// charconv standard header // Copyright (c) Microsoft Corporation. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception #ifndef _CHARCONV_ #define _CHARCONV_ #include #if _STL_COMPILER_PREPROCESSOR #if !_HAS_CXX17 _EMIT_STL_WARNING(STL4038, "The contents of are available only with C++17 or later."); #else // ^^^ !_HAS_CXX17 / _HAS_CXX17 vvv #include #include #include #include #include #include #include _STL_INTRIN_HEADER #pragma pack(push, _CRT_PACKING) #pragma warning(push, _STL_WARNING_LEVEL) #pragma warning(disable : _STL_DISABLED_WARNINGS) _STL_DISABLE_CLANG_WARNINGS #pragma push_macro("new") #undef new // This implementation is dedicated to the memory of Mary and Thavatchai. _STD_BEGIN inline constexpr char _Charconv_digits[] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'}; _STL_INTERNAL_STATIC_ASSERT(_STD size(_Charconv_digits) == 36); template _NODISCARD _CONSTEXPR23 to_chars_result _Integer_to_chars( char* _First, char* const _Last, const _RawTy _Raw_value, const int _Base) noexcept { _Adl_verify_range(_First, _Last); _STL_ASSERT(_Base >= 2 && _Base <= 36, "invalid base in to_chars()"); using _Unsigned = make_unsigned_t<_RawTy>; _Unsigned _Value = static_cast<_Unsigned>(_Raw_value); if constexpr (is_signed_v<_RawTy>) { if (_Raw_value < 0) { if (_First == _Last) { return {_Last, errc::value_too_large}; } *_First++ = '-'; _Value = static_cast<_Unsigned>(0 - _Value); } } constexpr size_t _Buff_size = sizeof(_Unsigned) * CHAR_BIT; // enough for base 2 char _Buff[_Buff_size]; char* const _Buff_end = _Buff + _Buff_size; char* _RNext = _Buff_end; switch (_Base) { case 10: { // Derived from _UIntegral_to_buff() // Performance note: Ryu's digit table should be faster here. constexpr bool _Use_chunks = sizeof(_Unsigned) > sizeof(size_t); if constexpr (_Use_chunks) { // For 64-bit numbers on 32-bit platforms, work in chunks to avoid 64-bit // divisions. while (_Value > 0xFFFF'FFFFU) { // Performance note: Ryu's division workaround would be faster here. unsigned long _Chunk = static_cast(_Value % 1'000'000'000); _Value = static_cast<_Unsigned>(_Value / 1'000'000'000); for (int _Idx = 0; _Idx != 9; ++_Idx) { *--_RNext = static_cast('0' + _Chunk % 10); _Chunk /= 10; } } } using _Truncated = conditional_t<_Use_chunks, unsigned long, _Unsigned>; _Truncated _Trunc = static_cast<_Truncated>(_Value); do { *--_RNext = static_cast('0' + _Trunc % 10); _Trunc /= 10; } while (_Trunc != 0); break; } case 2: do { *--_RNext = static_cast('0' + (_Value & 0b1)); _Value >>= 1; } while (_Value != 0); break; case 4: do { *--_RNext = static_cast('0' + (_Value & 0b11)); _Value >>= 2; } while (_Value != 0); break; case 8: do { *--_RNext = static_cast('0' + (_Value & 0b111)); _Value >>= 3; } while (_Value != 0); break; case 16: do { *--_RNext = _Charconv_digits[_Value & 0b1111]; _Value >>= 4; } while (_Value != 0); break; case 32: do { *--_RNext = _Charconv_digits[_Value & 0b11111]; _Value >>= 5; } while (_Value != 0); break; case 3: case 5: case 6: case 7: case 9: do { *--_RNext = static_cast('0' + _Value % _Base); _Value = static_cast<_Unsigned>(_Value / _Base); } while (_Value != 0); break; default: do { *--_RNext = _Charconv_digits[_Value % _Base]; _Value = static_cast<_Unsigned>(_Value / _Base); } while (_Value != 0); break; } const ptrdiff_t _Digits_written = _Buff_end - _RNext; if (_Last - _First < _Digits_written) { return {_Last, errc::value_too_large}; } _Copy_n_unchecked4(_RNext, _Digits_written, _First); return {_First + _Digits_written, errc{}}; } _EXPORT_STD _CONSTEXPR23 to_chars_result to_chars( char* const _First, char* const _Last, const char _Value, const int _Base = 10) noexcept /* strengthened */ { return _Integer_to_chars(_First, _Last, _Value, _Base); } _EXPORT_STD _CONSTEXPR23 to_chars_result to_chars( char* const _First, char* const _Last, const signed char _Value, const int _Base = 10) noexcept /* strengthened */ { return _Integer_to_chars(_First, _Last, _Value, _Base); } _EXPORT_STD _CONSTEXPR23 to_chars_result to_chars(char* const _First, char* const _Last, const unsigned char _Value, const int _Base = 10) noexcept /* strengthened */ { return _Integer_to_chars(_First, _Last, _Value, _Base); } _EXPORT_STD _CONSTEXPR23 to_chars_result to_chars( char* const _First, char* const _Last, const short _Value, const int _Base = 10) noexcept /* strengthened */ { return _Integer_to_chars(_First, _Last, _Value, _Base); } _EXPORT_STD _CONSTEXPR23 to_chars_result to_chars(char* const _First, char* const _Last, const unsigned short _Value, const int _Base = 10) noexcept /* strengthened */ { return _Integer_to_chars(_First, _Last, _Value, _Base); } _EXPORT_STD _CONSTEXPR23 to_chars_result to_chars( char* const _First, char* const _Last, const int _Value, const int _Base = 10) noexcept /* strengthened */ { return _Integer_to_chars(_First, _Last, _Value, _Base); } _EXPORT_STD _CONSTEXPR23 to_chars_result to_chars(char* const _First, char* const _Last, const unsigned int _Value, const int _Base = 10) noexcept /* strengthened */ { return _Integer_to_chars(_First, _Last, _Value, _Base); } _EXPORT_STD _CONSTEXPR23 to_chars_result to_chars( char* const _First, char* const _Last, const long _Value, const int _Base = 10) noexcept /* strengthened */ { return _Integer_to_chars(_First, _Last, _Value, _Base); } _EXPORT_STD _CONSTEXPR23 to_chars_result to_chars(char* const _First, char* const _Last, const unsigned long _Value, const int _Base = 10) noexcept /* strengthened */ { return _Integer_to_chars(_First, _Last, _Value, _Base); } _EXPORT_STD _CONSTEXPR23 to_chars_result to_chars( char* const _First, char* const _Last, const long long _Value, const int _Base = 10) noexcept /* strengthened */ { return _Integer_to_chars(_First, _Last, _Value, _Base); } _EXPORT_STD _CONSTEXPR23 to_chars_result to_chars(char* const _First, char* const _Last, const unsigned long long _Value, const int _Base = 10) noexcept /* strengthened */ { return _Integer_to_chars(_First, _Last, _Value, _Base); } _EXPORT_STD to_chars_result to_chars(char* _First, char* _Last, bool _Value, int _Base = 10) = delete; _EXPORT_STD struct from_chars_result { const char* ptr; errc ec; #if _HAS_CXX20 _NODISCARD friend bool operator==(const from_chars_result&, const from_chars_result&) = default; #endif // _HAS_CXX20 }; // convert ['0', '9'] ['A', 'Z'] ['a', 'z'] to [0, 35], everything else to 255 inline constexpr unsigned char _Digit_from_byte[] = {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 255, 255, 255, 255, 255, 255, 255, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 255, 255, 255, 255, 255, 255, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}; _STL_INTERNAL_STATIC_ASSERT(_STD size(_Digit_from_byte) == 256); _NODISCARD _CONSTEXPR23 unsigned char _Digit_from_char(const char _Ch) noexcept { // convert ['0', '9'] ['A', 'Z'] ['a', 'z'] to [0, 35], everything else to 255 // CodeQL [SM01954] This index is valid: we cast to unsigned char and the array has 256 elements. return _Digit_from_byte[static_cast(_Ch)]; } template _NODISCARD _CONSTEXPR23 from_chars_result _Integer_from_chars( const char* const _First, const char* const _Last, _RawTy& _Raw_value, const int _Base) noexcept { _Adl_verify_range(_First, _Last); _STL_ASSERT(_Base >= 2 && _Base <= 36, "invalid base in from_chars()"); bool _Minus_sign = false; const char* _Next = _First; if constexpr (is_signed_v<_RawTy>) { if (_Next != _Last && *_Next == '-') { _Minus_sign = true; ++_Next; } } using _Unsigned = make_unsigned_t<_RawTy>; constexpr _Unsigned _Uint_max = static_cast<_Unsigned>(-1); constexpr _Unsigned _Int_max = static_cast<_Unsigned>(_Uint_max >> 1); #pragma warning(push) #pragma warning(disable : 26450) // TRANSITION, VSO-1828677 constexpr _Unsigned _Abs_int_min = static_cast<_Unsigned>(_Int_max + 1); #pragma warning(pop) _Unsigned _Risky_val; _Unsigned _Max_digit; if constexpr (is_signed_v<_RawTy>) { if (_Minus_sign) { _Risky_val = static_cast<_Unsigned>(_Abs_int_min / _Base); _Max_digit = static_cast<_Unsigned>(_Abs_int_min % _Base); } else { _Risky_val = static_cast<_Unsigned>(_Int_max / _Base); _Max_digit = static_cast<_Unsigned>(_Int_max % _Base); } } else { _Risky_val = static_cast<_Unsigned>(_Uint_max / _Base); _Max_digit = static_cast<_Unsigned>(_Uint_max % _Base); } _Unsigned _Value = 0; bool _Overflowed = false; for (; _Next != _Last; ++_Next) { const unsigned char _Digit = _Digit_from_char(*_Next); if (_Digit >= _Base) { break; } if (_Value < _Risky_val // never overflows || (_Value == _Risky_val && _Digit <= _Max_digit)) { // overflows for certain digits _Value = static_cast<_Unsigned>(_Value * _Base + _Digit); } else { // _Value > _Risky_val always overflows _Overflowed = true; // keep going, _Next still needs to be updated, _Value is now irrelevant } } if (_Next - _First == static_cast(_Minus_sign)) { return {_First, errc::invalid_argument}; } if (_Overflowed) { return {_Next, errc::result_out_of_range}; } if constexpr (is_signed_v<_RawTy>) { if (_Minus_sign) { _Value = static_cast<_Unsigned>(0 - _Value); } } _Raw_value = static_cast<_RawTy>(_Value); // congruent to _Value modulo 2^N for negative, N4950 [conv.integral]/3 return {_Next, errc{}}; } _EXPORT_STD _CONSTEXPR23 from_chars_result from_chars( const char* const _First, const char* const _Last, char& _Value, const int _Base = 10) noexcept /* strengthened */ { return _Integer_from_chars(_First, _Last, _Value, _Base); } _EXPORT_STD _CONSTEXPR23 from_chars_result from_chars(const char* const _First, const char* const _Last, signed char& _Value, const int _Base = 10) noexcept /* strengthened */ { return _Integer_from_chars(_First, _Last, _Value, _Base); } _EXPORT_STD _CONSTEXPR23 from_chars_result from_chars(const char* const _First, const char* const _Last, unsigned char& _Value, const int _Base = 10) noexcept /* strengthened */ { return _Integer_from_chars(_First, _Last, _Value, _Base); } _EXPORT_STD _CONSTEXPR23 from_chars_result from_chars(const char* const _First, const char* const _Last, short& _Value, const int _Base = 10) noexcept /* strengthened */ { return _Integer_from_chars(_First, _Last, _Value, _Base); } _EXPORT_STD _CONSTEXPR23 from_chars_result from_chars(const char* const _First, const char* const _Last, unsigned short& _Value, const int _Base = 10) noexcept /* strengthened */ { return _Integer_from_chars(_First, _Last, _Value, _Base); } _EXPORT_STD _CONSTEXPR23 from_chars_result from_chars( const char* const _First, const char* const _Last, int& _Value, const int _Base = 10) noexcept /* strengthened */ { return _Integer_from_chars(_First, _Last, _Value, _Base); } _EXPORT_STD _CONSTEXPR23 from_chars_result from_chars(const char* const _First, const char* const _Last, unsigned int& _Value, const int _Base = 10) noexcept /* strengthened */ { return _Integer_from_chars(_First, _Last, _Value, _Base); } _EXPORT_STD _CONSTEXPR23 from_chars_result from_chars( const char* const _First, const char* const _Last, long& _Value, const int _Base = 10) noexcept /* strengthened */ { return _Integer_from_chars(_First, _Last, _Value, _Base); } _EXPORT_STD _CONSTEXPR23 from_chars_result from_chars(const char* const _First, const char* const _Last, unsigned long& _Value, const int _Base = 10) noexcept /* strengthened */ { return _Integer_from_chars(_First, _Last, _Value, _Base); } _EXPORT_STD _CONSTEXPR23 from_chars_result from_chars(const char* const _First, const char* const _Last, long long& _Value, const int _Base = 10) noexcept /* strengthened */ { return _Integer_from_chars(_First, _Last, _Value, _Base); } _EXPORT_STD _CONSTEXPR23 from_chars_result from_chars(const char* const _First, const char* const _Last, unsigned long long& _Value, const int _Base = 10) noexcept /* strengthened */ { return _Integer_from_chars(_First, _Last, _Value, _Base); } // vvvvvvvvvv DERIVED FROM corecrt_internal_big_integer.h vvvvvvvvvv // A lightweight, sufficiently functional high-precision integer type for use in the binary floating-point <=> decimal // string conversions. We define only the operations (and in some cases, parts of operations) that are actually used. // We require sufficient precision to represent the reciprocal of the smallest representable value (the smallest // denormal, 2^-1074). During parsing, we may also consider up to 768 decimal digits. For this, we require an // additional log2(10^768) bits of precision. Finally, we require 54 bits of space for pre-division numerator shifting, // because double explicitly stores 52 bits, implicitly stores 1 bit, and we need 1 more bit for rounding. // PERFORMANCE NOTE: We intentionally do not initialize the _Mydata array when a _Big_integer_flt object is constructed. // Profiling showed that zero-initialization caused a substantial performance hit. Initialization of the _Mydata // array is not necessary: all operations on the _Big_integer_flt type are carefully written to only access elements at // indices [0, _Myused), and all operations correctly update _Myused as the utilized size increases. // _Big_integer_flt _Xval{}; is direct-list-initialization (N4950 [dcl.init.list]/1). // N4950 [dcl.init.list]/3.5: // "Otherwise, if the initializer list has no elements and T is a class type with a default constructor, // the object is value-initialized." // N4950 [dcl.init.general]/9, /9.1, /9.1.1: // "To value-initialize an object of type T means: // - if T is a (possibly cv-qualified) class type ([class]), then // - if T has either no default constructor ([class.default.ctor]) or a default constructor // that is user-provided or deleted, then the object is default-initialized;" // N4950 [dcl.init.general]/7, /7.1: // "To default-initialize an object of type T means: // - If T is a (possibly cv-qualified) class type ([class]), constructors are considered. The applicable constructors // are enumerated ([over.match.ctor]), and the best one for the initializer () is chosen through overload resolution // ([over.match]). // The constructor thus selected is called, with an empty argument list, to initialize the object." // N4950 [class.base.init]/9, /9.3: // "In a non-delegating constructor other than an implicitly-defined copy/move constructor ([class.copy.ctor]), // if a given potentially constructed subobject is not designated by a mem-initializer-id (including the case // where there is no mem-initializer-list because the constructor has no ctor-initializer), then [...] // - otherwise, the entity is default-initialized ([dcl.init])." // N4950 [dcl.init.general]/7, /7.2, /7.3: // "To default-initialize an object of type T means: [...] // - If T is an array type, each element is default-initialized. // - Otherwise, no initialization is performed." // Therefore, _Mydata's elements are not initialized. struct _Big_integer_flt { #pragma warning(push) #pragma warning(disable : 26495) // Variable 'std::_Big_integer_flt::_Mydata' is uninitialized. // Always initialize a member variable (type.6). _Big_integer_flt() noexcept : _Myused(0) {} #pragma warning(pop) _Big_integer_flt(const _Big_integer_flt& _Other) noexcept : _Myused(_Other._Myused) { _CSTD memcpy(_Mydata, _Other._Mydata, _Other._Myused * sizeof(uint32_t)); } _Big_integer_flt& operator=(const _Big_integer_flt& _Other) noexcept { _Myused = _Other._Myused; _CSTD memmove(_Mydata, _Other._Mydata, _Other._Myused * sizeof(uint32_t)); return *this; } _NODISCARD bool operator<(const _Big_integer_flt& _Rhs) const noexcept { if (_Myused != _Rhs._Myused) { return _Myused < _Rhs._Myused; } for (uint32_t _Ix = _Myused - 1; _Ix != static_cast(-1); --_Ix) { if (_Mydata[_Ix] != _Rhs._Mydata[_Ix]) { return _Mydata[_Ix] < _Rhs._Mydata[_Ix]; } } return false; } static constexpr uint32_t _Maximum_bits = 1074 // 1074 bits required to represent 2^1074 + 2552 // ceil(log2(10^768)) + 54; // shift space static constexpr uint32_t _Element_bits = 32; static constexpr uint32_t _Element_count = (_Maximum_bits + _Element_bits - 1) / _Element_bits; uint32_t _Myused; // The number of elements currently in use uint32_t _Mydata[_Element_count]; // The number, stored in little-endian form }; _NODISCARD inline _Big_integer_flt _Make_big_integer_flt_one() noexcept { _Big_integer_flt _Xval{}; _Xval._Mydata[0] = 1; _Xval._Myused = 1; return _Xval; } _NODISCARD inline uint32_t _Bit_scan_reverse(const _Big_integer_flt& _Xval) noexcept { if (_Xval._Myused == 0) { return 0; } const uint32_t _Bx = _Xval._Myused - 1; unsigned long _Index; // Intentionally uninitialized for better codegen _STL_INTERNAL_CHECK(_Xval._Mydata[_Bx] != 0); // _Big_integer_flt should always be trimmed // CodeQL [SM02313] _Index is always initialized: we've guaranteed that _Xval._Mydata[_Bx] is non-zero. _BitScanReverse(&_Index, _Xval._Mydata[_Bx]); return _Index + 1 + _Bx * _Big_integer_flt::_Element_bits; } // Shifts the high-precision integer _Xval by _Nx bits to the left. Returns true if the left shift was successful; // false if it overflowed. When overflow occurs, the high-precision integer is reset to zero. _NODISCARD inline bool _Shift_left(_Big_integer_flt& _Xval, const uint32_t _Nx) noexcept { if (_Xval._Myused == 0) { return true; } const uint32_t _Unit_shift = _Nx / _Big_integer_flt::_Element_bits; const uint32_t _Bit_shift = _Nx % _Big_integer_flt::_Element_bits; if (_Xval._Myused + _Unit_shift > _Big_integer_flt::_Element_count) { // Unit shift will overflow. _Xval._Myused = 0; return false; } if (_Bit_shift == 0) { _CSTD memmove(_Xval._Mydata + _Unit_shift, _Xval._Mydata, _Xval._Myused * sizeof(uint32_t)); _Xval._Myused += _Unit_shift; } else { const bool _Bit_shifts_into_next_unit = _Bit_shift > (_Big_integer_flt::_Element_bits - _Bit_scan_reverse(_Xval._Mydata[_Xval._Myused - 1])); const uint32_t _New_used = _Xval._Myused + _Unit_shift + static_cast(_Bit_shifts_into_next_unit); if (_New_used > _Big_integer_flt::_Element_count) { // Bit shift will overflow. _Xval._Myused = 0; return false; } const uint32_t _Msb_bits = _Bit_shift; const uint32_t _Lsb_bits = _Big_integer_flt::_Element_bits - _Msb_bits; const uint32_t _Lsb_mask = (1UL << _Lsb_bits) - 1UL; const uint32_t _Msb_mask = ~_Lsb_mask; // If _Unit_shift == 0, this will wraparound, which is okay. for (uint32_t _Dest_index = _New_used - 1; _Dest_index != _Unit_shift - 1; --_Dest_index) { // performance note: PSLLDQ and PALIGNR instructions could be more efficient here // If _Bit_shifts_into_next_unit, the first iteration will trigger the bounds check below, which is okay. const uint32_t _Upper_source_index = _Dest_index - _Unit_shift; // When _Dest_index == _Unit_shift, this will wraparound, which is okay (see bounds check below). const uint32_t _Lower_source_index = _Dest_index - _Unit_shift - 1; const uint32_t _Upper_source = _Upper_source_index < _Xval._Myused ? _Xval._Mydata[_Upper_source_index] : 0; const uint32_t _Lower_source = _Lower_source_index < _Xval._Myused ? _Xval._Mydata[_Lower_source_index] : 0; const uint32_t _Shifted_upper_source = (_Upper_source & _Lsb_mask) << _Msb_bits; const uint32_t _Shifted_lower_source = (_Lower_source & _Msb_mask) >> _Lsb_bits; const uint32_t _Combined_shifted_source = _Shifted_upper_source | _Shifted_lower_source; _Xval._Mydata[_Dest_index] = _Combined_shifted_source; } _Xval._Myused = _New_used; } _CSTD memset(_Xval._Mydata, 0, _Unit_shift * sizeof(uint32_t)); return true; } // Adds a 32-bit _Value to the high-precision integer _Xval. Returns true if the addition was successful; // false if it overflowed. When overflow occurs, the high-precision integer is reset to zero. _NODISCARD inline bool _Add(_Big_integer_flt& _Xval, const uint32_t _Value) noexcept { if (_Value == 0) { return true; } uint32_t _Carry = _Value; for (uint32_t _Ix = 0; _Ix != _Xval._Myused; ++_Ix) { const uint64_t _Result = static_cast(_Xval._Mydata[_Ix]) + _Carry; _Xval._Mydata[_Ix] = static_cast(_Result); _Carry = static_cast(_Result >> 32); } if (_Carry != 0) { if (_Xval._Myused < _Big_integer_flt::_Element_count) { _Xval._Mydata[_Xval._Myused] = _Carry; ++_Xval._Myused; } else { _Xval._Myused = 0; return false; } } return true; } _NODISCARD inline uint32_t _Add_carry(uint32_t& _Ux1, const uint32_t _Ux2, const uint32_t _U_carry) noexcept { const uint64_t _Uu = static_cast(_Ux1) + _Ux2 + _U_carry; _Ux1 = static_cast(_Uu); return static_cast(_Uu >> 32); } _NODISCARD inline uint32_t _Add_multiply_carry( uint32_t& _U_add, const uint32_t _U_mul_1, const uint32_t _U_mul_2, const uint32_t _U_carry) noexcept { const uint64_t _Uu_res = static_cast(_U_mul_1) * _U_mul_2 + _U_add + _U_carry; _U_add = static_cast(_Uu_res); return static_cast(_Uu_res >> 32); } _NODISCARD inline uint32_t _Multiply_core( uint32_t* const _Multiplicand, const uint32_t _Multiplicand_count, const uint32_t _Multiplier) noexcept { uint32_t _Carry = 0; for (uint32_t _Ix = 0; _Ix != _Multiplicand_count; ++_Ix) { const uint64_t _Result = static_cast(_Multiplicand[_Ix]) * _Multiplier + _Carry; _Multiplicand[_Ix] = static_cast(_Result); _Carry = static_cast(_Result >> 32); } return _Carry; } // Multiplies the high-precision _Multiplicand by a 32-bit _Multiplier. Returns true if the multiplication // was successful; false if it overflowed. When overflow occurs, the _Multiplicand is reset to zero. _NODISCARD inline bool _Multiply(_Big_integer_flt& _Multiplicand, const uint32_t _Multiplier) noexcept { if (_Multiplier == 0) { _Multiplicand._Myused = 0; return true; } if (_Multiplier == 1) { return true; } if (_Multiplicand._Myused == 0) { return true; } const uint32_t _Carry = _Multiply_core(_Multiplicand._Mydata, _Multiplicand._Myused, _Multiplier); if (_Carry != 0) { if (_Multiplicand._Myused < _Big_integer_flt::_Element_count) { _Multiplicand._Mydata[_Multiplicand._Myused] = _Carry; ++_Multiplicand._Myused; } else { _Multiplicand._Myused = 0; return false; } } return true; } // This high-precision integer multiplication implementation was translated from the implementation of // System.Numerics.BigIntegerBuilder.Mul in the .NET Framework sources. It multiplies the _Multiplicand // by the _Multiplier and returns true if the multiplication was successful; false if it overflowed. // When overflow occurs, the _Multiplicand is reset to zero. _NODISCARD inline bool _Multiply(_Big_integer_flt& _Multiplicand, const _Big_integer_flt& _Multiplier) noexcept { if (_Multiplicand._Myused == 0) { return true; } if (_Multiplier._Myused == 0) { _Multiplicand._Myused = 0; return true; } if (_Multiplier._Myused == 1) { return _Multiply(_Multiplicand, _Multiplier._Mydata[0]); // when overflow occurs, resets to zero } if (_Multiplicand._Myused == 1) { const uint32_t _Small_multiplier = _Multiplicand._Mydata[0]; _Multiplicand = _Multiplier; return _Multiply(_Multiplicand, _Small_multiplier); // when overflow occurs, resets to zero } // We prefer more iterations on the inner loop and fewer on the outer: const bool _Multiplier_is_shorter = _Multiplier._Myused < _Multiplicand._Myused; const uint32_t* const _Rgu1 = _Multiplier_is_shorter ? _Multiplier._Mydata : _Multiplicand._Mydata; const uint32_t* const _Rgu2 = _Multiplier_is_shorter ? _Multiplicand._Mydata : _Multiplier._Mydata; const uint32_t _Cu1 = _Multiplier_is_shorter ? _Multiplier._Myused : _Multiplicand._Myused; const uint32_t _Cu2 = _Multiplier_is_shorter ? _Multiplicand._Myused : _Multiplier._Myused; _Big_integer_flt _Result{}; for (uint32_t _Iu1 = 0; _Iu1 != _Cu1; ++_Iu1) { const uint32_t _U_cur = _Rgu1[_Iu1]; if (_U_cur == 0) { if (_Iu1 == _Result._Myused) { _Result._Mydata[_Iu1] = 0; _Result._Myused = _Iu1 + 1; } continue; } uint32_t _U_carry = 0; uint32_t _Iu_res = _Iu1; for (uint32_t _Iu2 = 0; _Iu2 != _Cu2 && _Iu_res != _Big_integer_flt::_Element_count; ++_Iu2, ++_Iu_res) { if (_Iu_res == _Result._Myused) { _Result._Mydata[_Iu_res] = 0; _Result._Myused = _Iu_res + 1; } _U_carry = _Add_multiply_carry(_Result._Mydata[_Iu_res], _U_cur, _Rgu2[_Iu2], _U_carry); } while (_U_carry != 0 && _Iu_res != _Big_integer_flt::_Element_count) { if (_Iu_res == _Result._Myused) { _Result._Mydata[_Iu_res] = 0; _Result._Myused = _Iu_res + 1; } _U_carry = _Add_carry(_Result._Mydata[_Iu_res++], 0, _U_carry); } if (_Iu_res == _Big_integer_flt::_Element_count) { _Multiplicand._Myused = 0; return false; } } // Store the _Result in the _Multiplicand and compute the actual number of elements used: _Multiplicand = _Result; return true; } extern const uint32_t _Large_power_data[578]; // Multiplies the high-precision integer _Xval by 10^_Power. Returns true if the multiplication was successful; // false if it overflowed. When overflow occurs, the high-precision integer is reset to zero. _NODISCARD inline bool _Multiply_by_power_of_ten(_Big_integer_flt& _Xval, const uint32_t _Power) noexcept { // To improve performance, we use a table of precomputed powers of ten, from 10^10 through 10^380, in increments // of ten. In its unpacked form, as an array of _Big_integer_flt objects, this table consists mostly of zero // elements. Thus, we store the table in a packed form, trimming leading and trailing zero elements. We provide an // index that is used to unpack powers from the table, using the function that appears after this function in this // file. // The minimum value representable with double-precision is 5E-324. // With the _Large_power_data table we can thus compute most multiplications with a single multiply. struct _Unpack_index { uint16_t _Offset; // The offset of this power's initial element in the array uint8_t _Zeroes; // The number of omitted leading zero elements uint8_t _Size; // The number of elements present for this power }; static constexpr _Unpack_index _Large_power_indices[] = {{0, 0, 2}, {2, 0, 3}, {5, 0, 4}, {9, 1, 4}, {13, 1, 5}, {18, 1, 6}, {24, 2, 6}, {30, 2, 7}, {37, 2, 8}, {45, 3, 8}, {53, 3, 9}, {62, 3, 10}, {72, 4, 10}, {82, 4, 11}, {93, 4, 12}, {105, 5, 12}, {117, 5, 13}, {130, 5, 14}, {144, 5, 15}, {159, 6, 15}, {174, 6, 16}, {190, 6, 17}, {207, 7, 17}, {224, 7, 18}, {242, 7, 19}, {261, 8, 19}, {280, 8, 21}, {301, 8, 22}, {323, 9, 22}, {345, 9, 23}, {368, 9, 24}, {392, 10, 24}, {416, 10, 25}, {441, 10, 26}, {467, 10, 27}, {494, 11, 27}, {521, 11, 28}, {549, 11, 29}}; for (uint32_t _Large_power = _Power / 10; _Large_power != 0;) { const uint32_t _Current_power = (_STD min)(_Large_power, static_cast(_STD size(_Large_power_indices))); const _Unpack_index& _Index = _Large_power_indices[_Current_power - 1]; _Big_integer_flt _Multiplier{}; _Multiplier._Myused = static_cast(_Index._Size + _Index._Zeroes); const uint32_t* const _Source = _Large_power_data + _Index._Offset; _CSTD memset(_Multiplier._Mydata, 0, _Index._Zeroes * sizeof(uint32_t)); _CSTD memcpy(_Multiplier._Mydata + _Index._Zeroes, _Source, _Index._Size * sizeof(uint32_t)); if (!_Multiply(_Xval, _Multiplier)) { // when overflow occurs, resets to zero return false; } _Large_power -= _Current_power; } static constexpr uint32_t _Small_powers_of_ten[9] = { 10, 100, 1'000, 10'000, 100'000, 1'000'000, 10'000'000, 100'000'000, 1'000'000'000}; const uint32_t _Small_power = _Power % 10; if (_Small_power == 0) { return true; } return _Multiply(_Xval, _Small_powers_of_ten[_Small_power - 1]); // when overflow occurs, resets to zero } // Computes the number of zeroes higher than the most significant set bit in _Ux _NODISCARD inline uint32_t _Count_sequential_high_zeroes(const uint32_t _Ux) noexcept { unsigned long _Index; // Intentionally uninitialized for better codegen return _BitScanReverse(&_Index, _Ux) ? 31 - _Index : 32; } // This high-precision integer division implementation was translated from the implementation of // System.Numerics.BigIntegerBuilder.ModDivCore in the .NET Framework sources. // It computes both quotient and remainder: the remainder is stored in the _Numerator argument, // and the least significant 64 bits of the quotient are returned from the function. _NODISCARD inline uint64_t _Divide(_Big_integer_flt& _Numerator, const _Big_integer_flt& _Denominator) noexcept { // If the _Numerator is zero, then both the quotient and remainder are zero: if (_Numerator._Myused == 0) { return 0; } // If the _Denominator is zero, then uh oh. We can't divide by zero: _STL_INTERNAL_CHECK(_Denominator._Myused != 0); // Division by zero uint32_t _Max_numerator_element_index = _Numerator._Myused - 1; const uint32_t _Max_denominator_element_index = _Denominator._Myused - 1; // The _Numerator and _Denominator are both nonzero. // If the _Denominator is only one element wide, we can take the fast route: if (_Max_denominator_element_index == 0) { const uint32_t _Small_denominator = _Denominator._Mydata[0]; if (_Max_numerator_element_index == 0) { const uint32_t _Small_numerator = _Numerator._Mydata[0]; if (_Small_denominator == 1) { _Numerator._Myused = 0; return _Small_numerator; } _Numerator._Mydata[0] = _Small_numerator % _Small_denominator; _Numerator._Myused = _Numerator._Mydata[0] > 0 ? 1u : 0u; return _Small_numerator / _Small_denominator; } if (_Small_denominator == 1) { uint64_t _Quotient = _Numerator._Mydata[1]; _Quotient <<= 32; _Quotient |= _Numerator._Mydata[0]; _Numerator._Myused = 0; return _Quotient; } // We count down in the next loop, so the last assignment to _Quotient will be the correct one. uint64_t _Quotient = 0; uint64_t _Uu = 0; for (uint32_t _Iv = _Max_numerator_element_index; _Iv != static_cast(-1); --_Iv) { _Uu = (_Uu << 32) | _Numerator._Mydata[_Iv]; _Quotient = (_Quotient << 32) + static_cast(_Uu / _Small_denominator); _Uu %= _Small_denominator; } _Numerator._Mydata[1] = static_cast(_Uu >> 32); _Numerator._Mydata[0] = static_cast(_Uu); if (_Numerator._Mydata[1] > 0) { _Numerator._Myused = 2u; } else if (_Numerator._Mydata[0] > 0) { _Numerator._Myused = 1u; } else { _Numerator._Myused = 0u; } return _Quotient; } if (_Max_denominator_element_index > _Max_numerator_element_index) { return 0; } const uint32_t _Cu_den = _Max_denominator_element_index + 1; const int32_t _Cu_diff = static_cast(_Max_numerator_element_index - _Max_denominator_element_index); // Determine whether the result will have _Cu_diff or _Cu_diff + 1 digits: int32_t _Cu_quo = _Cu_diff; for (int32_t _Iu = static_cast(_Max_numerator_element_index);; --_Iu) { if (_Iu < _Cu_diff) { ++_Cu_quo; break; } if (_Denominator._Mydata[_Iu - _Cu_diff] != _Numerator._Mydata[_Iu]) { if (_Denominator._Mydata[_Iu - _Cu_diff] < _Numerator._Mydata[_Iu]) { ++_Cu_quo; } break; } } if (_Cu_quo == 0) { return 0; } // Get the uint to use for the trial divisions. We normalize so the high bit is set: uint32_t _U_den = _Denominator._Mydata[_Cu_den - 1]; uint32_t _U_den_next = _Denominator._Mydata[_Cu_den - 2]; const uint32_t _Cbit_shift_left = _Count_sequential_high_zeroes(_U_den); const uint32_t _Cbit_shift_right = 32 - _Cbit_shift_left; if (_Cbit_shift_left > 0) { _U_den = (_U_den << _Cbit_shift_left) | (_U_den_next >> _Cbit_shift_right); _U_den_next <<= _Cbit_shift_left; if (_Cu_den > 2) { _U_den_next |= _Denominator._Mydata[_Cu_den - 3] >> _Cbit_shift_right; } } uint64_t _Quotient = 0; for (int32_t _Iu = _Cu_quo; --_Iu >= 0;) { // Get the high (normalized) bits of the _Numerator: const uint32_t _U_num_hi = (_Iu + _Cu_den <= _Max_numerator_element_index) ? _Numerator._Mydata[_Iu + _Cu_den] : 0; uint64_t _Uu_num = (static_cast(_U_num_hi) << 32) | static_cast(_Numerator._Mydata[_Iu + _Cu_den - 1]); uint32_t _U_num_next = _Numerator._Mydata[_Iu + _Cu_den - 2]; if (_Cbit_shift_left > 0) { _Uu_num = (_Uu_num << _Cbit_shift_left) | (_U_num_next >> _Cbit_shift_right); _U_num_next <<= _Cbit_shift_left; if (_Iu + _Cu_den >= 3) { _U_num_next |= _Numerator._Mydata[_Iu + _Cu_den - 3] >> _Cbit_shift_right; } } // Divide to get the quotient digit: uint64_t _Uu_quo = _Uu_num / _U_den; uint64_t _Uu_rem = static_cast(_Uu_num % _U_den); if (_Uu_quo > UINT32_MAX) { _Uu_rem += _U_den * (_Uu_quo - UINT32_MAX); _Uu_quo = UINT32_MAX; } while (_Uu_rem <= UINT32_MAX && _Uu_quo * _U_den_next > ((_Uu_rem << 32) | _U_num_next)) { --_Uu_quo; _Uu_rem += _U_den; } // Multiply and subtract. Note that _Uu_quo may be one too large. // If we have a borrow at the end, we'll add the _Denominator back on and decrement _Uu_quo. if (_Uu_quo > 0) { uint64_t _Uu_borrow = 0; for (uint32_t _Iu2 = 0; _Iu2 < _Cu_den; ++_Iu2) { _Uu_borrow += _Uu_quo * _Denominator._Mydata[_Iu2]; const uint32_t _U_sub = static_cast(_Uu_borrow); _Uu_borrow >>= 32; if (_Numerator._Mydata[_Iu + _Iu2] < _U_sub) { ++_Uu_borrow; } _Numerator._Mydata[_Iu + _Iu2] -= _U_sub; } if (_U_num_hi < _Uu_borrow) { // Add, tracking carry: uint32_t _U_carry = 0; for (uint32_t _Iu2 = 0; _Iu2 < _Cu_den; ++_Iu2) { const uint64_t _Sum = static_cast(_Numerator._Mydata[_Iu + _Iu2]) + static_cast(_Denominator._Mydata[_Iu2]) + _U_carry; _Numerator._Mydata[_Iu + _Iu2] = static_cast(_Sum); _U_carry = static_cast(_Sum >> 32); } --_Uu_quo; } _Max_numerator_element_index = _Iu + _Cu_den - 1; } _Quotient = (_Quotient << 32) + static_cast(_Uu_quo); } // Trim the remainder: uint32_t _Used = _Max_numerator_element_index + 1; while (_Used != 0 && _Numerator._Mydata[_Used - 1] == 0) { --_Used; } _Numerator._Myused = _Used; return _Quotient; } // ^^^^^^^^^^ DERIVED FROM corecrt_internal_big_integer.h ^^^^^^^^^^ // vvvvvvvvvv DERIVED FROM corecrt_internal_strtox.h vvvvvvvvvv // This type is used to hold a partially-parsed string representation of a floating-point number. // The number is stored in the following form: // [sign] 0._Mymantissa * B^_Myexponent // The _Mymantissa buffer stores the mantissa digits in big-endian, binary-coded decimal form. The _Mymantissa_count // stores the number of digits present in the _Mymantissa buffer. The base B is not stored; it must be tracked // separately. Note that the base of the mantissa digits may not be the same as B (e.g., for hexadecimal // floating-point, the mantissa digits are in base 16 but the exponent is a base 2 exponent). // We consider up to 768 decimal digits during conversion. In most cases, we require nowhere near this many digits // of precision to compute the correctly rounded binary floating-point value for the input string. The worst case is // (2 - 3 * 2^-53) * 2^-1022, which has an exact decimal representation of 768 decimal digits after trimming zeroes. // This value is exactly between 0x1.ffffffffffffep-1022 and 0x1.fffffffffffffp-1022. For round-to-nearest, // ties-to-even behavior, we also need to consider whether there are any nonzero trailing decimal digits. // NOTE: The mantissa buffer count here must be kept in sync with the precision of the _Big_integer_flt type. struct _Floating_point_string { bool _Myis_negative; int32_t _Myexponent; uint32_t _Mymantissa_count; uint8_t _Mymantissa[768]; }; // Stores a positive or negative zero into the _Result object template void _Assemble_floating_point_zero(const bool _Is_negative, _FloatingType& _Result) noexcept { using _Floating_traits = _Floating_type_traits<_FloatingType>; using _Uint_type = typename _Floating_traits::_Uint_type; _Uint_type _Sign_component = _Is_negative; _Sign_component <<= _Floating_traits::_Sign_shift; _Result = _Bit_cast<_FloatingType>(_Sign_component); } // Stores a positive or negative infinity into the _Result object template void _Assemble_floating_point_infinity(const bool _Is_negative, _FloatingType& _Result) noexcept { using _Floating_traits = _Floating_type_traits<_FloatingType>; using _Uint_type = typename _Floating_traits::_Uint_type; _Uint_type _Sign_component = _Is_negative; _Sign_component <<= _Floating_traits::_Sign_shift; constexpr _Uint_type _Exponent_component = _Floating_traits::_Shifted_exponent_mask; _Result = _Bit_cast<_FloatingType>(_Sign_component | _Exponent_component); } // Determines whether a mantissa should be rounded up according to round_to_nearest given [1] the value of the least // significant bit of the mantissa, [2] the value of the next bit after the least significant bit (the "round" bit) // and [3] whether any trailing bits after the round bit are set. // The mantissa is treated as an unsigned integer magnitude. // For this function, "round up" is defined as "increase the magnitude" of the mantissa. (Note that this means that // if we need to round a negative value to the next largest representable value, we return false, because the next // largest representable value has a smaller magnitude.) _NODISCARD inline bool _Should_round_up( const bool _Lsb_bit, const bool _Round_bit, const bool _Has_tail_bits) noexcept { // If there are no insignificant set bits, the value is exactly-representable and should not be rounded. // We could detect this with: // const bool _Is_exactly_representable = !_Round_bit && !_Has_tail_bits; // if (_Is_exactly_representable) { return false; } // However, this is unnecessary given the logic below. // If there are insignificant set bits, we need to round according to round_to_nearest. // We need to handle two cases: we round up if either [1] the value is slightly greater // than the midpoint between two exactly-representable values or [2] the value is exactly the midpoint // between two exactly-representable values and the greater of the two is even (this is "round-to-even"). return _Round_bit && (_Has_tail_bits || _Lsb_bit); } // Computes _Value / 2^_Shift, then rounds the result according to round_to_nearest. // By the time we call this function, we will already have discarded most digits. // The caller must pass true for _Has_zero_tail if all discarded bits were zeroes. _NODISCARD inline uint64_t _Right_shift_with_rounding( const uint64_t _Value, const uint32_t _Shift, const bool _Has_zero_tail) noexcept { constexpr uint32_t _Total_number_of_bits = 64; if (_Shift >= _Total_number_of_bits) { if (_Shift == _Total_number_of_bits) { constexpr uint64_t _Extra_bits_mask = (1ULL << (_Total_number_of_bits - 1)) - 1; constexpr uint64_t _Round_bit_mask = (1ULL << (_Total_number_of_bits - 1)); const bool _Round_bit = (_Value & _Round_bit_mask) != 0; const bool _Tail_bits = !_Has_zero_tail || (_Value & _Extra_bits_mask) != 0; // We round up the answer to 1 if the answer is greater than 0.5. Otherwise, we round down the answer to 0 // if either [1] the answer is less than 0.5 or [2] the answer is exactly 0.5. return static_cast(_Round_bit && _Tail_bits); } else { // If we'd need to shift 65 or more bits, the answer is less than 0.5 and is always rounded to zero: return 0; } } // Reference implementation with suboptimal codegen: // const uint64_t _Extra_bits_mask = (1ULL << (_Shift - 1)) - 1; // const uint64_t _Round_bit_mask = (1ULL << (_Shift - 1)); // const uint64_t _Lsb_bit_mask = 1ULL << _Shift; // const bool _Lsb_bit = (_Value & _Lsb_bit_mask) != 0; // const bool _Round_bit = (_Value & _Round_bit_mask) != 0; // const bool _Tail_bits = !_Has_zero_tail || (_Value & _Extra_bits_mask) != 0; // return (_Value >> _Shift) + _Should_round_up(_Lsb_bit, _Round_bit, _Tail_bits); // Example for optimized implementation: Let _Shift be 8. // Bit index: ...[8]76543210 // _Value: ...[L]RTTTTTTT // By focusing on the bit at index _Shift, we can avoid unnecessary branching and shifting. // Bit index: ...[8]76543210 // _Lsb_bit: ...[L]RTTTTTTT const uint64_t _Lsb_bit = _Value; // Bit index: ...9[8]76543210 // _Round_bit: ...L[R]TTTTTTT0 const uint64_t _Round_bit = _Value << 1; // We can detect (without branching) whether any of the trailing bits are set. // Due to _Should_round below, this computation will be used if and only if R is 1, so we can assume that here. // Bit index: ...9[8]76543210 // _Round_bit: ...L[1]TTTTTTT0 // _Has_tail_bits: ....[H]........ // If all of the trailing bits T are 0, and _Has_zero_tail is true, // then `_Round_bit - static_cast(_Has_zero_tail)` will produce 0 for H (due to R being 1). // If any of the trailing bits T are 1, or _Has_zero_tail is false, // then `_Round_bit - static_cast(_Has_zero_tail)` will produce 1 for H (due to R being 1). const uint64_t _Has_tail_bits = _Round_bit - static_cast(_Has_zero_tail); // Finally, we can use _Should_round_up() logic with bitwise-AND and bitwise-OR, // selecting just the bit at index _Shift. const uint64_t _Should_round = ((_Round_bit & (_Has_tail_bits | _Lsb_bit)) >> _Shift) & uint64_t{1}; // This rounding technique is dedicated to the memory of Peppermint. =^..^= return (_Value >> _Shift) + _Should_round; } // Converts the floating-point value [sign] (mantissa / 2^(precision-1)) * 2^exponent into the correct form for // _FloatingType and stores the result into the _Result object. // The caller must ensure that the mantissa and exponent are correctly computed such that either: // [1] min_exponent <= exponent <= max_exponent && 2^(precision-1) <= mantissa <= 2^precision, or // [2] exponent == min_exponent && 0 < mantissa <= 2^(precision-1). // (The caller should round the mantissa before calling this function. The caller doesn't need to renormalize the // mantissa when the mantissa carries over to a higher bit after rounding up.) // This function correctly handles overflow and stores an infinity in the _Result object. // (The result overflows if and only if exponent == max_exponent && mantissa == 2^precision) template void _Assemble_floating_point_value_no_shift(const bool _Is_negative, const int32_t _Exponent, const typename _Floating_type_traits<_FloatingType>::_Uint_type _Mantissa, _FloatingType& _Result) noexcept { // The following code assembles floating-point values based on an alternative interpretation of the IEEE 754 binary // floating-point format. It is valid for all of the following cases: // [1] normal value, // [2] normal value, needs renormalization and exponent increment after rounding up the mantissa, // [3] normal value, overflows after rounding up the mantissa, // [4] subnormal value, // [5] subnormal value, becomes a normal value after rounding up the mantissa. // Examples for float: // | Case | Input | Exponent | Exponent | Exponent | Rounded | Result Bits | Result | // | | | | + Bias - 1 | Component | Mantissa | | | // | ---- | ------------- | -------- | ---------- | ---------- | --------- | ----------- | --------------- | // | [1] | 1.000000p+0 | +0 | 126 | 0x3f000000 | 0x800000 | 0x3f800000 | 0x1.000000p+0 | // | [2] | 1.ffffffp+0 | +0 | 126 | 0x3f000000 | 0x1000000 | 0x40000000 | 0x1.000000p+1 | // | [3] | 1.ffffffp+127 | +127 | 253 | 0x7e800000 | 0x1000000 | 0x7f800000 | inf | // | [4] | 0.fffffep-126 | -126 | 0 | 0x00000000 | 0x7fffff | 0x007fffff | 0x0.fffffep-126 | // | [5] | 0.ffffffp-126 | -126 | 0 | 0x00000000 | 0x800000 | 0x00800000 | 0x1.000000p-126 | using _Floating_traits = _Floating_type_traits<_FloatingType>; using _Uint_type = typename _Floating_traits::_Uint_type; _Uint_type _Sign_component = _Is_negative; _Sign_component <<= _Floating_traits::_Sign_shift; _Uint_type _Exponent_component = static_cast(_Exponent + (_Floating_traits::_Exponent_bias - 1)); _Exponent_component <<= _Floating_traits::_Exponent_shift; _Result = _Bit_cast<_FloatingType>(_Sign_component | (_Exponent_component + _Mantissa)); } // Converts the floating-point value [sign] (mantissa / 2^(precision-1)) * 2^exponent into the correct form for // _FloatingType and stores the result into the _Result object. The caller must ensure that the mantissa and exponent // are correctly computed such that either [1] the most significant bit of the mantissa is in the correct position for // the _FloatingType, or [2] the exponent has been correctly adjusted to account for the shift of the mantissa that will // be required. // This function correctly handles range errors and stores a zero or infinity in the _Result object // on underflow and overflow errors, respectively. This function correctly forms denormal numbers when required. // If the provided mantissa has more bits of precision than can be stored in the _Result object, the mantissa is // rounded to the available precision. Thus, if possible, the caller should provide a mantissa with at least one // more bit of precision than is required, to ensure that the mantissa is correctly rounded. // (The caller should not round the mantissa before calling this function.) template _NODISCARD errc _Assemble_floating_point_value(const uint64_t _Initial_mantissa, const int32_t _Initial_exponent, const bool _Is_negative, const bool _Has_zero_tail, _FloatingType& _Result) noexcept { using _Traits = _Floating_type_traits<_FloatingType>; // Assume that the number is representable as a normal value. // Compute the number of bits by which we must adjust the mantissa to shift it into the correct position, // and compute the resulting base two exponent for the normalized mantissa: const uint32_t _Initial_mantissa_bits = _Bit_scan_reverse(_Initial_mantissa); const int32_t _Normal_mantissa_shift = static_cast(_Traits::_Mantissa_bits - _Initial_mantissa_bits); const int32_t _Normal_exponent = _Initial_exponent - _Normal_mantissa_shift; if (_Normal_exponent > _Traits::_Maximum_binary_exponent) { // The exponent is too large to be represented by the floating-point type; report the overflow condition: _Assemble_floating_point_infinity(_Is_negative, _Result); return errc::result_out_of_range; // Overflow example: "1e+1000" } uint64_t _Mantissa = _Initial_mantissa; int32_t _Exponent = _Normal_exponent; errc _Error_code{}; if (_Normal_exponent < _Traits::_Minimum_binary_exponent) { // The exponent is too small to be represented by the floating-point type as a normal value, but it may be // representable as a denormal value. // The exponent of subnormal values (as defined by the mathematical model of floating-point numbers, not the // exponent field in the bit representation) is equal to the minimum exponent of normal values. _Exponent = _Traits::_Minimum_binary_exponent; // Compute the number of bits by which we need to shift the mantissa in order to form a denormal number. const int32_t _Denormal_mantissa_shift = _Initial_exponent - _Exponent; if (_Denormal_mantissa_shift < 0) { _Mantissa = _Right_shift_with_rounding(_Mantissa, static_cast(-_Denormal_mantissa_shift), _Has_zero_tail); // from_chars in MSVC STL and strto[f|d|ld] in UCRT reports underflow only when the result is zero after // rounding to the floating-point format. This behavior is different from IEEE 754 underflow exception. if (_Mantissa == 0) { _Error_code = errc::result_out_of_range; // Underflow example: "1e-1000" } // When we round the mantissa, the result may be so large that the number becomes a normal value. // For example, consider the single-precision case where the mantissa is 0x01ffffff and a right shift // of 2 is required to shift the value into position. We perform the shift in two steps: we shift by // one bit, then we shift again and round using the dropped bit. The initial shift yields 0x00ffffff. // The rounding shift then yields 0x007fffff and because the least significant bit was 1, we add 1 // to this number to round it. The final result is 0x00800000. // 0x00800000 is 24 bits, which is more than the 23 bits available in the mantissa. // Thus, we have rounded our denormal number into a normal number. // We detect this case here and re-adjust the mantissa and exponent appropriately, to form a normal number. // This is handled by _Assemble_floating_point_value_no_shift. } else { _Mantissa <<= _Denormal_mantissa_shift; } } else { if (_Normal_mantissa_shift < 0) { _Mantissa = _Right_shift_with_rounding(_Mantissa, static_cast(-_Normal_mantissa_shift), _Has_zero_tail); // When we round the mantissa, it may produce a result that is too large. In this case, // we divide the mantissa by two and increment the exponent (this does not change the value). // This is handled by _Assemble_floating_point_value_no_shift. // The increment of the exponent may have generated a value too large to be represented. // In this case, report the overflow: if (_Mantissa > _Traits::_Normal_mantissa_mask && _Exponent == _Traits::_Maximum_binary_exponent) { _Error_code = errc::result_out_of_range; // Overflow example: "1.ffffffp+127" for float // Overflow example: "1.fffffffffffff8p+1023" for double } } else { _Mantissa <<= _Normal_mantissa_shift; } } // Assemble the floating-point value from the computed components: using _Uint_type = typename _Traits::_Uint_type; _Assemble_floating_point_value_no_shift(_Is_negative, _Exponent, static_cast<_Uint_type>(_Mantissa), _Result); return _Error_code; } // This function is part of the fast track for integer floating-point strings. It takes an integer and a sign and // converts the value into its _FloatingType representation, storing the result in the _Result object. If the value // is not representable, +/-infinity is stored and overflow is reported (since this function deals with only integers, // underflow is impossible). template _NODISCARD errc _Assemble_floating_point_value_from_big_integer_flt(const _Big_integer_flt& _Integer_value, const uint32_t _Integer_bits_of_precision, const bool _Is_negative, const bool _Has_nonzero_fractional_part, _FloatingType& _Result) noexcept { using _Traits = _Floating_type_traits<_FloatingType>; constexpr int32_t _Base_exponent = _Traits::_Mantissa_bits - 1; // Very fast case: If we have 64 bits of precision or fewer, // we can just take the two low order elements from the _Big_integer_flt: if (_Integer_bits_of_precision <= 64) { constexpr int32_t _Exponent = _Base_exponent; const uint32_t _Mantissa_low = _Integer_value._Myused > 0 ? _Integer_value._Mydata[0] : 0; const uint32_t _Mantissa_high = _Integer_value._Myused > 1 ? _Integer_value._Mydata[1] : 0; const uint64_t _Mantissa = _Mantissa_low + (static_cast(_Mantissa_high) << 32); return _Assemble_floating_point_value( _Mantissa, _Exponent, _Is_negative, !_Has_nonzero_fractional_part, _Result); } const uint32_t _Top_element_bits = _Integer_bits_of_precision % 32; const uint32_t _Top_element_index = _Integer_bits_of_precision / 32; const uint32_t _Middle_element_index = _Top_element_index - 1; const uint32_t _Bottom_element_index = _Top_element_index - 2; // Pretty fast case: If the top 64 bits occupy only two elements, we can just combine those two elements: if (_Top_element_bits == 0) { const int32_t _Exponent = static_cast(_Base_exponent + _Bottom_element_index * 32); const uint64_t _Mantissa = _Integer_value._Mydata[_Bottom_element_index] + (static_cast(_Integer_value._Mydata[_Middle_element_index]) << 32); bool _Has_zero_tail = !_Has_nonzero_fractional_part; for (uint32_t _Ix = 0; _Has_zero_tail && _Ix != _Bottom_element_index; ++_Ix) { _Has_zero_tail = _Integer_value._Mydata[_Ix] == 0; } return _Assemble_floating_point_value(_Mantissa, _Exponent, _Is_negative, _Has_zero_tail, _Result); } // Not quite so fast case: The top 64 bits span three elements in the _Big_integer_flt. Assemble the three pieces: const uint32_t _Top_element_mask = (1u << _Top_element_bits) - 1; const uint32_t _Top_element_shift = 64 - _Top_element_bits; // Left const uint32_t _Middle_element_shift = _Top_element_shift - 32; // Left const uint32_t _Bottom_element_bits = 32 - _Top_element_bits; const uint32_t _Bottom_element_mask = ~_Top_element_mask; const uint32_t _Bottom_element_shift = 32 - _Bottom_element_bits; // Right const int32_t _Exponent = static_cast(_Base_exponent + _Bottom_element_index * 32 + _Top_element_bits); const uint64_t _Mantissa = (static_cast(_Integer_value._Mydata[_Top_element_index] & _Top_element_mask) << _Top_element_shift) + (static_cast(_Integer_value._Mydata[_Middle_element_index]) << _Middle_element_shift) + (static_cast(_Integer_value._Mydata[_Bottom_element_index] & _Bottom_element_mask) >> _Bottom_element_shift); bool _Has_zero_tail = !_Has_nonzero_fractional_part && (_Integer_value._Mydata[_Bottom_element_index] & _Top_element_mask) == 0; for (uint32_t _Ix = 0; _Has_zero_tail && _Ix != _Bottom_element_index; ++_Ix) { _Has_zero_tail = _Integer_value._Mydata[_Ix] == 0; } return _Assemble_floating_point_value(_Mantissa, _Exponent, _Is_negative, _Has_zero_tail, _Result); } // Accumulates the decimal digits in [_First_digit, _Last_digit) into the _Result high-precision integer. // This function assumes that no overflow will occur. inline void _Accumulate_decimal_digits_into_big_integer_flt( const uint8_t* const _First_digit, const uint8_t* const _Last_digit, _Big_integer_flt& _Result) noexcept { // We accumulate nine digit chunks, transforming the base ten string into base one billion on the fly, // allowing us to reduce the number of high-precision multiplication and addition operations by 8/9. uint32_t _Accumulator = 0; uint32_t _Accumulator_count = 0; for (const uint8_t* _It = _First_digit; _It != _Last_digit; ++_It) { if (_Accumulator_count == 9) { [[maybe_unused]] const bool _Success1 = _Multiply(_Result, 1'000'000'000); // assumes no overflow _STL_INTERNAL_CHECK(_Success1); [[maybe_unused]] const bool _Success2 = _Add(_Result, _Accumulator); // assumes no overflow _STL_INTERNAL_CHECK(_Success2); _Accumulator = 0; _Accumulator_count = 0; } _Accumulator *= 10; _Accumulator += *_It; ++_Accumulator_count; } if (_Accumulator_count != 0) { [[maybe_unused]] const bool _Success3 = _Multiply_by_power_of_ten(_Result, _Accumulator_count); // assumes no overflow _STL_INTERNAL_CHECK(_Success3); [[maybe_unused]] const bool _Success4 = _Add(_Result, _Accumulator); // assumes no overflow _STL_INTERNAL_CHECK(_Success4); } } // The core floating-point string parser for decimal strings. After a subject string is parsed and converted // into a _Floating_point_string object, if the subject string was determined to be a decimal string, // the object is passed to this function. This function converts the decimal real value to floating-point. template _NODISCARD errc _Convert_decimal_string_to_floating_type( const _Floating_point_string& _Data, _FloatingType& _Result, bool _Has_zero_tail) noexcept { using _Traits = _Floating_type_traits<_FloatingType>; // To generate an N bit mantissa we require N + 1 bits of precision. The extra bit is used to correctly round // the mantissa (if there are fewer bits than this available, then that's totally okay; // in that case we use what we have and we don't need to round). constexpr uint32_t _Required_bits_of_precision = static_cast(_Traits::_Mantissa_bits + 1); // The input is of the form 0.mantissa * 10^exponent, where 'mantissa' are the decimal digits of the mantissa // and 'exponent' is the decimal exponent. We decompose the mantissa into two parts: an integer part and a // fractional part. If the exponent is positive, then the integer part consists of the first 'exponent' digits, // or all present digits if there are fewer digits. If the exponent is zero or negative, then the integer part // is empty. In either case, the remaining digits form the fractional part of the mantissa. const uint32_t _Positive_exponent = static_cast((_STD max)(0, _Data._Myexponent)); const uint32_t _Integer_digits_present = (_STD min)(_Positive_exponent, _Data._Mymantissa_count); const uint32_t _Integer_digits_missing = _Positive_exponent - _Integer_digits_present; const uint8_t* const _Integer_first = _Data._Mymantissa; const uint8_t* const _Integer_last = _Data._Mymantissa + _Integer_digits_present; const uint8_t* const _Fractional_first = _Integer_last; const uint8_t* const _Fractional_last = _Data._Mymantissa + _Data._Mymantissa_count; const uint32_t _Fractional_digits_present = static_cast(_Fractional_last - _Fractional_first); // First, we accumulate the integer part of the mantissa into a _Big_integer_flt: _Big_integer_flt _Integer_value{}; _Accumulate_decimal_digits_into_big_integer_flt(_Integer_first, _Integer_last, _Integer_value); if (_Integer_digits_missing > 0) { if (!_Multiply_by_power_of_ten(_Integer_value, _Integer_digits_missing)) { _Assemble_floating_point_infinity(_Data._Myis_negative, _Result); return errc::result_out_of_range; // Overflow example: "1e+2000" } } // At this point, the _Integer_value contains the value of the integer part of the mantissa. If either // [1] this number has more than the required number of bits of precision or // [2] the mantissa has no fractional part, then we can assemble the result immediately: const uint32_t _Integer_bits_of_precision = _Bit_scan_reverse(_Integer_value); { const bool _Has_zero_fractional_part = _Fractional_digits_present == 0 && _Has_zero_tail; if (_Integer_bits_of_precision >= _Required_bits_of_precision || _Has_zero_fractional_part) { return _Assemble_floating_point_value_from_big_integer_flt( _Integer_value, _Integer_bits_of_precision, _Data._Myis_negative, !_Has_zero_fractional_part, _Result); } } // Otherwise, we did not get enough bits of precision from the integer part, and the mantissa has a fractional // part. We parse the fractional part of the mantissa to obtain more bits of precision. To do this, we convert // the fractional part into an actual fraction N/M, where the numerator N is computed from the digits of the // fractional part, and the denominator M is computed as the power of 10 such that N/M is equal to the value // of the fractional part of the mantissa. _Big_integer_flt _Fractional_numerator{}; _Accumulate_decimal_digits_into_big_integer_flt(_Fractional_first, _Fractional_last, _Fractional_numerator); const uint32_t _Fractional_denominator_exponent = _Data._Myexponent < 0 ? _Fractional_digits_present + static_cast(-_Data._Myexponent) : _Fractional_digits_present; _Big_integer_flt _Fractional_denominator = _Make_big_integer_flt_one(); if (!_Multiply_by_power_of_ten(_Fractional_denominator, _Fractional_denominator_exponent)) { // If there were any digits in the integer part, it is impossible to underflow (because the exponent // cannot possibly be small enough), so if we underflow here it is a true underflow and we return zero. _Assemble_floating_point_zero(_Data._Myis_negative, _Result); return errc::result_out_of_range; // Underflow example: "1e-2000" } // Because we are using only the fractional part of the mantissa here, the numerator is guaranteed to be smaller // than the denominator. We normalize the fraction such that the most significant bit of the numerator is in the // same position as the most significant bit in the denominator. This ensures that when we later shift the // numerator N bits to the left, we will produce N bits of precision. const uint32_t _Fractional_numerator_bits = _Bit_scan_reverse(_Fractional_numerator); const uint32_t _Fractional_denominator_bits = _Bit_scan_reverse(_Fractional_denominator); const uint32_t _Fractional_shift = _Fractional_denominator_bits > _Fractional_numerator_bits ? _Fractional_denominator_bits - _Fractional_numerator_bits : 0; if (_Fractional_shift > 0) { [[maybe_unused]] const bool _Shift_success1 = _Shift_left(_Fractional_numerator, _Fractional_shift); // assumes no overflow _STL_INTERNAL_CHECK(_Shift_success1); } const uint32_t _Required_fractional_bits_of_precision = _Required_bits_of_precision - _Integer_bits_of_precision; uint32_t _Remaining_bits_of_precision_required = _Required_fractional_bits_of_precision; if (_Integer_bits_of_precision > 0) { // If the fractional part of the mantissa provides no bits of precision and cannot affect rounding, // we can just take whatever bits we got from the integer part of the mantissa. This is the case for numbers // like 5.0000000000000000000001, where the significant digits of the fractional part start so far to the // right that they do not affect the floating-point representation. // If the fractional shift is exactly equal to the number of bits of precision that we require, // then no fractional bits will be part of the result, but the result may affect rounding. // This is e.g. the case for large, odd integers with a fractional part greater than or equal to .5. // Thus, we need to do the division to correctly round the result. if (_Fractional_shift > _Remaining_bits_of_precision_required) { return _Assemble_floating_point_value_from_big_integer_flt(_Integer_value, _Integer_bits_of_precision, _Data._Myis_negative, _Fractional_digits_present != 0 || !_Has_zero_tail, _Result); } _Remaining_bits_of_precision_required -= _Fractional_shift; } // If there was no integer part of the mantissa, we will need to compute the exponent from the fractional part. // The fractional exponent is the power of two by which we must multiply the fractional part to move it into the // range [1.0, 2.0). This will either be the same as the shift we computed earlier, or one greater than that shift: const uint32_t _Fractional_exponent = _Fractional_numerator < _Fractional_denominator ? _Fractional_shift + 1 : _Fractional_shift; [[maybe_unused]] const bool _Shift_success2 = _Shift_left(_Fractional_numerator, _Remaining_bits_of_precision_required); // assumes no overflow _STL_INTERNAL_CHECK(_Shift_success2); uint64_t _Fractional_mantissa = _Divide(_Fractional_numerator, _Fractional_denominator); _Has_zero_tail = _Has_zero_tail && _Fractional_numerator._Myused == 0; // We may have produced more bits of precision than were required. Check, and remove any "extra" bits: const uint32_t _Fractional_mantissa_bits = _Bit_scan_reverse(_Fractional_mantissa); if (_Fractional_mantissa_bits > _Required_fractional_bits_of_precision) { const uint32_t _Shift = _Fractional_mantissa_bits - _Required_fractional_bits_of_precision; _Has_zero_tail = _Has_zero_tail && (_Fractional_mantissa & ((1ULL << _Shift) - 1)) == 0; _Fractional_mantissa >>= _Shift; } // Compose the mantissa from the integer and fractional parts: const uint32_t _Integer_mantissa_low = _Integer_value._Myused > 0 ? _Integer_value._Mydata[0] : 0; const uint32_t _Integer_mantissa_high = _Integer_value._Myused > 1 ? _Integer_value._Mydata[1] : 0; const uint64_t _Integer_mantissa = _Integer_mantissa_low + (static_cast(_Integer_mantissa_high) << 32); const uint64_t _Complete_mantissa = (_Integer_mantissa << _Required_fractional_bits_of_precision) + _Fractional_mantissa; // Compute the final exponent: // * If the mantissa had an integer part, then the exponent is one less than the number of bits we obtained // from the integer part. (It's one less because we are converting to the form 1.11111, // with one 1 to the left of the decimal point.) // * If the mantissa had no integer part, then the exponent is the fractional exponent that we computed. // Then, in both cases, we subtract an additional one from the exponent, // to account for the fact that we've generated an extra bit of precision, for use in rounding. const int32_t _Final_exponent = _Integer_bits_of_precision > 0 ? static_cast(_Integer_bits_of_precision - 2) : -static_cast(_Fractional_exponent) - 1; return _Assemble_floating_point_value( _Complete_mantissa, _Final_exponent, _Data._Myis_negative, _Has_zero_tail, _Result); } template _NODISCARD errc _Convert_hexadecimal_string_to_floating_type( const _Floating_point_string& _Data, _FloatingType& _Result, bool _Has_zero_tail) noexcept { using _Traits = _Floating_type_traits<_FloatingType>; uint64_t _Mantissa = 0; int32_t _Exponent = _Data._Myexponent + _Traits::_Mantissa_bits - 1; // Accumulate bits into the mantissa buffer const uint8_t* const _Mantissa_last = _Data._Mymantissa + _Data._Mymantissa_count; const uint8_t* _Mantissa_it = _Data._Mymantissa; while (_Mantissa_it != _Mantissa_last && _Mantissa <= _Traits::_Normal_mantissa_mask) { _Mantissa *= 16; _Mantissa += *_Mantissa_it++; _Exponent -= 4; // The exponent is in binary; log2(16) == 4 } while (_Has_zero_tail && _Mantissa_it != _Mantissa_last) { _Has_zero_tail = *_Mantissa_it++ == 0; } return _Assemble_floating_point_value(_Mantissa, _Exponent, _Data._Myis_negative, _Has_zero_tail, _Result); } // ^^^^^^^^^^ DERIVED FROM corecrt_internal_strtox.h ^^^^^^^^^^ // C11 6.4.2.1 "General" // digit: one of // 0 1 2 3 4 5 6 7 8 9 // C11 6.4.4.1 "Integer constants" // hexadecimal-digit: one of // 0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F // C11 6.4.4.2 "Floating constants" (without floating-suffix, hexadecimal-prefix) // amended by C11 7.22.1.3 "The strtod, strtof, and strtold functions" making exponents optional // LWG-3080: "the sign '+' may only appear in the exponent part" // digit-sequence: // digit // digit-sequence digit // hexadecimal-digit-sequence: // hexadecimal-digit // hexadecimal-digit-sequence hexadecimal-digit // sign: one of // + - // decimal-floating-constant: // fractional-constant exponent-part[opt] // digit-sequence exponent-part[opt] // fractional-constant: // digit-sequence[opt] . digit-sequence // digit-sequence . // exponent-part: // e sign[opt] digit-sequence // E sign[opt] digit-sequence // hexadecimal-floating-constant: // hexadecimal-fractional-constant binary-exponent-part[opt] // hexadecimal-digit-sequence binary-exponent-part[opt] // hexadecimal-fractional-constant: // hexadecimal-digit-sequence[opt] . hexadecimal-digit-sequence // hexadecimal-digit-sequence . // binary-exponent-part: // p sign[opt] digit-sequence // P sign[opt] digit-sequence template _NODISCARD from_chars_result _Ordinary_floating_from_chars(const char* const _First, const char* const _Last, _Floating& _Value, const chars_format _Fmt, const bool _Minus_sign, const char* _Next) noexcept { // vvvvvvvvvv DERIVED FROM corecrt_internal_strtox.h WITH SIGNIFICANT MODIFICATIONS vvvvvvvvvv const bool _Is_hexadecimal = _Fmt == chars_format::hex; const int _Base{_Is_hexadecimal ? 16 : 10}; // PERFORMANCE NOTE: _Fp_string is intentionally left uninitialized. Zero-initialization is quite expensive // and is unnecessary. The benefit of not zero-initializing is greatest for short inputs. _Floating_point_string _Fp_string; // Record the optional minus sign: _Fp_string._Myis_negative = _Minus_sign; uint8_t* const _Mantissa_first = _Fp_string._Mymantissa; uint8_t* const _Mantissa_last = _STD end(_Fp_string._Mymantissa); uint8_t* _Mantissa_it = _Mantissa_first; // [_Whole_begin, _Whole_end) will contain 0 or more digits/hexits const char* const _Whole_begin = _Next; // Skip past any leading zeroes in the mantissa: for (; _Next != _Last && *_Next == '0'; ++_Next) { } const char* const _Leading_zero_end = _Next; bool _Has_zero_tail = true; // Scan the integer part of the mantissa: for (; _Next != _Last; ++_Next) { const unsigned char _Digit_value = _Digit_from_char(*_Next); if (_Digit_value >= _Base) { break; } if (_Mantissa_it != _Mantissa_last) { *_Mantissa_it++ = _Digit_value; } else { _Has_zero_tail = _Has_zero_tail && _Digit_value == 0; } } const char* const _Whole_end = _Next; // The exponent adjustment holds the number of digits in the mantissa buffer that appeared before the radix point. // It can be negative, and leading zeroes in the integer part are ignored. Examples: // For "03333.111", it is 4. // For "00000.111", it is 0. // For "00000.001", it is -2. ptrdiff_t _Exponent_adjustment = _Whole_end - _Leading_zero_end; // [_Whole_end, _Dot_end) will contain 0 or 1 '.' characters if (_Next != _Last && *_Next == '.') { ++_Next; } const char* const _Dot_end = _Next; // [_Dot_end, _Frac_end) will contain 0 or more digits/hexits // If we haven't yet scanned any nonzero digits, continue skipping over zeroes, // updating the exponent adjustment to account for the zeroes we are skipping: if (_Exponent_adjustment == 0) { for (; _Next != _Last && *_Next == '0'; ++_Next) { } _Exponent_adjustment = _Dot_end - _Next; } // Scan the fractional part of the mantissa: for (; _Next != _Last; ++_Next) { const unsigned char _Digit_value = _Digit_from_char(*_Next); if (_Digit_value >= _Base) { break; } if (_Mantissa_it != _Mantissa_last) { *_Mantissa_it++ = _Digit_value; } else { _Has_zero_tail = _Has_zero_tail && _Digit_value == 0; } } const char* const _Frac_end = _Next; // We must have at least 1 digit/hexit if (_Whole_begin == _Whole_end && _Dot_end == _Frac_end) { return {_First, errc::invalid_argument}; } const char _Exponent_prefix{_Is_hexadecimal ? 'p' : 'e'}; bool _Exponent_is_negative = false; bool _Exp_abs_too_large = false; ptrdiff_t _Exponent = 0; constexpr int _Maximum_temporary_decimal_exponent = 5200; constexpr int _Minimum_temporary_decimal_exponent = -5200; if (_Fmt != chars_format::fixed // N4950 [charconv.from.chars]/6.3 // "if fmt has chars_format::fixed set but not chars_format::scientific, // the optional exponent part shall not appear" && _Next != _Last && (static_cast(*_Next) | 0x20) == _Exponent_prefix) { // found exponent prefix const char* _Unread = _Next + 1; if (_Unread != _Last && (*_Unread == '+' || *_Unread == '-')) { // found optional sign _Exponent_is_negative = *_Unread == '-'; ++_Unread; } while (_Unread != _Last) { const unsigned char _Digit_value = _Digit_from_char(*_Unread); if (_Digit_value >= 10) { break; } // found decimal digit if (_Exponent < PTRDIFF_MAX / 10 || (_Exponent == PTRDIFF_MAX / 10 && _Digit_value <= PTRDIFF_MAX % 10)) { _Exponent = _Exponent * 10 + _Digit_value; } else { _Exp_abs_too_large = true; } ++_Unread; _Next = _Unread; // consume exponent-part/binary-exponent-part } if (_Exponent_is_negative) { _Exponent = -_Exponent; } } // [_Frac_end, _Exponent_end) will either be empty or contain "[EPep] sign[opt] digit-sequence" const char* const _Exponent_end = _Next; if (_Fmt == chars_format::scientific && _Frac_end == _Exponent_end) { // N4950 [charconv.from.chars]/6.2 // "if fmt has chars_format::scientific set but not chars_format::fixed, // the otherwise optional exponent part shall appear" return {_First, errc::invalid_argument}; } // Remove trailing zeroes from mantissa: while (_Mantissa_it != _Mantissa_first && *(_Mantissa_it - 1) == 0) { --_Mantissa_it; } // If the mantissa buffer is empty, the mantissa was composed of all zeroes (so the mantissa is 0). // All such strings have the value zero, regardless of what the exponent is (because 0 * b^n == 0 for all b and n). // We can return now. Note that we defer this check until after we scan the exponent, so that we can correctly // update _Next to point past the end of the exponent. if (_Mantissa_it == _Mantissa_first) { _STL_INTERNAL_CHECK(_Has_zero_tail); _Assemble_floating_point_zero(_Fp_string._Myis_negative, _Value); return {_Next, errc{}}; } // Handle exponent of an overly large absolute value. if (_Exp_abs_too_large) { if (_Exponent > 0) { _Assemble_floating_point_infinity(_Fp_string._Myis_negative, _Value); return {_Next, errc::result_out_of_range}; } else { _Assemble_floating_point_zero(_Fp_string._Myis_negative, _Value); return {_Next, errc::result_out_of_range}; } } // Adjust _Exponent and _Exponent_adjustment when they have different signedness to avoid overflow. if (_Exponent > 0 && _Exponent_adjustment < 0) { if (_Is_hexadecimal) { const ptrdiff_t _Further_adjustment = (_STD max)(-((_Exponent - 1) / 4 + 1), _Exponent_adjustment); _Exponent += _Further_adjustment * 4; _Exponent_adjustment -= _Further_adjustment; } else { const ptrdiff_t _Further_adjustment = (_STD max)(-_Exponent, _Exponent_adjustment); _Exponent += _Further_adjustment; _Exponent_adjustment -= _Further_adjustment; } } else if (_Exponent < 0 && _Exponent_adjustment > 0) { if (_Is_hexadecimal) { const ptrdiff_t _Further_adjustment = (_STD min)((-_Exponent - 1) / 4 + 1, _Exponent_adjustment); _Exponent += _Further_adjustment * 4; _Exponent_adjustment -= _Further_adjustment; } else { const ptrdiff_t _Further_adjustment = (_STD min)(-_Exponent, _Exponent_adjustment); _Exponent += _Further_adjustment; _Exponent_adjustment -= _Further_adjustment; } } // In hexadecimal floating constants, the exponent is a base 2 exponent. The exponent adjustment computed during // parsing has the same base as the mantissa (so, 16 for hexadecimal floating constants). // We therefore need to scale the base 16 multiplier to base 2 by multiplying by log2(16): const int _Exponent_adjustment_multiplier{_Is_hexadecimal ? 4 : 1}; // And then _Exponent and _Exponent_adjustment are either both non-negative or both non-positive. // So we can detect out-of-range cases directly. if (_Exponent > _Maximum_temporary_decimal_exponent || _Exponent_adjustment > _Maximum_temporary_decimal_exponent / _Exponent_adjustment_multiplier) { _Assemble_floating_point_infinity(_Fp_string._Myis_negative, _Value); return {_Next, errc::result_out_of_range}; // Overflow example: "1e+9999" } if (_Exponent < _Minimum_temporary_decimal_exponent || _Exponent_adjustment < _Minimum_temporary_decimal_exponent / _Exponent_adjustment_multiplier) { _Assemble_floating_point_zero(_Fp_string._Myis_negative, _Value); return {_Next, errc::result_out_of_range}; // Underflow example: "1e-9999" } _Exponent += _Exponent_adjustment * _Exponent_adjustment_multiplier; // Verify that after adjustment the exponent isn't wildly out of range (if it is, it isn't representable // in any supported floating-point format). if (_Exponent > _Maximum_temporary_decimal_exponent) { _Assemble_floating_point_infinity(_Fp_string._Myis_negative, _Value); return {_Next, errc::result_out_of_range}; // Overflow example: "10e+5199" } if (_Exponent < _Minimum_temporary_decimal_exponent) { _Assemble_floating_point_zero(_Fp_string._Myis_negative, _Value); return {_Next, errc::result_out_of_range}; // Underflow example: "0.001e-5199" } _Fp_string._Myexponent = static_cast(_Exponent); _Fp_string._Mymantissa_count = static_cast(_Mantissa_it - _Mantissa_first); if (_Is_hexadecimal) { const errc _Ec = _Convert_hexadecimal_string_to_floating_type(_Fp_string, _Value, _Has_zero_tail); return {_Next, _Ec}; } else { const errc _Ec = _Convert_decimal_string_to_floating_type(_Fp_string, _Value, _Has_zero_tail); return {_Next, _Ec}; } // ^^^^^^^^^^ DERIVED FROM corecrt_internal_strtox.h WITH SIGNIFICANT MODIFICATIONS ^^^^^^^^^^ } _NODISCARD inline bool _Starts_with_case_insensitive( const char* _First, const char* const _Last, const char* _Lowercase) noexcept { // pre: _Lowercase contains only ['a', 'z'] and is null-terminated for (; _First != _Last && *_Lowercase != '\0'; ++_First, ++_Lowercase) { if ((static_cast(*_First) | 0x20) != *_Lowercase) { return false; } } return *_Lowercase == '\0'; } template _NODISCARD from_chars_result _Infinity_from_chars(const char* const _First, const char* const _Last, _Floating& _Value, const bool _Minus_sign, const char* _Next) noexcept { // pre: _Next points at 'i' (case-insensitively) if (!_Starts_with_case_insensitive(_Next + 1, _Last, "nf")) { // definitely invalid return {_First, errc::invalid_argument}; } // definitely inf _Next += 3; if (_Starts_with_case_insensitive(_Next, _Last, "inity")) { // definitely infinity _Next += 5; } _Assemble_floating_point_infinity(_Minus_sign, _Value); return {_Next, errc{}}; } template _NODISCARD from_chars_result _Nan_from_chars(const char* const _First, const char* const _Last, _Floating& _Value, bool _Minus_sign, const char* _Next) noexcept { // pre: _Next points at 'n' (case-insensitively) if (!_Starts_with_case_insensitive(_Next + 1, _Last, "an")) { // definitely invalid return {_First, errc::invalid_argument}; } // definitely nan _Next += 3; bool _Quiet = true; if (_Next != _Last && *_Next == '(') { // possibly nan(n-char-sequence[opt]) const char* const _Seq_begin = _Next + 1; for (const char* _Temp = _Seq_begin; _Temp != _Last; ++_Temp) { if (*_Temp == ')') { // definitely nan(n-char-sequence[opt]) _Next = _Temp + 1; if (_Temp - _Seq_begin == 3 && _Starts_with_case_insensitive(_Seq_begin, _Temp, "ind")) { // definitely nan(ind) // The UCRT considers indeterminate NaN to be negative quiet NaN with no payload bits set. // It parses "nan(ind)" and "-nan(ind)" identically. _Minus_sign = true; } else if (_Temp - _Seq_begin == 4 && _Starts_with_case_insensitive(_Seq_begin, _Temp, "snan")) { // definitely nan(snan) _Quiet = false; } break; } else if (*_Temp == '_' || ('0' <= *_Temp && *_Temp <= '9') || ('A' <= *_Temp && *_Temp <= 'Z') || ('a' <= *_Temp && *_Temp <= 'z')) { // possibly nan(n-char-sequence[opt]), keep going } else { // definitely nan, not nan(n-char-sequence[opt]) break; } } } // Intentional behavior difference between the UCRT and the STL: // strtod()/strtof() parse plain "nan" as being a quiet NaN with all payload bits set. // numeric_limits::quiet_NaN() returns a quiet NaN with no payload bits set. // This implementation of from_chars() has chosen to be consistent with numeric_limits. using _Traits = _Floating_type_traits<_Floating>; using _Uint_type = typename _Traits::_Uint_type; _Uint_type _Uint_value = _Traits::_Shifted_exponent_mask; if (_Minus_sign) { _Uint_value |= _Traits::_Shifted_sign_mask; } if (_Quiet) { _Uint_value |= _Traits::_Special_nan_mantissa_mask; } else { _Uint_value |= 1; } _Value = _Bit_cast<_Floating>(_Uint_value); return {_Next, errc{}}; } template _NODISCARD from_chars_result _Floating_from_chars( const char* const _First, const char* const _Last, _Floating& _Value, const chars_format _Fmt) noexcept { _Adl_verify_range(_First, _Last); _STL_ASSERT(_Fmt == chars_format::general || _Fmt == chars_format::scientific || _Fmt == chars_format::fixed || _Fmt == chars_format::hex, "invalid format in from_chars()"); bool _Minus_sign = false; const char* _Next = _First; if (_Next == _Last) { return {_First, errc::invalid_argument}; } if (*_Next == '-') { _Minus_sign = true; ++_Next; if (_Next == _Last) { return {_First, errc::invalid_argument}; } } // Distinguish ordinary numbers versus inf/nan with a single test. // ordinary numbers start with ['.'] ['0', '9'] ['A', 'F'] ['a', 'f'] // inf/nan start with ['I'] ['N'] ['i'] ['n'] // All other starting characters are invalid. // Setting the 0x20 bit folds these ranges in a useful manner. // ordinary (and some invalid) starting characters are folded to ['.'] ['0', '9'] ['a', 'f'] // inf/nan starting characters are folded to ['i'] ['n'] // These are ordered: ['.'] ['0', '9'] ['a', 'f'] < ['i'] ['n'] // Note that invalid starting characters end up on both sides of this test. const unsigned char _Folded_start = static_cast(static_cast(*_Next) | 0x20); if (_Folded_start <= 'f') { // possibly an ordinary number return _Ordinary_floating_from_chars(_First, _Last, _Value, _Fmt, _Minus_sign, _Next); } else if (_Folded_start == 'i') { // possibly inf return _Infinity_from_chars(_First, _Last, _Value, _Minus_sign, _Next); } else if (_Folded_start == 'n') { // possibly nan return _Nan_from_chars(_First, _Last, _Value, _Minus_sign, _Next); } else { // definitely invalid return {_First, errc::invalid_argument}; } } _EXPORT_STD inline from_chars_result from_chars(const char* const _First, const char* const _Last, float& _Value, const chars_format _Fmt = chars_format::general) noexcept /* strengthened */ { return _Floating_from_chars(_First, _Last, _Value, _Fmt); } _EXPORT_STD inline from_chars_result from_chars(const char* const _First, const char* const _Last, double& _Value, const chars_format _Fmt = chars_format::general) noexcept /* strengthened */ { return _Floating_from_chars(_First, _Last, _Value, _Fmt); } _EXPORT_STD inline from_chars_result from_chars(const char* const _First, const char* const _Last, long double& _Value, const chars_format _Fmt = chars_format::general) noexcept /* strengthened */ { double _Dbl; // intentionally default-init const from_chars_result _Result = _Floating_from_chars(_First, _Last, _Dbl, _Fmt); if (_Result.ec == errc{}) { _Value = _Dbl; } return _Result; } template _NODISCARD to_chars_result _Floating_to_chars_hex_precision( char* _First, char* const _Last, const _Floating _Value, int _Precision) noexcept { // * Determine the effective _Precision. // * Later, we'll decrement _Precision when printing each hexit after the decimal point. // The hexits after the decimal point correspond to the explicitly stored fraction bits. // float explicitly stores 23 fraction bits. 23 / 4 == 5.75, which is 6 hexits. // double explicitly stores 52 fraction bits. 52 / 4 == 13, which is 13 hexits. constexpr int _Full_precision = is_same_v<_Floating, float> ? 6 : 13; constexpr int _Adjusted_explicit_bits = _Full_precision * 4; if (_Precision < 0) { // C11 7.21.6.1 "The fprintf function"/5: "A negative precision argument is taken as if the precision were // omitted." /8: "if the precision is missing and FLT_RADIX is a power of 2, then the precision is sufficient // for an exact representation of the value" _Precision = _Full_precision; } // * Extract the _Ieee_mantissa and _Ieee_exponent. using _Traits = _Floating_type_traits<_Floating>; using _Uint_type = typename _Traits::_Uint_type; const _Uint_type _Uint_value = _Bit_cast<_Uint_type>(_Value); const _Uint_type _Ieee_mantissa = _Uint_value & _Traits::_Denormal_mantissa_mask; const int32_t _Ieee_exponent = static_cast(_Uint_value >> _Traits::_Exponent_shift); // * Prepare the _Adjusted_mantissa. This is aligned to hexit boundaries, // * with the implicit bit restored (0 for zero values and subnormal values, 1 for normal values). // * Also calculate the _Unbiased_exponent. This unifies the processing of zero, subnormal, and normal values. _Uint_type _Adjusted_mantissa; if constexpr (is_same_v<_Floating, float>) { _Adjusted_mantissa = _Ieee_mantissa << 1; // align to hexit boundary (23 isn't divisible by 4) } else { _Adjusted_mantissa = _Ieee_mantissa; // already aligned (52 is divisible by 4) } int32_t _Unbiased_exponent; if (_Ieee_exponent == 0) { // zero or subnormal // implicit bit is 0 if (_Ieee_mantissa == 0) { // zero // C11 7.21.6.1 "The fprintf function"/8: "If the value is zero, the exponent is zero." _Unbiased_exponent = 0; } else { // subnormal _Unbiased_exponent = 1 - _Traits::_Exponent_bias; } } else { // normal _Adjusted_mantissa |= _Uint_type{1} << _Adjusted_explicit_bits; // implicit bit is 1 _Unbiased_exponent = _Ieee_exponent - _Traits::_Exponent_bias; } // _Unbiased_exponent is within [-126, 127] for float, [-1022, 1023] for double. // * Decompose _Unbiased_exponent into _Sign_character and _Absolute_exponent. char _Sign_character; uint32_t _Absolute_exponent; if (_Unbiased_exponent < 0) { _Sign_character = '-'; _Absolute_exponent = static_cast(-_Unbiased_exponent); } else { _Sign_character = '+'; _Absolute_exponent = static_cast(_Unbiased_exponent); } // _Absolute_exponent is within [0, 127] for float, [0, 1023] for double. // * Perform a single bounds check. { int32_t _Exponent_length; if (_Absolute_exponent < 10) { _Exponent_length = 1; } else if (_Absolute_exponent < 100) { _Exponent_length = 2; } else if constexpr (is_same_v<_Floating, float>) { _Exponent_length = 3; } else if (_Absolute_exponent < 1000) { _Exponent_length = 3; } else { _Exponent_length = 4; } // _Precision might be enormous; avoid integer overflow by testing it separately. ptrdiff_t _Buffer_size = _Last - _First; if (_Buffer_size < _Precision) { return {_Last, errc::value_too_large}; } _Buffer_size -= _Precision; const int32_t _Length_excluding_precision = 1 // leading hexit + static_cast(_Precision > 0) // possible decimal point // excluding `+ _Precision`, hexits after decimal point + 2 // "p+" or "p-" + _Exponent_length; // exponent if (_Buffer_size < _Length_excluding_precision) { return {_Last, errc::value_too_large}; } } // * Perform rounding when we've been asked to omit hexits. if (_Precision < _Full_precision) { // _Precision is within [0, 5] for float, [0, 12] for double. // _Dropped_bits is within [4, 24] for float, [4, 52] for double. const int _Dropped_bits = (_Full_precision - _Precision) * 4; // Perform rounding by adding an appropriately-shifted bit. // This can propagate carries all the way into the leading hexit. Examples: // "0.ff9" rounded to a precision of 2 is "1.00". // "1.ff9" rounded to a precision of 2 is "2.00". // Note that the leading hexit participates in the rounding decision. Examples: // "0.8" rounded to a precision of 0 is "0". // "1.8" rounded to a precision of 0 is "2". // Reference implementation with suboptimal codegen: // const bool _Lsb_bit = (_Adjusted_mantissa & (_Uint_type{1} << _Dropped_bits)) != 0; // const bool _Round_bit = (_Adjusted_mantissa & (_Uint_type{1} << (_Dropped_bits - 1))) != 0; // const bool _Has_tail_bits = (_Adjusted_mantissa & ((_Uint_type{1} << (_Dropped_bits - 1)) - 1)) != 0; // const bool _Should_round = _Should_round_up(_Lsb_bit, _Round_bit, _Has_tail_bits); // _Adjusted_mantissa += _Uint_type{_Should_round} << _Dropped_bits; // Example for optimized implementation: Let _Dropped_bits be 8. // Bit index: ...[8]76543210 // _Adjusted_mantissa: ...[L]RTTTTTTT (not depicting known details, like hexit alignment) // By focusing on the bit at index _Dropped_bits, we can avoid unnecessary branching and shifting. // Bit index: ...[8]76543210 // _Lsb_bit: ...[L]RTTTTTTT const _Uint_type _Lsb_bit = _Adjusted_mantissa; // Bit index: ...9[8]76543210 // _Round_bit: ...L[R]TTTTTTT0 const _Uint_type _Round_bit = _Adjusted_mantissa << 1; // We can detect (without branching) whether any of the trailing bits are set. // Due to _Should_round below, this computation will be used if and only if R is 1, so we can assume that here. // Bit index: ...9[8]76543210 // _Round_bit: ...L[1]TTTTTTT0 // _Has_tail_bits: ....[H]........ // If all of the trailing bits T are 0, then `_Round_bit - 1` will produce 0 for H (due to R being 1). // If any of the trailing bits T are 1, then `_Round_bit - 1` will produce 1 for H (due to R being 1). const _Uint_type _Has_tail_bits = _Round_bit - 1; // Finally, we can use _Should_round_up() logic with bitwise-AND and bitwise-OR, // selecting just the bit at index _Dropped_bits. This is the appropriately-shifted bit that we want. const _Uint_type _Should_round = _Round_bit & (_Has_tail_bits | _Lsb_bit) & (_Uint_type{1} << _Dropped_bits); // This rounding technique is dedicated to the memory of Peppermint. =^..^= _Adjusted_mantissa += _Should_round; } // * Print the leading hexit, then mask it away. { const uint32_t _Nibble = static_cast(_Adjusted_mantissa >> _Adjusted_explicit_bits); _STL_INTERNAL_CHECK(_Nibble < 3); const char _Leading_hexit = static_cast('0' + _Nibble); *_First++ = _Leading_hexit; constexpr _Uint_type _Mask = (_Uint_type{1} << _Adjusted_explicit_bits) - 1; _Adjusted_mantissa &= _Mask; } // * Print the decimal point and trailing hexits. // C11 7.21.6.1 "The fprintf function"/8: // "if the precision is zero and the # flag is not specified, no decimal-point character appears." if (_Precision > 0) { *_First++ = '.'; int32_t _Number_of_bits_remaining = _Adjusted_explicit_bits; // 24 for float, 52 for double for (;;) { _STL_INTERNAL_CHECK(_Number_of_bits_remaining >= 4); _STL_INTERNAL_CHECK(_Number_of_bits_remaining % 4 == 0); _Number_of_bits_remaining -= 4; const uint32_t _Nibble = static_cast(_Adjusted_mantissa >> _Number_of_bits_remaining); _STL_INTERNAL_CHECK(_Nibble < 16); const char _Hexit = _Charconv_digits[_Nibble]; *_First++ = _Hexit; // _Precision is the number of hexits that still need to be printed. --_Precision; if (_Precision == 0) { break; // We're completely done with this phase. } // Otherwise, we need to keep printing hexits. if (_Number_of_bits_remaining == 0) { // We've finished printing _Adjusted_mantissa, so all remaining hexits are '0'. _CSTD memset(_First, '0', static_cast(_Precision)); _First += _Precision; break; } // Mask away the hexit that we just printed, then keep looping. // (We skip this when breaking out of the loop above, because _Adjusted_mantissa isn't used later.) const _Uint_type _Mask = (_Uint_type{1} << _Number_of_bits_remaining) - 1; _Adjusted_mantissa &= _Mask; } } // * Print the exponent. // C11 7.21.6.1 "The fprintf function"/8: "The exponent always contains at least one digit, and only as many more // digits as necessary to represent the decimal exponent of 2." // Performance note: We should take advantage of the known ranges of possible exponents. *_First++ = 'p'; *_First++ = _Sign_character; // We've already printed '-' if necessary, so uint32_t _Absolute_exponent avoids testing that again. return _STD to_chars(_First, _Last, _Absolute_exponent); } template _NODISCARD to_chars_result _Floating_to_chars_hex_shortest( char* _First, char* const _Last, const _Floating _Value) noexcept { // This prints "1.728p+0" instead of "2.e5p-1". // This prints "0.000002p-126" instead of "1p-149" for float. // This prints "0.0000000000001p-1022" instead of "1p-1074" for double. // This prioritizes being consistent with printf's de facto behavior (and hex-precision's behavior) // over minimizing the number of characters printed. using _Traits = _Floating_type_traits<_Floating>; using _Uint_type = typename _Traits::_Uint_type; const _Uint_type _Uint_value = _Bit_cast<_Uint_type>(_Value); if (_Uint_value == 0) { // zero detected; write "0p+0" and return // C11 7.21.6.1 "The fprintf function"/8: "If the value is zero, the exponent is zero." // Special-casing zero is necessary because of the exponent. const char* const _Str = "0p+0"; constexpr size_t _Len = 4; if (_Last - _First < static_cast(_Len)) { return {_Last, errc::value_too_large}; } _CSTD memcpy(_First, _Str, _Len); return {_First + _Len, errc{}}; } const _Uint_type _Ieee_mantissa = _Uint_value & _Traits::_Denormal_mantissa_mask; const int32_t _Ieee_exponent = static_cast(_Uint_value >> _Traits::_Exponent_shift); char _Leading_hexit; // implicit bit int32_t _Unbiased_exponent; if (_Ieee_exponent == 0) { // subnormal _Leading_hexit = '0'; _Unbiased_exponent = 1 - _Traits::_Exponent_bias; } else { // normal _Leading_hexit = '1'; _Unbiased_exponent = _Ieee_exponent - _Traits::_Exponent_bias; } // Performance note: Consider avoiding per-character bounds checking when there's plenty of space. if (_First == _Last) { return {_Last, errc::value_too_large}; } *_First++ = _Leading_hexit; if (_Ieee_mantissa == 0) { // The fraction bits are all 0. Trim them away, including the decimal point. } else { if (_First == _Last) { return {_Last, errc::value_too_large}; } *_First++ = '.'; // The hexits after the decimal point correspond to the explicitly stored fraction bits. // float explicitly stores 23 fraction bits. 23 / 4 == 5.75, so we'll print at most 6 hexits. // double explicitly stores 52 fraction bits. 52 / 4 == 13, so we'll print at most 13 hexits. _Uint_type _Adjusted_mantissa; int32_t _Number_of_bits_remaining; if constexpr (is_same_v<_Floating, float>) { _Adjusted_mantissa = _Ieee_mantissa << 1; // align to hexit boundary (23 isn't divisible by 4) _Number_of_bits_remaining = 24; // 23 fraction bits + 1 alignment bit } else { _Adjusted_mantissa = _Ieee_mantissa; // already aligned (52 is divisible by 4) _Number_of_bits_remaining = 52; // 52 fraction bits } // do-while: The condition _Adjusted_mantissa != 0 is initially true - we have nonzero fraction bits and we've // printed the decimal point. Each iteration, we print a hexit, mask it away, and keep looping if we still have // nonzero fraction bits. If there would be trailing '0' hexits, this trims them. If there wouldn't be trailing // '0' hexits, the same condition works (as we print the final hexit and mask it away); we don't need to test // _Number_of_bits_remaining. do { _STL_INTERNAL_CHECK(_Number_of_bits_remaining >= 4); _STL_INTERNAL_CHECK(_Number_of_bits_remaining % 4 == 0); _Number_of_bits_remaining -= 4; const uint32_t _Nibble = static_cast(_Adjusted_mantissa >> _Number_of_bits_remaining); _STL_INTERNAL_CHECK(_Nibble < 16); const char _Hexit = _Charconv_digits[_Nibble]; if (_First == _Last) { return {_Last, errc::value_too_large}; } *_First++ = _Hexit; const _Uint_type _Mask = (_Uint_type{1} << _Number_of_bits_remaining) - 1; _Adjusted_mantissa &= _Mask; } while (_Adjusted_mantissa != 0); } // C11 7.21.6.1 "The fprintf function"/8: "The exponent always contains at least one digit, and only as many more // digits as necessary to represent the decimal exponent of 2." // Performance note: We should take advantage of the known ranges of possible exponents. // float: _Unbiased_exponent is within [-126, 127]. // double: _Unbiased_exponent is within [-1022, 1023]. if (_Last - _First < 2) { return {_Last, errc::value_too_large}; } *_First++ = 'p'; if (_Unbiased_exponent < 0) { *_First++ = '-'; _Unbiased_exponent = -_Unbiased_exponent; } else { *_First++ = '+'; } // We've already printed '-' if necessary, so static_cast avoids testing that again. return _STD to_chars(_First, _Last, static_cast(_Unbiased_exponent)); } template _NODISCARD inline to_chars_result _Floating_to_chars_general_precision( char* _First, char* const _Last, const _Floating _Value, int _Precision) noexcept { using _Traits = _Floating_type_traits<_Floating>; using _Uint_type = typename _Traits::_Uint_type; const _Uint_type _Uint_value = _Bit_cast<_Uint_type>(_Value); if (_Uint_value == 0) { // zero detected; write "0" and return; _Precision is irrelevant due to zero-trimming if (_First == _Last) { return {_Last, errc::value_too_large}; } *_First++ = '0'; return {_First, errc{}}; } // C11 7.21.6.1 "The fprintf function"/5: // "A negative precision argument is taken as if the precision were omitted." // /8: "g,G [...] Let P equal the precision if nonzero, 6 if the precision is omitted, // or 1 if the precision is zero." // Performance note: It's possible to rewrite this for branchless codegen, // but profiling will be necessary to determine whether that's faster. if (_Precision < 0) { _Precision = 6; } else if (_Precision == 0) { _Precision = 1; } else if (_Precision < 1'000'000) { // _Precision is ok. } else { // Avoid integer overflow. // Due to general notation's zero-trimming behavior, we can simply clamp _Precision. // This is further clamped below. _Precision = 1'000'000; } // _Precision is now the Standard's P. // /8: "Then, if a conversion with style E would have an exponent of X: // - if P > X >= -4, the conversion is with style f (or F) and precision P - (X + 1). // - otherwise, the conversion is with style e (or E) and precision P - 1." // /8: "Finally, [...] any trailing zeros are removed from the fractional portion of the result // and the decimal-point character is removed if there is no fractional portion remaining." using _Tables = _General_precision_tables_2<_Floating>; const _Uint_type* _Table_begin; const _Uint_type* _Table_end; if (_Precision <= _Tables::_Max_special_P) { _Table_begin = _Tables::_Special_X_table + (_Precision - 1) * (_Precision + 10) / 2; _Table_end = _Table_begin + _Precision + 5; } else { _Table_begin = _Tables::_Ordinary_X_table; _Table_end = _Table_begin + (_STD min)(_Precision, _Tables::_Max_P) + 5; } // Profiling indicates that linear search is faster than binary search for small tables. // Performance note: lambda captures may have a small performance cost. const _Uint_type* const _Table_lower_bound = [=] { if constexpr (!is_same_v<_Floating, float>) { if (_Precision > 155) { // threshold determined via profiling return _STD lower_bound(_Table_begin, _Table_end, _Uint_value, less{}); } } return _STD find_if(_Table_begin, _Table_end, [=](const _Uint_type _Elem) { return _Uint_value <= _Elem; }); }(); const ptrdiff_t _Table_index = _Table_lower_bound - _Table_begin; const int _Scientific_exponent_X = static_cast(_Table_index - 5); const bool _Use_fixed_notation = _Precision > _Scientific_exponent_X && _Scientific_exponent_X >= -4; // Performance note: it might (or might not) be faster to modify Ryu Printf to perform zero-trimming. // Such modifications would involve a fairly complicated state machine (notably, both '0' and '9' digits would // need to be buffered, due to rounding), and that would have performance costs due to increased branching. // Here, we're using a simpler approach: writing into a local buffer, manually zero-trimming, and then copying into // the output range. The necessary buffer size is reasonably small, the zero-trimming logic is simple and fast, // and the final copying is also fast. constexpr int _Max_output_length = is_same_v<_Floating, float> ? 117 : 773; // cases: 0x1.fffffep-126f and 0x1.fffffffffffffp-1022 constexpr int _Max_fixed_precision = is_same_v<_Floating, float> ? 37 : 66; // cases: 0x1.fffffep-14f and 0x1.fffffffffffffp-14 constexpr int _Max_scientific_precision = is_same_v<_Floating, float> ? 111 : 766; // cases: 0x1.fffffep-126f and 0x1.fffffffffffffp-1022 // Note that _Max_output_length is determined by scientific notation and is more than enough for fixed notation. // 0x1.fffffep+127f is 39 digits, plus 1 for '.', plus _Max_fixed_precision for '0' digits, equals 77. // 0x1.fffffffffffffp+1023 is 309 digits, plus 1 for '.', plus _Max_fixed_precision for '0' digits, equals 376. char _Buffer[_Max_output_length]; const char* const _Significand_first = _Buffer; // e.g. "1.234" const char* _Significand_last = nullptr; const char* _Exponent_first = nullptr; // e.g. "e-05" const char* _Exponent_last = nullptr; int _Effective_precision; // number of digits printed after the decimal point, before trimming // Write into the local buffer. // Clamping _Effective_precision allows _Buffer to be as small as possible, and increases efficiency. if (_Use_fixed_notation) { _Effective_precision = (_STD min)(_Precision - (_Scientific_exponent_X + 1), _Max_fixed_precision); const to_chars_result _Buf_result = _Floating_to_chars_fixed_precision(_Buffer, _STD end(_Buffer), _Value, _Effective_precision); _STL_INTERNAL_CHECK(_Buf_result.ec == errc{}); _Significand_last = _Buf_result.ptr; } else { _Effective_precision = (_STD min)(_Precision - 1, _Max_scientific_precision); const to_chars_result _Buf_result = _Floating_to_chars_scientific_precision(_Buffer, _STD end(_Buffer), _Value, _Effective_precision); _STL_INTERNAL_CHECK(_Buf_result.ec == errc{}); _Significand_last = _STD find(_Buffer, _Buf_result.ptr, 'e'); _Exponent_first = _Significand_last; _Exponent_last = _Buf_result.ptr; } // If we printed a decimal point followed by digits, perform zero-trimming. if (_Effective_precision > 0) { while (_Significand_last[-1] == '0') { // will stop at '.' or a nonzero digit --_Significand_last; } if (_Significand_last[-1] == '.') { --_Significand_last; } } // Copy the significand to the output range. const ptrdiff_t _Significand_distance = _Significand_last - _Significand_first; if (_Last - _First < _Significand_distance) { return {_Last, errc::value_too_large}; } _CSTD memcpy(_First, _Significand_first, static_cast(_Significand_distance)); _First += _Significand_distance; // Copy the exponent to the output range. if (!_Use_fixed_notation) { const ptrdiff_t _Exponent_distance = _Exponent_last - _Exponent_first; if (_Last - _First < _Exponent_distance) { return {_Last, errc::value_too_large}; } _CSTD memcpy(_First, _Exponent_first, static_cast(_Exponent_distance)); _First += _Exponent_distance; } return {_First, errc{}}; } enum class _Floating_to_chars_overload { _Plain, _Format_only, _Format_precision }; template <_Floating_to_chars_overload _Overload, class _Floating> _NODISCARD to_chars_result _Floating_to_chars( char* _First, char* const _Last, _Floating _Value, const chars_format _Fmt, const int _Precision) noexcept { _Adl_verify_range(_First, _Last); if constexpr (_Overload == _Floating_to_chars_overload::_Plain) { _STL_INTERNAL_CHECK(_Fmt == chars_format{}); // plain overload must pass chars_format{} internally } else { _STL_ASSERT(_Fmt == chars_format::general || _Fmt == chars_format::scientific || _Fmt == chars_format::fixed || _Fmt == chars_format::hex, "invalid format in to_chars()"); } using _Traits = _Floating_type_traits<_Floating>; using _Uint_type = typename _Traits::_Uint_type; _Uint_type _Uint_value = _Bit_cast<_Uint_type>(_Value); const bool _Was_negative = (_Uint_value & _Traits::_Shifted_sign_mask) != 0; if (_Was_negative) { // sign bit detected; write minus sign and clear sign bit if (_First == _Last) { return {_Last, errc::value_too_large}; } *_First++ = '-'; _Uint_value &= ~_Traits::_Shifted_sign_mask; _Value = _Bit_cast<_Floating>(_Uint_value); } if ((_Uint_value & _Traits::_Shifted_exponent_mask) == _Traits::_Shifted_exponent_mask) { // inf/nan detected; write appropriate string and return const char* _Str; size_t _Len; const _Uint_type _Mantissa = _Uint_value & _Traits::_Denormal_mantissa_mask; if (_Mantissa == 0) { _Str = "inf"; _Len = 3; } else if (_Was_negative && _Mantissa == _Traits::_Special_nan_mantissa_mask) { // When a NaN value has the sign bit set, the quiet bit set, and all other mantissa bits cleared, // the UCRT interprets it to mean "indeterminate", and indicates this by printing "-nan(ind)". _Str = "nan(ind)"; _Len = 8; } else if ((_Mantissa & _Traits::_Special_nan_mantissa_mask) != 0) { _Str = "nan"; _Len = 3; } else { _Str = "nan(snan)"; _Len = 9; } if (_Last - _First < static_cast(_Len)) { return {_Last, errc::value_too_large}; } _CSTD memcpy(_First, _Str, _Len); return {_First + _Len, errc{}}; } if constexpr (_Overload == _Floating_to_chars_overload::_Plain) { return _Floating_to_chars_ryu(_First, _Last, _Value, chars_format{}); } else if constexpr (_Overload == _Floating_to_chars_overload::_Format_only) { if (_Fmt == chars_format::hex) { return _Floating_to_chars_hex_shortest(_First, _Last, _Value); } return _Floating_to_chars_ryu(_First, _Last, _Value, _Fmt); } else if constexpr (_Overload == _Floating_to_chars_overload::_Format_precision) { switch (_Fmt) { case chars_format::scientific: return _Floating_to_chars_scientific_precision(_First, _Last, _Value, _Precision); case chars_format::fixed: return _Floating_to_chars_fixed_precision(_First, _Last, _Value, _Precision); case chars_format::general: return _Floating_to_chars_general_precision(_First, _Last, _Value, _Precision); case chars_format::hex: default: // avoid warning C4715: not all control paths return a value return _Floating_to_chars_hex_precision(_First, _Last, _Value, _Precision); } } } _EXPORT_STD inline to_chars_result to_chars(char* const _First, char* const _Last, const float _Value) noexcept /* strengthened */ { return _Floating_to_chars<_Floating_to_chars_overload::_Plain>(_First, _Last, _Value, chars_format{}, 0); } _EXPORT_STD inline to_chars_result to_chars(char* const _First, char* const _Last, const double _Value) noexcept /* strengthened */ { return _Floating_to_chars<_Floating_to_chars_overload::_Plain>(_First, _Last, _Value, chars_format{}, 0); } _EXPORT_STD inline to_chars_result to_chars(char* const _First, char* const _Last, const long double _Value) noexcept /* strengthened */ { return _Floating_to_chars<_Floating_to_chars_overload::_Plain>( _First, _Last, static_cast(_Value), chars_format{}, 0); } _EXPORT_STD inline to_chars_result to_chars( char* const _First, char* const _Last, const float _Value, const chars_format _Fmt) noexcept /* strengthened */ { return _Floating_to_chars<_Floating_to_chars_overload::_Format_only>(_First, _Last, _Value, _Fmt, 0); } _EXPORT_STD inline to_chars_result to_chars( char* const _First, char* const _Last, const double _Value, const chars_format _Fmt) noexcept /* strengthened */ { return _Floating_to_chars<_Floating_to_chars_overload::_Format_only>(_First, _Last, _Value, _Fmt, 0); } _EXPORT_STD inline to_chars_result to_chars(char* const _First, char* const _Last, const long double _Value, const chars_format _Fmt) noexcept /* strengthened */ { return _Floating_to_chars<_Floating_to_chars_overload::_Format_only>( _First, _Last, static_cast(_Value), _Fmt, 0); } _EXPORT_STD inline to_chars_result to_chars(char* const _First, char* const _Last, const float _Value, const chars_format _Fmt, const int _Precision) noexcept /* strengthened */ { return _Floating_to_chars<_Floating_to_chars_overload::_Format_precision>(_First, _Last, _Value, _Fmt, _Precision); } _EXPORT_STD inline to_chars_result to_chars(char* const _First, char* const _Last, const double _Value, const chars_format _Fmt, const int _Precision) noexcept /* strengthened */ { return _Floating_to_chars<_Floating_to_chars_overload::_Format_precision>(_First, _Last, _Value, _Fmt, _Precision); } _EXPORT_STD inline to_chars_result to_chars(char* const _First, char* const _Last, const long double _Value, const chars_format _Fmt, const int _Precision) noexcept /* strengthened */ { return _Floating_to_chars<_Floating_to_chars_overload::_Format_precision>( _First, _Last, static_cast(_Value), _Fmt, _Precision); } _STD_END #pragma pop_macro("new") _STL_RESTORE_CLANG_WARNINGS #pragma warning(pop) #pragma pack(pop) #endif // ^^^ _HAS_CXX17 ^^^ #endif // _STL_COMPILER_PREPROCESSOR #endif // _CHARCONV_