diff --git a/examples/MRS_and_Machine_Learning/R_MRO_MRS_Comparison/R_MRO_MRS_Comparison_Part_2_Capacity.R b/examples/MRS_and_Machine_Learning/R_MRO_MRS_Comparison/R_MRO_MRS_Comparison_Part_2_Capacity.R index cb873e7..4bfc2a5 100644 --- a/examples/MRS_and_Machine_Learning/R_MRO_MRS_Comparison/R_MRO_MRS_Comparison_Part_2_Capacity.R +++ b/examples/MRS_and_Machine_Learning/R_MRO_MRS_Comparison/R_MRO_MRS_Comparison_Part_2_Capacity.R @@ -68,23 +68,23 @@ rxImport(inData = dataCSV, outFile = dataXDF, overwrite = TRUE) # cluster analysis with kmeans(), it doesn't work when data is large enough # ---------------------------------------------------------------------------- system_time_R <- -system.time( -{ - fit <- kmeans(mydata, nclusters, - iter.max = 1000, - algorithm = "Lloyd") -}) + system.time( + { + fit <- kmeans(mydata, nclusters, + iter.max = 1000, + algorithm = "Lloyd") + }) # ---------------------------------------------------------------------------- # cluster analysis with rxKmeans(), it works even if kmeans() does not # ---------------------------------------------------------------------------- system_time_MRS <- -system.time( -{ - clust <- rxKmeans( ~ V1 + V2, data = dataXDF, - numClusters = nclusters, - algorithm = "lloyd", - outFile = dataXDF, - outColName = "cluster", - overwrite = TRUE) -}) + system.time( + { + clust <- rxKmeans( ~ V1 + V2, data = dataXDF, + numClusters = nclusters, + algorithm = "lloyd", + outFile = dataXDF, + outColName = "cluster", + overwrite = TRUE) + })