.2274>`_,
`Finding Structure with Randomness: Probabilistic Algorithms for

Просмотреть файл

@ -55,7 +55,7 @@ class FastForestBinaryClassifier(
**Reference**
`Wikipedia: Random forest
<http://en.wikipedia.org/wiki/Random_forest>`_
<https://en.wikipedia.org/wiki/Random_forest>`_
`Quantile regression forest
<http://jmlr.org/papers/volume7/meinshausen06a/meinshausen06a.pdf>`_

Просмотреть файл

@ -64,7 +64,7 @@ class FastForestRegressor(core, BasePredictor, RegressorMixin):
**Reference**
`Wikipedia: Random forest
<http://en.wikipedia.org/wiki/Random_forest>`_
<https://en.wikipedia.org/wiki/Random_forest>`_
`Quantile regression forest
<http://jmlr.org/papers/volume7/meinshausen06a/meinshausen06a.pdf>`_

Просмотреть файл

@ -81,7 +81,7 @@ class FastTreesBinaryClassifier(
<https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting>`_
`Greedy function approximation: A gradient boosting machine.
<http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1013203451>`_
<https://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1013203451>`_
:param feature: see `Columns </nimbusml/concepts/columns>`_.

Просмотреть файл

@ -83,7 +83,7 @@ class FastTreesRegressor(core, BasePredictor, RegressorMixin):
<https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting>`_
`Greedy function approximation: A gradient boosting machine.
<http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1013203451>`_
<https://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1013203451>`_
:param feature: see `Columns </nimbusml/concepts/columns>`_.

Просмотреть файл

@ -38,7 +38,7 @@ class FastTreesTweedieRegressor(
<https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting>`_
`Greedy function approximation: A gradient boosting machine.
<http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1013203451>`_
<https://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1013203451>`_
:param feature: see `Columns </nimbusml/concepts/columns>`_.

Просмотреть файл

@ -42,7 +42,7 @@ class GamBinaryClassifier(core, BasePredictor, ClassifierMixin):
functions learned will step between the discretization boundaries.
This implementation is based on the this `paper
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.7619>`_,
<https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.7619>`_,
but diverges from it in several important respects: most
significantly,
in each round of boosting, rather than do one feature at a time, it
@ -78,7 +78,7 @@ class GamBinaryClassifier(core, BasePredictor, ClassifierMixin):
`Generalized additive models
<https://en.wikipedia.org/wiki/Generalized_additive_model>`_,
`Intelligible Models for Classification and Regression
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.7619>`_
<https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.7619>`_
:param feature: see `Columns </nimbusml/concepts/columns>`_.

Просмотреть файл

@ -41,7 +41,7 @@ class GamRegressor(core, BasePredictor, RegressorMixin):
functions learned will step between the discretization boundaries.
This implementation is based on the this `paper
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.7619>`_,
<https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.7619>`_,
but diverges from it in several important respects: most
significantly,
in each round of boosting, rather than do one feature at a time, it
@ -77,7 +77,7 @@ class GamRegressor(core, BasePredictor, RegressorMixin):
`Generalized additive models
<https://en.wikipedia.org/wiki/Generalized_additive_model>`_,
`Intelligible Models for Classification and Regression
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.7619>`_
<https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.7619>`_
:param feature: see `Columns </nimbusml/concepts/columns>`_.

Просмотреть файл

@ -30,7 +30,7 @@ class LightLda(core, BaseTransform, TransformerMixin):
topical vectors. LightLDA is an extremely
efficient implementation of LDA developed in MSR-Asia that
incorporates a number of optimization techniques
`(http://arxiv.org/abs/1412.1576) <http://arxiv.org/abs/1412.1576>`_.
`(https://arxiv.org/abs/1412.1576) <https://arxiv.org/abs/1412.1576>`_.
With the LDA transform, we can
train a topic model to produce 1 million topics with 1 million
vocabulary on a 1-billion-token document set one

Просмотреть файл

@ -31,7 +31,7 @@ class WordEmbedding(core, BaseTransform, TransformerMixin):
available options are various versions of `GloVe Models
<https://nlp.stanford.edu/projects/glove/>`_, `FastText
<https://en.wikipedia.org/wiki/FastText>`_, and `Sswe
<http://anthology.aclweb.org/P/P14/P14-1146.pdf>`_.
<https://anthology.aclweb.org/P/P14/P14-1146.pdf>`_.
:param columns: a dictionary of key-value pairs, where key is the output

Просмотреть файл

@ -42,7 +42,7 @@ class FactorizationMachineBinaryClassifier(
`Field Aware Factorization Machines
<https://www.csie.ntu.edu.tw/~r01922136/slides/ffm.pdf>`_,
`Field-aware Factorization Machines for CTR Prediction
<http://www.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf>`_,
<https://www.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf>`_,
`Adaptive Subgradient Methods for Online Learning and Stochastic
Optimization
<http://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_

Просмотреть файл

@ -57,7 +57,7 @@ class PcaAnomalyDetector(
`Randomized Methods for Computing the Singular Value Decomposition
(SVD) of very large matrices
<http://web.stanford.edu/group/mmds/slides2010/Martinsson.pdf>`_
<https://web.stanford.edu/group/mmds/slides2010/Martinsson.pdf>`_
`A randomized algorithm for principal component analysis
<https://arxiv.org/abs/0809.2274>`_,
`Finding Structure with Randomness: Probabilistic Algorithms for

Просмотреть файл

@ -54,7 +54,7 @@ class FastForestBinaryClassifier(
**Reference**
`Wikipedia: Random forest
<http://en.wikipedia.org/wiki/Random_forest>`_
<https://en.wikipedia.org/wiki/Random_forest>`_
`Quantile regression forest
<http://jmlr.org/papers/volume7/meinshausen06a/meinshausen06a.pdf>`_

Просмотреть файл

@ -64,7 +64,7 @@ class FastForestRegressor(
**Reference**
`Wikipedia: Random forest
<http://en.wikipedia.org/wiki/Random_forest>`_
<https://en.wikipedia.org/wiki/Random_forest>`_
`Quantile regression forest
<http://jmlr.org/papers/volume7/meinshausen06a/meinshausen06a.pdf>`_

Просмотреть файл

@ -78,7 +78,7 @@ class FastTreesBinaryClassifier(
<https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting>`_
`Greedy function approximation: A gradient boosting machine.
<http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1013203451>`_
<https://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1013203451>`_
:param number_of_trees: Specifies the total number of decision trees to
create in the ensemble. By creating more decision trees, you can

Просмотреть файл

@ -83,7 +83,7 @@ class FastTreesRegressor(
<https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting>`_
`Greedy function approximation: A gradient boosting machine.
<http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1013203451>`_
<https://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1013203451>`_
:param number_of_trees: Specifies the total number of decision trees to
create in the ensemble. By creating more decision trees, you can

Просмотреть файл

@ -35,7 +35,7 @@ class FastTreesTweedieRegressor(
<https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting>`_
`Greedy function approximation: A gradient boosting machine.
<http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1013203451>`_
<https://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1013203451>`_
:param number_of_trees: Specifies the total number of decision trees to
create in the ensemble. By creating more decision trees, you can

Просмотреть файл

@ -42,7 +42,7 @@ class GamBinaryClassifier(
functions learned will step between the discretization boundaries.
This implementation is based on the this `paper
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.7619>`_,
<https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.7619>`_,
but diverges from it in several important respects: most
significantly,
in each round of boosting, rather than do one feature at a time, it
@ -78,7 +78,7 @@ class GamBinaryClassifier(
`Generalized additive models
<https://en.wikipedia.org/wiki/Generalized_additive_model>`_,
`Intelligible Models for Classification and Regression
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.7619>`_
<https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.7619>`_
:param number_of_iterations: Total number of iterations over all features.

Просмотреть файл

@ -40,7 +40,7 @@ class GamRegressor(BasePipelineItem, DefaultSignatureWithRoles):
functions learned will step between the discretization boundaries.
This implementation is based on the this `paper
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.7619>`_,
<https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.7619>`_,
but diverges from it in several important respects: most
significantly,
in each round of boosting, rather than do one feature at a time, it
@ -76,7 +76,7 @@ class GamRegressor(BasePipelineItem, DefaultSignatureWithRoles):
`Generalized additive models
<https://en.wikipedia.org/wiki/Generalized_additive_model>`_,
`Intelligible Models for Classification and Regression
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.7619>`_
<https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.7619>`_
:param number_of_iterations: Total number of iterations over all features.

Просмотреть файл

@ -28,7 +28,7 @@ class LightLda(BasePipelineItem, DefaultSignature):
topical vectors. LightLDA is an extremely
efficient implementation of LDA developed in MSR-Asia that
incorporates a number of optimization techniques
`(http://arxiv.org/abs/1412.1576) <http://arxiv.org/abs/1412.1576>`_.
`(https://arxiv.org/abs/1412.1576) <https://arxiv.org/abs/1412.1576>`_.
With the LDA transform, we can
train a topic model to produce 1 million topics with 1 million
vocabulary on a 1-billion-token document set one

Просмотреть файл

@ -28,7 +28,7 @@ class WordEmbedding(BasePipelineItem, DefaultSignature):
available options are various versions of `GloVe Models
<https://nlp.stanford.edu/projects/glove/>`_, `FastText
<https://en.wikipedia.org/wiki/FastText>`_, and `Sswe
<http://anthology.aclweb.org/P/P14/P14-1146.pdf>`_.
<https://anthology.aclweb.org/P/P14/P14-1146.pdf>`_.
:param model_kind: Pre-trained model used to create the vocabulary.

Просмотреть файл

@ -67,10 +67,10 @@ class AveragedPerceptronBinaryClassifier(
<https://en.wikipedia.org/wiki/Perceptron>`_
`Large Margin Classification Using the Perceptron Algorithm
<http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.8200>`_
<https://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.8200>`_
`Discriminative Training Methods for Hidden Markov Models
<http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.6725>`_
<https://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.6725>`_
:param normalize: Specifies the type of automatic normalization used:

Просмотреть файл

@ -90,14 +90,14 @@ class LogisticRegressionBinaryClassifier(
**Reference**
`Wikipedia: L-BFGS <http://en.wikipedia.org/wiki/L-BFGS>`_
`Wikipedia: L-BFGS <https://en.wikipedia.org/wiki/L-BFGS>`_
`Wikipedia: Logistic
regression <http://en.wikipedia.org/wiki/Logistic_regression>`_
regression <https://en.wikipedia.org/wiki/Logistic_regression>`_
`Scalable
Training of L1-Regularized Log-Linear Models
<http://research.microsoft.com/apps/pubs/default.aspx?id=78900>`_
<https://research.microsoft.com/apps/pubs/default.aspx?id=78900>`_
`Test Run - L1
and L2 Regularization for Machine Learning

Просмотреть файл

@ -91,14 +91,14 @@ class LogisticRegressionClassifier(
**Reference**
`Wikipedia: L-BFGS <http://en.wikipedia.org/wiki/L-BFGS>`_
`Wikipedia: L-BFGS <https://en.wikipedia.org/wiki/L-BFGS>`_
`Wikipedia: Logistic
regression <http://en.wikipedia.org/wiki/Logistic_regression>`_
regression <https://en.wikipedia.org/wiki/Logistic_regression>`_
`Scalable
Training of L1-Regularized Log-Linear Models
<http://research.microsoft.com/apps/pubs/default.aspx?id=78900>`_
<https://research.microsoft.com/apps/pubs/default.aspx?id=78900>`_
`Test Run - L1
and L2 Regularization for Machine Learning

Просмотреть файл

@ -35,14 +35,14 @@ class SgdBinaryClassifier(
associated optimization problem is sparse, then Hogwild SGD achieves
a
nearly optimal rate of convergence. For a detailed reference, please
refer to `http://arxiv.org/pdf/1106.5730v2.pdf
<http://arxiv.org/pdf/1106.5730v2.pdf>`_.
refer to `https://arxiv.org/pdf/1106.5730v2.pdf
<https://arxiv.org/pdf/1106.5730v2.pdf>`_.
**Reference**
`http://arxiv.org/pdf/1106.5730v2.pdf
<http://arxiv.org/pdf/1106.5730v2.pdf>`_
`https://arxiv.org/pdf/1106.5730v2.pdf
<https://arxiv.org/pdf/1106.5730v2.pdf>`_
:param normalize: Specifies the type of automatic normalization used:

Просмотреть файл

@ -30,7 +30,7 @@ class SsaForecaster(BasePipelineItem, DefaultSignature):
input time-series where each component in the spectrum corresponds to a
trend, seasonal or noise component in the time-series. For details of the
Singular Spectrum Analysis (SSA), refer to `this document
<http://arxiv.org/pdf/1206.6910.pdf>`_.
<https://arxiv.org/pdf/1206.6910.pdf>`_.
:param window_size: The length of the window on the series for building the
trajectory matrix (parameter L).

Просмотреть файл

@ -67,10 +67,10 @@ class AveragedPerceptronBinaryClassifier(
<https://en.wikipedia.org/wiki/Perceptron>`_
`Large Margin Classification Using the Perceptron Algorithm
<http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.8200>`_
<https://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.8200>`_
`Discriminative Training Methods for Hidden Markov Models
<http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.6725>`_
<https://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.6725>`_
:param feature: see `Columns </nimbusml/concepts/columns>`_.

Просмотреть файл

@ -91,14 +91,14 @@ class LogisticRegressionBinaryClassifier(
**Reference**
`Wikipedia: L-BFGS <http://en.wikipedia.org/wiki/L-BFGS>`_
`Wikipedia: L-BFGS <https://en.wikipedia.org/wiki/L-BFGS>`_
`Wikipedia: Logistic
regression <http://en.wikipedia.org/wiki/Logistic_regression>`_
regression <https://en.wikipedia.org/wiki/Logistic_regression>`_
`Scalable
Training of L1-Regularized Log-Linear Models
<http://research.microsoft.com/apps/pubs/default.aspx?id=78900>`_
<https://research.microsoft.com/apps/pubs/default.aspx?id=78900>`_
`Test Run - L1
and L2 Regularization for Machine Learning

Просмотреть файл

@ -92,14 +92,14 @@ class LogisticRegressionClassifier(
**Reference**
`Wikipedia: L-BFGS <http://en.wikipedia.org/wiki/L-BFGS>`_
`Wikipedia: L-BFGS <https://en.wikipedia.org/wiki/L-BFGS>`_
`Wikipedia: Logistic
regression <http://en.wikipedia.org/wiki/Logistic_regression>`_
regression <https://en.wikipedia.org/wiki/Logistic_regression>`_
`Scalable
Training of L1-Regularized Log-Linear Models
<http://research.microsoft.com/apps/pubs/default.aspx?id=78900>`_
<https://research.microsoft.com/apps/pubs/default.aspx?id=78900>`_
`Test Run - L1
and L2 Regularization for Machine Learning

Просмотреть файл

@ -34,14 +34,14 @@ class SgdBinaryClassifier(core, BasePredictor, ClassifierMixin):
associated optimization problem is sparse, then Hogwild SGD achieves
a
nearly optimal rate of convergence. For a detailed reference, please
refer to `http://arxiv.org/pdf/1106.5730v2.pdf
<http://arxiv.org/pdf/1106.5730v2.pdf>`_.
refer to `https://arxiv.org/pdf/1106.5730v2.pdf
<https://arxiv.org/pdf/1106.5730v2.pdf>`_.
**Reference**
`http://arxiv.org/pdf/1106.5730v2.pdf
<http://arxiv.org/pdf/1106.5730v2.pdf>`_
`https://arxiv.org/pdf/1106.5730v2.pdf
<https://arxiv.org/pdf/1106.5730v2.pdf>`_
:param feature: see `Columns </nimbusml/concepts/columns>`_.

Просмотреть файл

@ -31,7 +31,7 @@ class SsaForecaster(core, BaseTransform, TransformerMixin):
input time-series where each component in the spectrum corresponds to a
trend, seasonal or noise component in the time-series. For details of the
Singular Spectrum Analysis (SSA), refer to `this document
<http://arxiv.org/pdf/1206.6910.pdf>`_.
<https://arxiv.org/pdf/1206.6910.pdf>`_.
:param columns: see `Columns </nimbusml/concepts/columns>`_.

Просмотреть файл

@ -148,7 +148,7 @@ setup(
# Although 'package_data' is the preferred approach, in some case
# you may need to place data files outside of your packages. See:
# http://docs.python.org/3.4/distutils/setupscript.html#installing
# https://docs.python.org/3.4/distutils/setupscript.html#installing
# -additional-files # noqa
# In this case, 'data_file' will be installed into
# '<sys.prefix>/my_data'

Просмотреть файл

@ -148,7 +148,7 @@ setup(
# Although 'package_data' is the preferred approach, in some case
# you may need to place data files outside of your packages. See:
# http://docs.python.org/3.4/distutils/setupscript.html#installing
# https://docs.python.org/3.4/distutils/setupscript.html#installing
# -additional-files # noqa
# In this case, 'data_file' will be installed into
# '<sys.prefix>/my_data'