зеркало из https://github.com/microsoft/ProDA.git
122 строки
5.3 KiB
Python
122 строки
5.3 KiB
Python
|
# Copyright (c) Microsoft Corporation.
|
||
|
# Licensed under the MIT License.
|
||
|
|
||
|
import os
|
||
|
import logging
|
||
|
import random
|
||
|
import argparse
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
from PIL import Image
|
||
|
from parser_train import parser_, relative_path_to_absolute_path
|
||
|
|
||
|
from tqdm import tqdm
|
||
|
from data import create_dataset
|
||
|
from models import adaptation_modelv2
|
||
|
from utils import fliplr
|
||
|
|
||
|
def test(opt, logger):
|
||
|
torch.manual_seed(opt.seed)
|
||
|
torch.cuda.manual_seed(opt.seed)
|
||
|
np.random.seed(opt.seed)
|
||
|
random.seed(opt.seed)
|
||
|
## create dataset
|
||
|
device = torch.device("cuda:0" if torch.cuda.is_available() else 'cpu')
|
||
|
datasets = create_dataset(opt, logger)
|
||
|
|
||
|
if opt.model_name == 'deeplabv2':
|
||
|
checkpoint = torch.load(opt.resume_path)['ResNet101']["model_state"]
|
||
|
model = adaptation_modelv2.CustomModel(opt, logger)
|
||
|
model.BaseNet.load_state_dict(checkpoint)
|
||
|
|
||
|
validation(model, logger, datasets, device, opt)
|
||
|
|
||
|
def validation(model, logger, datasets, device, opt):
|
||
|
_k = -1
|
||
|
model.eval(logger=logger)
|
||
|
torch.cuda.empty_cache()
|
||
|
with torch.no_grad():
|
||
|
validate(datasets.target_train_loader, device, model, opt)
|
||
|
#validate(datasets.target_valid_loader, device, model, opt)
|
||
|
|
||
|
def label2rgb(func, label):
|
||
|
rgbs = []
|
||
|
for k in range(label.shape[0]):
|
||
|
rgb = func(label[k, 0].cpu().numpy())
|
||
|
rgbs.append(torch.from_numpy(rgb).permute(2, 0, 1))
|
||
|
rgbs = torch.stack(rgbs, dim=0).float()
|
||
|
return rgbs
|
||
|
|
||
|
def validate(valid_loader, device, model, opt):
|
||
|
ori_LP = os.path.join(opt.root, 'Code/ProDA', opt.save_path, opt.name)
|
||
|
|
||
|
if not os.path.exists(ori_LP):
|
||
|
os.makedirs(ori_LP)
|
||
|
|
||
|
sm = torch.nn.Softmax(dim=1)
|
||
|
for data_i in tqdm(valid_loader):
|
||
|
images_val = data_i['img'].to(device)
|
||
|
labels_val = data_i['label'].to(device)
|
||
|
filename = data_i['img_path']
|
||
|
|
||
|
out = model.BaseNet_DP(images_val)
|
||
|
|
||
|
if opt.soft:
|
||
|
threshold_arg = F.softmax(out['out'], dim=1)
|
||
|
for k in range(labels_val.shape[0]):
|
||
|
name = os.path.basename(filename[k])
|
||
|
np.save(os.path.join(ori_LP, name.replace('.png', '.npy')), threshold_arg[k].cpu().numpy())
|
||
|
else:
|
||
|
if opt.flip:
|
||
|
flip_out = model.BaseNet_DP(fliplr(images_val))
|
||
|
flip_out['out'] = F.interpolate(sm(flip_out['out']), size=images_val.size()[2:], mode='bilinear', align_corners=True)
|
||
|
out['out'] = F.interpolate(sm(out['out']), size=images_val.size()[2:], mode='bilinear', align_corners=True)
|
||
|
out['out'] = (out['out'] + fliplr(flip_out['out'])) / 2
|
||
|
|
||
|
confidence, pseudo = out['out'].max(1, keepdim=True)
|
||
|
#entropy = -(out['out']*torch.log(out['out']+1e-6)).sum(1, keepdim=True)
|
||
|
pseudo_rgb = label2rgb(valid_loader.dataset.decode_segmap, pseudo).float() * 255
|
||
|
for k in range(labels_val.shape[0]):
|
||
|
name = os.path.basename(filename[k])
|
||
|
Image.fromarray(pseudo[k,0].cpu().numpy().astype(np.uint8)).save(os.path.join(ori_LP, name))
|
||
|
Image.fromarray(pseudo_rgb[k].permute(1,2,0).cpu().numpy().astype(np.uint8)).save(os.path.join(ori_LP, name[:-4] + '_color.png'))
|
||
|
np.save(os.path.join(ori_LP, name.replace('.png', '_conf.npy')), confidence[k, 0].cpu().numpy().astype(np.float16))
|
||
|
#np.save(os.path.join(ori_LP, name.replace('.png', '_entropy.npy')), entropy[k, 0].cpu().numpy().astype(np.float16))
|
||
|
|
||
|
def get_logger(logdir):
|
||
|
logger = logging.getLogger('ptsemseg')
|
||
|
file_path = os.path.join(logdir, 'run.log')
|
||
|
hdlr = logging.FileHandler(file_path)
|
||
|
formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s')
|
||
|
hdlr.setFormatter(formatter)
|
||
|
logger.addHandler(hdlr)
|
||
|
logger.setLevel(logging.INFO)
|
||
|
return logger
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = argparse.ArgumentParser(description="config")
|
||
|
parser.add_argument('--save_path', type=str, default='./Pseudo', help='pseudo label update thred')
|
||
|
parser.add_argument('--soft', action='store_true', help='save soft pseudo label')
|
||
|
parser.add_argument('--flip', action='store_true')
|
||
|
parser = parser_(parser)
|
||
|
opt = parser.parse_args()
|
||
|
|
||
|
opt = relative_path_to_absolute_path(opt)
|
||
|
opt.logdir = opt.logdir.replace(opt.name, 'debug')
|
||
|
opt.noaug = True
|
||
|
opt.noshuffle = True
|
||
|
|
||
|
print('RUNDIR: {}'.format(opt.logdir))
|
||
|
if not os.path.exists(opt.logdir):
|
||
|
os.makedirs(opt.logdir)
|
||
|
|
||
|
logger = get_logger(opt.logdir)
|
||
|
|
||
|
test(opt, logger)
|
||
|
|
||
|
#python generate_pseudo_label.py --name gta2citylabv2_warmup_soft --soft --resume_path ./logs/gta2citylabv2_warmup/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl --no_droplast
|
||
|
#python generate_pseudo_label.py --name gta2citylabv2_stage1Denoise --flip --resume_path ./logs/gta2citylabv2_stage1Denoisev2/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl --no_droplast
|
||
|
#python generate_pseudo_label.py --name gta2citylabv2_stage2 --flip --resume_path ./logs/gta2citylabv2_stage2/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl --no_droplast --bn_clr --student_init simclr
|
||
|
#python generate_pseudo_label.py --name syn2citylabv2_warmup_soft --soft --src_dataset synthia --n_class 16 --src_rootpath Dataset/SYNTHIA-RAND-CITYSCAPES --resume_path ./logs/syn2citylabv2_warmup/from_synthia_to_cityscapes_on_deeplabv2_best_model.pkl --no_droplast
|