QuantumKatas/DeutschJozsaAlgorithm/Tasks.qs

310 строки
15 KiB
Plaintext
Исходник Постоянная ссылка Обычный вид История

// Copyright (c) Microsoft Corporation. All rights reserved.
2018-07-12 02:35:59 +03:00
// Licensed under the MIT license.
namespace Quantum.Kata.DeutschJozsaAlgorithm {
open Microsoft.Quantum.Diagnostics;
open Microsoft.Quantum.Intrinsic;
2018-07-12 02:35:59 +03:00
open Microsoft.Quantum.Canon;
2018-07-12 02:35:59 +03:00
//////////////////////////////////////////////////////////////////
// Welcome!
//////////////////////////////////////////////////////////////////
// The "Deutsch-Jozsa algorithm" quantum kata is a series of exercises designed
2018-07-12 02:35:59 +03:00
// to get you familiar with programming in Q#.
// It covers the following topics:
// - writing oracles (quantum operations which implement certain classical functions),
// - Bernstein-Vazirani algorithm for recovering the parameters of a scalar product function,
// - Deutsch-Jozsa algorithm for recognizing a function as constant or balanced, and
// - writing tests in Q#.
2018-07-12 02:35:59 +03:00
// Each task is wrapped in one operation preceded by the description of the task.
// Each task (except tasks in which you have to write a test) has a unit test associated with it,
// which initially fails. Your goal is to fill in the blank (marked with // ... comment)
// with some Q# code to make the failing test pass.
2018-07-12 02:35:59 +03:00
//////////////////////////////////////////////////////////////////
// Part I. Oracles
//////////////////////////////////////////////////////////////////
2018-07-12 02:35:59 +03:00
// In this section you will implement oracles defined by classical functions using the following rules:
// - a function f(x₀, ..., xₙ₋₁) with N bits of input x = (x₀, ..., xₙ₋₁) and 1 bit of output y
2018-07-12 02:35:59 +03:00
// defines an oracle which acts on N input qubits and 1 output qubit.
// - the oracle effect on qubits in computational basis states is defined as follows:
// |x⟩ |y⟩ -> |x⟩ |y ⊕ f(x)⟩ (⊕ is addition modulo 2)
2018-07-12 02:35:59 +03:00
// - the oracle effect on qubits in superposition is defined following the linearity of quantum operations.
// - the oracle must act properly on qubits in all possible input states.
2018-07-12 02:35:59 +03:00
// Task 1.1. f(x) = 0
// Inputs:
// 1) N qubits in arbitrary state |x⟩ (input register)
// 2) a qubit in arbitrary state |y⟩ (output qubit)
// Goal: transform state |x, y⟩ into state |x, y ⊕ f(x)⟩ (⊕ is addition modulo 2).
operation Oracle_Zero (x : Qubit[], y : Qubit) : Unit {
// Since f(x) = 0 for all values of x, |y ⊕ f(x)⟩ = |y⟩.
// This means that the operation doesn't need to do any transformation to the inputs.
// Build the project and run the tests to see that T11_Oracle_Zero test passes.
2018-07-12 02:35:59 +03:00
}
2018-07-12 02:35:59 +03:00
// Task 1.2. f(x) = 1
// Inputs:
// 1) N qubits in arbitrary state |x⟩ (input register)
// 2) a qubit in arbitrary state |y⟩ (output qubit)
// Goal: transform state |x, y⟩ into state |x, y ⊕ f(x)⟩ (⊕ is addition modulo 2).
operation Oracle_One (x : Qubit[], y : Qubit) : Unit {
// Since f(x) = 1 for all values of x, |y ⊕ f(x)⟩ = |y ⊕ 1⟩ = |NOT y⟩.
// This means that the operation needs to flip qubit y (i.e. transform |0⟩ to |1⟩ and vice versa).
2018-07-12 02:35:59 +03:00
// ...
2018-07-12 02:35:59 +03:00
}
2018-07-12 02:35:59 +03:00
// Task 1.3. f(x) = xₖ (the value of k-th qubit)
// Inputs:
// 1) N qubits in arbitrary state |x⟩ (input register)
// 2) a qubit in arbitrary state |y⟩ (output qubit)
2018-07-12 02:35:59 +03:00
// 3) 0-based index of the qubit from input register (0 <= k < N)
// Goal: transform state |x, y⟩ into state |x, y ⊕ xₖ⟩ (⊕ is addition modulo 2).
operation Oracle_Kth_Qubit (x : Qubit[], y : Qubit, k : Int) : Unit {
// The following line enforces the constraints on the value of k that you are given.
// You don't need to modify it. Feel free to remove it, this won't cause your code to fail.
EqualityFactB(0 <= k and k < Length(x), true, "k should be between 0 and N-1, inclusive");
2018-07-12 02:35:59 +03:00
// ...
2018-07-12 02:35:59 +03:00
}
2018-07-12 02:35:59 +03:00
// Task 1.4. f(x) = 1 if x has odd number of 1s, and 0 otherwise
// Inputs:
// 1) N qubits in arbitrary state |x⟩ (input register)
// 2) a qubit in arbitrary state |y⟩ (output qubit)
// Goal: transform state |x, y⟩ into state |x, y ⊕ f(x)⟩ (⊕ is addition modulo 2).
operation Oracle_OddNumberOfOnes (x : Qubit[], y : Qubit) : Unit {
// Hint: f(x) can be represented as x_0 ⊕ x_1 ⊕ ... ⊕ x_(N-1)
2018-07-12 02:35:59 +03:00
// ...
2018-07-12 02:35:59 +03:00
}
// Task 1.5. f(x) = Σᵢ rᵢ xᵢ modulo 2 for a given bit vector r (scalar product function)
// Inputs:
// 1) N qubits in arbitrary state |x⟩ (input register)
// 2) a qubit in arbitrary state |y⟩ (output qubit)
2018-07-12 02:35:59 +03:00
// 3) a bit vector of length N represented as Int[]
// You are guaranteed that the qubit array and the bit vector have the same length.
// Goal: transform state |x, y⟩ into state |x, y ⊕ f(x)⟩ (⊕ is addition modulo 2).
2018-07-12 02:35:59 +03:00
//
// Note: the functions featured in tasks 1.1, 1.3 and 1.4 are special cases of this function.
operation Oracle_ProductFunction (x : Qubit[], y : Qubit, r : Int[]) : Unit {
// The following line enforces the constraint on the input arrays.
// You don't need to modify it. Feel free to remove it, this won't cause your code to fail.
EqualityFactI(Length(x), Length(r), "Arrays should have the same length");
2018-07-12 02:35:59 +03:00
// ...
2018-07-12 02:35:59 +03:00
}
// Task 1.6. f(x) = Σᵢ (rᵢ xᵢ + (1 - rᵢ)(1 - xᵢ)) modulo 2 for a given bit vector r
// Inputs:
// 1) N qubits in arbitrary state |x⟩ (input register)
// 2) a qubit in arbitrary state |y⟩ (output qubit)
2018-07-12 02:35:59 +03:00
// 3) a bit vector of length N represented as Int[]
// You are guaranteed that the qubit array and the bit vector have the same length.
// Goal: transform state |x, y⟩ into state |x, y ⊕ f(x)⟩ (⊕ is addition modulo 2).
operation Oracle_ProductWithNegationFunction (x : Qubit[], y : Qubit, r : Int[]) : Unit {
// The following line enforces the constraint on the input arrays.
// You don't need to modify it. Feel free to remove it, this won't cause your code to fail.
EqualityFactI(Length(x), Length(r), "Arrays should have the same length");
2018-07-12 02:35:59 +03:00
// ...
2018-07-12 02:35:59 +03:00
}
// Task 1.7. f(x) = Σᵢ xᵢ + (1 if prefix of x is equal to the given bit vector, and 0 otherwise) modulo 2
// Inputs:
// 1) N qubits in arbitrary state |x⟩ (input register)
// 2) a qubit in arbitrary state |y⟩ (output qubit)
2018-07-12 02:35:59 +03:00
// 3) a bit vector of length P represented as Int[] (1 <= P <= N)
// Goal: transform state |x, y⟩ into state |x, y ⊕ f(x)⟩ (⊕ is addition modulo 2).
//
// A prefix of length k of a state |x⟩ = |x₁, ..., xₙ⟩ is the state of its first k qubits |x₁, ..., xₖ⟩.
// For example, a prefix of length 2 of a state |0110⟩ is 01.
operation Oracle_HammingWithPrefix (x : Qubit[], y : Qubit, prefix : Int[]) : Unit {
// The following line enforces the constraint on the input arrays.
// You don't need to modify it. Feel free to remove it, this won't cause your code to fail.
let P = Length(prefix);
EqualityFactB(1 <= P and P <= Length(x), true, "P should be between 1 and N, inclusive");
2018-07-12 02:35:59 +03:00
// Hint: the first part of the function is the same as in task 1.4
2018-07-12 02:35:59 +03:00
// ...
2018-07-12 02:35:59 +03:00
// Hint: you can use Controlled functor to perform multicontrolled gates
// (gates with multiple control qubits).
2018-07-12 02:35:59 +03:00
// ...
2018-07-12 02:35:59 +03:00
}
2018-07-12 02:35:59 +03:00
// Task 1.8*. f(x) = 1 if x has two or three bits (out of three) set to 1, and 0 otherwise (majority function)
// Inputs:
// 1) 3 qubits in arbitrary state |x⟩ (input register)
// 2) a qubit in arbitrary state |y⟩ (output qubit)
// Goal: transform state |x, y⟩ into state |x, y ⊕ f(x)⟩ (⊕ is addition modulo 2).
operation Oracle_MajorityFunction (x : Qubit[], y : Qubit) : Unit {
// The following line enforces the constraint on the input array.
// You don't need to modify it. Feel free to remove it, this won't cause your code to fail.
EqualityFactB(3 == Length(x), true, "x should have exactly 3 qubits");
2018-07-12 02:35:59 +03:00
// Hint: represent f(x) in terms of AND and ⊕ operations
2018-07-12 02:35:59 +03:00
// ...
}
2018-07-12 02:35:59 +03:00
//////////////////////////////////////////////////////////////////
// Part II. Deutsch-Jozsa Algorithm
2018-07-12 02:35:59 +03:00
//////////////////////////////////////////////////////////////////
// Task 2.1. State preparation for Deutsch-Jozsa algorithm
2018-07-12 02:35:59 +03:00
// Inputs:
// 1) N qubits in |0⟩ state (query register)
// 2) a qubit in |0⟩ state (answer register)
2018-07-12 02:35:59 +03:00
// Goal:
// 1) prepare an equal superposition of all basis vectors from |0...0⟩ to |1...1⟩ on query register
// (i.e., state (|0...0⟩ + ... + |1...1⟩) / sqrt(2^N) )
// 2) prepare |-⟩ state (|-⟩ = (|0⟩ - |1⟩) / sqrt(2)) on answer register
operation DJ_StatePrep (query : Qubit[], answer : Qubit) : Unit is Adj {
// ...
2018-07-12 02:35:59 +03:00
}
// Task 2.2. Deutsch-Jozsa algorithm implementation
2018-07-12 02:35:59 +03:00
// Inputs:
// 1) the number of qubits in the input register N for the function f
// 2) a quantum operation which implements the oracle |x⟩|y⟩ -> |x⟩|y ⊕ f(x)⟩, where
// x is an N-qubit input register, y is a 1-qubit answer register, and f is a Boolean function
// You are guaranteed that the function f implemented by the oracle is either
// constant (returns 0 on all inputs or 1 on all inputs) or
// balanced (returns 0 on exactly one half of the input domain and 1 on the other half).
2018-07-12 02:35:59 +03:00
// Output:
// true if the function f is constant
// false if the function f is balanced
2018-07-12 02:35:59 +03:00
//
// Note: a trivial approach is to call the oracle multiple times:
// if the values for more than half of the possible inputs are the same, the function is constant.
2018-07-12 02:35:59 +03:00
// Quantum computing allows to perform this task in just one call to the oracle; try to implement this algorithm.
operation DJ_Algorithm (N : Int, Uf : ((Qubit[], Qubit) => Unit)) : Bool {
// Declare Bool variable in which the result will be accumulated;
// this variable has to be mutable to allow updating it.
mutable isConstantFunction = true;
// ...
return isConstantFunction;
2018-07-12 02:35:59 +03:00
}
// Task 2.3. Testing Deutsch-Jozsa algorithm
// Goal: use your implementation of Deutsch-Jozsa algorithm from task 3.1 to test
// each of the oracles you've implemented in part I for being constant or balanced.
@Test("QuantumSimulator")
operation T23_E2E_DJ () : Unit {
// Hint: use Oracle_ProductFunction to implement the scalar product function oracle passed to DJ_Algorithm.
// Since Oracle_ProductFunction takes three arguments (Qubit[], Qubit and Int[]),
// and the operation passed to DJ_Algorithm must take two arguments (Qubit[] and Qubit),
// you need to use partial application to fix the third argument (a specific value of a bit vector).
//
// You might want to use something like the following:
// let oracle = Oracle_ProductFunction(_, _, [...your bit vector here...]);
2018-07-12 02:35:59 +03:00
// Hint: use AllEqualityFactI function to assert that the return value of DJ_Algorithm operation
// matches the expected value (i.e. the bit vector passed to Oracle_ProductFunction).
2018-07-12 02:35:59 +03:00
// T23_E2E_DJ appears in the list of unit tests for the solution; run it to verify your code.
2018-07-12 02:35:59 +03:00
// ...
2018-07-12 02:35:59 +03:00
}
2018-07-12 02:35:59 +03:00
//////////////////////////////////////////////////////////////////
// Part III. Bernstein-Vazirani Algorithm
//////////////////////////////////////////////////////////////////
// Task 3.1. Bernstein-Vazirani algorithm implementation
2018-07-12 02:35:59 +03:00
// Inputs:
// 1) the number of qubits in the input register N for the function f
// 2) a quantum operation which implements the oracle |x⟩|y⟩ -> |x⟩|y ⊕ f(x)⟩, where
// x is an N-qubit input register, y is a 1-qubit answer register, and f is a Boolean function
// You are guaranteed that the function f implemented by the oracle is a scalar product function
// (can be represented as f(x₀, ..., xₙ₋₁) = Σᵢ rᵢ xᵢ modulo 2 for some bit vector r = (r₀, ..., rₙ₋₁)).
// You have implemented the oracle implementing the scalar product function in task 1.5.
2018-07-12 02:35:59 +03:00
// Output:
// A bit vector r reconstructed from the function
2018-07-12 02:35:59 +03:00
//
// Note: a trivial approach is to call the oracle N times:
// |10...0⟩|0⟩ = |10...0⟩|r₀⟩, |010...0⟩|0⟩ = |010...0⟩|r₁⟩ and so on.
2018-07-12 02:35:59 +03:00
// Quantum computing allows to perform this task in just one call to the oracle; try to implement this algorithm.
operation BV_Algorithm (N : Int, Uf : ((Qubit[], Qubit) => Unit)) : Int[] {
// Declare an Int array in which the result will be stored;
// the variable has to be mutable to allow updating it.
mutable r = [0, size = N];
// ...
return r;
2018-07-12 02:35:59 +03:00
}
// Task 3.2. Testing Bernstein-Vazirani algorithm
// Goal: use your implementation of Bernstein-Vazirani algorithm from task 2.2 to figure out
// what bit vector the scalar product function oracle from task 1.5 was using.
// As a reminder, this oracle creates an operation f(x) = Σᵢ 𝑟ᵢ 𝑥ᵢ modulo 2 for a given bit vector r,
// and Bernstein-Vazirani algorithm recovers that bit vector given the operation.
@Test("QuantumSimulator")
operation T32_E2E_BV () : Unit {
// Hint: you will need to use partial application to test oracles such as Oracle_Kth_Qubit and Oracle_ProductFunction;
// see task 2.3 for a description of how to do that.
2018-07-12 02:35:59 +03:00
// Hint: use the Fact function to assert that the return value of DJ_Algorithm operation matches the expected value
2018-07-12 02:35:59 +03:00
// T32_E2E_BV appears in the list of unit tests for the solution; run it to verify your code.
2018-07-12 02:35:59 +03:00
// ...
2018-07-12 02:35:59 +03:00
}
2018-07-12 02:35:59 +03:00
//////////////////////////////////////////////////////////////////
// Part IV. Come up with your own algorithm!
//////////////////////////////////////////////////////////////////
2018-07-12 02:35:59 +03:00
// Task 4.1. Reconstruct the oracle from task 1.6
// Inputs:
// 1) the number of qubits in the input register N for the function f
// 2) a quantum operation which implements the oracle |x⟩|y⟩ -> |x⟩|y ⊕ f(x)⟩, where
// x is an N-qubit input register, y is a 1-qubit answer register, and f is a Boolean function
2018-07-12 02:35:59 +03:00
// You are guaranteed that the function f implemented by the oracle can be represented as
// f(x₀, ..., xₙ₋₁) = Σᵢ (rᵢ xᵢ + (1 - rᵢ)(1 - xᵢ)) modulo 2 for some bit vector r = (r₀, ..., rₙ₋₁).
2018-07-12 02:35:59 +03:00
// You have implemented the oracle implementing this function in task 1.6.
// Output:
// A bit vector r which generates the same oracle as the one you are given
operation Noname_Algorithm (N : Int, Uf : ((Qubit[], Qubit) => Unit)) : Int[] {
// Hint: The bit vector r does not need to be the same as the one used by the oracle,
// it just needs to produce equivalent results.
// Declare an Int array in which the result will be stored;
// the variable has to be mutable to allow updating it.
mutable r = [0, size = N];
// ...
return r;
2018-07-12 02:35:59 +03:00
}
2018-07-12 02:35:59 +03:00
}