* Fix lower bound in the formula for PrepareUniformSuperposition
* Fix broken formula in StatePreparationPositiveCoefficients
* Fix Q# code example in StatePreparationComplexCoefficients (#280)
This commit is contained in:
Mariia Mykhailova 2018-12-20 13:07:55 -08:00
Родитель 04e52e2ebf
Коммит cf13976d9a
2 изменённых файлов: 10 добавлений и 6 удалений

Просмотреть файл

@ -19,9 +19,11 @@ namespace Microsoft.Quantum.Canon
/// the $n$-qubit computational basis state $\ket{0...0}$.
///
/// The action of U on a newly-allocated register is given by
/// $$
/// \begin{align}
/// U \ket{0\cdots 0} = \ket{\psi} = \frac{\sum^{2^n-1}_{j=0}\alpha_j \ket{j}}{\sqrt{\sum^{2^n-1}_{j=0}|\alpha_j|^2}}$.
/// U \ket{0\cdots 0} = \ket{\psi} = \frac{\sum^{2^n-1}_{j=0}\alpha_j \ket{j}}{\sqrt{\sum^{2^n-1}_{j=0}|\alpha_j|^2}}.
/// \end{align}
/// $$
///
/// # Input
/// ## coefficients
@ -69,9 +71,11 @@ namespace Microsoft.Quantum.Canon
/// the $n$-qubit computational basis state $\ket{0...0}$.
///
/// The action of U on a newly-allocated register is given by
/// $$
/// \begin{align}
/// U\ket{0...0}=\ket{\psi}=\frac{\sum^{2^n-1}_{j=0}r_j e^{i t_j}\ket{j}}{\sqrt{\sum^{2^n-1}_{j=0}|r_j|^2}}.
/// U\ket{0...0}=\ket{\psi}=\frac{\sum^{2^n-1}_{j=0}r_j e^{i t_j}\ket{j}}{\sqrt{\sum^{2^n-1}_{j=0}|r_j|^2}}.
/// \end{align}
/// $$
///
/// # Input
/// ## coefficients
@ -96,9 +100,9 @@ namespace Microsoft.Quantum.Canon
/// let phases = [0.1, 0.0, 0.0, 0.0];
/// mutable complexNumbers = new ComplexPolar[4];
/// for (idx in 0..3) {
/// set complexNumbers[idx] = ComplexPolar(amplitudes, phases);
/// set complexNumbers[idx] = ComplexPolar(amplitudes[idx], phases[idx]);
/// }
/// let op = StatePreparationPositiveCoefficients(complexNumbers);
/// let op = StatePreparationComplexCoefficients(complexNumbers);
/// using (qubits = Qubit[2]) {
/// let qubitsBE = BigEndian(qubits);
/// op(qubitsBE);

Просмотреть файл

@ -14,7 +14,7 @@ namespace Microsoft.Quantum.Canon
/// $0$ to $M-1$, given an input state $\ket{0\cdots 0}$. In other words,
/// $$
/// \begin{align}
/// U\ket{0}=\frac{1}{\sqrt{M}}\sum_{j=1}^{M-1}\ket{j}.
/// U\ket{0}=\frac{1}{\sqrt{M}}\sum_{j=0}^{M-1}\ket{j}.
/// \end{align}
/// $$.
///
@ -27,7 +27,7 @@ namespace Microsoft.Quantum.Canon
/// initialized in the state $\ket{0\cdots 0}$.
///
/// # Example
/// The following example prepares the state $\frac{1}{\sqrt{6}}\sum_{j=1}^{5}\ket{j}$
/// The following example prepares the state $\frac{1}{\sqrt{6}}\sum_{j=0}^{5}\ket{j}$
/// on $3$ qubits.
/// ``` Q#
/// let nIndices = 6;