зеркало из https://github.com/microsoft/O-CNN.git
Update readme
This commit is contained in:
Родитель
4c2b82b1d2
Коммит
eb7d2fb8a8
|
@ -32,7 +32,7 @@ If you use our code or models, please [cite](docs/citation.md) our paper.
|
|||
|
||||
|
||||
### What's New?
|
||||
|
||||
- 2021.02.03: Release the code for ModelNet40 classification with HRNet.
|
||||
- 2020.10.12: Release the initial version of our O-CNN under PyTorch. The code
|
||||
has been tested with the [classification task](docs/classification.md#o-cnn-on-pytorch).
|
||||
- 2020.08.16: We released our code for [3D unsupervised learning](docs/unsupervised.md).
|
||||
|
|
|
@ -139,8 +139,9 @@ the data automatically.
|
|||
|
||||
### Train a deep O-CNN-based HRNet
|
||||
1. Change the working directory to `tensorflow/data`. Run the following command
|
||||
to store the `points` into one `TFRecords` database. Here we also rotate the
|
||||
upright axis of shapes from `z` axis to `y` axis.
|
||||
to store the `points` into `TFRecords` databases with different ratios of
|
||||
training data. Here we also rotate the upright axis of shapes from `z` axis
|
||||
to `y` axis.
|
||||
```shell
|
||||
python cls_modelnet.py --run m40_generate_points_tfrecords_ratios
|
||||
```
|
||||
|
|
|
@ -4,21 +4,21 @@
|
|||
|
||||
1. Download the data and pretrained weights with the following command.
|
||||
```shell
|
||||
cd tensorflow
|
||||
python data/midnet_data.py
|
||||
cd tensorflow/data
|
||||
python midnet_data.py
|
||||
```
|
||||
|
||||
2. Run the following command to train the network.
|
||||
```shell
|
||||
cd script
|
||||
cd tensorflow/script
|
||||
python run_mid.py --config configs/mid_hrnet_d6.yaml
|
||||
```
|
||||
|
||||
## Finetune on ModelNet40
|
||||
|
||||
Follow the instructions [here](classification.md#train-a-deep-o-cnn-based-hrnet)
|
||||
Follow the instructions [here](classification.md#prepare-the-point-cloud-for-modelnet40)
|
||||
to download the ModelNet40 and preprocess the data. Make sure you can train the
|
||||
HRNet with random initialization.
|
||||
HRNet with random initialization [here](classification.md#train-a-deep-o-cnn-based-hrnet).
|
||||
|
||||
Then run the following script to finetune the network with the pretrained
|
||||
weights we provided. If you would like to finetune the network with your own
|
||||
|
|
|
@ -89,7 +89,7 @@ for i in range(len(ratios)):
|
|||
# train the linear classifier
|
||||
step_size1 = int(200000 * ratio * muls[i])
|
||||
step_size2 = int(100000 * ratio * muls[i])
|
||||
max_iter = int(400000 * ratio * muls[i])
|
||||
max_iter = int(300000 * ratio * muls[i])
|
||||
prefix = 'logs/m40/{}/feature_cls/m40_y'.format(alias)
|
||||
train_data = '{}_{:.2f}_train_points.tfrecords'.format(prefix, ratio)
|
||||
test_data = '{}_1.00_test_points.tfrecords'.format(prefix)
|
||||
|
|
Загрузка…
Ссылка в новой задаче