STL/stl/inc/xmemory

2135 строки
80 KiB
C++
Исходник Обычный вид История

2019-09-05 01:57:56 +03:00
// xmemory internal header
// Copyright (c) Microsoft Corporation.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
#pragma once
#ifndef _XMEMORY_
#define _XMEMORY_
#include <yvals_core.h>
#if _STL_COMPILER_PREPROCESSOR
#include <cstdint>
#include <cstdlib>
#include <limits>
#include <new>
#include <xatomic.h>
#include <xutility>
#pragma pack(push, _CRT_PACKING)
#pragma warning(push, _STL_WARNING_LEVEL)
#pragma warning(disable : _STL_DISABLED_WARNINGS)
_STL_DISABLE_CLANG_WARNINGS
#pragma push_macro("new")
#undef new
_STD_BEGIN
// STRUCT TEMPLATE _Tidy_guard
template <class _Ty>
struct _Tidy_guard { // class with destructor that calls _Tidy
_Ty* _Target;
~_Tidy_guard() {
if (_Target) {
_Target->_Tidy();
}
}
};
// STRUCT TEMPLATE _Tidy_deallocate_guard
template <class _Ty>
struct _Tidy_deallocate_guard { // class with destructor that calls _Tidy_deallocate
_Ty* _Target;
~_Tidy_deallocate_guard() {
if (_Target) {
_Target->_Tidy_deallocate();
}
}
};
// VARIABLE TEMPLATE _Nothrow_compare
template <class _Keycmp, class _Lhs, class _Rhs>
_INLINE_VAR constexpr bool _Nothrow_compare = noexcept(
static_cast<bool>(_STD declval<const _Keycmp&>()(_STD declval<const _Lhs&>(), _STD declval<const _Rhs&>())));
2019-09-05 01:57:56 +03:00
// FUNCTION TEMPLATE _Get_size_of_n
template <size_t _Ty_size>
_NODISCARD constexpr size_t _Get_size_of_n(const size_t _Count) {
constexpr bool _Overflow_is_possible = _Ty_size > 1;
if
_CONSTEXPR_IF(_Overflow_is_possible) {
constexpr size_t _Max_possible = static_cast<size_t>(-1) / _Ty_size;
if (_Count > _Max_possible) {
_Throw_bad_array_new_length(); // multiply overflow
}
}
return _Count * _Ty_size;
}
// VARIABLE TEMPLATE _New_alignof
template <class _Ty>
_INLINE_VAR constexpr size_t _New_alignof = (_STD max)(alignof(_Ty),
static_cast<size_t>(__STDCPP_DEFAULT_NEW_ALIGNMENT__) // TRANSITION, VSO-522105
2019-09-05 01:57:56 +03:00
);
// STRUCT _Default_allocate_traits
struct _Default_allocate_traits {
_DECLSPEC_ALLOCATOR static void* _Allocate(const size_t _Bytes) {
return ::operator new(_Bytes);
}
#ifdef __cpp_aligned_new
_DECLSPEC_ALLOCATOR static void* _Allocate_aligned(const size_t _Bytes, const size_t _Align) {
return ::operator new (_Bytes, align_val_t{_Align});
}
#endif // __cpp_aligned_new
};
constexpr bool _Is_pow_2(const size_t _Value) noexcept {
return _Value != 0 && (_Value & (_Value - 1)) == 0;
}
#if defined(_M_IX86) || defined(_M_X64)
constexpr size_t _Big_allocation_threshold = 4096;
constexpr size_t _Big_allocation_alignment = 32;
static_assert(2 * sizeof(void*) <= _Big_allocation_alignment,
"Big allocation alignment should at least match vector register alignment");
static_assert(_Is_pow_2(_Big_allocation_alignment), "Big allocation alignment must be a power of two");
#ifdef _DEBUG
constexpr size_t _Non_user_size = 2 * sizeof(void*) + _Big_allocation_alignment - 1;
#else // _DEBUG
constexpr size_t _Non_user_size = sizeof(void*) + _Big_allocation_alignment - 1;
#endif // _DEBUG
#ifdef _WIN64
constexpr size_t _Big_allocation_sentinel = 0xFAFAFAFAFAFAFAFAULL;
#else // ^^^ _WIN64 ^^^ // vvv !_WIN64 vvv
constexpr size_t _Big_allocation_sentinel = 0xFAFAFAFAUL;
#endif // _WIN64
// FUNCTION _Allocate_manually_vector_aligned
template <class _Traits>
_DECLSPEC_ALLOCATOR void* _Allocate_manually_vector_aligned(const size_t _Bytes) {
// allocate _Bytes manually aligned to at least _Big_allocation_alignment
const size_t _Block_size = _Non_user_size + _Bytes;
if (_Block_size <= _Bytes) {
_Throw_bad_array_new_length(); // add overflow
}
const uintptr_t _Ptr_container = reinterpret_cast<uintptr_t>(_Traits::_Allocate(_Block_size));
_STL_VERIFY(_Ptr_container != 0, "invalid argument"); // validate even in release since we're doing p[-1]
void* const _Ptr = reinterpret_cast<void*>((_Ptr_container + _Non_user_size) & ~(_Big_allocation_alignment - 1));
static_cast<uintptr_t*>(_Ptr)[-1] = _Ptr_container;
#ifdef _DEBUG
static_cast<uintptr_t*>(_Ptr)[-2] = _Big_allocation_sentinel;
#endif // _DEBUG
return _Ptr;
}
// FUNCTION TEMPLATE _Adjust_manually_vector_aligned
inline void _Adjust_manually_vector_aligned(void*& _Ptr, size_t& _Bytes) {
// adjust parameters from _Allocate_manually_vector_aligned to pass to operator delete
_Bytes += _Non_user_size;
const uintptr_t* const _Ptr_user = reinterpret_cast<uintptr_t*>(_Ptr);
const uintptr_t _Ptr_container = _Ptr_user[-1];
// If the following asserts, it likely means that we are performing
// an aligned delete on memory coming from an unaligned allocation.
_STL_ASSERT(_Ptr_user[-2] == _Big_allocation_sentinel, "invalid argument");
// Extra paranoia on aligned allocation/deallocation; ensure _Ptr_container is
// in range [_Min_back_shift, _Non_user_size]
#ifdef _DEBUG
constexpr uintptr_t _Min_back_shift = 2 * sizeof(void*);
#else // ^^^ _DEBUG ^^^ // vvv !_DEBUG vvv
constexpr uintptr_t _Min_back_shift = sizeof(void*);
#endif // _DEBUG
const uintptr_t _Back_shift = reinterpret_cast<uintptr_t>(_Ptr) - _Ptr_container;
_STL_VERIFY(_Back_shift >= _Min_back_shift && _Back_shift <= _Non_user_size, "invalid argument");
_Ptr = reinterpret_cast<void*>(_Ptr_container);
}
#endif // defined(_M_IX86) || defined(_M_X64)
// FUNCTION TEMPLATES _Allocate and _Deallocate
#ifdef __cpp_aligned_new
template <size_t _Align, class _Traits = _Default_allocate_traits,
enable_if_t<(_Align > __STDCPP_DEFAULT_NEW_ALIGNMENT__), int> = 0>
_DECLSPEC_ALLOCATOR void* _Allocate(const size_t _Bytes) {
// allocate _Bytes when __cpp_aligned_new && _Align > __STDCPP_DEFAULT_NEW_ALIGNMENT__
if (_Bytes == 0) {
return nullptr;
}
size_t _Passed_align = _Align;
#if defined(_M_IX86) || defined(_M_X64)
if (_Bytes >= _Big_allocation_threshold) {
// boost the alignment of big allocations to help autovectorization
_Passed_align = (_STD max)(_Align, _Big_allocation_alignment);
2019-09-05 01:57:56 +03:00
}
#endif // defined(_M_IX86) || defined(_M_X64)
return _Traits::_Allocate_aligned(_Bytes, _Passed_align);
}
template <size_t _Align, enable_if_t<(_Align > __STDCPP_DEFAULT_NEW_ALIGNMENT__), int> = 0>
void _Deallocate(void* _Ptr, const size_t _Bytes) noexcept {
// deallocate storage allocated by _Allocate when __cpp_aligned_new && _Align > __STDCPP_DEFAULT_NEW_ALIGNMENT__
size_t _Passed_align = _Align;
#if defined(_M_IX86) || defined(_M_X64)
if (_Bytes >= _Big_allocation_threshold) { // boost the alignment of big allocations to help autovectorization
_Passed_align = (_STD max)(_Align, _Big_allocation_alignment);
2019-09-05 01:57:56 +03:00
}
#endif // defined(_M_IX86) || defined(_M_X64)
::operator delete (_Ptr, _Bytes, align_val_t{_Passed_align});
}
#define _HAS_ALIGNED_NEW 1
#else // ^^^ __cpp_aligned_new ^^^ / vvv !__cpp_aligned_new vvv
#define _HAS_ALIGNED_NEW 0
#endif // __cpp_aligned_new
template <size_t _Align, class _Traits = _Default_allocate_traits,
enable_if_t<(!_HAS_ALIGNED_NEW || _Align <= __STDCPP_DEFAULT_NEW_ALIGNMENT__), int> = 0>
_DECLSPEC_ALLOCATOR void* _Allocate(const size_t _Bytes) {
// allocate _Bytes when !_HAS_ALIGNED_NEW || _Align <= __STDCPP_DEFAULT_NEW_ALIGNMENT__
#if defined(_M_IX86) || defined(_M_X64)
if (_Bytes >= _Big_allocation_threshold) { // boost the alignment of big allocations to help autovectorization
return _Allocate_manually_vector_aligned<_Traits>(_Bytes);
}
#endif // defined(_M_IX86) || defined(_M_X64)
if (_Bytes != 0) {
return _Traits::_Allocate(_Bytes);
}
return nullptr;
}
template <size_t _Align, enable_if_t<(!_HAS_ALIGNED_NEW || _Align <= __STDCPP_DEFAULT_NEW_ALIGNMENT__), int> = 0>
void _Deallocate(void* _Ptr, size_t _Bytes) noexcept {
// deallocate storage allocated by _Allocate when !_HAS_ALIGNED_NEW || _Align <= __STDCPP_DEFAULT_NEW_ALIGNMENT__
#if defined(_M_IX86) || defined(_M_X64)
if (_Bytes >= _Big_allocation_threshold) { // boost the alignment of big allocations to help autovectorization
_Adjust_manually_vector_aligned(_Ptr, _Bytes);
}
#endif // defined(_M_IX86) || defined(_M_X64)
::operator delete(_Ptr, _Bytes);
}
#undef _HAS_ALIGNED_NEW
// FUNCTION TEMPLATE _Construct_in_place
template <class _Ty, class... _Types>
void _Construct_in_place(_Ty& _Obj, _Types&&... _Args) noexcept(is_nothrow_constructible_v<_Ty, _Types...>) {
::new (const_cast<void*>(static_cast<const volatile void*>(_STD addressof(_Obj))))
_Ty(_STD forward<_Types>(_Args)...);
}
// FUNCTION TEMPLATE _Global_new
template <class _Ty, class... _Types>
_Ty* _Global_new(_Types&&... _Args) { // acts as "new" while disallowing user overload selection
struct _Guard_type {
void* _Result;
~_Guard_type() {
if (_Result) {
_Deallocate<_New_alignof<_Ty>>(_Result, sizeof(_Ty));
}
}
};
_Guard_type _Guard{_Allocate<_New_alignof<_Ty>>(sizeof(_Ty))};
::new (_Guard._Result) _Ty(_STD forward<_Types>(_Args)...);
return static_cast<_Ty*>(_STD exchange(_Guard._Result, nullptr));
}
// ALIAS TEMPLATE _Rebind_pointer_t
template <class _Ptr, class _Ty>
using _Rebind_pointer_t = typename pointer_traits<_Ptr>::template rebind<_Ty>;
// FUNCTION TEMPLATE _Refancy
template <class _Pointer, enable_if_t<!is_pointer_v<_Pointer>, int> = 0>
_Pointer _Refancy(typename pointer_traits<_Pointer>::element_type* _Ptr) noexcept {
return pointer_traits<_Pointer>::pointer_to(*_Ptr);
}
template <class _Pointer, enable_if_t<is_pointer_v<_Pointer>, int> = 0>
_Pointer _Refancy(_Pointer _Ptr) noexcept {
return _Ptr;
}
// FUNCTION TEMPLATE _Destroy_in_place
template <class _Ty>
void _Destroy_in_place(_Ty& _Obj) noexcept {
_Obj.~_Ty();
}
// FUNCTION TEMPLATE _Const_cast
template <class _Ptrty>
auto _Const_cast(_Ptrty _Ptr) noexcept { // remove constness from a fancy pointer
using _Elem = typename pointer_traits<_Ptrty>::element_type;
using _Modifiable = remove_const_t<_Elem>;
using _Dest = typename pointer_traits<_Ptrty>::template rebind<_Modifiable>;
return pointer_traits<_Dest>::pointer_to(const_cast<_Modifiable&>(*_Ptr));
}
template <class _Ty>
auto _Const_cast(_Ty* _Ptr) noexcept {
return const_cast<remove_const_t<_Ty>*>(_Ptr);
}
// STRUCT TEMPLATE _Get_pointer_type
template <class _Ty, class = void>
struct _Get_pointer_type {
using type = typename _Ty::value_type*;
};
_STL_DISABLE_DEPRECATED_WARNING
template <class _Ty>
struct _Get_pointer_type<_Ty, void_t<typename _Ty::pointer>> {
using type = typename _Ty::pointer;
};
_STL_RESTORE_DEPRECATED_WARNING
// STRUCT TEMPLATE _Get_const_pointer_type
template <class _Ty, class = void>
struct _Get_const_pointer_type {
using _Ptrty = typename _Get_pointer_type<_Ty>::type;
using _Valty = typename _Ty::value_type;
using type = typename pointer_traits<_Ptrty>::template rebind<const _Valty>;
};
_STL_DISABLE_DEPRECATED_WARNING
template <class _Ty>
struct _Get_const_pointer_type<_Ty, void_t<typename _Ty::const_pointer>> {
using type = typename _Ty::const_pointer;
};
_STL_RESTORE_DEPRECATED_WARNING
// STRUCT TEMPLATE _Get_void_pointer_type
template <class _Ty, class = void>
struct _Get_void_pointer_type {
using _Ptrty = typename _Get_pointer_type<_Ty>::type;
using type = typename pointer_traits<_Ptrty>::template rebind<void>;
};
template <class _Ty>
struct _Get_void_pointer_type<_Ty, void_t<typename _Ty::void_pointer>> {
using type = typename _Ty::void_pointer;
};
// STRUCT TEMPLATE _Get_const_void_pointer_type
template <class _Ty, class = void>
struct _Get_const_void_pointer_type {
using _Ptrty = typename _Get_pointer_type<_Ty>::type;
using type = typename pointer_traits<_Ptrty>::template rebind<const void>;
};
template <class _Ty>
struct _Get_const_void_pointer_type<_Ty, void_t<typename _Ty::const_void_pointer>> {
using type = typename _Ty::const_void_pointer;
};
// STRUCT TEMPLATE _Get_difference_type
template <class _Ty, class = void>
struct _Get_difference_type {
using _Ptrty = typename _Get_pointer_type<_Ty>::type;
using type = typename pointer_traits<_Ptrty>::difference_type;
};
template <class _Ty>
struct _Get_difference_type<_Ty, void_t<typename _Ty::difference_type>> {
using type = typename _Ty::difference_type;
};
// STRUCT TEMPLATE _Get_size_type
template <class _Ty, class = void>
struct _Get_size_type {
using type = make_unsigned_t<typename _Get_difference_type<_Ty>::type>;
};
template <class _Ty>
struct _Get_size_type<_Ty, void_t<typename _Ty::size_type>> {
using type = typename _Ty::size_type;
};
// STRUCT TEMPLATE _Get_propagate_on_container_copy
template <class _Ty, class = void>
struct _Get_propagate_on_container_copy {
using type = false_type;
};
template <class _Ty>
struct _Get_propagate_on_container_copy<_Ty, void_t<typename _Ty::propagate_on_container_copy_assignment>> {
using type = typename _Ty::propagate_on_container_copy_assignment;
};
// STRUCT TEMPLATE _Get_propagate_on_container_move
template <class _Ty, class = void>
struct _Get_propagate_on_container_move {
using type = false_type;
};
template <class _Ty>
struct _Get_propagate_on_container_move<_Ty, void_t<typename _Ty::propagate_on_container_move_assignment>> {
using type = typename _Ty::propagate_on_container_move_assignment;
};
// STRUCT TEMPLATE _Get_propagate_on_container_swap
template <class _Ty, class = void>
struct _Get_propagate_on_container_swap {
using type = false_type;
};
template <class _Ty>
struct _Get_propagate_on_container_swap<_Ty, void_t<typename _Ty::propagate_on_container_swap>> {
using type = typename _Ty::propagate_on_container_swap;
};
// STRUCT TEMPLATE _Get_is_always_equal
template <class _Ty, class = void>
struct _Get_is_always_equal {
using type = typename is_empty<_Ty>::type;
};
template <class _Ty>
struct _Get_is_always_equal<_Ty, void_t<typename _Ty::is_always_equal>> {
using type = typename _Ty::is_always_equal;
};
// STRUCT TEMPLATE _Get_rebind_type
template <class _Ty, class _Other, class = void>
struct _Get_rebind_type {
using type = typename _Replace_first_parameter<_Other, _Ty>::type;
};
_STL_DISABLE_DEPRECATED_WARNING
template <class _Ty, class _Other>
struct _Get_rebind_type<_Ty, _Other, void_t<typename _Ty::template rebind<_Other>::other>> {
using type = typename _Ty::template rebind<_Other>::other;
};
_STL_RESTORE_DEPRECATED_WARNING
// STRUCT TEMPLATE _Is_default_allocator
template <class _Ty>
class allocator;
template <class _Alloc, class = void>
struct _Is_default_allocator : false_type {};
template <class _Ty>
struct _Is_default_allocator<allocator<_Ty>, void_t<typename allocator<_Ty>::_From_primary>>
: is_same<typename allocator<_Ty>::_From_primary, allocator<_Ty>>::type {};
// ALIAS TEMPLATES _Uses_default_construct
template <class _Void, class... _Types>
struct _Has_no_allocator_construct : true_type {};
_STL_DISABLE_DEPRECATED_WARNING
template <class _Alloc, class _Ptr, class... _Args>
struct _Has_no_allocator_construct<
void_t<decltype(_STD declval<_Alloc&>().construct(_STD declval<_Ptr>(), _STD declval<_Args>()...))>, _Alloc, _Ptr,
_Args...> : false_type {};
_STL_RESTORE_DEPRECATED_WARNING
template <class _Alloc, class _Ptr, class... _Args>
using _Uses_default_construct =
disjunction<_Is_default_allocator<_Alloc>, _Has_no_allocator_construct<void, _Alloc, _Ptr, _Args...>>;
// ALIAS TEMPLATE _Uses_default_destroy AND _Uses_default_destroy_t
template <class _Alloc, class _Ptr, class = void>
struct _Has_no_alloc_destroy : true_type {};
_STL_DISABLE_DEPRECATED_WARNING
template <class _Alloc, class _Ptr>
struct _Has_no_alloc_destroy<_Alloc, _Ptr, void_t<decltype(_STD declval<_Alloc&>().destroy(_STD declval<_Ptr>()))>>
: false_type {};
_STL_RESTORE_DEPRECATED_WARNING
template <class _Alloc, class _Ptr>
using _Uses_default_destroy = disjunction<_Is_default_allocator<_Alloc>, _Has_no_alloc_destroy<_Alloc, _Ptr>>;
template <class _Alloc, class _Ptr>
using _Uses_default_destroy_t = typename _Uses_default_destroy<_Alloc, _Ptr>::type;
// STRUCT TEMPLATE _Has_allocate_hint
template <class _Alloc, class _Size_type, class _Const_void_pointer, class = void>
struct _Has_allocate_hint : false_type {};
_STL_DISABLE_DEPRECATED_WARNING
template <class _Alloc, class _Size_type, class _Const_void_pointer>
struct _Has_allocate_hint<_Alloc, _Size_type, _Const_void_pointer,
void_t<decltype(_STD declval<_Alloc&>().allocate(
_STD declval<const _Size_type&>(), _STD declval<const _Const_void_pointer&>()))>> : true_type {};
_STL_RESTORE_DEPRECATED_WARNING
// STRUCT TEMPLATE _Has_max_size
template <class _Alloc, class = void>
struct _Has_max_size : false_type {};
_STL_DISABLE_DEPRECATED_WARNING
template <class _Alloc>
struct _Has_max_size<_Alloc, void_t<decltype(_STD declval<const _Alloc&>().max_size())>> : true_type {};
_STL_RESTORE_DEPRECATED_WARNING
// STRUCT TEMPLATE _Has_select_on_container_copy_construction
template <class _Alloc, class = void>
struct _Has_select_on_container_copy_construction : false_type {};
template <class _Alloc>
struct _Has_select_on_container_copy_construction<_Alloc,
void_t<decltype(_STD declval<const _Alloc&>().select_on_container_copy_construction())>> : true_type {};
// STRUCT TEMPLATE allocator_traits
template <class _Alloc>
struct allocator_traits;
_STL_DISABLE_DEPRECATED_WARNING
template <class _Alloc>
struct _Normal_allocator_traits { // defines traits for allocators
using allocator_type = _Alloc;
using value_type = typename _Alloc::value_type;
using pointer = typename _Get_pointer_type<_Alloc>::type;
using const_pointer = typename _Get_const_pointer_type<_Alloc>::type;
using void_pointer = typename _Get_void_pointer_type<_Alloc>::type;
using const_void_pointer = typename _Get_const_void_pointer_type<_Alloc>::type;
using size_type = typename _Get_size_type<_Alloc>::type;
using difference_type = typename _Get_difference_type<_Alloc>::type;
using propagate_on_container_copy_assignment = typename _Get_propagate_on_container_copy<_Alloc>::type;
using propagate_on_container_move_assignment = typename _Get_propagate_on_container_move<_Alloc>::type;
using propagate_on_container_swap = typename _Get_propagate_on_container_swap<_Alloc>::type;
using is_always_equal = typename _Get_is_always_equal<_Alloc>::type;
template <class _Other>
using rebind_alloc = typename _Get_rebind_type<_Alloc, _Other>::type;
template <class _Other>
using rebind_traits = allocator_traits<rebind_alloc<_Other>>;
_NODISCARD static _DECLSPEC_ALLOCATOR pointer allocate(_Alloc& _Al, _CRT_GUARDOVERFLOW const size_type _Count) {
return _Al.allocate(_Count);
}
#if _HAS_IF_CONSTEXPR
_NODISCARD static _DECLSPEC_ALLOCATOR pointer allocate(
_Alloc& _Al, _CRT_GUARDOVERFLOW const size_type _Count, const const_void_pointer _Hint) {
if constexpr (_Has_allocate_hint<_Alloc, size_type, const_void_pointer>::value) {
return _Al.allocate(_Count, _Hint);
} else {
(void) _Hint;
return _Al.allocate(_Count);
}
}
#else // ^^^ _HAS_IF_CONSTEXPR ^^^ // vvv !_HAS_IF_CONSTEXPR vvv
static _DECLSPEC_ALLOCATOR pointer _Allocate1(
_Alloc& _Al, _CRT_GUARDOVERFLOW const size_type _Count, const const_void_pointer _Hint, true_type) {
return _Al.allocate(_Count, _Hint);
}
static _DECLSPEC_ALLOCATOR pointer _Allocate1(
_Alloc& _Al, _CRT_GUARDOVERFLOW const size_type _Count, const_void_pointer, false_type) {
return _Al.allocate(_Count);
}
_NODISCARD static _DECLSPEC_ALLOCATOR pointer allocate(
_Alloc& _Al, _CRT_GUARDOVERFLOW const size_type _Count, const const_void_pointer _Hint) {
return _Allocate1(_Al, _Count, _Hint, _Has_allocate_hint<_Alloc, size_type, const_void_pointer>{});
}
#endif // _HAS_IF_CONSTEXPR
static void deallocate(_Alloc& _Al, pointer _Ptr, size_type _Count) {
_Al.deallocate(_Ptr, _Count);
}
#if _HAS_IF_CONSTEXPR
template <class _Ty, class... _Types>
static void construct(_Alloc& _Al, _Ty* _Ptr, _Types&&... _Args) {
if constexpr (_Uses_default_construct<_Alloc, _Ty*, _Types...>::value) {
(void) _Al;
::new (static_cast<void*>(_Ptr)) _Ty(_STD forward<_Types>(_Args)...);
} else {
_Al.construct(_Ptr, _STD forward<_Types>(_Args)...);
}
}
#else // ^^^ _HAS_IF_CONSTEXPR ^^^ // vvv !_HAS_IF_CONSTEXPR vvv
template <class _Ty, class... _Types>
static void _Construct1(true_type, _Alloc&, _Ty* _Ptr, _Types&&... _Args) {
::new (static_cast<void*>(_Ptr)) _Ty(_STD forward<_Types>(_Args)...);
}
template <class _Ty, class... _Types>
static void _Construct1(false_type, _Alloc& _Al, _Ty* _Ptr, _Types&&... _Args) {
_Al.construct(_Ptr, _STD forward<_Types>(_Args)...);
}
template <class _Ty, class... _Types>
static void construct(_Alloc& _Al, _Ty* _Ptr, _Types&&... _Args) {
_Construct1(typename _Uses_default_construct<_Alloc, _Ty*, _Types...>::type{}, _Al, _Ptr,
_STD forward<_Types>(_Args)...);
}
#endif // _HAS_IF_CONSTEXPR
#if _HAS_IF_CONSTEXPR
template <class _Ty>
static void destroy(_Alloc& _Al, _Ty* _Ptr) {
if constexpr (_Uses_default_destroy<_Alloc, _Ty*>::value) {
(void) _Al;
_Ptr->~_Ty();
} else {
_Al.destroy(_Ptr);
}
}
#else // ^^^ _HAS_IF_CONSTEXPR ^^^ // vvv !_HAS_IF_CONSTEXPR vvv
template <class _Ty>
static void _Destroy1(_Alloc&, _Ty* _Ptr, true_type) {
_Ptr->~_Ty();
}
template <class _Ty>
static void _Destroy1(_Alloc& _Al, _Ty* _Ptr, false_type) {
_Al.destroy(_Ptr);
}
template <class _Ty>
static void destroy(_Alloc& _Al, _Ty* _Ptr) {
_Destroy1(_Al, _Ptr, _Uses_default_destroy_t<_Alloc, _Ty*>());
}
#endif // _HAS_IF_CONSTEXPR
#if _HAS_IF_CONSTEXPR
_NODISCARD static size_type max_size(const _Alloc& _Al) noexcept {
if constexpr (_Has_max_size<_Alloc>::value) {
return _Al.max_size();
} else {
(void) _Al;
return (numeric_limits<size_type>::max)() / sizeof(value_type);
}
}
#else // ^^^ _HAS_IF_CONSTEXPR ^^^ // vvv !_HAS_IF_CONSTEXPR vvv
static size_type _Max_size1(const _Alloc& _Al, true_type) noexcept {
return _Al.max_size();
}
static size_type _Max_size1(const _Alloc&, false_type) noexcept {
return (numeric_limits<size_type>::max)() / sizeof(value_type);
}
_NODISCARD static size_type max_size(const _Alloc& _Al) noexcept {
return _Max_size1(_Al, _Has_max_size<_Alloc>{});
}
#endif // _HAS_IF_CONSTEXPR
#if _HAS_IF_CONSTEXPR
_NODISCARD static _Alloc select_on_container_copy_construction(const _Alloc& _Al) {
if constexpr (_Has_select_on_container_copy_construction<_Alloc>::value) {
return _Al.select_on_container_copy_construction();
} else {
return _Al;
}
}
#else // ^^^ _HAS_IF_CONSTEXPR ^^^ // vvv !_HAS_IF_CONSTEXPR vvv
static _Alloc _Select_on_container_copy_construction1(const _Alloc& _Al, true_type) {
return _Al.select_on_container_copy_construction();
}
static _Alloc _Select_on_container_copy_construction1(const _Alloc& _Al, false_type) {
return _Al;
}
_NODISCARD static _Alloc select_on_container_copy_construction(const _Alloc& _Al) {
return _Select_on_container_copy_construction1(_Al, _Has_select_on_container_copy_construction<_Alloc>{});
}
#endif // _HAS_IF_CONSTEXPR
};
_STL_RESTORE_DEPRECATED_WARNING
template <class _Alloc>
struct _Default_allocator_traits { // traits for std::allocator
using allocator_type = _Alloc;
using value_type = typename _Alloc::value_type;
using pointer = value_type*;
using const_pointer = const value_type*;
using void_pointer = void*;
using const_void_pointer = const void*;
using size_type = size_t;
using difference_type = ptrdiff_t;
using propagate_on_container_copy_assignment = false_type;
using propagate_on_container_move_assignment = true_type;
using propagate_on_container_swap = false_type;
using is_always_equal = true_type;
template <class _Other>
using rebind_alloc = allocator<_Other>;
template <class _Other>
using rebind_traits = allocator_traits<allocator<_Other>>;
_NODISCARD static _DECLSPEC_ALLOCATOR pointer allocate(_Alloc&, _CRT_GUARDOVERFLOW const size_type _Count) {
return static_cast<pointer>(_Allocate<_New_alignof<value_type>>(_Get_size_of_n<sizeof(value_type)>(_Count)));
}
_NODISCARD static _DECLSPEC_ALLOCATOR pointer allocate(
_Alloc&, _CRT_GUARDOVERFLOW const size_type _Count, const_void_pointer) {
return static_cast<pointer>(_Allocate<_New_alignof<value_type>>(_Get_size_of_n<sizeof(value_type)>(_Count)));
}
static void deallocate(_Alloc&, const pointer _Ptr, const size_type _Count) {
// no overflow check on the following multiply; we assume _Allocate did that check
_Deallocate<_New_alignof<value_type>>(_Ptr, sizeof(value_type) * _Count);
}
template <class _Objty, class... _Types>
static void construct(_Alloc&, _Objty* const _Ptr, _Types&&... _Args) {
::new (const_cast<void*>(static_cast<const volatile void*>(_Ptr))) _Objty(_STD forward<_Types>(_Args)...);
}
template <class _Uty>
static void destroy(_Alloc&, _Uty* const _Ptr) {
_Ptr->~_Uty();
}
_NODISCARD static size_type max_size(const _Alloc&) noexcept {
return static_cast<size_t>(-1) / sizeof(value_type);
}
_NODISCARD static _Alloc select_on_container_copy_construction(const _Alloc& _Al) {
return _Al;
}
};
template <class _Alloc>
struct allocator_traits : conditional_t<_Is_default_allocator<_Alloc>::value, _Default_allocator_traits<_Alloc>,
_Normal_allocator_traits<_Alloc>> {};
// _Choose_pocca returns whether an attempt to propagate allocators is necessary in copy assignment operations.
// Note that even when false_type, callers should call _Pocca as we want to assign allocators even when equal.
template <class _Alloc>
using _Choose_pocca = bool_constant<allocator_traits<_Alloc>::propagate_on_container_copy_assignment::value
&& !allocator_traits<_Alloc>::is_always_equal::value>;
struct _Equal_allocators {}; // usually allows contents to be stolen (e.g. with swap)
using _Propagate_allocators = true_type; // usually allows the allocator to be propagated, and then contents stolen
using _No_propagate_allocators = false_type; // usually turns moves into copies
template <class _Alloc>
using _Choose_pocma = conditional_t<allocator_traits<_Alloc>::is_always_equal::value, _Equal_allocators,
typename allocator_traits<_Alloc>::propagate_on_container_move_assignment::type>;
// ALIAS TEMPLATE _Rebind_alloc_t
template <class _Alloc, class _Value_type>
using _Rebind_alloc_t = typename allocator_traits<_Alloc>::template rebind_alloc<_Value_type>;
// ALIAS TEMPLATE _Maybe_rebind_alloc_t
// If _Alloc is already rebound appropriately, binds an lvalue reference to it, avoiding a copy. Otherwise, creates a
// rebound copy.
template <class _Alloc, class _Value_type>
using _Maybe_rebind_alloc_t =
typename _Select<is_same_v<typename _Alloc::value_type, _Value_type>>::template _Apply<_Alloc&,
_Rebind_alloc_t<_Alloc, _Value_type>>;
// VARIABLE TEMPLATE _Is_simple_alloc_v
template <class _Alloc> // tests if allocator has simple addressing
_INLINE_VAR constexpr bool _Is_simple_alloc_v = is_same_v<typename allocator_traits<_Alloc>::size_type, size_t>&&
is_same_v<typename allocator_traits<_Alloc>::difference_type, ptrdiff_t>&&
is_same_v<typename allocator_traits<_Alloc>::pointer, typename _Alloc::value_type*>&&
is_same_v<typename allocator_traits<_Alloc>::const_pointer, const typename _Alloc::value_type*>;
// STRUCT TEMPLATE _Simple_types
template <class _Value_type>
struct _Simple_types { // wraps types from allocators with simple addressing for use in iterators
// and other SCARY machinery
using value_type = _Value_type;
using size_type = size_t;
using difference_type = ptrdiff_t;
using pointer = value_type*;
using const_pointer = const value_type*;
};
// CLASS TEMPLATE allocator
template <class _Ty>
class allocator {
public:
static_assert(!is_const_v<_Ty>, "The C++ Standard forbids containers of const elements "
"because allocator<const T> is ill-formed.");
using _From_primary = allocator;
using value_type = _Ty;
_CXX17_DEPRECATE_OLD_ALLOCATOR_MEMBERS typedef _Ty* pointer;
_CXX17_DEPRECATE_OLD_ALLOCATOR_MEMBERS typedef const _Ty* const_pointer;
_CXX17_DEPRECATE_OLD_ALLOCATOR_MEMBERS typedef _Ty& reference;
_CXX17_DEPRECATE_OLD_ALLOCATOR_MEMBERS typedef const _Ty& const_reference;
using size_type = size_t;
using difference_type = ptrdiff_t;
using propagate_on_container_move_assignment = true_type;
using is_always_equal = true_type;
template <class _Other>
struct _CXX17_DEPRECATE_OLD_ALLOCATOR_MEMBERS rebind {
using other = allocator<_Other>;
};
_CXX17_DEPRECATE_OLD_ALLOCATOR_MEMBERS _NODISCARD _Ty* address(_Ty& _Val) const noexcept {
2019-09-05 01:57:56 +03:00
return _STD addressof(_Val);
}
_CXX17_DEPRECATE_OLD_ALLOCATOR_MEMBERS _NODISCARD const _Ty* address(const _Ty& _Val) const noexcept {
2019-09-05 01:57:56 +03:00
return _STD addressof(_Val);
}
constexpr allocator() noexcept {}
constexpr allocator(const allocator&) noexcept = default;
template <class _Other>
constexpr allocator(const allocator<_Other>&) noexcept {}
void deallocate(_Ty* const _Ptr, const size_t _Count) {
// no overflow check on the following multiply; we assume _Allocate did that check
_Deallocate<_New_alignof<_Ty>>(_Ptr, sizeof(_Ty) * _Count);
}
_NODISCARD _DECLSPEC_ALLOCATOR _Ty* allocate(_CRT_GUARDOVERFLOW const size_t _Count) {
return static_cast<_Ty*>(_Allocate<_New_alignof<_Ty>>(_Get_size_of_n<sizeof(_Ty)>(_Count)));
}
_CXX17_DEPRECATE_OLD_ALLOCATOR_MEMBERS _NODISCARD _DECLSPEC_ALLOCATOR _Ty* allocate(
2019-09-05 01:57:56 +03:00
_CRT_GUARDOVERFLOW const size_t _Count, const void*) {
return allocate(_Count);
}
template <class _Objty, class... _Types>
_CXX17_DEPRECATE_OLD_ALLOCATOR_MEMBERS void construct(_Objty* const _Ptr, _Types&&... _Args) {
::new (const_cast<void*>(static_cast<const volatile void*>(_Ptr))) _Objty(_STD forward<_Types>(_Args)...);
}
template <class _Uty>
_CXX17_DEPRECATE_OLD_ALLOCATOR_MEMBERS void destroy(_Uty* const _Ptr) {
_Ptr->~_Uty();
}
_CXX17_DEPRECATE_OLD_ALLOCATOR_MEMBERS _NODISCARD size_t max_size() const noexcept {
2019-09-05 01:57:56 +03:00
return static_cast<size_t>(-1) / sizeof(_Ty);
}
};
// CLASS allocator<void>
template <>
class allocator<void> {
public:
using value_type = void;
_CXX17_DEPRECATE_OLD_ALLOCATOR_MEMBERS typedef void* pointer;
_CXX17_DEPRECATE_OLD_ALLOCATOR_MEMBERS typedef const void* const_pointer;
using size_type = size_t;
using difference_type = ptrdiff_t;
using propagate_on_container_move_assignment = true_type;
using is_always_equal = true_type;
template <class _Other>
struct _CXX17_DEPRECATE_OLD_ALLOCATOR_MEMBERS rebind {
using other = allocator<_Other>;
};
};
template <class _Ty, class _Other>
_NODISCARD bool operator==(const allocator<_Ty>&, const allocator<_Other>&) noexcept {
return true;
}
template <class _Ty, class _Other>
_NODISCARD bool operator!=(const allocator<_Ty>&, const allocator<_Other>&) noexcept {
return false;
}
#if _HAS_CXX17
// ALIAS TEMPLATE _Guide_size_type_t FOR DEDUCTION GUIDES, N4687 26.5.4.1 [unord.map.overview]/4
template <class _Alloc>
using _Guide_size_type_t =
typename allocator_traits<conditional_t<_Is_allocator<_Alloc>::value, _Alloc, allocator<int>>>::size_type;
#endif // _HAS_CXX17
// ALIAS TEMPLATE _Alloc_ptr_t
template <class _Alloc>
using _Alloc_ptr_t = typename allocator_traits<_Alloc>::pointer;
// ALIAS_TEMPLATE _Alloc_size_t
template <class _Alloc>
using _Alloc_size_t = typename allocator_traits<_Alloc>::size_type;
// FUNCTION TEMPLATE _Pocca
#if _HAS_IF_CONSTEXPR
template <class _Alloc>
void _Pocca(_Alloc& _Left, const _Alloc& _Right) noexcept {
if constexpr (allocator_traits<_Alloc>::propagate_on_container_copy_assignment::value) {
_Left = _Right;
} else {
(void) _Left; // TRANSITION, VSO-486357
(void) _Right; // TRANSITION, VSO-486357
2019-09-05 01:57:56 +03:00
}
}
#else // ^^^ _HAS_IF_CONSTEXPR ^^^ // vvv !_HAS_IF_CONSTEXPR vvv
template <class _Alloc>
void _Pocca(_Alloc& _Left, const _Alloc& _Right, true_type) noexcept {
_Left = _Right;
}
template <class _Alloc>
void _Pocca(_Alloc&, const _Alloc&, false_type) noexcept {}
template <class _Alloc>
void _Pocca(_Alloc& _Left, const _Alloc& _Right) noexcept {
_Pocca(_Left, _Right, typename allocator_traits<_Alloc>::propagate_on_container_copy_assignment{});
}
#endif // _HAS_IF_CONSTEXPR
// FUNCTION TEMPLATE _Pocma
#if _HAS_IF_CONSTEXPR
template <class _Alloc>
void _Pocma(_Alloc& _Left, _Alloc& _Right) noexcept { // (maybe) propagate on container move assignment
if constexpr (allocator_traits<_Alloc>::propagate_on_container_move_assignment::value) {
_Left = _STD move(_Right);
} else {
(void) _Left; // TRANSITION, VSO-486357
(void) _Right; // TRANSITION, VSO-486357
2019-09-05 01:57:56 +03:00
}
}
#else // ^^^ _HAS_IF_CONSTEXPR ^^^ // vvv !_HAS_IF_CONSTEXPR vvv
template <class _Alloc>
void _Pocma(_Alloc& _Left, _Alloc& _Right, true_type) noexcept {
_Left = _STD move(_Right);
}
template <class _Alloc>
void _Pocma(_Alloc&, _Alloc&, false_type) noexcept {}
template <class _Alloc>
void _Pocma(_Alloc& _Left, _Alloc& _Right) noexcept {
typename allocator_traits<_Alloc>::propagate_on_container_move_assignment _Tag;
_Pocma(_Left, _Right, _Tag);
}
#endif // _HAS_IF_CONSTEXPR
// FUNCTION TEMPLATE _Pocs
#if _HAS_IF_CONSTEXPR
template <class _Alloc>
void _Pocs(_Alloc& _Left, _Alloc& _Right) noexcept {
if constexpr (allocator_traits<_Alloc>::propagate_on_container_swap::value) {
_Swap_adl(_Left, _Right);
} else {
_STL_ASSERT(_Left == _Right, "containers incompatible for swap");
(void) _Left; // TRANSITION, VSO-486357
(void) _Right; // TRANSITION, VSO-486357
2019-09-05 01:57:56 +03:00
}
}
#else // ^^^ _HAS_IF_CONSTEXPR ^^^ // vvv !_HAS_IF_CONSTEXPR vvv
template <class _Alloc>
void _Pocs(_Alloc& _Left, _Alloc& _Right, true_type) noexcept {
_Swap_adl(_Left, _Right);
}
template <class _Alloc>
void _Pocs(_Alloc& _Left, _Alloc& _Right, false_type) noexcept {
_STL_ASSERT(_Left == _Right, "containers incompatible for swap");
(void) _Left;
(void) _Right;
}
template <class _Alloc>
void _Pocs(_Alloc& _Left, _Alloc& _Right) noexcept {
typename allocator_traits<_Alloc>::propagate_on_container_swap _Tag;
_Pocs(_Left, _Right, _Tag);
}
#endif // _HAS_IF_CONSTEXPR
// FUNCTION TEMPLATE _Destroy_range WITH ALLOC
template <class _Alloc>
void _Destroy_range(_Alloc_ptr_t<_Alloc> _First, const _Alloc_ptr_t<_Alloc> _Last, _Alloc& _Al) noexcept {
// note that this is an optimization for debug mode codegen; in release mode the BE removes all of this
using _Ty = typename _Alloc::value_type;
if
_CONSTEXPR_IF(conjunction_v<is_trivially_destructible<_Ty>, _Uses_default_destroy<_Alloc, _Ty*>>) {
(void) _First;
(void) _Last;
(void) _Al;
}
else {
for (; _First != _Last; ++_First) {
allocator_traits<_Alloc>::destroy(_Al, _Unfancy(_First));
}
}
}
// FUNCTION TEMPLATE _Destroy_range
template <class _NoThrowFwdIt>
void _Destroy_range(_NoThrowFwdIt _First, const _NoThrowFwdIt _Last) noexcept {
// note that this is an optimization for debug mode codegen; in release mode the BE removes all of this
if
_CONSTEXPR_IF(is_trivially_destructible_v<_Iter_value_t<_NoThrowFwdIt>>) {
(void) _First;
(void) _Last;
}
else {
for (; _First != _Last; ++_First) {
_Destroy_in_place(*_First);
}
}
}
// FUNCTION TEMPLATE _Convert_size
template <class _Size_type>
_NODISCARD constexpr _Size_type _Convert_size(const size_t _Len) noexcept {
// convert size_t to _Size_type, avoiding truncation
if (_Len > (numeric_limits<_Size_type>::max)()) {
_Xlength_error("size_t too long for _Size_type");
}
return static_cast<_Size_type>(_Len);
}
template <>
_NODISCARD constexpr size_t _Convert_size<size_t>(const size_t _Len) noexcept {
// convert size_t to size_t, unchanged
return _Len;
}
// FUNCTION TEMPLATE _Deallocate_plain
#if _HAS_IF_CONSTEXPR
template <class _Alloc>
void _Deallocate_plain(_Alloc& _Al, typename _Alloc::value_type* const _Ptr) noexcept {
// deallocate a plain pointer using an allocator
using _Alloc_traits = allocator_traits<_Alloc>;
if constexpr (is_same_v<_Alloc_ptr_t<_Alloc>, typename _Alloc::value_type*>) {
_Alloc_traits::deallocate(_Al, _Ptr, 1);
} else {
using _Ptr_traits = pointer_traits<_Alloc_ptr_t<_Alloc>>;
_Alloc_traits::deallocate(_Al, _Ptr_traits::pointer_to(*_Ptr), 1);
}
}
#else // ^^^ _HAS_IF_CONSTEXPR ^^^ // vvv !_HAS_IF_CONSTEXPR vvv
template <class _Alloc, enable_if_t<is_same_v<_Alloc_ptr_t<_Alloc>, typename _Alloc::value_type*>, int> = 0>
void _Deallocate_plain(_Alloc& _Al, typename _Alloc::value_type* const _Ptr) noexcept {
// deallocate a plain pointer using an allocator, non-fancy pointers special case
allocator_traits<_Alloc>::deallocate(_Al, _Ptr, 1);
}
template <class _Alloc, enable_if_t<!is_same_v<_Alloc_ptr_t<_Alloc>, typename _Alloc::value_type*>, int> = 0>
void _Deallocate_plain(_Alloc& _Al, typename _Alloc::value_type* const _Ptr) noexcept {
// deallocate a plain pointer using an allocator
using _Alloc_traits = allocator_traits<_Alloc>;
using _Ptr_traits = pointer_traits<_Alloc_ptr_t<_Alloc>>;
_Alloc_traits::deallocate(_Al, _Ptr_traits::pointer_to(*_Ptr), 1);
}
#endif // _HAS_IF_CONSTEXPR
// FUNCTION TEMPLATE _Delete_plain_internal
template <class _Alloc>
void _Delete_plain_internal(_Alloc& _Al, typename _Alloc::value_type* const _Ptr) noexcept {
// destroy *_Ptr in place, then deallocate _Ptr using _Al; used for internal container types the user didn't name
using _Ty = typename _Alloc::value_type;
_Ptr->~_Ty();
_Deallocate_plain(_Al, _Ptr);
}
// STRUCT TEMPLATE _Alloc_construct_ptr
template <class _Alloc>
struct _Alloc_construct_ptr { // pointer used to help construct 1 _Alloc::value_type without EH
using pointer = _Alloc_ptr_t<_Alloc>;
_Alloc& _Al;
pointer _Ptr;
explicit _Alloc_construct_ptr(_Alloc& _Al_) : _Al(_Al_), _Ptr(nullptr) {}
_NODISCARD pointer _Release() noexcept { // disengage *this and return contained pointer
return _STD exchange(_Ptr, nullptr);
}
void _Allocate() { // disengage *this, then allocate a new memory block
_Ptr = nullptr; // if allocate throws, prevents double-free
_Ptr = _Al.allocate(1);
}
~_Alloc_construct_ptr() { // if this instance is engaged, deallocate storage
if (_Ptr) {
_Al.deallocate(_Ptr, 1);
}
}
_Alloc_construct_ptr(const _Alloc_construct_ptr&) = delete;
_Alloc_construct_ptr& operator=(const _Alloc_construct_ptr&) = delete;
};
// CLASSES _Container_base*, _Iterator_base*
struct _Fake_allocator {};
struct _Container_base0 {
void _Orphan_all() noexcept {}
void _Swap_proxy_and_iterators(_Container_base0&) noexcept {}
void _Alloc_proxy(const _Fake_allocator&) noexcept {}
void _Reload_proxy(const _Fake_allocator&, const _Fake_allocator&) noexcept {}
};
struct _Iterator_base0 {
void _Adopt(const void*) noexcept {}
const _Container_base0* _Getcont() const noexcept {
return nullptr;
}
static constexpr bool _Unwrap_when_unverified = true;
};
// CLASS _Container_proxy
struct _Container_base12;
struct _Container_proxy { // store head of iterator chain and back pointer
_Container_proxy() noexcept : _Mycont(nullptr), _Myfirstiter(nullptr) {}
_Container_proxy(_Container_base12* _Mycont_) noexcept : _Mycont(_Mycont_), _Myfirstiter(nullptr) {}
const _Container_base12* _Mycont;
_Iterator_base12* _Myfirstiter;
};
struct _Container_base12 {
public:
_Container_base12() noexcept : _Myproxy(nullptr) {}
_Container_base12(const _Container_base12&) = delete;
_Container_base12& operator=(const _Container_base12&) = delete;
void _Orphan_all() noexcept;
void _Swap_proxy_and_iterators(_Container_base12&) noexcept;
template <class _Alloc>
void _Alloc_proxy(_Alloc&& _Al) {
_Container_proxy* const _New_proxy = _Unfancy(_Al.allocate(1));
_Construct_in_place(*_New_proxy, this);
_Myproxy = _New_proxy;
_New_proxy->_Mycont = this;
}
template <class _Alloc>
void _Reload_proxy(_Alloc&& _Old_alloc, _Alloc&& _New_alloc) {
// pre: no iterators refer to the existing proxy
_Container_proxy* const _New_proxy = _Unfancy(_New_alloc.allocate(1));
_Construct_in_place(*_New_proxy, this);
_New_proxy->_Mycont = this;
_Delete_plain_internal(_Old_alloc, _STD exchange(_Myproxy, _New_proxy));
}
_Container_proxy* _Myproxy;
};
struct _Iterator_base12 { // store links to container proxy, next iterator
_Iterator_base12() noexcept : _Myproxy(nullptr), _Mynextiter(nullptr) {} // construct orphaned iterator
_Iterator_base12(const _Iterator_base12& _Right) noexcept : _Myproxy(nullptr), _Mynextiter(nullptr) {
*this = _Right;
}
_Iterator_base12& operator=(const _Iterator_base12& _Right) noexcept {
if (_Myproxy != _Right._Myproxy) {
if (_Right._Myproxy) {
_Adopt(_Right._Myproxy->_Mycont);
} else { // becoming invalid, disown current parent
#if _ITERATOR_DEBUG_LEVEL == 2
_Lockit _Lock(_LOCK_DEBUG);
_Orphan_me();
#else // _ITERATOR_DEBUG_LEVEL == 2
_Myproxy = nullptr;
#endif // _ITERATOR_DEBUG_LEVEL == 2
}
}
return *this;
}
~_Iterator_base12() noexcept {
#if _ITERATOR_DEBUG_LEVEL == 2
_Lockit _Lock(_LOCK_DEBUG);
_Orphan_me();
#endif // _ITERATOR_DEBUG_LEVEL == 2
}
void _Adopt(const _Container_base12* _Parent) noexcept {
if (_Parent) {
// have a parent, do adoption
_Container_proxy* _Parent_proxy = _Parent->_Myproxy;
#if _ITERATOR_DEBUG_LEVEL == 2
if (_Myproxy != _Parent_proxy) { // change parentage
_Lockit _Lock(_LOCK_DEBUG);
_Orphan_me();
_Mynextiter = _Parent_proxy->_Myfirstiter;
_Parent_proxy->_Myfirstiter = this;
_Myproxy = _Parent_proxy;
}
#else // _ITERATOR_DEBUG_LEVEL == 2
_Myproxy = _Parent_proxy;
#endif // _ITERATOR_DEBUG_LEVEL == 2
} else {
// no future parent, just disown current parent
#if _ITERATOR_DEBUG_LEVEL == 2
_Lockit _Lock(_LOCK_DEBUG);
_Orphan_me();
#else // _ITERATOR_DEBUG_LEVEL == 2
_Myproxy = nullptr;
#endif // _ITERATOR_DEBUG_LEVEL == 2
}
}
const _Container_base12* _Getcont() const noexcept {
return _Myproxy ? _Myproxy->_Mycont : nullptr;
}
#if _ITERATOR_DEBUG_LEVEL == 2
void _Orphan_me() noexcept {
if (_Myproxy) { // adopted, remove self from list
_Iterator_base12** _Pnext = &_Myproxy->_Myfirstiter;
while (*_Pnext && *_Pnext != this) {
_Pnext = &(*_Pnext)->_Mynextiter;
}
_STL_VERIFY(*_Pnext, "ITERATOR LIST CORRUPTED!");
*_Pnext = _Mynextiter;
_Myproxy = nullptr;
}
}
#endif // _ITERATOR_DEBUG_LEVEL == 2
static constexpr bool _Unwrap_when_unverified = _ITERATOR_DEBUG_LEVEL == 0;
_Container_proxy* _Myproxy;
_Iterator_base12* _Mynextiter;
};
// MEMBER FUNCTIONS FOR _Container_base12
inline void _Container_base12::_Orphan_all() noexcept {
#if _ITERATOR_DEBUG_LEVEL == 2
if (_Myproxy) { // proxy allocated, drain it
_Lockit _Lock(_LOCK_DEBUG);
for (auto _Pnext = &_Myproxy->_Myfirstiter; *_Pnext; *_Pnext = (*_Pnext)->_Mynextiter) {
(*_Pnext)->_Myproxy = nullptr;
}
_Myproxy->_Myfirstiter = nullptr;
}
#endif // _ITERATOR_DEBUG_LEVEL == 2
}
inline void _Container_base12::_Swap_proxy_and_iterators(_Container_base12& _Right) noexcept {
#if _ITERATOR_DEBUG_LEVEL == 2
_Lockit _Lock(_LOCK_DEBUG);
#endif // _ITERATOR_DEBUG_LEVEL == 2
_Container_proxy* _Temp = _Myproxy;
_Myproxy = _Right._Myproxy;
_Right._Myproxy = _Temp;
if (_Myproxy) {
_Myproxy->_Mycont = this;
}
if (_Right._Myproxy) {
_Right._Myproxy->_Mycont = &_Right;
}
}
#if _ITERATOR_DEBUG_LEVEL == 0
using _Container_base = _Container_base0;
using _Iterator_base = _Iterator_base0;
#else // _ITERATOR_DEBUG_LEVEL == 0
using _Container_base = _Container_base12;
using _Iterator_base = _Iterator_base12;
#endif // _ITERATOR_DEBUG_LEVEL == 0
// ALIAS TEMPLATE _Container_proxy_ptr AND SUPPORTING MACHINERY
struct _Leave_proxy_unbound {
explicit _Leave_proxy_unbound() = default;
}; // tag to indicate that a proxy is being allocated before it is safe to bind to a _Container_base12
2019-09-05 01:57:56 +03:00
struct _Fake_proxy_ptr_impl { // fake replacement for a container proxy smart pointer when no container proxy is in use
_Fake_proxy_ptr_impl(const _Fake_proxy_ptr_impl&) = delete;
_Fake_proxy_ptr_impl& operator=(const _Fake_proxy_ptr_impl&) = delete;
_Fake_proxy_ptr_impl(const _Fake_allocator&, _Leave_proxy_unbound) noexcept {}
_Fake_proxy_ptr_impl(const _Fake_allocator&, const _Container_base0&) noexcept {}
void _Bind(const _Fake_allocator&, _Container_base0*) noexcept {}
void _Release() noexcept {}
};
struct _Basic_container_proxy_ptr12 {
// smart pointer components for a _Container_proxy * that don't depend on the allocator
_Container_proxy* _Ptr;
void _Release() noexcept { // disengage this _Basic_container_proxy_ptr12
_Ptr = nullptr;
}
protected:
_Basic_container_proxy_ptr12() = default;
_Basic_container_proxy_ptr12(const _Basic_container_proxy_ptr12&) = delete;
_Basic_container_proxy_ptr12(_Basic_container_proxy_ptr12&&) = delete;
};
template <class _Alloc>
struct _Container_proxy_ptr12 : _Basic_container_proxy_ptr12 {
// smart pointer components for a _Container_proxy * for an allocator family
_Alloc& _Al;
_Container_proxy_ptr12(_Alloc& _Al_, _Leave_proxy_unbound) : _Al(_Al_) { // create a new unbound _Container_proxy
_Ptr = _Unfancy(_Al_.allocate(1));
_Construct_in_place(*_Ptr);
}
_Container_proxy_ptr12(_Alloc& _Al_, _Container_base12& _Mycont)
: _Al(_Al_) { // create a new _Container_proxy pointing at _Mycont
_Ptr = _Unfancy(_Al_.allocate(1));
_Construct_in_place(*_Ptr, _STD addressof(_Mycont));
_Mycont._Myproxy = _Ptr;
}
void _Bind(_Alloc& _Old_alloc, _Container_base12* _Mycont) noexcept {
// Attach the proxy stored in *this to _Mycont, and destroy _Mycont's existing proxy
// with _Old_alloc. Requires that no iterators are alive referring to _Mycont.
_Ptr->_Mycont = _Mycont;
_Delete_plain_internal(_Old_alloc, _STD exchange(_Mycont->_Myproxy, _STD exchange(_Ptr, nullptr)));
}
~_Container_proxy_ptr12() {
if (_Ptr) {
_Delete_plain_internal(_Al, _Ptr);
}
}
};
#if _ITERATOR_DEBUG_LEVEL == 0
#define _GET_PROXY_ALLOCATOR(_Alty, _Al) _Fake_allocator()
template <class _Alloc>
using _Container_proxy_ptr = _Fake_proxy_ptr_impl;
#else // _ITERATOR_DEBUG_LEVEL == 0
#define _GET_PROXY_ALLOCATOR(_Alty, _Al) static_cast<_Rebind_alloc_t<_Alty, _Container_proxy>>(_Al)
template <class _Alloc>
using _Container_proxy_ptr = _Container_proxy_ptr12<_Rebind_alloc_t<_Alloc, _Container_proxy>>;
#endif // _ITERATOR_DEBUG_LEVEL == 0
// CLASS TEMPLATE _Compressed_pair
struct _Zero_then_variadic_args_t {
explicit _Zero_then_variadic_args_t() = default;
}; // tag type for value-initializing first, constructing second from remaining args
2019-09-05 01:57:56 +03:00
struct _One_then_variadic_args_t {
explicit _One_then_variadic_args_t() = default;
2019-09-05 01:57:56 +03:00
}; // tag type for constructing first from one arg, constructing second from remaining args
template <class _Ty1, class _Ty2, bool = is_empty_v<_Ty1> && !is_final_v<_Ty1>>
class _Compressed_pair final : private _Ty1 { // store a pair of values, deriving from empty first
public:
_Ty2 _Myval2;
using _Mybase = _Ty1; // for visualization
template <class... _Other2>
constexpr explicit _Compressed_pair(_Zero_then_variadic_args_t, _Other2&&... _Val2) noexcept(
conjunction_v<is_nothrow_default_constructible<_Ty1>, is_nothrow_constructible<_Ty2, _Other2...>>)
: _Ty1(), _Myval2(_STD forward<_Other2>(_Val2)...) {}
template <class _Other1, class... _Other2>
constexpr _Compressed_pair(_One_then_variadic_args_t, _Other1&& _Val1, _Other2&&... _Val2) noexcept(
2019-09-05 01:57:56 +03:00
conjunction_v<is_nothrow_constructible<_Ty1, _Other1>, is_nothrow_constructible<_Ty2, _Other2...>>)
: _Ty1(_STD forward<_Other1>(_Val1)), _Myval2(_STD forward<_Other2>(_Val2)...) {}
constexpr _Ty1& _Get_first() noexcept {
2019-09-05 01:57:56 +03:00
return *this;
}
constexpr const _Ty1& _Get_first() const noexcept {
2019-09-05 01:57:56 +03:00
return *this;
}
};
template <class _Ty1, class _Ty2>
class _Compressed_pair<_Ty1, _Ty2, false> final { // store a pair of values, not deriving from first
public:
_Ty1 _Myval1;
_Ty2 _Myval2;
template <class... _Other2>
constexpr explicit _Compressed_pair(_Zero_then_variadic_args_t, _Other2&&... _Val2) noexcept(
conjunction_v<is_nothrow_default_constructible<_Ty1>, is_nothrow_constructible<_Ty2, _Other2...>>)
: _Myval1(), _Myval2(_STD forward<_Other2>(_Val2)...) {}
template <class _Other1, class... _Other2>
constexpr _Compressed_pair(_One_then_variadic_args_t, _Other1&& _Val1, _Other2&&... _Val2) noexcept(
2019-09-05 01:57:56 +03:00
conjunction_v<is_nothrow_constructible<_Ty1, _Other1>, is_nothrow_constructible<_Ty2, _Other2...>>)
: _Myval1(_STD forward<_Other1>(_Val1)), _Myval2(_STD forward<_Other2>(_Val2)...) {}
constexpr _Ty1& _Get_first() noexcept {
2019-09-05 01:57:56 +03:00
return _Myval1;
}
constexpr const _Ty1& _Get_first() const noexcept {
2019-09-05 01:57:56 +03:00
return _Myval1;
}
};
struct _Move_allocator_tag {
explicit _Move_allocator_tag() = default;
};
2019-09-05 01:57:56 +03:00
// FUNCTION TEMPLATE _Get_temporary_buffer
template <class _Ty>
pair<_Ty*, ptrdiff_t> _Get_temporary_buffer(ptrdiff_t _Count) noexcept {
if (static_cast<size_t>(_Count) <= static_cast<size_t>(-1) / sizeof(_Ty)) {
for (; 0 < _Count; _Count /= 2) {
const auto _Size = static_cast<size_t>(_Count) * sizeof(_Ty);
void* _Pbuf;
#ifdef __cpp_aligned_new
if constexpr (alignof(_Ty) > __STDCPP_DEFAULT_NEW_ALIGNMENT__) {
_Pbuf = ::operator new (_Size, align_val_t{alignof(_Ty)}, nothrow);
} else
#endif // __cpp_aligned_new
{
_Pbuf = ::operator new(_Size, nothrow);
}
if (_Pbuf) {
return {static_cast<_Ty*>(_Pbuf), _Count};
}
}
}
return {nullptr, 0};
}
// FUNCTION TEMPLATE _Return_temporary_buffer
template <class _Ty>
void _Return_temporary_buffer(_Ty* const _Pbuf) noexcept {
#ifdef __cpp_aligned_new
if constexpr (alignof(_Ty) > __STDCPP_DEFAULT_NEW_ALIGNMENT__) {
::operator delete (_Pbuf, align_val_t{alignof(_Ty)});
} else
#endif // __cpp_aligned_new
{
::operator delete(_Pbuf);
}
}
// STRUCT TEMPLATE _Uninitialized_backout
template <class _NoThrowFwdIt>
struct _Uninitialized_backout { // struct to undo partially constructed ranges in _Uninitialized_xxx algorithms
_NoThrowFwdIt _First;
_NoThrowFwdIt _Last;
explicit _Uninitialized_backout(_NoThrowFwdIt _Dest) : _First(_Dest), _Last(_Dest) {}
_Uninitialized_backout(_NoThrowFwdIt _First_, _NoThrowFwdIt _Last_) : _First(_First_), _Last(_Last_) {}
_Uninitialized_backout(const _Uninitialized_backout&) = delete;
_Uninitialized_backout& operator=(const _Uninitialized_backout&) = delete;
~_Uninitialized_backout() {
_Destroy_range(_First, _Last);
}
template <class... _Types>
void _Emplace_back(_Types&&... _Vals) { // construct a new element at *_Last and increment
_Construct_in_place(*_Last, _STD forward<_Types>(_Vals)...);
++_Last;
}
_NoThrowFwdIt _Release() { // suppress any exception handling backout and return _Last
_First = _Last;
return _Last;
}
};
// FUNCTION TEMPLATE _Uninitialized_move_unchecked
#if _HAS_IF_CONSTEXPR
template <class _InIt, class _NoThrowFwdIt>
_NoThrowFwdIt _Uninitialized_move_unchecked(_InIt _First, const _InIt _Last, _NoThrowFwdIt _Dest) {
// move [_First, _Last) to raw [_Dest, ...)
if constexpr (_Ptr_move_cat<_InIt, _NoThrowFwdIt>::_Really_trivial) {
return _Copy_memmove(_First, _Last, _Dest);
} else {
_Uninitialized_backout<_NoThrowFwdIt> _Backout{_Dest};
for (; _First != _Last; ++_First) {
_Backout._Emplace_back(_STD move(*_First));
}
return _Backout._Release();
}
}
#else // ^^^ _HAS_IF_CONSTEXPR ^^^ // vvv !_HAS_IF_CONSTEXPR vvv
template <class _InIt, class _NoThrowFwdIt>
_NoThrowFwdIt _Uninitialized_move_unchecked1(_InIt _First, const _InIt _Last, const _NoThrowFwdIt _Dest, false_type) {
// move [_First, _Last) to raw [_Dest, ...), no special optimization
_Uninitialized_backout<_NoThrowFwdIt> _Backout{_Dest};
for (; _First != _Last; ++_First) {
_Backout._Emplace_back(_STD move(*_First));
}
return _Backout._Release();
}
template <class _InIt, class _NoThrowFwdIt>
_NoThrowFwdIt _Uninitialized_move_unchecked1(
const _InIt _First, const _InIt _Last, const _NoThrowFwdIt _Dest, true_type) {
// move [_First, _Last) to raw [_Dest, ...), memmove optimization
return _Copy_memmove(_First, _Last, _Dest);
}
template <class _InIt, class _NoThrowFwdIt>
_NoThrowFwdIt _Uninitialized_move_unchecked(_InIt _First, const _InIt _Last, _NoThrowFwdIt _Dest) {
// move [_First, _Last) to raw [_Dest, ...), choose optimization
return _Uninitialized_move_unchecked1(
_First, _Last, _Dest, bool_constant<_Ptr_move_cat<_InIt, _NoThrowFwdIt>::_Really_trivial>{});
}
#endif // _HAS_IF_CONSTEXPR
// STRUCT TEMPLATE _Uninitialized_backout_al
template <class _Alloc>
class _Uninitialized_backout_al { // struct to undo partially constructed ranges in _Uninitialized_xxx_al algorithms
using pointer = _Alloc_ptr_t<_Alloc>;
public:
_Uninitialized_backout_al(pointer _Dest, _Alloc& _Al_) : _First(_Dest), _Last(_Dest), _Al(_Al_) {}
_Uninitialized_backout_al(const _Uninitialized_backout_al&) = delete;
_Uninitialized_backout_al& operator=(const _Uninitialized_backout_al&) = delete;
~_Uninitialized_backout_al() {
_Destroy_range(_First, _Last, _Al);
}
template <class... _Types>
void _Emplace_back(_Types&&... _Vals) { // construct a new element at *_Last and increment
allocator_traits<_Alloc>::construct(_Al, _Unfancy(_Last), _STD forward<_Types>(_Vals)...);
++_Last;
}
pointer _Release() { // suppress any exception handling backout and return _Last
_First = _Last;
return _Last;
}
private:
pointer _First;
pointer _Last;
_Alloc& _Al;
};
// FUNCTION TEMPLATE _Uninitialized_copy WITH ALLOCATOR
#if _HAS_IF_CONSTEXPR
template <class _InIt, class _Alloc>
_Alloc_ptr_t<_Alloc> _Uninitialized_copy(
const _InIt _First, const _InIt _Last, _Alloc_ptr_t<_Alloc> _Dest, _Alloc& _Al) {
// copy [_First, _Last) to raw _Dest, using _Al
// note: only called internally from elsewhere in the STL
using _Ptrval = typename _Alloc::value_type*;
auto _UFirst = _Get_unwrapped(_First);
const auto _ULast = _Get_unwrapped(_Last);
if constexpr (conjunction_v<bool_constant<_Ptr_copy_cat<decltype(_UFirst), _Ptrval>::_Really_trivial>,
_Uses_default_construct<_Alloc, _Ptrval, decltype(*_UFirst)>>) {
_Copy_memmove(_UFirst, _ULast, _Unfancy(_Dest));
_Dest += _ULast - _UFirst;
(void) _Al;
} else {
_Uninitialized_backout_al<_Alloc> _Backout{_Dest, _Al};
for (; _UFirst != _ULast; ++_UFirst) {
_Backout._Emplace_back(*_UFirst);
}
_Dest = _Backout._Release();
}
return _Dest;
}
#else // ^^^ _HAS_IF_CONSTEXPR ^^^ // vvv !_HAS_IF_CONSTEXPR vvv
template <class _InIt, class _Alloc>
_Alloc_ptr_t<_Alloc> _Uninitialized_copy_al_unchecked(
_InIt _First, const _InIt _Last, const _Alloc_ptr_t<_Alloc> _Dest, _Alloc& _Al, false_type) {
// copy [_First, _Last) to raw _Dest, using _Al, no special optimization
_Uninitialized_backout_al<_Alloc> _Backout{_Dest, _Al};
for (; _First != _Last; ++_First) {
_Backout._Emplace_back(*_First);
}
return _Backout._Release();
}
template <class _InIt, class _Alloc>
_Alloc_ptr_t<_Alloc> _Uninitialized_copy_al_unchecked(
const _InIt _First, const _InIt _Last, const _Alloc_ptr_t<_Alloc> _Dest, _Alloc&, true_type) {
// copy [_First, _Last) to raw _Dest, using default _Alloc construct, memmove optimization
return _Copy_memmove(_First, _Last, _Unfancy(_Dest));
}
template <class _InIt, class _Alloc>
_Alloc_ptr_t<_Alloc> _Uninitialized_copy(
const _InIt _First, const _InIt _Last, _Alloc_ptr_t<_Alloc> _Dest, _Alloc& _Al) {
// copy [_First, _Last) to raw _Dest, using _Al
// note: only called internally from elsewhere in the STL
// clang-format off
auto _UFirst = _Get_unwrapped(_First);
const auto _ULast = _Get_unwrapped(_Last);
// clang-format on
using _Ptrval = typename _Alloc::value_type*;
return _Uninitialized_copy_al_unchecked(_UFirst, _ULast, _Dest, _Al,
bool_constant<conjunction_v<bool_constant<_Ptr_copy_cat<decltype(_UFirst), _Ptrval>::_Really_trivial>,
_Uses_default_construct<_Alloc, _Ptrval, decltype(*_UFirst)>>>{});
}
#endif // _HAS_IF_CONSTEXPR
// FUNCTION TEMPLATE uninitialized_copy
#if _HAS_IF_CONSTEXPR
template <class _InIt, class _NoThrowFwdIt>
_NoThrowFwdIt uninitialized_copy(const _InIt _First, const _InIt _Last, _NoThrowFwdIt _Dest) {
// copy [_First, _Last) to raw [_Dest, ...)
_Adl_verify_range(_First, _Last);
auto _UFirst = _Get_unwrapped(_First);
const auto _ULast = _Get_unwrapped(_Last);
auto _UDest = _Get_unwrapped_n(_Dest, _Idl_distance<_InIt>(_UFirst, _ULast));
if constexpr (_Ptr_copy_cat<decltype(_UFirst), decltype(_UDest)>::_Really_trivial) {
_UDest = _Copy_memmove(_UFirst, _ULast, _UDest);
} else {
_Uninitialized_backout<decltype(_UDest)> _Backout{_UDest};
for (; _UFirst != _ULast; ++_UFirst) {
_Backout._Emplace_back(*_UFirst);
}
_UDest = _Backout._Release();
}
_Seek_wrapped(_Dest, _UDest);
return _Dest;
}
#else // ^^^ _HAS_IF_CONSTEXPR / !_HAS_IF_CONSTEXPR vvv
template <class _InIt, class _NoThrowFwdIt>
_NoThrowFwdIt _Uninitialized_copy_unchecked(_InIt _First, const _InIt _Last, const _NoThrowFwdIt _Dest, false_type) {
// copy [_First, _Last) to raw [_Dest, ...), no special optimization
_Uninitialized_backout<_NoThrowFwdIt> _Backout{_Dest};
for (; _First != _Last; ++_First) {
_Backout._Emplace_back(*_First);
}
return _Backout._Release();
}
template <class _InIt, class _NoThrowFwdIt>
_NoThrowFwdIt _Uninitialized_copy_unchecked(
const _InIt _First, const _InIt _Last, const _NoThrowFwdIt _Dest, true_type) {
// copy [_First, _Last) to raw [_Dest, ...), memmove optimization
return _Copy_memmove(_First, _Last, _Dest);
}
template <class _InIt, class _NoThrowFwdIt>
_NoThrowFwdIt uninitialized_copy(const _InIt _First, const _InIt _Last, _NoThrowFwdIt _Dest) {
// copy [_First, _Last) to raw [_Dest, ...)
_Adl_verify_range(_First, _Last);
auto _UFirst = _Get_unwrapped(_First);
const auto _ULast = _Get_unwrapped(_Last);
auto _UDest = _Get_unwrapped_n(_Dest, _Idl_distance<_InIt>(_UFirst, _ULast));
_Seek_wrapped(_Dest, _Uninitialized_copy_unchecked(_UFirst, _ULast, _UDest,
bool_constant<_Ptr_copy_cat<decltype(_UFirst), decltype(_UDest)>::_Really_trivial>{}));
return _Dest;
}
#endif // _HAS_IF_CONSTEXPR
#if _ITERATOR_DEBUG_ARRAY_OVERLOADS
template <class _InIt, class _OutTy, size_t _OutSize>
_OutTy* uninitialized_copy(const _InIt _First, const _InIt _Last, _OutTy (&_Dest)[_OutSize]) {
// copy [_First, _Last) to raw [_Dest, ...)
return _STD uninitialized_copy(_First, _Last, _Array_iterator<_OutTy, _OutSize>(_Dest))._Unwrapped();
}
#endif // _ITERATOR_DEBUG_ARRAY_OVERLOADS
// FUNCTION TEMPLATE _Uninitialized_move WITH ALLOCATOR
#if _HAS_IF_CONSTEXPR
template <class _InIt, class _Alloc>
_Alloc_ptr_t<_Alloc> _Uninitialized_move(
const _InIt _First, const _InIt _Last, _Alloc_ptr_t<_Alloc> _Dest, _Alloc& _Al) {
// move [_First, _Last) to raw _Dest, using _Al
// note: only called internally from elsewhere in the STL
using _Ptrval = typename _Alloc::value_type*;
auto _UFirst = _Get_unwrapped(_First);
const auto _ULast = _Get_unwrapped(_Last);
if constexpr (conjunction_v<bool_constant<_Ptr_move_cat<decltype(_UFirst), _Ptrval>::_Really_trivial>,
_Uses_default_construct<_Alloc, _Ptrval, decltype(_STD move(*_UFirst))>>) {
_Copy_memmove(_UFirst, _ULast, _Unfancy(_Dest));
return _Dest + (_ULast - _UFirst);
(void) _Al;
} else {
_Uninitialized_backout_al<_Alloc> _Backout{_Dest, _Al};
for (; _UFirst != _ULast; ++_UFirst) {
_Backout._Emplace_back(_STD move(*_UFirst));
}
return _Backout._Release();
}
}
#else // ^^^ _HAS_IF_CONSTEXPR ^^^ // vvv !_HAS_IF_CONSTEXPR vvv
template <class _InIt, class _Alloc>
_Alloc_ptr_t<_Alloc> _Uninitialized_move_al_unchecked(
_InIt _First, const _InIt _Last, _Alloc_ptr_t<_Alloc> _Dest, _Alloc& _Al, false_type) {
// move [_First, _Last) to raw _Dest, using _Al, no special optimization
_Uninitialized_backout_al<_Alloc> _Backout{_Dest, _Al};
for (; _First != _Last; ++_First) {
_Backout._Emplace_back(_STD move(*_First));
}
return _Backout._Release();
}
template <class _InIt, class _Alloc>
_Alloc_ptr_t<_Alloc> _Uninitialized_move_al_unchecked(
const _InIt _First, const _InIt _Last, _Alloc_ptr_t<_Alloc> _Dest, _Alloc&, true_type) {
// move [_First, _Last) to raw _Dest, using default _Alloc construct, memmove optimization
_Copy_memmove(_First, _Last, _Unfancy(_Dest));
return _Dest + (_Last - _First);
}
template <class _InIt, class _Alloc>
_Alloc_ptr_t<_Alloc> _Uninitialized_move(
const _InIt _First, const _InIt _Last, _Alloc_ptr_t<_Alloc> _Dest, _Alloc& _Al) {
// move [_First, _Last) to raw _Dest, using _Al
// note: only called internally from elsewhere in the STL
// clang-format off
auto _UFirst = _Get_unwrapped(_First);
const auto _ULast = _Get_unwrapped(_Last);
auto _UDest = _Get_unwrapped_n(_Dest, _Idl_distance<_InIt>(_UFirst, _ULast));
// clang-format on
using _Ptrval = typename _Alloc::value_type*;
_Seek_wrapped(
_Dest, _Uninitialized_move_al_unchecked(_UFirst, _ULast, _UDest, _Al,
bool_constant < _Ptr_move_cat<decltype(_UFirst), _Ptrval>::_Really_trivial
&& _Uses_default_construct<_Alloc, _Ptrval, decltype(_STD move(*_UFirst))>::value > {}));
return _Dest;
}
#endif // _HAS_IF_CONSTEXPR
// FUNCTION TEMPLATE _Uninitialized_fill_n WITH ALLOCATOR
#if _HAS_IF_CONSTEXPR
template <class _Alloc>
_Alloc_ptr_t<_Alloc> _Uninitialized_fill_n(
_Alloc_ptr_t<_Alloc> _First, _Alloc_size_t<_Alloc> _Count, const typename _Alloc::value_type& _Val, _Alloc& _Al) {
// copy _Count copies of _Val to raw _First, using _Al
using _Ty = typename _Alloc::value_type;
if constexpr (_Fill_memset_is_safe<_Ty*, _Ty> && _Uses_default_construct<_Alloc, _Ty*, _Ty>::value) {
(void) _Al;
_CSTD memset(_Unfancy(_First), static_cast<unsigned char>(_Val), static_cast<size_t>(_Count));
return _First + _Count;
} else {
_Uninitialized_backout_al<_Alloc> _Backout{_First, _Al};
for (; 0 < _Count; --_Count) {
_Backout._Emplace_back(_Val);
}
return _Backout._Release();
}
}
#else // ^^^ _HAS_IF_CONSTEXPR // !_HAS_IF_CONSTEXPR vvv
template <class _Alloc>
_Alloc_ptr_t<_Alloc> _Uninit_alloc_fill_n1(_Alloc_ptr_t<_Alloc> _First, _Alloc_size_t<_Alloc> _Count,
const typename _Alloc::value_type& _Val, _Alloc& _Al, false_type) {
// copy _Count copies of _Val to raw _First, using _Al, no special optimization
_Uninitialized_backout_al<_Alloc> _Backout{_First, _Al};
for (; 0 < _Count; --_Count) {
_Backout._Emplace_back(_Val);
}
return _Backout._Release();
}
template <class _Alloc>
_Alloc_ptr_t<_Alloc> _Uninit_alloc_fill_n1(_Alloc_ptr_t<_Alloc> _First, _Alloc_size_t<_Alloc> _Count,
const typename _Alloc::value_type& _Val, _Alloc&, true_type) {
// copy _Count copies of _Val to raw _First, using default _Alloc construct, memset optimization
_CSTD memset(_Unfancy(_First), static_cast<unsigned char>(_Val), _Count);
return _First + _Count;
}
template <class _Alloc>
_Alloc_ptr_t<_Alloc> _Uninitialized_fill_n(_Alloc_ptr_t<_Alloc> _First, const _Alloc_size_t<_Alloc> _Count,
const typename _Alloc::value_type& _Val, _Alloc& _Al) {
// copy _Count copies of _Val to raw _First, using _Al
using _Ty = typename _Alloc::value_type;
return _Uninit_alloc_fill_n1(_First, _Count, _Val, _Al,
bool_constant < _Fill_memset_is_safe<_Ty*, _Ty> && _Uses_default_construct<_Alloc, _Ty*, _Ty>::value > {});
}
#endif // _HAS_IF_CONSTEXPR
// FUNCTION TEMPLATE uninitialized_fill
#if _HAS_IF_CONSTEXPR
template <class _NoThrowFwdIt, class _Tval>
void uninitialized_fill(const _NoThrowFwdIt _First, const _NoThrowFwdIt _Last, const _Tval& _Val) {
// copy _Val throughout raw [_First, _Last)
_Adl_verify_range(_First, _Last);
auto _UFirst = _Get_unwrapped(_First);
const auto _ULast = _Get_unwrapped(_Last);
if constexpr (_Fill_memset_is_safe<_Unwrapped_t<const _NoThrowFwdIt&>, _Tval>) {
2019-09-05 01:57:56 +03:00
_CSTD memset(_UFirst, static_cast<unsigned char>(_Val), static_cast<size_t>(_ULast - _UFirst));
} else {
_Uninitialized_backout<_Unwrapped_t<const _NoThrowFwdIt&>> _Backout{_UFirst};
2019-09-05 01:57:56 +03:00
while (_Backout._Last != _ULast) {
_Backout._Emplace_back(_Val);
}
_Backout._Release();
}
}
#else // ^^^ _HAS_IF_CONSTEXPR // !_HAS_IF_CONSTEXPR vvv
template <class _NoThrowFwdIt, class _Tval>
void _Uninitialized_fill_unchecked(
const _NoThrowFwdIt _First, const _NoThrowFwdIt _Last, const _Tval& _Val, false_type) {
// copy _Val throughout raw [_First, _Last), no special optimization
_Uninitialized_backout<_NoThrowFwdIt> _Backout{_First};
while (_Backout._Last != _Last) {
_Backout._Emplace_back(_Val);
}
_Backout._Release();
}
template <class _NoThrowFwdIt, class _Tval>
void _Uninitialized_fill_unchecked(
const _NoThrowFwdIt _First, const _NoThrowFwdIt _Last, const _Tval& _Val, true_type) {
// copy _Val throughout raw [_First, _Last), memset optimization
_CSTD memset(_First, static_cast<unsigned char>(_Val), static_cast<size_t>(_Last - _First));
}
template <class _NoThrowFwdIt, class _Tval>
void uninitialized_fill(const _NoThrowFwdIt _First, const _NoThrowFwdIt _Last, const _Tval& _Val) {
// copy _Val throughout raw [_First, _Last)
_Adl_verify_range(_First, _Last);
const auto _UFirst = _Get_unwrapped(_First);
_Uninitialized_fill_unchecked(_UFirst, _Get_unwrapped(_Last), _Val,
bool_constant<_Fill_memset_is_safe<_Unwrapped_t<const _NoThrowFwdIt&>, _Tval>>{});
2019-09-05 01:57:56 +03:00
}
#endif // _HAS_IF_CONSTEXPR
// FUNCTION TEMPLATE _Uninitialized_value_construct_n WITH ALLOCATOR
template <class _NoThrowFwdIt>
_INLINE_VAR constexpr bool _Use_memset_value_construct_v = conjunction_v<is_pointer<_NoThrowFwdIt>,
is_scalar<_Iter_value_t<_NoThrowFwdIt>>, negation<is_volatile<remove_reference_t<_Iter_ref_t<_NoThrowFwdIt>>>>,
negation<is_member_pointer<_Iter_value_t<_NoThrowFwdIt>>>>;
template <class _Ptr>
_Ptr _Zero_range(const _Ptr _First, const _Ptr _Last) { // fill [_First, _Last) with zeroes
char* const _First_ch = reinterpret_cast<char*>(_First);
char* const _Last_ch = reinterpret_cast<char*>(_Last);
_CSTD memset(_First_ch, 0, static_cast<size_t>(_Last_ch - _First_ch));
return _Last;
}
#if _HAS_IF_CONSTEXPR
template <class _Alloc>
_Alloc_ptr_t<_Alloc> _Uninitialized_value_construct_n(
_Alloc_ptr_t<_Alloc> _First, _Alloc_size_t<_Alloc> _Count, _Alloc& _Al) {
// value-initialize _Count objects to raw _First, using _Al
using _Ptrty = typename _Alloc::value_type*;
if constexpr (_Use_memset_value_construct_v<_Ptrty> && _Uses_default_construct<_Alloc, _Ptrty>::value) {
(void) _Al;
auto _PFirst = _Unfancy(_First);
_Zero_range(_PFirst, _PFirst + _Count);
return _First + _Count;
} else {
_Uninitialized_backout_al<_Alloc> _Backout{_First, _Al};
for (; 0 < _Count; --_Count) {
_Backout._Emplace_back();
}
return _Backout._Release();
}
}
#else // ^^^ _HAS_IF_CONSTEXPR // !_HAS_IF_CONSTEXPR vvv
template <class _Alloc>
_Alloc_ptr_t<_Alloc> _Uninitialized_value_construct_n1(
_Alloc_ptr_t<_Alloc> _First, _Alloc_size_t<_Alloc> _Count, _Alloc& _Al, false_type) {
// value-initialize _Count objects to raw _First, using _Al, no special optimization
_Uninitialized_backout_al<_Alloc> _Backout{_First, _Al};
for (; 0 < _Count; --_Count) {
_Backout._Emplace_back();
}
return _Backout._Release();
}
template <class _Alloc>
_Alloc_ptr_t<_Alloc> _Uninitialized_value_construct_n1(
_Alloc_ptr_t<_Alloc> _First, _Alloc_size_t<_Alloc> _Count, _Alloc&, true_type) {
// value-initialize _Count objects to raw _First, using default _Alloc construct, all-bits-zero type
auto _PFirst = _Unfancy(_First);
_Zero_range(_PFirst, _PFirst + _Count);
return _First + _Count;
}
template <class _Alloc>
_Alloc_ptr_t<_Alloc> _Uninitialized_value_construct_n(
_Alloc_ptr_t<_Alloc> _First, _Alloc_size_t<_Alloc> _Count, _Alloc& _Al) {
// value-initialize _Count objects to raw _First, using _Al
using _Ptrty = typename _Alloc::value_type*;
return _Uninitialized_value_construct_n1(_First, _Count, _Al,
bool_constant < _Use_memset_value_construct_v<_Ptrty> && _Uses_default_construct<_Alloc, _Ptrty>::value > {});
}
#endif // _HAS_IF_CONSTEXPR
#if _HAS_IF_CONSTEXPR
template <class _NoThrowFwdIt, class _Diff>
_NoThrowFwdIt _Uninitialized_value_construct_n_unchecked1(_NoThrowFwdIt _UFirst, _Diff _Count) {
// value-initialize all elements in [_UFirst, _UFirst + _Count_raw)
_STL_INTERNAL_CHECK(_Count >= 0);
if constexpr (_Use_memset_value_construct_v<_NoThrowFwdIt>) {
return _Zero_range(_UFirst, _UFirst + _Count);
} else {
_Uninitialized_backout<_NoThrowFwdIt> _Backout{_UFirst};
for (; 0 < _Count; --_Count) {
_Backout._Emplace_back();
}
return _Backout._Release();
}
}
#else // ^^^ _HAS_IF_CONSTEXPR // !_HAS_IF_CONSTEXPR vvv
template <class _NoThrowFwdIt, class _Diff>
_NoThrowFwdIt _Uninitialized_value_construct_n_unchecked2(_NoThrowFwdIt _UFirst, _Diff _Count, false_type) {
_Uninitialized_backout<_NoThrowFwdIt> _Backout{_UFirst};
for (; 0 < _Count; --_Count) {
_Backout._Emplace_back();
}
return _Backout._Release();
}
template <class _NoThrowFwdIt, class _Diff>
_NoThrowFwdIt _Uninitialized_value_construct_n_unchecked2(_NoThrowFwdIt _UFirst, _Diff _Count, true_type) {
return _Zero_range(_UFirst, _UFirst + _Count);
}
template <class _NoThrowFwdIt, class _Diff>
_NoThrowFwdIt _Uninitialized_value_construct_n_unchecked1(_NoThrowFwdIt _UFirst, _Diff _Count) {
return _Uninitialized_value_construct_n_unchecked2(
_UFirst, _Count, bool_constant<_Use_memset_value_construct_v<_NoThrowFwdIt>>{});
}
#endif // _HAS_IF_CONSTEXPR
#if _HAS_DEPRECATED_TEMPORARY_BUFFER
2019-09-05 01:57:56 +03:00
// FUNCTION TEMPLATE get_temporary_buffer
template <class _Ty>
_CXX17_DEPRECATE_TEMPORARY_BUFFER _NODISCARD pair<_Ty*, ptrdiff_t> get_temporary_buffer(ptrdiff_t _Count) noexcept {
2019-09-05 01:57:56 +03:00
return _Get_temporary_buffer<_Ty>(_Count);
}
// FUNCTION TEMPLATE return_temporary_buffer
template <class _Ty>
_CXX17_DEPRECATE_TEMPORARY_BUFFER void return_temporary_buffer(_Ty* _Pbuf) {
_Return_temporary_buffer(_Pbuf);
}
#endif // _HAS_DEPRECATED_TEMPORARY_BUFFER
2019-09-05 01:57:56 +03:00
// STRUCT TEMPLATE _In_place_key_extract_set
// assumes _Args have already been _Remove_cvref_t'd
template <class _Key, class... _Args>
struct _In_place_key_extract_set {
// by default we can't extract the key in the emplace family and must construct a node we might not use
static constexpr bool _Extractable = false;
};
template <class _Key>
struct _In_place_key_extract_set<_Key, _Key> {
// we can extract the key in emplace if the emplaced type is identical to the key type
static constexpr bool _Extractable = true;
static const _Key& _Extract(const _Key& _Val) noexcept {
return _Val;
}
};
// STRUCT TEMPLATE _In_place_key_extract_map
// assumes _Args have already been _Remove_cvref_t'd
template <class _Key, class... Args>
struct _In_place_key_extract_map {
// by default we can't extract the key in the emplace family and must construct a node we might not use
static constexpr bool _Extractable = false;
};
template <class _Key, class _Second>
struct _In_place_key_extract_map<_Key, _Key, _Second> {
// if we would call the pair(key, value) constructor family, we can use the first parameter as the key
static constexpr bool _Extractable = true;
static const _Key& _Extract(const _Key& _Val, const _Second&) noexcept {
return _Val;
}
};
template <class _Key, class _First, class _Second>
struct _In_place_key_extract_map<_Key, pair<_First, _Second>> {
// if we would call the pair(pair<other, other>) constructor family, we can use the pair.first member as the key
static constexpr bool _Extractable = is_same_v<_Key, _Remove_cvref_t<_First>>;
static const _Key& _Extract(const pair<_First, _Second>& _Val) {
return _Val.first;
}
};
// STRUCT TEMPLATE _Wrap
template <class _Ty>
struct _Wrap {
_Ty _Value; // workaround for "T^ is not allowed in a union"
};
// STRUCT TEMPLATE _Alloc_temporary
template <class _Alloc>
struct _Alloc_temporary {
using value_type = typename _Alloc::value_type;
using _Traits = allocator_traits<_Alloc>;
_Alloc& _Al;
union {
_Wrap<value_type> _Storage;
};
template <class... _Args>
explicit _Alloc_temporary(_Alloc& _Al_, _Args&&... _Vals) noexcept(
noexcept(_Traits::construct(_Al_, _STD addressof(_Storage._Value), _STD forward<_Args>(_Vals)...)))
: _Al(_Al_) {
_Traits::construct(_Al, _STD addressof(_Storage._Value), _STD forward<_Args>(_Vals)...);
}
_Alloc_temporary(const _Alloc_temporary&) = delete;
_Alloc_temporary& operator=(const _Alloc_temporary&) = delete;
~_Alloc_temporary() {
_Traits::destroy(_Al, _STD addressof(_Storage._Value));
}
};
Avoid double strlen for string operator+ and implement P1165R1 (#467) Resolves GH-53. Resolves GH-456. Co-authored by: @barcharcraz Co-authored by: @ArtemSarmini This change adds a bespoke constructor to `basic_string` to handle string concat use cases, removing any EH states we previously emitted in our operator+s, avoiding double strlen in our operator+s, The EH states problem comes from our old pattern: ``` S operator+(a, b) { S result; result.reserve(a.size() +b.size()); // throws result += a; // throws result += b; // throws return result; } ``` Here, the compiler does not know that the append operation can't throw, because it doesn't understand `basic_string` and doesn't know the `reserve` has made that always safe. As a result, the compiler emitted EH handing code to call `result`'s destructor after each of the reserve and `operator+=` calls. Using a bespoke concatenating constructor avoids these problems because there is only one throwing operation (in IDL0 mode). As expected, this results in a small performance win in all concats due to avoiding needing to set up EH stuff, and a large performance win for the `const char*` concats due to the avoided second `strlen`: Performance: ``` #include <benchmark/benchmark.h> #include <stdint.h> #include <string> constexpr size_t big = 2 << 12; constexpr size_t multiplier = 64; static void string_concat_string(benchmark::State &state) { std::string x(static_cast<size_t>(state.range(0)), 'a'); std::string y(static_cast<size_t>(state.range(1)), 'b'); for (auto _ : state) { (void)_; benchmark::DoNotOptimize(x + y); } } BENCHMARK(string_concat_string)->RangeMultiplier(multiplier)->Ranges({{2, big}, {2, big}}); static void string_concat_ntbs(benchmark::State &state) { std::string x(static_cast<size_t>(state.range(0)), 'a'); std::string yBuf(static_cast<size_t>(state.range(1)), 'b'); const char *const y = yBuf.c_str(); for (auto _ : state) { (void)_; benchmark::DoNotOptimize(x + y); } } BENCHMARK(string_concat_ntbs)->RangeMultiplier(multiplier)->Ranges({{2, big}, {2, big}}); static void string_concat_char(benchmark::State &state) { std::string x(static_cast<size_t>(state.range(0)), 'a'); for (auto _ : state) { (void)_; benchmark::DoNotOptimize(x + 'b'); } } BENCHMARK(string_concat_char)->Range(2, big); static void ntbs_concat_string(benchmark::State &state) { std::string xBuf(static_cast<size_t>(state.range(0)), 'a'); const char *const x = xBuf.c_str(); std::string y(static_cast<size_t>(state.range(1)), 'b'); for (auto _ : state) { (void)_; benchmark::DoNotOptimize(x + y); } } BENCHMARK(ntbs_concat_string)->RangeMultiplier(multiplier)->Ranges({{2, big}, {2, big}}); static void char_concat_string(benchmark::State &state) { std::string x(static_cast<size_t>(state.range(0)), 'a'); for (auto _ : state) { (void)_; benchmark::DoNotOptimize('b' + x); } } BENCHMARK(char_concat_string)->Range(2, big); BENCHMARK_MAIN(); ``` Times are in NS on a Ryzen Threadripper 3970X, improvements are `((Old/New)-1)*100` | | old x64 | new x64 | improvement | old x86 | new x86 | improvement | | ------------------------------- | ------- | ------- | ----------- | ------- |-------- | ----------- | | string_concat_string/2/2 | 12.8697 | 5.78125 | 122.61% | 13.9029 | 11.0696 | 25.60% | | string_concat_string/64/2 | 62.779 | 61.3839 | 2.27% | 66.4394 | 61.6296 | 7.80% | | string_concat_string/4096/2 | 125.558 | 124.512 | 0.84% | 124.477 | 117.606 | 5.84% | | string_concat_string/8192/2 | 188.337 | 184.152 | 2.27% | 189.982 | 185.598 | 2.36% | | string_concat_string/2/64 | 64.5229 | 64.1741 | 0.54% | 67.1338 | 61.4962 | 9.17% | | string_concat_string/64/64 | 65.5692 | 59.9888 | 9.30% | 66.7742 | 60.4781 | 10.41% | | string_concat_string/4096/64 | 122.768 | 122.768 | 0.00% | 126.774 | 116.327 | 8.98% | | string_concat_string/8192/64 | 190.43 | 181.362 | 5.00% | 188.516 | 186.234 | 1.23% | | string_concat_string/2/4096 | 125.558 | 119.978 | 4.65% | 120.444 | 111.524 | 8.00% | | string_concat_string/64/4096 | 125.558 | 119.978 | 4.65% | 122.911 | 117.136 | 4.93% | | string_concat_string/4096/4096 | 188.337 | 184.152 | 2.27% | 193.337 | 182.357 | 6.02% | | string_concat_string/8192/4096 | 273.438 | 266.811 | 2.48% | 267.656 | 255.508 | 4.75% | | string_concat_string/2/8192 | 205.078 | 194.964 | 5.19% | 175.025 | 170.181 | 2.85% | | string_concat_string/64/8192 | 205.078 | 188.337 | 8.89% | 191.676 | 183.06 | 4.71% | | string_concat_string/4096/8192 | 266.811 | 256.696 | 3.94% | 267.455 | 255.221 | 4.79% | | string_concat_string/8192/8192 | 414.69 | 435.965 | -4.88% | 412.784 | 403.01 | 2.43% | | string_concat_ntbs/2/2 | 12.8348 | 5.9375 | 116.17% | 14.74 | 11.132 | 32.41% | | string_concat_ntbs/64/2 | 71.1496 | 59.375 | 19.83% | 70.6934 | 60.9371 | 16.01% | | string_concat_ntbs/4096/2 | 128.697 | 114.397 | 12.50% | 126.626 | 121.887 | 3.89% | | string_concat_ntbs/8192/2 | 194.964 | 176.479 | 10.47% | 196.641 | 186.88 | 5.22% | | string_concat_ntbs/2/64 | 100.446 | 74.986 | 33.95% | 109.082 | 83.3939 | 30.80% | | string_concat_ntbs/64/64 | 106.027 | 78.4738 | 35.11% | 109.589 | 84.3635 | 29.90% | | string_concat_ntbs/4096/64 | 164.969 | 138.114 | 19.44% | 165.417 | 142.116 | 16.40% | | string_concat_ntbs/8192/64 | 224.958 | 200.195 | 12.37% | 228.769 | 200.347 | 14.19% | | string_concat_ntbs/2/4096 | 2040.32 | 1074.22 | 89.94% | 2877.33 | 1362.74 | 111.14% | | string_concat_ntbs/64/4096 | 1994.98 | 1074.22 | 85.71% | 2841.93 | 1481.62 | 91.81% | | string_concat_ntbs/4096/4096 | 2050.78 | 1147.46 | 78.72% | 2907.78 | 1550.82 | 87.50% | | string_concat_ntbs/8192/4096 | 2148.44 | 1227.68 | 75.00% | 2966.92 | 1583.78 | 87.33% | | string_concat_ntbs/2/8192 | 3934.14 | 2099.61 | 87.37% | 5563.32 | 2736.56 | 103.30% | | string_concat_ntbs/64/8192 | 3989.95 | 1994.98 | 100.00% | 5456.84 | 2823.53 | 93.26% | | string_concat_ntbs/4096/8192 | 4049.24 | 2197.27 | 84.29% | 5674.02 | 2957.04 | 91.88% | | string_concat_ntbs/8192/8192 | 4237.58 | 2249.58 | 88.37% | 5755.07 | 3095.65 | 85.91% | | string_concat_char/2 | 12.8348 | 3.44936 | 272.09% | 11.1104 | 10.6976 | 3.86% | | string_concat_char/8 | 8.99833 | 3.45285 | 160.61% | 11.1964 | 10.6928 | 4.71% | | string_concat_char/64 | 65.5692 | 60.9375 | 7.60% | 65.7585 | 60.0182 | 9.56% | | string_concat_char/512 | 72.5446 | 69.7545 | 4.00% | 83.952 | 79.5254 | 5.57% | | string_concat_char/4096 | 125.558 | 119.978 | 4.65% | 123.475 | 117.103 | 5.44% | | string_concat_char/8192 | 190.43 | 187.988 | 1.30% | 189.181 | 185.174 | 2.16% | | ntbs_concat_string/2/2 | 13.4975 | 6.13839 | 119.89% | 14.8623 | 11.09 | 34.02% | | ntbs_concat_string/64/2 | 104.98 | 79.5201 | 32.02% | 112.207 | 83.7111 | 34.04% | | ntbs_concat_string/4096/2 | 2085.66 | 1098.63 | 89.84% | 2815.19 | 1456.08 | 93.34% | | ntbs_concat_string/8192/2 | 3899.27 | 2099.61 | 85.71% | 5544.52 | 2765.16 | 100.51% | | ntbs_concat_string/2/64 | 71.4983 | 62.779 | 13.89% | 72.6602 | 63.1953 | 14.98% | | ntbs_concat_string/64/64 | 104.98 | 80.2176 | 30.87% | 111.073 | 81.8413 | 35.72% | | ntbs_concat_string/4096/64 | 2085.66 | 1074.22 | 94.16% | 2789.73 | 1318.7 | 111.55% | | ntbs_concat_string/8192/64 | 3989.95 | 2085.66 | 91.30% | 5486.85 | 2693.83 | 103.68% | | ntbs_concat_string/2/4096 | 136.719 | 128.348 | 6.52% | 122.605 | 114.44 | 7.13% | | ntbs_concat_string/64/4096 | 167.411 | 142.997 | 17.07% | 168.572 | 138.566 | 21.65% | | ntbs_concat_string/4096/40 | 2099.61 | 1171.88 | 79.17% | 2923.85 | 1539.02 | 89.98% | | ntbs_concat_string/8192/40 | 4098.07 | 2246.09 | 82.45% | 5669.34 | 3005.25 | 88.65% | | ntbs_concat_string/2/8192 | 213.1 | 199.498 | 6.82% | 178.197 | 168.532 | 5.73% | | ntbs_concat_string/64/8192 | 223.214 | 214.844 | 3.90% | 232.263 | 203.722 | 14.01% | | ntbs_concat_string/4096/81 | 2148.44 | 1255.58 | 71.11% | 2980.78 | 1612.97 | 84.80% | | ntbs_concat_string/8192/81 | 4237.58 | 2406.53 | 76.09% | 5775.55 | 3067.94 | 88.25% | | char_concat_string/2 | 11.1607 | 3.60631 | 209.48% | 11.2101 | 10.7192 | 4.58% | | char_concat_string/8 | 11.4746 | 3.52958 | 225.10% | 11.4595 | 10.709 | 7.01% | | char_concat_string/64 | 65.5692 | 66.9643 | -2.08% | 66.6272 | 60.8601 | 9.48% | | char_concat_string/512 | 68.0106 | 73.2422 | -7.14% | 91.1946 | 83.0791 | 9.77% | | char_concat_string/4096 | 125.558 | 122.768 | 2.27% | 119.432 | 110.031 | 8.54% | | char_concat_string/8192 | 199.498 | 199.498 | 0.00% | 171.895 | 169.173 | 1.61% | Code size: ``` #include <string> std::string strings(const std::string& a, const std::string& b) { return a + b; } std::string string_ntbs(const std::string& a, const char * b) { return a + b; } std::string string_char(const std::string& a, char b) { return a + b; } std::string ntbs_string(const char * a, const std::string& b) { return a + b; } std::string char_string(char a, const std::string& b) { return a + b; } ``` Sizes are in bytes for the `.obj`, "Times Original" is New/Old, `cl /EHsc /W4 /WX /c /O2 .\code_size.cpp`: | Bytes | Before | After | Times Original | | ----- | ------ | ------ | -------------- | | x64 | 70,290 | 34,192 | 0.486 | | x86 | 47,152 | 28,792 | 0.611 |
2020-02-01 03:45:39 +03:00
template <class _Alloc>
_NODISCARD constexpr bool _Allocators_equal(const _Alloc& _Lhs, const _Alloc& _Rhs) noexcept {
if
_CONSTEXPR_IF(allocator_traits<_Alloc>::is_always_equal::value) {
(void) _Lhs;
(void) _Rhs;
return true;
}
else {
return _Lhs == _Rhs;
}
}
// FUNCTION TEMPLATE remove
template <class _FwdIt, class _Ty>
Implement constexpr algorithms. (#425) * Implement constexpr algorithms. Resolves GH-6 ( P0202R3 ), resolves GH-38 ( P0879R0 ), and drive-by fixes GH-414. Everywhere: Add constexpr, _CONSTEXPR20, and _CONSTEXPR20_ICE to things. skipped_tests.txt: Turn on all tests previously blocked by missing constexpr algorithms (and exchange and swap). Mark those algorithms that cannot be turned on that we have outstanding PRs for with their associated PRs. yvals_core.h: Turn on feature test macros. xutility: * Move the _Ptr_cat family down to copy, and fix associated SHOUTY comments to indicate that this is really an implementation detail of copy, not something the rest of the standard library intends to use directly. Removed and clarified some of the comments as requested by Casey Carter. * Extract _Copy_n_core which implements copy_n using only the core language (rather than memcpy-as-an-intrinsic). Note that we cannot use __builtin_memcpy or similar to avoid the is_constant_evaluated check here; builtin_memcpy only works in constexpr contexts when the inputs are of type char. numeric: Refactor as suggested by GH-414. * Attempt alternate fix of GH-414 suggested by Stephan. * Stephan product code PR comments: * _Swap_ranges_unchecked => _CONSTEXPR20 * _Idl_dist_add => _NODISCARD (and remove comments) * is_permutation => _NODISCARD * Add yvals_core.h comments. * Delete unused _Copy_n_core and TRANSITION, DevCom-889321 comment. * Put the comments in the right place and remove phantom braces.
2020-01-23 04:57:27 +03:00
_NODISCARD _CONSTEXPR20 _FwdIt remove(_FwdIt _First, const _FwdIt _Last, const _Ty& _Val) {
// remove each matching _Val
_Adl_verify_range(_First, _Last);
auto _UFirst = _Get_unwrapped(_First);
const auto _ULast = _Get_unwrapped(_Last);
_UFirst = _Find_unchecked(_UFirst, _ULast, _Val);
auto _UNext = _UFirst;
if (_UFirst != _ULast) {
while (++_UFirst != _ULast) {
if (!(*_UFirst == _Val)) {
*_UNext = _STD move(*_UFirst);
++_UNext;
}
}
}
_Seek_wrapped(_First, _UNext);
return _First;
}
// FUNCTION TEMPLATE remove_if
template <class _FwdIt, class _Pr>
Implement constexpr algorithms. (#425) * Implement constexpr algorithms. Resolves GH-6 ( P0202R3 ), resolves GH-38 ( P0879R0 ), and drive-by fixes GH-414. Everywhere: Add constexpr, _CONSTEXPR20, and _CONSTEXPR20_ICE to things. skipped_tests.txt: Turn on all tests previously blocked by missing constexpr algorithms (and exchange and swap). Mark those algorithms that cannot be turned on that we have outstanding PRs for with their associated PRs. yvals_core.h: Turn on feature test macros. xutility: * Move the _Ptr_cat family down to copy, and fix associated SHOUTY comments to indicate that this is really an implementation detail of copy, not something the rest of the standard library intends to use directly. Removed and clarified some of the comments as requested by Casey Carter. * Extract _Copy_n_core which implements copy_n using only the core language (rather than memcpy-as-an-intrinsic). Note that we cannot use __builtin_memcpy or similar to avoid the is_constant_evaluated check here; builtin_memcpy only works in constexpr contexts when the inputs are of type char. numeric: Refactor as suggested by GH-414. * Attempt alternate fix of GH-414 suggested by Stephan. * Stephan product code PR comments: * _Swap_ranges_unchecked => _CONSTEXPR20 * _Idl_dist_add => _NODISCARD (and remove comments) * is_permutation => _NODISCARD * Add yvals_core.h comments. * Delete unused _Copy_n_core and TRANSITION, DevCom-889321 comment. * Put the comments in the right place and remove phantom braces.
2020-01-23 04:57:27 +03:00
_NODISCARD _CONSTEXPR20 _FwdIt remove_if(_FwdIt _First, const _FwdIt _Last, _Pr _Pred) {
// remove each satisfying _Pred
_Adl_verify_range(_First, _Last);
auto _UFirst = _Get_unwrapped(_First);
const auto _ULast = _Get_unwrapped(_Last);
_UFirst = _STD find_if(_UFirst, _ULast, _Pass_fn(_Pred));
auto _UNext = _UFirst;
if (_UFirst != _ULast) {
while (++_UFirst != _ULast) {
if (!_Pred(*_UFirst)) {
*_UNext = _STD move(*_UFirst);
++_UNext;
}
}
}
_Seek_wrapped(_First, _UNext);
return _First;
}
// FUNCTION TEMPLATE _Erase_remove
template <class _Container, class _Uty>
typename _Container::size_type _Erase_remove(_Container& _Cont, const _Uty& _Val) { // erase each element matching _Val
auto _First = _Cont.begin();
const auto _Last = _Cont.end();
const auto _Old_size = _Cont.size();
_Seek_wrapped(_First, _STD remove(_Get_unwrapped(_First), _Get_unwrapped(_Last), _Val));
_Cont.erase(_First, _Last);
return _Old_size - _Cont.size();
}
// FUNCTION TEMPLATE _Erase_remove_if
template <class _Container, class _Pr>
typename _Container::size_type _Erase_remove_if(_Container& _Cont, _Pr _Pred) { // erase each element satisfying _Pred
auto _First = _Cont.begin();
const auto _Last = _Cont.end();
const auto _Old_size = _Cont.size();
_Seek_wrapped(_First, _STD remove_if(_Get_unwrapped(_First), _Get_unwrapped(_Last), _Pred));
_Cont.erase(_First, _Last);
return _Old_size - _Cont.size();
}
// FUNCTION TEMPLATE _Erase_nodes_if
template <class _Container, class _Pr>
typename _Container::size_type _Erase_nodes_if(_Container& _Cont, _Pr _Pred) { // erase each element satisfying _Pred
auto _First = _Cont.begin();
const auto _Last = _Cont.end();
const auto _Old_size = _Cont.size();
while (_First != _Last) {
if (_Pred(*_First)) {
_First = _Cont.erase(_First);
} else {
++_First;
}
}
return _Old_size - _Cont.size();
}
2019-09-05 01:57:56 +03:00
_STD_END
#pragma pop_macro("new")
_STL_RESTORE_CLANG_WARNINGS
#pragma warning(pop)
#pragma pack(pop)
#endif // _STL_COMPILER_PREPROCESSOR
#endif // _XMEMORY_