STL/stl/inc/atomic

3079 строки
118 KiB
C++

// atomic standard header
// Copyright (c) Microsoft Corporation.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
#pragma once
#ifndef _ATOMIC_
#define _ATOMIC_
#include <yvals.h>
#if _STL_COMPILER_PREPROCESSOR
#ifdef _M_CEE_PURE
#error <atomic> is not supported when compiling with /clr:pure.
#endif // _M_CEE_PURE
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <xatomic.h>
#if _HAS_CXX20
#include <xatomic_wait.h>
#endif // _HAS_CXX20
#include <xthreads.h>
#pragma pack(push, _CRT_PACKING)
#pragma warning(push, _STL_WARNING_LEVEL)
#pragma warning(disable : _STL_DISABLED_WARNINGS)
_STL_DISABLE_CLANG_WARNINGS
#pragma push_macro("new")
#undef new
#define _Compiler_barrier() _STL_DISABLE_DEPRECATED_WARNING _ReadWriteBarrier() _STL_RESTORE_DEPRECATED_WARNING
#if defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC)
#define _Memory_barrier() __dmb(0xB) // inner shared data memory barrier
#define _Compiler_or_memory_barrier() _Memory_barrier()
#elif defined(_M_IX86) || defined(_M_X64)
// x86/x64 hardware only emits memory barriers inside _Interlocked intrinsics
#define _Compiler_or_memory_barrier() _Compiler_barrier()
#else // ^^^ x86/x64 / unsupported hardware vvv
#error Unsupported hardware
#endif // hardware
#ifndef _INVALID_MEMORY_ORDER
#ifdef _DEBUG
#define _INVALID_MEMORY_ORDER _STL_REPORT_ERROR("Invalid memory order")
#else // ^^^ _DEBUG / !_DEBUG vvv
#define _INVALID_MEMORY_ORDER
#endif // _DEBUG
#endif // _INVALID_MEMORY_ORDER
// MACRO _STD_COMPARE_EXCHANGE_128
#ifdef _WIN64
#if _STD_ATOMIC_ALWAYS_USE_CMPXCHG16B == 1
#define _STD_COMPARE_EXCHANGE_128 _InterlockedCompareExchange128
#else // ^^^ _STD_ATOMIC_ALWAYS_USE_CMPXCHG16B == 1 // _STD_ATOMIC_ALWAYS_USE_CMPXCHG16B == 0 vvv
// 16-byte atomics are separately compiled for x64, as not all x64 hardware has the cmpxchg16b
// instruction; in the event this instruction is not available, the fallback is a global
// synchronization object shared by all 16-byte atomics.
// (Note: machines without this instruction typically have 2 cores or fewer, so this isn't too bad)
// All pointer parameters must be 16-byte aligned.
extern "C" _NODISCARD unsigned char __stdcall __std_atomic_compare_exchange_128(
_Inout_bytecount_(16) long long* _Destination, _In_ long long _ExchangeHigh, _In_ long long _ExchangeLow,
_Inout_bytecount_(16) long long* _ComparandResult) noexcept;
extern "C" _NODISCARD char __stdcall __std_atomic_has_cmpxchg16b() noexcept;
#define _STD_COMPARE_EXCHANGE_128 __std_atomic_compare_exchange_128
#endif // _STD_ATOMIC_ALWAYS_USE_CMPXCHG16B == 1
#endif // _WIN64
// MACRO _ATOMIC_HAS_DCAS
// Controls whether atomic::is_always_lock_free triggers for sizeof(void *) or 2 * sizeof(void *)
#if _STD_ATOMIC_ALWAYS_USE_CMPXCHG16B == 1 || !defined(_M_X64) || defined(_M_ARM64EC)
#define _ATOMIC_HAS_DCAS 1
#else // ^^^ We always have DCAS / We only sometimes have DCAS vvv
#define _ATOMIC_HAS_DCAS 0
#endif // _STD_ATOMIC_ALWAYS_USE_CMPXCHG16B == 1 || !defined(_M_X64) || defined(_M_ARM64EC)
// MACRO _ATOMIC_CHOOSE_INTRINSIC
#if defined(_M_IX86) || (defined(_M_X64) && !defined(_M_ARM64EC))
#define _ATOMIC_CHOOSE_INTRINSIC(_Order, _Result, _Intrinsic, ...) \
_Check_memory_order(_Order); \
_Result = _Intrinsic(__VA_ARGS__)
#elif defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC)
#define _ATOMIC_CHOOSE_INTRINSIC(_Order, _Result, _Intrinsic, ...) \
switch (_Order) { \
case memory_order_relaxed: \
_Result = _INTRIN_RELAXED(_Intrinsic)(__VA_ARGS__); \
break; \
case memory_order_consume: \
case memory_order_acquire: \
_Result = _INTRIN_ACQUIRE(_Intrinsic)(__VA_ARGS__); \
break; \
case memory_order_release: \
_Result = _INTRIN_RELEASE(_Intrinsic)(__VA_ARGS__); \
break; \
default: \
_INVALID_MEMORY_ORDER; \
/* [[fallthrough]]; */ \
case memory_order_acq_rel: \
case memory_order_seq_cst: \
_Result = _Intrinsic(__VA_ARGS__); \
break; \
}
#endif // hardware
// LOCK-FREE PROPERTY
#define ATOMIC_BOOL_LOCK_FREE 2
#define ATOMIC_CHAR_LOCK_FREE 2
#ifdef __cpp_lib_char8_t
#define ATOMIC_CHAR8_T_LOCK_FREE 2
#endif // __cpp_lib_char8_t
#define ATOMIC_CHAR16_T_LOCK_FREE 2
#define ATOMIC_CHAR32_T_LOCK_FREE 2
#define ATOMIC_WCHAR_T_LOCK_FREE 2
#define ATOMIC_SHORT_LOCK_FREE 2
#define ATOMIC_INT_LOCK_FREE 2
#define ATOMIC_LONG_LOCK_FREE 2
#define ATOMIC_LLONG_LOCK_FREE 2
#define ATOMIC_POINTER_LOCK_FREE 2
_EXTERN_C
_Smtx_t* __stdcall __std_atomic_get_mutex(const void* _Key) noexcept;
_END_EXTERN_C
// Padding bits should not participate in cmpxchg comparison starting in C++20.
// Clang does not have __builtin_zero_non_value_bits to exclude these bits to implement this C++20 feature.
// The EDG front-end substitutes everything and runs into incomplete types passed to atomic<T>.
#if _HAS_CXX20 && !defined(__clang__) /* TRANSITION, LLVM-46685 */ && !defined(__EDG__)
#define _CMPXCHG_MASK_OUT_PADDING_BITS 1
#else
#define _CMPXCHG_MASK_OUT_PADDING_BITS 0
#endif
_STD_BEGIN
// STRUCT TEMPLATE _Storage_for
#if _CMPXCHG_MASK_OUT_PADDING_BITS
struct _Form_mask_t {};
_INLINE_VAR constexpr _Form_mask_t _Form_mask{};
#endif // _CMPXCHG_MASK_OUT_PADDING_BITS
template <class _Ty>
struct _Storage_for {
// uninitialized space to store a _Ty
alignas(_Ty) unsigned char _Storage[sizeof(_Ty)];
_Storage_for() = default;
_Storage_for(const _Storage_for&) = delete;
_Storage_for& operator=(const _Storage_for&) = delete;
#if _CMPXCHG_MASK_OUT_PADDING_BITS
explicit _Storage_for(_Form_mask_t) noexcept {
_CSTD memset(_Storage, 0xff, sizeof(_Ty));
__builtin_zero_non_value_bits(_Ptr());
}
#endif // _CMPXCHG_MASK_OUT_PADDING_BITS
_NODISCARD _Ty& _Ref() noexcept {
return reinterpret_cast<_Ty&>(_Storage);
}
_NODISCARD _Ty* _Ptr() noexcept {
return reinterpret_cast<_Ty*>(&_Storage);
}
};
#if _CMPXCHG_MASK_OUT_PADDING_BITS
template <class _Ty>
inline constexpr bool _Might_have_non_value_bits =
!has_unique_object_representations_v<_Ty> && !is_floating_point_v<_Ty>;
#endif // _CMPXCHG_MASK_OUT_PADDING_BITS
// FENCES
extern "C" inline void atomic_thread_fence(const memory_order _Order) noexcept {
if (_Order == memory_order_relaxed) {
return;
}
#if defined(_M_IX86) || defined(_M_X64)
_Compiler_barrier();
if (_Order == memory_order_seq_cst) {
volatile long _Guard; // Not initialized to avoid an unnecessary operation; the value does not matter
// _mm_mfence could have been used, but it is not supported on older x86 CPUs and is slower on some recent CPUs.
// The memory fence provided by interlocked operations has some exceptions, but this is fine:
// std::atomic_thread_fence works with respect to other atomics only; it may not be a full fence for all ops.
#pragma warning(suppress : 6001) // "Using uninitialized memory '_Guard'"
#pragma warning(suppress : 28113) // "Accessing a local variable _Guard via an Interlocked function: This is an unusual
// usage which could be reconsidered."
(void) _InterlockedIncrement(&_Guard);
_Compiler_barrier();
}
#elif defined(_M_ARM) || defined(_M_ARM64)
_Memory_barrier();
#else // ^^^ ARM32/ARM64 / unsupported hardware vvv
#error Unsupported hardware
#endif // unsupported hardware
}
extern "C" inline void atomic_signal_fence(const memory_order _Order) noexcept {
if (_Order != memory_order_relaxed) {
_Compiler_barrier();
}
}
// FUNCTION TEMPLATE kill_dependency
template <class _Ty>
_Ty kill_dependency(_Ty _Arg) noexcept { // "magic" template that kills dependency ordering when called
return _Arg;
}
// FUNCTION _Check_memory_order
inline void _Check_memory_order(const memory_order _Order) noexcept {
// check that _Order is a valid memory_order
if (static_cast<unsigned int>(_Order) > static_cast<unsigned int>(memory_order_seq_cst)) {
_INVALID_MEMORY_ORDER;
}
}
// FUNCTION _Check_store_memory_order
inline void _Check_store_memory_order(const memory_order _Order) noexcept {
switch (_Order) {
case memory_order_relaxed:
case memory_order_release:
case memory_order_seq_cst:
// nothing to do
break;
case memory_order_consume:
case memory_order_acquire:
case memory_order_acq_rel:
default:
_INVALID_MEMORY_ORDER;
break;
}
}
// FUNCTION _Check_load_memory_order
inline void _Check_load_memory_order(const memory_order _Order) noexcept {
switch (_Order) {
case memory_order_relaxed:
case memory_order_consume:
case memory_order_acquire:
case memory_order_seq_cst:
// nothing to do
break;
case memory_order_release:
case memory_order_acq_rel:
default:
_INVALID_MEMORY_ORDER;
break;
}
}
// FUNCTION _Combine_cas_memory_orders
_NODISCARD inline memory_order _Combine_cas_memory_orders(
const memory_order _Success, const memory_order _Failure) noexcept {
// Finds upper bound of a compare/exchange memory order
// pair, according to the following partial order:
// seq_cst
// |
// acq_rel
// / \
// acquire release
// | |
// consume |
// \ /
// relaxed
static constexpr memory_order _Combined_memory_orders[6][6] = {// combined upper bounds
{memory_order_relaxed, memory_order_consume, memory_order_acquire, memory_order_release, memory_order_acq_rel,
memory_order_seq_cst},
{memory_order_consume, memory_order_consume, memory_order_acquire, memory_order_acq_rel, memory_order_acq_rel,
memory_order_seq_cst},
{memory_order_acquire, memory_order_acquire, memory_order_acquire, memory_order_acq_rel, memory_order_acq_rel,
memory_order_seq_cst},
{memory_order_release, memory_order_acq_rel, memory_order_acq_rel, memory_order_release, memory_order_acq_rel,
memory_order_seq_cst},
{memory_order_acq_rel, memory_order_acq_rel, memory_order_acq_rel, memory_order_acq_rel, memory_order_acq_rel,
memory_order_seq_cst},
{memory_order_seq_cst, memory_order_seq_cst, memory_order_seq_cst, memory_order_seq_cst, memory_order_seq_cst,
memory_order_seq_cst}};
_Check_memory_order(_Success);
_Check_load_memory_order(_Failure);
return _Combined_memory_orders[static_cast<int>(_Success)][static_cast<int>(_Failure)];
}
// FUNCTION TEMPLATE _Atomic_reinterpret_as
template <class _Integral, class _Ty>
_NODISCARD _Integral _Atomic_reinterpret_as(const _Ty& _Source) noexcept {
// interprets _Source as the supplied integral type
static_assert(is_integral_v<_Integral>, "Tried to reinterpret memory as non-integral");
if constexpr (is_integral_v<_Ty> && sizeof(_Integral) == sizeof(_Ty)) {
return static_cast<_Integral>(_Source);
} else if constexpr (is_pointer_v<_Ty> && sizeof(_Integral) == sizeof(_Ty)) {
return reinterpret_cast<_Integral>(_Source);
} else {
_Integral _Result{}; // zero padding bits
_CSTD memcpy(&_Result, _STD addressof(_Source), sizeof(_Source));
return _Result;
}
}
// FUNCTION _Load_barrier
inline void _Load_barrier(const memory_order _Order) noexcept { // implement memory barrier for atomic load functions
switch (_Order) {
case memory_order_relaxed:
// no barrier
break;
default:
case memory_order_release:
case memory_order_acq_rel:
_INVALID_MEMORY_ORDER;
// [[fallthrough]];
case memory_order_consume:
case memory_order_acquire:
case memory_order_seq_cst:
_Compiler_or_memory_barrier();
break;
}
}
#if 1 // TRANSITION, ABI
template <class _Ty>
struct _Atomic_padded {
alignas(sizeof(_Ty)) mutable _Ty _Value; // align to sizeof(T); x86 stack aligns 8-byte objects on 4-byte boundaries
};
#else // ^^^ don't break ABI / break ABI vvv
// STRUCT TEMPLATE _Atomic_storage_traits
template <class _Ty>
struct _Atomic_storage_traits { // properties for how _Ty is stored in an atomic
static constexpr size_t _Storage_size = sizeof(_Ty) == 1 ? 1
: sizeof(_Ty) == 2 ? 2
: sizeof(_Ty) <= 4 ? 4
: sizeof(_Ty) <= 8 ? 8
#if defined(_M_X64) || defined(_M_ARM64) || defined(_M_ARM64EC)
: sizeof(_Ty) <= 16 ? 16
#endif // 64 bits
: sizeof(_Ty);
static constexpr size_t _Padding_size = _Storage_size - sizeof(_Ty);
static constexpr bool _Uses_padding = _Padding_size != 0;
};
template <class _Ty>
struct _Atomic_storage_traits<_Ty&> { // properties for how _Ty is stored in an atomic_ref
static constexpr size_t _Storage_size = sizeof(_Ty);
static constexpr bool _Uses_padding = false;
};
// STRUCT TEMPLATE _Atomic_padded
template <class _Ty, bool = _Atomic_storage_traits<_Ty>::_Uses_padding>
struct _Atomic_padded { // aggregate to allow explicit constexpr zeroing of padding
alignas(_Atomic_storage_traits<_Ty>::_Storage_size) mutable _Ty _Value;
mutable unsigned char _Padding[_Atomic_storage_traits<_Ty>::_Padding_size];
};
template <class _Ty>
struct _Atomic_padded<_Ty, false> {
alignas(sizeof(_Ty)) mutable _Ty _Value; // align to sizeof(T); x86 stack aligns 8-byte objects on 4-byte boundaries
};
template <class _Ty>
struct _Atomic_padded<_Ty&, false> {
_Ty& _Value;
};
#endif // TRANSITION, ABI
template <class _Ty>
struct _Atomic_storage_types {
using _TStorage = _Atomic_padded<_Ty>;
using _Spinlock = long;
};
template <class _Ty>
struct _Atomic_storage_types<_Ty&> {
using _TStorage = _Ty&;
using _Spinlock = _Smtx_t*; // POINTER TO mutex
};
// STRUCT TEMPLATE _Atomic_storage
#if 1 // TRANSITION, ABI
template <class _Ty, size_t = sizeof(remove_reference_t<_Ty>)>
#else // ^^^ don't break ABI / break ABI vvv
template <class _Ty, size_t = _Atomic_storage_traits<_Ty>::_Storage_size>
#endif // TRANSITION, ABI
struct _Atomic_storage;
#if _HAS_CXX20
template <class _Ty, class _Value_type>
void _Atomic_wait_direct(
const _Atomic_storage<_Ty>* const _This, _Value_type _Expected_bytes, const memory_order _Order) noexcept {
const auto _Storage_ptr = _STD addressof(_This->_Storage);
for (;;) {
const _Value_type _Observed_bytes = _Atomic_reinterpret_as<_Value_type>(_This->load(_Order));
if (_Expected_bytes != _Observed_bytes) {
#if _CMPXCHG_MASK_OUT_PADDING_BITS
using _TVal = remove_reference_t<_Ty>;
if constexpr (_Might_have_non_value_bits<_TVal>) {
_Storage_for<_TVal> _Mask{_Form_mask};
const _Value_type _Mask_val = _Atomic_reinterpret_as<_Value_type>(_Mask._Ref());
if (((_Expected_bytes ^ _Observed_bytes) & _Mask_val) == 0) {
_Expected_bytes = _Observed_bytes;
continue;
}
}
#endif // _CMPXCHG_MASK_OUT_PADDING_BITS
return;
}
__std_atomic_wait_direct(_Storage_ptr, &_Expected_bytes, sizeof(_Value_type), _Atomic_wait_no_timeout);
}
}
#endif // _HAS_CXX20
#if 1 // TRANSITION, ABI, GH-1151
inline void _Atomic_lock_acquire(long& _Spinlock) noexcept {
#if defined(_M_IX86) || (defined(_M_X64) && !defined(_M_ARM64EC))
// Algorithm from Intel(R) 64 and IA-32 Architectures Optimization Reference Manual, May 2020
// Example 2-4. Contended Locks with Increasing Back-off Example - Improved Version, page 2-22
// The code in mentioned manual is covered by the 0BSD license.
int _Current_backoff = 1;
const int _Max_backoff = 64;
while (_InterlockedExchange(&_Spinlock, 1) != 0) {
while (__iso_volatile_load32(&reinterpret_cast<int&>(_Spinlock)) != 0) {
for (int _Count_down = _Current_backoff; _Count_down != 0; --_Count_down) {
_mm_pause();
}
_Current_backoff = _Current_backoff < _Max_backoff ? _Current_backoff << 1 : _Max_backoff;
}
}
#elif defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC)
while (_InterlockedExchange(&_Spinlock, 1) != 0) { // TRANSITION, GH-1133: _InterlockedExchange_acq
while (__iso_volatile_load32(&reinterpret_cast<int&>(_Spinlock)) != 0) {
__yield();
}
}
#else // ^^^ defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC) ^^^
#error Unsupported hardware
#endif
}
inline void _Atomic_lock_release(long& _Spinlock) noexcept {
#if defined(_M_IX86) || (defined(_M_X64) && !defined(_M_ARM64EC))
_InterlockedExchange(&_Spinlock, 0); // TRANSITION, GH-1133: same as ARM
#elif defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC)
_Memory_barrier();
__iso_volatile_store32(reinterpret_cast<int*>(&_Spinlock), 0);
_Memory_barrier(); // TRANSITION, GH-1133: remove
#else // ^^^ defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC) ^^^
#error Unsupported hardware
#endif
}
inline void _Atomic_lock_acquire(_Smtx_t* _Spinlock) noexcept {
_Smtx_lock_exclusive(_Spinlock);
}
inline void _Atomic_lock_release(_Smtx_t* _Spinlock) noexcept {
_Smtx_unlock_exclusive(_Spinlock);
}
template <class _Spinlock_t>
class _NODISCARD _Atomic_lock_guard {
public:
explicit _Atomic_lock_guard(_Spinlock_t& _Spinlock_) noexcept : _Spinlock(_Spinlock_) {
_Atomic_lock_acquire(_Spinlock);
}
~_Atomic_lock_guard() {
_Atomic_lock_release(_Spinlock);
}
_Atomic_lock_guard(const _Atomic_lock_guard&) = delete;
_Atomic_lock_guard& operator=(const _Atomic_lock_guard&) = delete;
private:
_Spinlock_t& _Spinlock;
};
#if _HAS_CXX20
template <class _Spinlock_t>
bool __stdcall _Atomic_wait_compare_non_lock_free(
const void* _Storage, void* _Comparand, size_t _Size, void* _Spinlock_raw) noexcept {
_Spinlock_t& _Spinlock = *static_cast<_Spinlock_t*>(_Spinlock_raw);
_Atomic_lock_acquire(_Spinlock);
const auto _Cmp_result = _CSTD memcmp(_Storage, _Comparand, _Size);
_Atomic_lock_release(_Spinlock);
return _Cmp_result == 0;
}
#ifdef _WIN64
inline bool __stdcall _Atomic_wait_compare_16_bytes(const void* _Storage, void* _Comparand, size_t, void*) noexcept {
const auto _Dest = static_cast<long long*>(const_cast<void*>(_Storage));
const auto _Cmp = static_cast<const long long*>(_Comparand);
alignas(16) long long _Tmp[2] = {_Cmp[0], _Cmp[1]};
#ifdef _M_X64
return _STD_COMPARE_EXCHANGE_128(_Dest, _Tmp[1], _Tmp[0], _Tmp) != 0;
#else // ^^^ _M_X64 / ARM64 vvv
return _InterlockedCompareExchange128_nf(_Dest, _Tmp[1], _Tmp[0], _Tmp) != 0;
#endif // ^^^ ARM64 ^^^
}
#endif // _WIN64
#endif // _HAS_CXX20
#endif // TRANSITION, ABI
template <class _Ty, size_t /* = ... */>
struct _Atomic_storage {
// Provides operations common to all specializations of std::atomic, load, store, exchange, and CAS.
// Locking version used when hardware has no atomic operations for sizeof(_Ty).
using _TVal = remove_reference_t<_Ty>;
using _Guard = _Atomic_lock_guard<typename _Atomic_storage_types<_Ty>::_Spinlock>;
_Atomic_storage() = default;
/* implicit */ constexpr _Atomic_storage(conditional_t<is_reference_v<_Ty>, _Ty, const _TVal> _Value) noexcept
: _Storage(_Value) {
// non-atomically initialize this atomic
}
void store(const _TVal _Value, const memory_order _Order = memory_order_seq_cst) noexcept {
// store with sequential consistency
_Check_store_memory_order(_Order);
_Guard _Lock{_Spinlock};
_Storage = _Value;
}
_NODISCARD _TVal load(const memory_order _Order = memory_order_seq_cst) const noexcept {
// load with sequential consistency
_Check_load_memory_order(_Order);
_Guard _Lock{_Spinlock};
_TVal _Local(_Storage);
return _Local;
}
_TVal exchange(const _TVal _Value, const memory_order _Order = memory_order_seq_cst) noexcept {
// exchange _Value with _Storage with sequential consistency
_Check_memory_order(_Order);
_Guard _Lock{_Spinlock};
_TVal _Result(_Storage);
_Storage = _Value;
return _Result;
}
bool compare_exchange_strong(_TVal& _Expected, const _TVal _Desired,
const memory_order _Order = memory_order_seq_cst) noexcept { // CAS with sequential consistency, plain
_Check_memory_order(_Order);
const auto _Storage_ptr = _STD addressof(_Storage);
const auto _Expected_ptr = _STD addressof(_Expected);
bool _Result;
#if _CMPXCHG_MASK_OUT_PADDING_BITS
__builtin_zero_non_value_bits(_Expected_ptr);
#endif // _CMPXCHG_MASK_OUT_PADDING_BITS
_Guard _Lock{_Spinlock};
#if _CMPXCHG_MASK_OUT_PADDING_BITS
if constexpr (_Might_have_non_value_bits<_TVal>) {
_Storage_for<_TVal> _Local;
const auto _Local_ptr = _Local._Ptr();
_CSTD memcpy(_Local_ptr, _Storage_ptr, sizeof(_TVal));
__builtin_zero_non_value_bits(_Local_ptr);
_Result = _CSTD memcmp(_Local_ptr, _Expected_ptr, sizeof(_TVal)) == 0;
} else {
_Result = _CSTD memcmp(_Storage_ptr, _Expected_ptr, sizeof(_TVal)) == 0;
}
#else // _CMPXCHG_MASK_OUT_PADDING_BITS
_Result = _CSTD memcmp(_Storage_ptr, _Expected_ptr, sizeof(_TVal)) == 0;
#endif // _CMPXCHG_MASK_OUT_PADDING_BITS
if (_Result) {
_CSTD memcpy(_Storage_ptr, _STD addressof(_Desired), sizeof(_TVal));
} else {
_CSTD memcpy(_Expected_ptr, _Storage_ptr, sizeof(_TVal));
}
return _Result;
}
#if _HAS_CXX20
void wait(_TVal _Expected, memory_order = memory_order_seq_cst) const noexcept {
const auto _Storage_ptr = _STD addressof(_Storage);
const auto _Expected_ptr = _STD addressof(_Expected);
for (;;) {
{
_Guard _Lock{_Spinlock};
if (_CSTD memcmp(_Storage_ptr, _Expected_ptr, sizeof(_TVal)) != 0) {
// contents differed, we might be done, check for padding
#if _CMPXCHG_MASK_OUT_PADDING_BITS
if constexpr (_Might_have_non_value_bits<_TVal>) {
_Storage_for<_TVal> _Local;
const auto _Local_ptr = _Local._Ptr();
_CSTD memcpy(_Local_ptr, _Storage_ptr, sizeof(_TVal));
__builtin_zero_non_value_bits(_Local_ptr);
__builtin_zero_non_value_bits(_Expected_ptr);
if (_CSTD memcmp(_Local_ptr, _Expected_ptr, sizeof(_TVal)) == 0) {
// _Storage differs from _Expected only by padding; copy the padding from _Storage into
// _Expected
_CSTD memcpy(_Expected_ptr, _Storage_ptr, sizeof(_TVal));
} else {
// truly different, we're done
return;
}
} else
#endif // #if _CMPXCHG_MASK_OUT_PADDING_BITS
{
return;
}
}
} // unlock
__std_atomic_wait_indirect(_Storage_ptr, _Expected_ptr, sizeof(_TVal), &_Spinlock,
&_Atomic_wait_compare_non_lock_free<decltype(_Spinlock)>, _Atomic_wait_no_timeout);
}
}
void notify_one() noexcept {
__std_atomic_notify_one_indirect(_STD addressof(_Storage));
}
void notify_all() noexcept {
__std_atomic_notify_all_indirect(_STD addressof(_Storage));
}
#endif // _HAS_CXX20
#if 1 // TRANSITION, ABI
protected:
void _Init_spinlock_for_ref() noexcept {
_Spinlock = __std_atomic_get_mutex(_STD addressof(_Storage));
}
private:
// Spinlock integer for non-lock-free atomic. <xthreads.h> mutex pointer for non-lock-free atomic_ref
mutable typename _Atomic_storage_types<_Ty>::_Spinlock _Spinlock{};
public:
_Ty _Storage{};
#else // ^^^ don't break ABI / break ABI vvv
_Ty _Storage;
mutable _Smtx_t _Mutex{};
#endif // TRANSITION, ABI
};
template <class _Ty>
struct _Atomic_storage<_Ty, 1> { // lock-free using 1-byte intrinsics
using _TVal = remove_reference_t<_Ty>;
_Atomic_storage() = default;
/* implicit */ constexpr _Atomic_storage(conditional_t<is_reference_v<_Ty>, _Ty, const _TVal> _Value) noexcept
: _Storage{_Value} {
// non-atomically initialize this atomic
}
void store(const _TVal _Value) noexcept { // store with sequential consistency
const auto _Mem = _Atomic_address_as<char>(_Storage);
const char _As_bytes = _Atomic_reinterpret_as<char>(_Value);
#if defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC)
_Memory_barrier();
__iso_volatile_store8(_Mem, _As_bytes);
_Memory_barrier();
#else // ^^^ ARM32/ARM64 hardware / x86/x64 hardware vvv
(void) _InterlockedExchange8(_Mem, _As_bytes);
#endif // hardware
}
void store(const _TVal _Value, const memory_order _Order) noexcept { // store with given memory order
const auto _Mem = _Atomic_address_as<char>(_Storage);
const char _As_bytes = _Atomic_reinterpret_as<char>(_Value);
switch (_Order) {
case memory_order_relaxed:
__iso_volatile_store8(_Mem, _As_bytes);
return;
case memory_order_release:
_Compiler_or_memory_barrier();
__iso_volatile_store8(_Mem, _As_bytes);
return;
default:
case memory_order_consume:
case memory_order_acquire:
case memory_order_acq_rel:
_INVALID_MEMORY_ORDER;
// [[fallthrough]];
case memory_order_seq_cst:
store(_Value);
return;
}
}
_NODISCARD _TVal load() const noexcept { // load with sequential consistency
const auto _Mem = _Atomic_address_as<char>(_Storage);
char _As_bytes = __iso_volatile_load8(_Mem);
_Compiler_or_memory_barrier();
return reinterpret_cast<_TVal&>(_As_bytes);
}
_NODISCARD _TVal load(const memory_order _Order) const noexcept { // load with given memory order
const auto _Mem = _Atomic_address_as<char>(_Storage);
char _As_bytes = __iso_volatile_load8(_Mem);
_Load_barrier(_Order);
return reinterpret_cast<_TVal&>(_As_bytes);
}
_TVal exchange(const _TVal _Value, const memory_order _Order = memory_order_seq_cst) noexcept {
// exchange with given memory order
char _As_bytes;
_ATOMIC_CHOOSE_INTRINSIC(_Order, _As_bytes, _InterlockedExchange8, _Atomic_address_as<char>(_Storage),
_Atomic_reinterpret_as<char>(_Value));
return reinterpret_cast<_TVal&>(_As_bytes);
}
bool compare_exchange_strong(_TVal& _Expected, const _TVal _Desired,
const memory_order _Order = memory_order_seq_cst) noexcept { // CAS with given memory order
char _Expected_bytes = _Atomic_reinterpret_as<char>(_Expected); // read before atomic operation
char _Prev_bytes;
#if _CMPXCHG_MASK_OUT_PADDING_BITS
if constexpr (_Might_have_non_value_bits<_TVal>) {
_Storage_for<_TVal> _Mask{_Form_mask};
const char _Mask_val = _Atomic_reinterpret_as<char>(_Mask._Ref());
for (;;) {
_ATOMIC_CHOOSE_INTRINSIC(_Order, _Prev_bytes, _InterlockedCompareExchange8,
_Atomic_address_as<char>(_Storage), _Atomic_reinterpret_as<char>(_Desired), _Expected_bytes);
if (_Prev_bytes == _Expected_bytes) {
return true;
}
if ((_Prev_bytes ^ _Expected_bytes) & _Mask_val) {
reinterpret_cast<char&>(_Expected) = _Prev_bytes;
return false;
}
_Expected_bytes = (_Expected_bytes & _Mask_val) | (_Prev_bytes & ~_Mask_val);
}
}
#endif // _CMPXCHG_MASK_OUT_PADDING_BITS
_ATOMIC_CHOOSE_INTRINSIC(_Order, _Prev_bytes, _InterlockedCompareExchange8, _Atomic_address_as<char>(_Storage),
_Atomic_reinterpret_as<char>(_Desired), _Expected_bytes);
if (_Prev_bytes == _Expected_bytes) {
return true;
}
reinterpret_cast<char&>(_Expected) = _Prev_bytes;
return false;
}
#if _HAS_CXX20
void wait(const _TVal _Expected, const memory_order _Order = memory_order_seq_cst) const noexcept {
_Atomic_wait_direct(this, _Atomic_reinterpret_as<char>(_Expected), _Order);
}
void notify_one() noexcept {
__std_atomic_notify_one_direct(_STD addressof(_Storage));
}
void notify_all() noexcept {
__std_atomic_notify_all_direct(_STD addressof(_Storage));
}
#endif // _HAS_CXX20
typename _Atomic_storage_types<_Ty>::_TStorage _Storage;
};
template <class _Ty>
struct _Atomic_storage<_Ty, 2> { // lock-free using 2-byte intrinsics
using _TVal = remove_reference_t<_Ty>;
_Atomic_storage() = default;
/* implicit */ constexpr _Atomic_storage(conditional_t<is_reference_v<_Ty>, _Ty, const _TVal> _Value) noexcept
: _Storage{_Value} {
// non-atomically initialize this atomic
}
void store(const _TVal _Value) noexcept { // store with sequential consistency
const auto _Mem = _Atomic_address_as<short>(_Storage);
const short _As_bytes = _Atomic_reinterpret_as<short>(_Value);
#if defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC)
_Memory_barrier();
__iso_volatile_store16(_Mem, _As_bytes);
_Memory_barrier();
#else // ^^^ ARM32/ARM64 hardware / x86/x64 hardware vvv
(void) _InterlockedExchange16(_Mem, _As_bytes);
#endif // hardware
}
void store(const _TVal _Value, const memory_order _Order) noexcept { // store with given memory order
const auto _Mem = _Atomic_address_as<short>(_Storage);
const short _As_bytes = _Atomic_reinterpret_as<short>(_Value);
switch (_Order) {
case memory_order_relaxed:
__iso_volatile_store16(_Mem, _As_bytes);
return;
case memory_order_release:
_Compiler_or_memory_barrier();
__iso_volatile_store16(_Mem, _As_bytes);
return;
default:
case memory_order_consume:
case memory_order_acquire:
case memory_order_acq_rel:
_INVALID_MEMORY_ORDER;
// [[fallthrough]];
case memory_order_seq_cst:
store(_Value);
return;
}
}
_NODISCARD _TVal load() const noexcept { // load with sequential consistency
const auto _Mem = _Atomic_address_as<short>(_Storage);
short _As_bytes = __iso_volatile_load16(_Mem);
_Compiler_or_memory_barrier();
return reinterpret_cast<_TVal&>(_As_bytes);
}
_NODISCARD _TVal load(const memory_order _Order) const noexcept { // load with given memory order
const auto _Mem = _Atomic_address_as<short>(_Storage);
short _As_bytes = __iso_volatile_load16(_Mem);
_Load_barrier(_Order);
return reinterpret_cast<_TVal&>(_As_bytes);
}
_TVal exchange(const _TVal _Value, const memory_order _Order = memory_order_seq_cst) noexcept {
// exchange with given memory order
short _As_bytes;
_ATOMIC_CHOOSE_INTRINSIC(_Order, _As_bytes, _InterlockedExchange16, _Atomic_address_as<short>(_Storage),
_Atomic_reinterpret_as<short>(_Value));
return reinterpret_cast<_TVal&>(_As_bytes);
}
bool compare_exchange_strong(_TVal& _Expected, const _TVal _Desired,
const memory_order _Order = memory_order_seq_cst) noexcept { // CAS with given memory order
short _Expected_bytes = _Atomic_reinterpret_as<short>(_Expected); // read before atomic operation
short _Prev_bytes;
#if _CMPXCHG_MASK_OUT_PADDING_BITS
if constexpr (_Might_have_non_value_bits<_Ty>) {
_Storage_for<_TVal> _Mask{_Form_mask};
const short _Mask_val = _Atomic_reinterpret_as<short>(_Mask._Ref());
for (;;) {
_ATOMIC_CHOOSE_INTRINSIC(_Order, _Prev_bytes, _InterlockedCompareExchange16,
_Atomic_address_as<short>(_Storage), _Atomic_reinterpret_as<short>(_Desired), _Expected_bytes);
if (_Prev_bytes == _Expected_bytes) {
return true;
}
if ((_Prev_bytes ^ _Expected_bytes) & _Mask_val) {
_CSTD memcpy(_STD addressof(_Expected), &_Prev_bytes, sizeof(_TVal));
return false;
}
_Expected_bytes = (_Expected_bytes & _Mask_val) | (_Prev_bytes & ~_Mask_val);
}
}
#endif // _CMPXCHG_MASK_OUT_PADDING_BITS
_ATOMIC_CHOOSE_INTRINSIC(_Order, _Prev_bytes, _InterlockedCompareExchange16,
_Atomic_address_as<short>(_Storage), _Atomic_reinterpret_as<short>(_Desired), _Expected_bytes);
if (_Prev_bytes == _Expected_bytes) {
return true;
}
_CSTD memcpy(_STD addressof(_Expected), &_Prev_bytes, sizeof(_Ty));
return false;
}
#if _HAS_CXX20
void wait(const _TVal _Expected, const memory_order _Order = memory_order_seq_cst) const noexcept {
_Atomic_wait_direct(this, _Atomic_reinterpret_as<short>(_Expected), _Order);
}
void notify_one() noexcept {
__std_atomic_notify_one_direct(_STD addressof(_Storage));
}
void notify_all() noexcept {
__std_atomic_notify_all_direct(_STD addressof(_Storage));
}
#endif // _HAS_CXX20
typename _Atomic_storage_types<_Ty>::_TStorage _Storage;
};
template <class _Ty>
struct _Atomic_storage<_Ty, 4> { // lock-free using 4-byte intrinsics
using _TVal = remove_reference_t<_Ty>;
_Atomic_storage() = default;
/* implicit */ constexpr _Atomic_storage(conditional_t<is_reference_v<_Ty>, _Ty, const _TVal> _Value) noexcept
: _Storage{_Value} {
// non-atomically initialize this atomic
}
void store(const _TVal _Value) noexcept { // store with sequential consistency
#if defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC)
_Memory_barrier();
__iso_volatile_store32(_Atomic_address_as<int>(_Storage), _Atomic_reinterpret_as<int>(_Value));
_Memory_barrier();
#else // ^^^ ARM32/ARM64 hardware / x86/x64 hardware vvv
(void) _InterlockedExchange(_Atomic_address_as<long>(_Storage), _Atomic_reinterpret_as<long>(_Value));
#endif // hardware
}
void store(const _TVal _Value, const memory_order _Order) noexcept { // store with given memory order
const auto _Mem = _Atomic_address_as<int>(_Storage);
const int _As_bytes = _Atomic_reinterpret_as<int>(_Value);
switch (_Order) {
case memory_order_relaxed:
__iso_volatile_store32(_Mem, _As_bytes);
return;
case memory_order_release:
_Compiler_or_memory_barrier();
__iso_volatile_store32(_Mem, _As_bytes);
return;
default:
case memory_order_consume:
case memory_order_acquire:
case memory_order_acq_rel:
_INVALID_MEMORY_ORDER;
// [[fallthrough]];
case memory_order_seq_cst:
store(_Value);
return;
}
}
_NODISCARD _TVal load() const noexcept { // load with sequential consistency
const auto _Mem = _Atomic_address_as<int>(_Storage);
auto _As_bytes = __iso_volatile_load32(_Mem);
_Compiler_or_memory_barrier();
return reinterpret_cast<_TVal&>(_As_bytes);
}
_NODISCARD _TVal load(const memory_order _Order) const noexcept { // load with given memory order
const auto _Mem = _Atomic_address_as<int>(_Storage);
auto _As_bytes = __iso_volatile_load32(_Mem);
_Load_barrier(_Order);
return reinterpret_cast<_TVal&>(_As_bytes);
}
_TVal exchange(const _TVal _Value, const memory_order _Order = memory_order_seq_cst) noexcept {
// exchange with given memory order
long _As_bytes;
_ATOMIC_CHOOSE_INTRINSIC(_Order, _As_bytes, _InterlockedExchange, _Atomic_address_as<long>(_Storage),
_Atomic_reinterpret_as<long>(_Value));
return reinterpret_cast<_TVal&>(_As_bytes);
}
bool compare_exchange_strong(_TVal& _Expected, const _TVal _Desired,
const memory_order _Order = memory_order_seq_cst) noexcept { // CAS with given memory order
long _Expected_bytes = _Atomic_reinterpret_as<long>(_Expected); // read before atomic operation
long _Prev_bytes;
#if _CMPXCHG_MASK_OUT_PADDING_BITS
if constexpr (_Might_have_non_value_bits<_TVal>) {
_Storage_for<_TVal> _Mask{_Form_mask};
const long _Mask_val = _Atomic_reinterpret_as<long>(_Mask);
for (;;) {
_ATOMIC_CHOOSE_INTRINSIC(_Order, _Prev_bytes, _InterlockedCompareExchange,
_Atomic_address_as<long>(_Storage), _Atomic_reinterpret_as<long>(_Desired), _Expected_bytes);
if (_Prev_bytes == _Expected_bytes) {
return true;
}
if ((_Prev_bytes ^ _Expected_bytes) & _Mask_val) {
_CSTD memcpy(_STD addressof(_Expected), &_Prev_bytes, sizeof(_TVal));
return false;
}
_Expected_bytes = (_Expected_bytes & _Mask_val) | (_Prev_bytes & ~_Mask_val);
}
}
#endif // _CMPXCHG_MASK_OUT_PADDING_BITS
_ATOMIC_CHOOSE_INTRINSIC(_Order, _Prev_bytes, _InterlockedCompareExchange, _Atomic_address_as<long>(_Storage),
_Atomic_reinterpret_as<long>(_Desired), _Expected_bytes);
if (_Prev_bytes == _Expected_bytes) {
return true;
}
_CSTD memcpy(_STD addressof(_Expected), &_Prev_bytes, sizeof(_TVal));
return false;
}
#if _HAS_CXX20
void wait(const _TVal _Expected, const memory_order _Order = memory_order_seq_cst) const noexcept {
_Atomic_wait_direct(this, _Atomic_reinterpret_as<long>(_Expected), _Order);
}
void notify_one() noexcept {
__std_atomic_notify_one_direct(_STD addressof(_Storage));
}
void notify_all() noexcept {
__std_atomic_notify_all_direct(_STD addressof(_Storage));
}
#endif // _HAS_CXX20
typename _Atomic_storage_types<_Ty>::_TStorage _Storage;
};
template <class _Ty>
struct _Atomic_storage<_Ty, 8> { // lock-free using 8-byte intrinsics
using _TVal = remove_reference_t<_Ty>;
_Atomic_storage() = default;
/* implicit */ constexpr _Atomic_storage(conditional_t<is_reference_v<_Ty>, _Ty, const _TVal> _Value) noexcept
: _Storage{_Value} {
// non-atomically initialize this atomic
}
void store(const _TVal _Value) noexcept { // store with sequential consistency
const auto _Mem = _Atomic_address_as<long long>(_Storage);
const long long _As_bytes = _Atomic_reinterpret_as<long long>(_Value);
#if defined(_M_IX86)
_Compiler_barrier();
__iso_volatile_store64(_Mem, _As_bytes);
_STD atomic_thread_fence(memory_order_seq_cst);
#elif defined(_M_ARM64)
_Memory_barrier();
__iso_volatile_store64(_Mem, _As_bytes);
_Memory_barrier();
#else // ^^^ _M_ARM64 / ARM32, x64 vvv
(void) _InterlockedExchange64(_Mem, _As_bytes);
#endif // _M_ARM64
}
void store(const _TVal _Value, const memory_order _Order) noexcept { // store with given memory order
const auto _Mem = _Atomic_address_as<long long>(_Storage);
const long long _As_bytes = _Atomic_reinterpret_as<long long>(_Value);
switch (_Order) {
case memory_order_relaxed:
__iso_volatile_store64(_Mem, _As_bytes);
return;
case memory_order_release:
_Compiler_or_memory_barrier();
__iso_volatile_store64(_Mem, _As_bytes);
return;
default:
case memory_order_consume:
case memory_order_acquire:
case memory_order_acq_rel:
_INVALID_MEMORY_ORDER;
// [[fallthrough]];
case memory_order_seq_cst:
store(_Value);
return;
}
}
_NODISCARD _TVal load() const noexcept { // load with sequential consistency
const auto _Mem = _Atomic_address_as<long long>(_Storage);
long long _As_bytes;
#ifdef _M_ARM
_As_bytes = __ldrexd(_Mem);
_Memory_barrier();
#else
_As_bytes = __iso_volatile_load64(_Mem);
_Compiler_or_memory_barrier();
#endif
return reinterpret_cast<_TVal&>(_As_bytes);
}
_NODISCARD _TVal load(const memory_order _Order) const noexcept { // load with given memory order
const auto _Mem = _Atomic_address_as<long long>(_Storage);
#ifdef _M_ARM
long long _As_bytes = __ldrexd(_Mem);
#else
long long _As_bytes = __iso_volatile_load64(_Mem);
#endif
_Load_barrier(_Order);
return reinterpret_cast<_TVal&>(_As_bytes);
}
#ifdef _M_IX86
_TVal exchange(const _TVal _Value, const memory_order _Order = memory_order_seq_cst) noexcept {
// exchange with (effectively) sequential consistency
_TVal _Temp{load()};
while (!compare_exchange_strong(_Temp, _Value, _Order)) { // keep trying
}
return _Temp;
}
#else // ^^^ _M_IX86 / !_M_IX86 vvv
_TVal exchange(const _TVal _Value, const memory_order _Order = memory_order_seq_cst) noexcept {
// exchange with given memory order
long long _As_bytes;
_ATOMIC_CHOOSE_INTRINSIC(_Order, _As_bytes, _InterlockedExchange64, _Atomic_address_as<long long>(_Storage),
_Atomic_reinterpret_as<long long>(_Value));
return reinterpret_cast<_TVal&>(_As_bytes);
}
#endif // _M_IX86
bool compare_exchange_strong(_TVal& _Expected, const _TVal _Desired,
const memory_order _Order = memory_order_seq_cst) noexcept { // CAS with given memory order
long long _Expected_bytes = _Atomic_reinterpret_as<long long>(_Expected); // read before atomic operation
long long _Prev_bytes;
#if _CMPXCHG_MASK_OUT_PADDING_BITS
if constexpr (_Might_have_non_value_bits<_TVal>) {
_Storage_for<_TVal> _Mask{_Form_mask};
const long long _Mask_val = _Atomic_reinterpret_as<long long>(_Mask);
for (;;) {
_ATOMIC_CHOOSE_INTRINSIC(_Order, _Prev_bytes, _InterlockedCompareExchange64,
_Atomic_address_as<long long>(_Storage), _Atomic_reinterpret_as<long long>(_Desired),
_Expected_bytes);
if (_Prev_bytes == _Expected_bytes) {
return true;
}
if ((_Prev_bytes ^ _Expected_bytes) & _Mask_val) {
_CSTD memcpy(_STD addressof(_Expected), &_Prev_bytes, sizeof(_TVal));
return false;
}
_Expected_bytes = (_Expected_bytes & _Mask_val) | (_Prev_bytes & ~_Mask_val);
}
}
#endif // _CMPXCHG_MASK_OUT_PADDING_BITS
_ATOMIC_CHOOSE_INTRINSIC(_Order, _Prev_bytes, _InterlockedCompareExchange64,
_Atomic_address_as<long long>(_Storage), _Atomic_reinterpret_as<long long>(_Desired), _Expected_bytes);
if (_Prev_bytes == _Expected_bytes) {
return true;
}
_CSTD memcpy(_STD addressof(_Expected), &_Prev_bytes, sizeof(_TVal));
return false;
}
#if _HAS_CXX20
void wait(const _TVal _Expected, const memory_order _Order = memory_order_seq_cst) const noexcept {
_Atomic_wait_direct(this, _Atomic_reinterpret_as<long long>(_Expected), _Order);
}
void notify_one() noexcept {
__std_atomic_notify_one_direct(_STD addressof(_Storage));
}
void notify_all() noexcept {
__std_atomic_notify_all_direct(_STD addressof(_Storage));
}
#endif // _HAS_CXX20
typename _Atomic_storage_types<_Ty>::_TStorage _Storage;
};
#ifdef _WIN64
template <class _Ty>
struct _Atomic_storage<_Ty&, 16> { // lock-free using 16-byte intrinsics
// TRANSITION, ABI: replace '_Ty&' with '_Ty' in this specialization
using _TVal = remove_reference_t<_Ty&>;
_Atomic_storage() = default;
/* implicit */ constexpr _Atomic_storage(conditional_t<is_reference_v<_Ty&>, _Ty&, const _TVal> _Value) noexcept
: _Storage{_Value} {} // non-atomically initialize this atomic
void store(const _TVal _Value) noexcept { // store with sequential consistency
(void) exchange(_Value);
}
void store(const _TVal _Value, const memory_order _Order) noexcept { // store with given memory order
_Check_store_memory_order(_Order);
(void) exchange(_Value, _Order);
}
_NODISCARD _TVal load() const noexcept { // load with sequential consistency
long long* const _Storage_ptr = const_cast<long long*>(_Atomic_address_as<const long long>(_Storage));
_Int128 _Result{}; // atomic CAS 0 with 0
(void) _STD_COMPARE_EXCHANGE_128(_Storage_ptr, 0, 0, &_Result._Low);
return reinterpret_cast<_TVal&>(_Result);
}
_NODISCARD _TVal load(const memory_order _Order) const noexcept { // load with given memory order
#if defined(_M_ARM64) || defined(_M_ARM64EC)
long long* const _Storage_ptr = const_cast<long long*>(_Atomic_address_as<const long long>(_Storage));
_Int128 _Result{}; // atomic CAS 0 with 0
switch (_Order) {
case memory_order_relaxed:
(void) _INTRIN_RELAXED(_InterlockedCompareExchange128)(_Storage_ptr, 0, 0, &_Result._Low);
break;
case memory_order_consume:
case memory_order_acquire:
(void) _INTRIN_ACQUIRE(_InterlockedCompareExchange128)(_Storage_ptr, 0, 0, &_Result._Low);
break;
default:
case memory_order_release:
case memory_order_acq_rel:
_INVALID_MEMORY_ORDER;
// [[fallthrough]];
case memory_order_seq_cst:
(void) _InterlockedCompareExchange128(_Storage_ptr, 0, 0, &_Result._Low);
break;
}
return reinterpret_cast<_TVal&>(_Result);
#else // ^^^ _M_ARM64 / _M_X64 vvv
_Check_load_memory_order(_Order);
return load();
#endif // _M_ARM64
}
_TVal exchange(const _TVal _Value) noexcept { // exchange with sequential consistency
_TVal _Result{_Value};
while (!compare_exchange_strong(_Result, _Value)) { // keep trying
}
return _Result;
}
_TVal exchange(const _TVal _Value, const memory_order _Order) noexcept { // exchange with given memory order
_TVal _Result{_Value};
while (!compare_exchange_strong(_Result, _Value, _Order)) { // keep trying
}
return _Result;
}
bool compare_exchange_strong(_TVal& _Expected, const _TVal _Desired,
const memory_order _Order = memory_order_seq_cst) noexcept { // CAS with given memory order
_Int128 _Desired_bytes{};
_CSTD memcpy(&_Desired_bytes, _STD addressof(_Desired), sizeof(_TVal));
_Int128 _Expected_temp{};
_CSTD memcpy(&_Expected_temp, _STD addressof(_Expected), sizeof(_TVal));
unsigned char _Result;
#if _CMPXCHG_MASK_OUT_PADDING_BITS
if constexpr (_Might_have_non_value_bits<_TVal>) {
_Int128 _Expected_originally{};
_CSTD memcpy(&_Expected_originally, _STD addressof(_Expected), sizeof(_TVal));
_Storage_for<_TVal> _Mask{_Form_mask};
_Int128 _Mask_val{};
_CSTD memcpy(&_Mask_val, _Mask._Ptr(), sizeof(_TVal));
for (;;) {
#if defined(_M_ARM64) || defined(_M_ARM64EC)
_ATOMIC_CHOOSE_INTRINSIC(_Order, _Result, _InterlockedCompareExchange128,
_Atomic_address_as<long long>(_Storage), _Desired_bytes._High, _Desired_bytes._Low,
&_Expected_temp._Low);
#else // ^^^ _M_ARM64 / _M_X64 vvv
(void) _Order;
_Result = _STD_COMPARE_EXCHANGE_128(&reinterpret_cast<long long&>(_Storage), _Desired_bytes._High,
_Desired_bytes._Low, &_Expected_temp._Low);
#endif // _M_ARM64
if (_Result) {
return true;
}
if (((_Expected_temp._Low ^ _Expected_originally._Low) & _Mask_val._Low) != 0
|| ((_Expected_temp._High ^ _Expected_originally._High) & _Mask_val._High) != 0) {
_CSTD memcpy(_STD addressof(_Expected), &_Expected_temp, sizeof(_TVal));
return false;
}
_Expected_temp._Low =
(_Expected_originally._Low & _Mask_val._Low) | (_Expected_temp._Low & ~_Mask_val._Low);
_Expected_temp._High =
(_Expected_originally._High & _Mask_val._High) | (_Expected_temp._High & ~_Mask_val._High);
}
}
#endif // _CMPXCHG_MASK_OUT_PADDING_BITS
#if defined(_M_ARM64) || defined(_M_ARM64EC)
_ATOMIC_CHOOSE_INTRINSIC(_Order, _Result, _InterlockedCompareExchange128,
_Atomic_address_as<long long>(_Storage), _Desired_bytes._High, _Desired_bytes._Low, &_Expected_temp._Low);
#else // ^^^ _M_ARM64 / _M_X64 vvv
(void) _Order;
_Result = _STD_COMPARE_EXCHANGE_128(
&reinterpret_cast<long long&>(_Storage), _Desired_bytes._High, _Desired_bytes._Low, &_Expected_temp._Low);
#endif // _M_ARM64
if (_Result == 0) {
_CSTD memcpy(_STD addressof(_Expected), &_Expected_temp, sizeof(_TVal));
}
return _Result != 0;
}
#if _HAS_CXX20
void wait(_TVal _Expected, memory_order _Order = memory_order_seq_cst) const noexcept {
const auto _Storage_ptr = _STD addressof(_Storage);
const auto _Expected_ptr = _STD addressof(_Expected);
_Int128 _Expected_bytes = reinterpret_cast<const _Int128&>(_Expected);
for (;;) {
const _TVal _Observed = load(_Order);
_Int128 _Observed_bytes = reinterpret_cast<const _Int128&>(_Observed);
if (_Observed_bytes._Low != _Expected_bytes._Low || _Observed_bytes._High != _Expected_bytes._High) {
#if _CMPXCHG_MASK_OUT_PADDING_BITS
if constexpr (_Might_have_non_value_bits<_TVal>) {
_Storage_for<_TVal> _Mask{_Form_mask};
const _Int128 _Mask_val = reinterpret_cast<const _Int128&>(_Mask._Ref());
if (((_Expected_bytes._Low ^ _Observed_bytes._Low) & _Mask_val._Low) == 0
&& ((_Expected_bytes._High ^ _Observed_bytes._High) & _Mask_val._High) == 0) {
_Expected_bytes = _Observed_bytes;
continue;
}
}
#endif // _CMPXCHG_MASK_OUT_PADDING_BITS
return;
}
__std_atomic_wait_indirect(_Storage_ptr, _Expected_ptr, sizeof(_TVal), nullptr,
&_Atomic_wait_compare_16_bytes, _Atomic_wait_no_timeout);
}
}
void notify_one() noexcept {
__std_atomic_notify_one_indirect(_STD addressof(_Storage));
}
void notify_all() noexcept {
__std_atomic_notify_all_indirect(_STD addressof(_Storage));
}
#endif // _HAS_CXX20
struct _Int128 {
alignas(16) long long _Low;
long long _High;
};
typename _Atomic_storage_types<_Ty&>::_TStorage _Storage;
};
#endif // _WIN64
// STRUCT TEMPLATE _Atomic_integral
template <class _Ty, size_t = sizeof(_Ty)>
struct _Atomic_integral; // not defined
template <class _Ty>
struct _Atomic_integral<_Ty, 1> : _Atomic_storage<_Ty> { // atomic integral operations using 1-byte intrinsics
using _Base = _Atomic_storage<_Ty>;
using typename _Base::_TVal;
#ifdef __cplusplus_winrt // TRANSITION, VSO-1083296
_Atomic_integral() = default;
/* implicit */ constexpr _Atomic_integral(conditional_t<is_reference_v<_Ty>, _Ty, const _TVal> _Value) noexcept
: _Base(_Value) {}
#else // ^^^ workaround / no workaround vvv
using _Base::_Base;
#endif // ^^^ no workaround ^^^
_TVal fetch_add(const _TVal _Operand, const memory_order _Order = memory_order_seq_cst) noexcept {
char _Result;
_ATOMIC_CHOOSE_INTRINSIC(_Order, _Result, _InterlockedExchangeAdd8, _Atomic_address_as<char>(this->_Storage),
static_cast<char>(_Operand));
return static_cast<_TVal>(_Result);
}
_TVal fetch_and(const _TVal _Operand, const memory_order _Order = memory_order_seq_cst) noexcept {
char _Result;
_ATOMIC_CHOOSE_INTRINSIC(
_Order, _Result, _InterlockedAnd8, _Atomic_address_as<char>(this->_Storage), static_cast<char>(_Operand));
return static_cast<_TVal>(_Result);
}
_TVal fetch_or(const _TVal _Operand, const memory_order _Order = memory_order_seq_cst) noexcept {
char _Result;
_ATOMIC_CHOOSE_INTRINSIC(
_Order, _Result, _InterlockedOr8, _Atomic_address_as<char>(this->_Storage), static_cast<char>(_Operand));
return static_cast<_TVal>(_Result);
}
_TVal fetch_xor(const _TVal _Operand, const memory_order _Order = memory_order_seq_cst) noexcept {
char _Result;
_ATOMIC_CHOOSE_INTRINSIC(
_Order, _Result, _InterlockedXor8, _Atomic_address_as<char>(this->_Storage), static_cast<char>(_Operand));
return static_cast<_TVal>(_Result);
}
_TVal operator++(int) noexcept {
return static_cast<_TVal>(_InterlockedExchangeAdd8(_Atomic_address_as<char>(this->_Storage), 1));
}
_TVal operator++() noexcept {
unsigned char _Before =
static_cast<unsigned char>(_InterlockedExchangeAdd8(_Atomic_address_as<char>(this->_Storage), 1));
++_Before;
return static_cast<_TVal>(_Before);
}
_TVal operator--(int) noexcept {
return static_cast<_TVal>(_InterlockedExchangeAdd8(_Atomic_address_as<char>(this->_Storage), -1));
}
_TVal operator--() noexcept {
unsigned char _Before =
static_cast<unsigned char>(_InterlockedExchangeAdd8(_Atomic_address_as<char>(this->_Storage), -1));
--_Before;
return static_cast<_TVal>(_Before);
}
};
template <class _Ty>
struct _Atomic_integral<_Ty, 2> : _Atomic_storage<_Ty> { // atomic integral operations using 2-byte intrinsics
using _Base = _Atomic_storage<_Ty>;
using typename _Base::_TVal;
#ifdef __cplusplus_winrt // TRANSITION, VSO-1083296
_Atomic_integral() = default;
/* implicit */ constexpr _Atomic_integral(conditional_t<is_reference_v<_Ty>, _Ty, const _TVal> _Value) noexcept
: _Base(_Value) {}
#else // ^^^ workaround / no workaround vvv
using _Base::_Base;
#endif // ^^^ no workaround ^^^
_TVal fetch_add(const _TVal _Operand, const memory_order _Order = memory_order_seq_cst) noexcept {
short _Result;
_ATOMIC_CHOOSE_INTRINSIC(_Order, _Result, _InterlockedExchangeAdd16, _Atomic_address_as<short>(this->_Storage),
static_cast<short>(_Operand));
return static_cast<_TVal>(_Result);
}
_TVal fetch_and(const _TVal _Operand, const memory_order _Order = memory_order_seq_cst) noexcept {
short _Result;
_ATOMIC_CHOOSE_INTRINSIC(_Order, _Result, _InterlockedAnd16, _Atomic_address_as<short>(this->_Storage),
static_cast<short>(_Operand));
return static_cast<_TVal>(_Result);
}
_TVal fetch_or(const _TVal _Operand, const memory_order _Order = memory_order_seq_cst) noexcept {
short _Result;
_ATOMIC_CHOOSE_INTRINSIC(
_Order, _Result, _InterlockedOr16, _Atomic_address_as<short>(this->_Storage), static_cast<short>(_Operand));
return static_cast<_TVal>(_Result);
}
_TVal fetch_xor(const _TVal _Operand, const memory_order _Order = memory_order_seq_cst) noexcept {
short _Result;
_ATOMIC_CHOOSE_INTRINSIC(_Order, _Result, _InterlockedXor16, _Atomic_address_as<short>(this->_Storage),
static_cast<short>(_Operand));
return static_cast<_TVal>(_Result);
}
_TVal operator++(int) noexcept {
unsigned short _After =
static_cast<unsigned short>(_InterlockedIncrement16(_Atomic_address_as<short>(this->_Storage)));
--_After;
return static_cast<_TVal>(_After);
}
_TVal operator++() noexcept {
return static_cast<_TVal>(_InterlockedIncrement16(_Atomic_address_as<short>(this->_Storage)));
}
_TVal operator--(int) noexcept {
unsigned short _After =
static_cast<unsigned short>(_InterlockedDecrement16(_Atomic_address_as<short>(this->_Storage)));
++_After;
return static_cast<_TVal>(_After);
}
_TVal operator--() noexcept {
return static_cast<_TVal>(_InterlockedDecrement16(_Atomic_address_as<short>(this->_Storage)));
}
};
template <class _Ty>
struct _Atomic_integral<_Ty, 4> : _Atomic_storage<_Ty> { // atomic integral operations using 4-byte intrinsics
using _Base = _Atomic_storage<_Ty>;
using typename _Base::_TVal;
#ifdef __cplusplus_winrt // TRANSITION, VSO-1083296
_Atomic_integral() = default;
/* implicit */ constexpr _Atomic_integral(conditional_t<is_reference_v<_Ty>, _Ty, const _TVal> _Value) noexcept
: _Base(_Value) {}
#else // ^^^ workaround / no workaround vvv
using _Base::_Base;
#endif // ^^^ no workaround ^^^
_TVal fetch_add(const _TVal _Operand, const memory_order _Order = memory_order_seq_cst) noexcept {
long _Result;
_ATOMIC_CHOOSE_INTRINSIC(_Order, _Result, _InterlockedExchangeAdd, _Atomic_address_as<long>(this->_Storage),
static_cast<long>(_Operand));
return static_cast<_TVal>(_Result);
}
_TVal fetch_and(const _TVal _Operand, const memory_order _Order = memory_order_seq_cst) noexcept {
long _Result;
_ATOMIC_CHOOSE_INTRINSIC(
_Order, _Result, _InterlockedAnd, _Atomic_address_as<long>(this->_Storage), static_cast<long>(_Operand));
return static_cast<_TVal>(_Result);
}
_TVal fetch_or(const _TVal _Operand, const memory_order _Order = memory_order_seq_cst) noexcept {
long _Result;
_ATOMIC_CHOOSE_INTRINSIC(
_Order, _Result, _InterlockedOr, _Atomic_address_as<long>(this->_Storage), static_cast<long>(_Operand));
return static_cast<_TVal>(_Result);
}
_TVal fetch_xor(const _TVal _Operand, const memory_order _Order = memory_order_seq_cst) noexcept {
long _Result;
_ATOMIC_CHOOSE_INTRINSIC(
_Order, _Result, _InterlockedXor, _Atomic_address_as<long>(this->_Storage), static_cast<long>(_Operand));
return static_cast<_TVal>(_Result);
}
_TVal operator++(int) noexcept {
unsigned long _After =
static_cast<unsigned long>(_InterlockedIncrement(_Atomic_address_as<long>(this->_Storage)));
--_After;
return static_cast<_TVal>(_After);
}
_TVal operator++() noexcept {
return static_cast<_TVal>(_InterlockedIncrement(_Atomic_address_as<long>(this->_Storage)));
}
_TVal operator--(int) noexcept {
unsigned long _After =
static_cast<unsigned long>(_InterlockedDecrement(_Atomic_address_as<long>(this->_Storage)));
++_After;
return static_cast<_TVal>(_After);
}
_TVal operator--() noexcept {
return static_cast<_TVal>(_InterlockedDecrement(_Atomic_address_as<long>(this->_Storage)));
}
};
template <class _Ty>
struct _Atomic_integral<_Ty, 8> : _Atomic_storage<_Ty> { // atomic integral operations using 8-byte intrinsics
using _Base = _Atomic_storage<_Ty>;
using typename _Base::_TVal;
#ifdef __cplusplus_winrt // TRANSITION, VSO-1083296
_Atomic_integral() = default;
/* implicit */ constexpr _Atomic_integral(conditional_t<is_reference_v<_Ty>, _Ty, const _TVal> _Value) noexcept
: _Base(_Value) {}
#else // ^^^ workaround / no workaround vvv
using _Base::_Base;
#endif // ^^^ no workaround ^^^
#ifdef _M_IX86
_TVal fetch_add(const _TVal _Operand, const memory_order _Order = memory_order_seq_cst) noexcept {
// effectively sequential consistency
_TVal _Temp{this->load()};
while (!this->compare_exchange_strong(_Temp, _Temp + _Operand, _Order)) { // keep trying
}
return _Temp;
}
_TVal fetch_and(const _TVal _Operand, const memory_order _Order = memory_order_seq_cst) noexcept {
// effectively sequential consistency
_TVal _Temp{this->load()};
while (!this->compare_exchange_strong(_Temp, _Temp & _Operand, _Order)) { // keep trying
}
return _Temp;
}
_TVal fetch_or(const _TVal _Operand, const memory_order _Order = memory_order_seq_cst) noexcept {
// effectively sequential consistency
_TVal _Temp{this->load()};
while (!this->compare_exchange_strong(_Temp, _Temp | _Operand, _Order)) { // keep trying
}
return _Temp;
}
_TVal fetch_xor(const _TVal _Operand, const memory_order _Order = memory_order_seq_cst) noexcept {
// effectively sequential consistency
_TVal _Temp{this->load()};
while (!this->compare_exchange_strong(_Temp, _Temp ^ _Operand, _Order)) { // keep trying
}
return _Temp;
}
_TVal operator++(int) noexcept {
return fetch_add(static_cast<_TVal>(1));
}
_TVal operator++() noexcept {
return fetch_add(static_cast<_TVal>(1)) + static_cast<_TVal>(1);
}
_TVal operator--(int) noexcept {
return fetch_add(static_cast<_TVal>(-1));
}
_TVal operator--() noexcept {
return fetch_add(static_cast<_TVal>(-1)) - static_cast<_TVal>(1);
}
#else // ^^^ _M_IX86 / !_M_IX86 vvv
_TVal fetch_add(const _TVal _Operand, const memory_order _Order = memory_order_seq_cst) noexcept {
long long _Result;
_ATOMIC_CHOOSE_INTRINSIC(_Order, _Result, _InterlockedExchangeAdd64,
_Atomic_address_as<long long>(this->_Storage), static_cast<long long>(_Operand));
return static_cast<_TVal>(_Result);
}
_TVal fetch_and(const _TVal _Operand, const memory_order _Order = memory_order_seq_cst) noexcept {
long long _Result;
_ATOMIC_CHOOSE_INTRINSIC(_Order, _Result, _InterlockedAnd64, _Atomic_address_as<long long>(this->_Storage),
static_cast<long long>(_Operand));
return static_cast<_TVal>(_Result);
}
_TVal fetch_or(const _TVal _Operand, const memory_order _Order = memory_order_seq_cst) noexcept {
long long _Result;
_ATOMIC_CHOOSE_INTRINSIC(_Order, _Result, _InterlockedOr64, _Atomic_address_as<long long>(this->_Storage),
static_cast<long long>(_Operand));
return static_cast<_TVal>(_Result);
}
_TVal fetch_xor(const _TVal _Operand, const memory_order _Order = memory_order_seq_cst) noexcept {
long long _Result;
_ATOMIC_CHOOSE_INTRINSIC(_Order, _Result, _InterlockedXor64, _Atomic_address_as<long long>(this->_Storage),
static_cast<long long>(_Operand));
return static_cast<_TVal>(_Result);
}
_TVal operator++(int) noexcept {
unsigned long long _After =
static_cast<unsigned long long>(_InterlockedIncrement64(_Atomic_address_as<long long>(this->_Storage)));
--_After;
return static_cast<_TVal>(_After);
}
_TVal operator++() noexcept {
return static_cast<_TVal>(_InterlockedIncrement64(_Atomic_address_as<long long>(this->_Storage)));
}
_TVal operator--(int) noexcept {
unsigned long long _After =
static_cast<unsigned long long>(_InterlockedDecrement64(_Atomic_address_as<long long>(this->_Storage)));
++_After;
return static_cast<_TVal>(_After);
}
_TVal operator--() noexcept {
return static_cast<_TVal>(_InterlockedDecrement64(_Atomic_address_as<long long>(this->_Storage)));
}
#endif // _M_IX86
};
#if 1 // TRANSITION, ABI
template <size_t _TypeSize>
_INLINE_VAR constexpr bool _Is_always_lock_free = _TypeSize <= 8 && (_TypeSize & (_TypeSize - 1)) == 0;
#else // ^^^ don't break ABI / break ABI vvv
#if _ATOMIC_HAS_DCAS
template <size_t _TypeSize>
_INLINE_VAR constexpr bool _Is_always_lock_free = _TypeSize <= 2 * sizeof(void*);
#else // ^^^ _ATOMIC_HAS_DCAS / !_ATOMIC_HAS_DCAS vvv
template <size_t _TypeSize>
_INLINE_VAR constexpr bool _Is_always_lock_free = _TypeSize <= sizeof(void*);
#endif // _ATOMIC_HAS_DCAS
#endif // break ABI
template <class _Ty, bool _Is_lock_free = _Is_always_lock_free<sizeof(_Ty)>>
_INLINE_VAR constexpr bool _Deprecate_non_lock_free_volatile = true;
template <class _Ty>
_CXX20_DEPRECATE_VOLATILE _INLINE_VAR constexpr bool _Deprecate_non_lock_free_volatile<_Ty, false> = true;
// STRUCT TEMPLATE _Atomic_integral_facade
template <class _Ty>
struct _Atomic_integral_facade : _Atomic_integral<_Ty> {
// provides operator overloads and other support for atomic integral specializations
using _Base = _Atomic_integral<_Ty>;
using difference_type = _Ty;
#ifdef __cplusplus_winrt // TRANSITION, VSO-1083296
_Atomic_integral_facade() = default;
/* implicit */ constexpr _Atomic_integral_facade(const _Ty _Value) noexcept : _Base(_Value) {}
#else // ^^^ workaround / no workaround vvv
using _Base::_Base;
#endif // ^^^ no workaround ^^^
// _Deprecate_non_lock_free_volatile is unnecessary here.
// note: const_cast-ing away volatile is safe because all our intrinsics add volatile back on.
// We make the primary functions non-volatile for better debug codegen, as non-volatile atomics
// are far more common than volatile ones.
using _Base::fetch_add;
_Ty fetch_add(const _Ty _Operand) volatile noexcept {
return const_cast<_Atomic_integral_facade*>(this)->_Base::fetch_add(_Operand);
}
_Ty fetch_add(const _Ty _Operand, const memory_order _Order) volatile noexcept {
return const_cast<_Atomic_integral_facade*>(this)->_Base::fetch_add(_Operand, _Order);
}
_NODISCARD static _Ty _Negate(const _Ty _Value) noexcept { // returns two's complement negated value of _Value
return static_cast<_Ty>(0U - static_cast<make_unsigned_t<_Ty>>(_Value));
}
_Ty fetch_sub(const _Ty _Operand) noexcept {
return fetch_add(_Negate(_Operand));
}
_Ty fetch_sub(const _Ty _Operand) volatile noexcept {
return fetch_add(_Negate(_Operand));
}
_Ty fetch_sub(const _Ty _Operand, const memory_order _Order) noexcept {
return fetch_add(_Negate(_Operand), _Order);
}
_Ty fetch_sub(const _Ty _Operand, const memory_order _Order) volatile noexcept {
return fetch_add(_Negate(_Operand), _Order);
}
using _Base::fetch_and;
_Ty fetch_and(const _Ty _Operand) volatile noexcept {
return const_cast<_Atomic_integral_facade*>(this)->_Base::fetch_and(_Operand);
}
_Ty fetch_and(const _Ty _Operand, const memory_order _Order) volatile noexcept {
return const_cast<_Atomic_integral_facade*>(this)->_Base::fetch_and(_Operand, _Order);
}
using _Base::fetch_or;
_Ty fetch_or(const _Ty _Operand) volatile noexcept {
return const_cast<_Atomic_integral_facade*>(this)->_Base::fetch_or(_Operand);
}
_Ty fetch_or(const _Ty _Operand, const memory_order _Order) volatile noexcept {
return const_cast<_Atomic_integral_facade*>(this)->_Base::fetch_or(_Operand, _Order);
}
using _Base::fetch_xor;
_Ty fetch_xor(const _Ty _Operand) volatile noexcept {
return const_cast<_Atomic_integral_facade*>(this)->_Base::fetch_xor(_Operand);
}
_Ty fetch_xor(const _Ty _Operand, const memory_order _Order) volatile noexcept {
return const_cast<_Atomic_integral_facade*>(this)->_Base::fetch_xor(_Operand, _Order);
}
using _Base::operator++;
_Ty operator++(int) volatile noexcept {
return const_cast<_Atomic_integral_facade*>(this)->_Base::operator++(0);
}
_Ty operator++() volatile noexcept {
return const_cast<_Atomic_integral_facade*>(this)->_Base::operator++();
}
using _Base::operator--;
_Ty operator--(int) volatile noexcept {
return const_cast<_Atomic_integral_facade*>(this)->_Base::operator--(0);
}
_Ty operator--() volatile noexcept {
return const_cast<_Atomic_integral_facade*>(this)->_Base::operator--();
}
_Ty operator+=(const _Ty _Operand) noexcept {
return static_cast<_Ty>(this->_Base::fetch_add(_Operand) + _Operand);
}
_Ty operator+=(const _Ty _Operand) volatile noexcept {
return static_cast<_Ty>(const_cast<_Atomic_integral_facade*>(this)->_Base::fetch_add(_Operand) + _Operand);
}
_Ty operator-=(const _Ty _Operand) noexcept {
return static_cast<_Ty>(fetch_sub(_Operand) - _Operand);
}
_Ty operator-=(const _Ty _Operand) volatile noexcept {
return static_cast<_Ty>(const_cast<_Atomic_integral_facade*>(this)->fetch_sub(_Operand) - _Operand);
}
_Ty operator&=(const _Ty _Operand) noexcept {
return static_cast<_Ty>(this->_Base::fetch_and(_Operand) & _Operand);
}
_Ty operator&=(const _Ty _Operand) volatile noexcept {
return static_cast<_Ty>(const_cast<_Atomic_integral_facade*>(this)->_Base::fetch_and(_Operand) & _Operand);
}
_Ty operator|=(const _Ty _Operand) noexcept {
return static_cast<_Ty>(this->_Base::fetch_or(_Operand) | _Operand);
}
_Ty operator|=(const _Ty _Operand) volatile noexcept {
return static_cast<_Ty>(const_cast<_Atomic_integral_facade*>(this)->_Base::fetch_or(_Operand) | _Operand);
}
_Ty operator^=(const _Ty _Operand) noexcept {
return static_cast<_Ty>(this->_Base::fetch_xor(_Operand) ^ _Operand);
}
_Ty operator^=(const _Ty _Operand) volatile noexcept {
return static_cast<_Ty>(const_cast<_Atomic_integral_facade*>(this)->_Base::fetch_xor(_Operand) ^ _Operand);
}
};
// STRUCT TEMPLATE _Atomic_integral_facade
template <class _Ty>
struct _Atomic_integral_facade<_Ty&> : _Atomic_integral<_Ty&> {
// provides operator overloads and other support for atomic integral specializations
using _Base = _Atomic_integral<_Ty&>;
using difference_type = _Ty;
#ifdef __cplusplus_winrt // TRANSITION, VSO-1083296
_Atomic_integral_facade() = default;
/* implicit */ constexpr _Atomic_integral_facade(_Ty& _Value) noexcept : _Base(_Value) {}
#else // ^^^ workaround / no workaround vvv
using _Base::_Base;
#endif // ^^^ no workaround ^^^
_NODISCARD static _Ty _Negate(const _Ty _Value) noexcept { // returns two's complement negated value of _Value
return static_cast<_Ty>(0U - static_cast<make_unsigned_t<_Ty>>(_Value));
}
_Ty fetch_add(const _Ty _Operand) const noexcept {
return const_cast<_Atomic_integral_facade*>(this)->_Base::fetch_add(_Operand);
}
_Ty fetch_add(const _Ty _Operand, const memory_order _Order) const noexcept {
return const_cast<_Atomic_integral_facade*>(this)->_Base::fetch_add(_Operand, _Order);
}
_Ty fetch_sub(const _Ty _Operand) const noexcept {
return fetch_add(_Negate(_Operand));
}
_Ty fetch_sub(const _Ty _Operand, const memory_order _Order) const noexcept {
return fetch_add(_Negate(_Operand), _Order);
}
_Ty operator++(int) const noexcept {
return const_cast<_Atomic_integral_facade*>(this)->_Base::operator++(0);
}
_Ty operator++() const noexcept {
return const_cast<_Atomic_integral_facade*>(this)->_Base::operator++();
}
_Ty operator--(int) const noexcept {
return const_cast<_Atomic_integral_facade*>(this)->_Base::operator--(0);
}
_Ty operator--() const noexcept {
return const_cast<_Atomic_integral_facade*>(this)->_Base::operator--();
}
_Ty operator+=(const _Ty _Operand) const noexcept {
return static_cast<_Ty>(fetch_add(_Operand) + _Operand);
}
_Ty operator-=(const _Ty _Operand) const noexcept {
return static_cast<_Ty>(fetch_sub(_Operand) - _Operand);
}
_Ty fetch_and(const _Ty _Operand) const noexcept {
return const_cast<_Atomic_integral_facade*>(this)->_Base::fetch_and(_Operand);
}
_Ty fetch_and(const _Ty _Operand, const memory_order _Order) const noexcept {
return const_cast<_Atomic_integral_facade*>(this)->_Base::fetch_and(_Operand, _Order);
}
_Ty fetch_or(const _Ty _Operand) const noexcept {
return const_cast<_Atomic_integral_facade*>(this)->_Base::fetch_or(_Operand);
}
_Ty fetch_or(const _Ty _Operand, const memory_order _Order) const noexcept {
return const_cast<_Atomic_integral_facade*>(this)->_Base::fetch_or(_Operand, _Order);
}
_Ty fetch_xor(const _Ty _Operand) const noexcept {
return const_cast<_Atomic_integral_facade*>(this)->_Base::fetch_xor(_Operand);
}
_Ty fetch_xor(const _Ty _Operand, const memory_order _Order) const noexcept {
return const_cast<_Atomic_integral_facade*>(this)->_Base::fetch_xor(_Operand, _Order);
}
_Ty operator&=(const _Ty _Operand) const noexcept {
return static_cast<_Ty>(fetch_and(_Operand) & _Operand);
}
_Ty operator|=(const _Ty _Operand) const noexcept {
return static_cast<_Ty>(fetch_or(_Operand) | _Operand);
}
_Ty operator^=(const _Ty _Operand) const noexcept {
return static_cast<_Ty>(fetch_xor(_Operand) ^ _Operand);
}
};
#if _HAS_CXX20
template <class _Ty>
struct _Atomic_floating : _Atomic_storage<_Ty> {
// provides atomic floating-point operations
using _Base = _Atomic_storage<_Ty>;
using difference_type = _Ty;
#ifdef __cplusplus_winrt // TRANSITION, VSO-1083296
_Atomic_floating() = default;
/* implicit */ constexpr _Atomic_floating(const _Ty _Value) noexcept : _Base(_Value) {}
#else // ^^^ workaround / no workaround vvv
using _Base::_Base;
#endif // ^^^ no workaround ^^^
_Ty fetch_add(const _Ty _Operand, const memory_order _Order = memory_order_seq_cst) noexcept {
_Ty _Temp{this->load(memory_order_relaxed)};
while (!this->compare_exchange_strong(_Temp, _Temp + _Operand, _Order)) { // keep trying
}
return _Temp;
}
// _Deprecate_non_lock_free_volatile is unnecessary here.
// note: const_cast-ing away volatile is safe because all our intrinsics add volatile back on.
// We make the primary functions non-volatile for better debug codegen, as non-volatile atomics
// are far more common than volatile ones.
_Ty fetch_add(const _Ty _Operand, const memory_order _Order = memory_order_seq_cst) volatile noexcept {
return const_cast<_Atomic_floating*>(this)->fetch_add(_Operand, _Order);
}
_Ty fetch_sub(const _Ty _Operand, const memory_order _Order = memory_order_seq_cst) noexcept {
_Ty _Temp{this->load(memory_order_relaxed)};
while (!this->compare_exchange_strong(_Temp, _Temp - _Operand, _Order)) { // keep trying
}
return _Temp;
}
_Ty fetch_sub(const _Ty _Operand, const memory_order _Order = memory_order_seq_cst) volatile noexcept {
return const_cast<_Atomic_floating*>(this)->fetch_sub(_Operand, _Order);
}
_Ty operator+=(const _Ty _Operand) noexcept {
return fetch_add(_Operand) + _Operand;
}
_Ty operator+=(const _Ty _Operand) volatile noexcept {
return const_cast<_Atomic_floating*>(this)->fetch_add(_Operand) + _Operand;
}
_Ty operator-=(const _Ty _Operand) noexcept {
return fetch_sub(_Operand) - _Operand;
}
_Ty operator-=(const _Ty _Operand) volatile noexcept {
return const_cast<_Atomic_floating*>(this)->fetch_sub(_Operand) - _Operand;
}
};
template <class _Ty>
struct _Atomic_floating<_Ty&> : _Atomic_storage<_Ty&> {
// provides atomic floating-point operations
using _Base = _Atomic_storage<_Ty&>;
using difference_type = _Ty;
#ifdef __cplusplus_winrt // TRANSITION, VSO-1083296
_Atomic_floating() = default;
/* implicit */ constexpr _Atomic_floating(_Ty& _Value) noexcept : _Base(_Value) {}
#else // ^^^ workaround / no workaround vvv
using _Base::_Base;
#endif // ^^^ no workaround ^^^
_Ty fetch_add(const _Ty _Operand, const memory_order _Order = memory_order_seq_cst) const noexcept {
_Ty _Temp{this->load(memory_order_relaxed)};
while (!const_cast<_Atomic_floating*>(this)->_Base::compare_exchange_strong(
_Temp, _Temp + _Operand, _Order)) { // keep trying
}
return _Temp;
}
_Ty fetch_sub(const _Ty _Operand, const memory_order _Order = memory_order_seq_cst) const noexcept {
_Ty _Temp{this->load(memory_order_relaxed)};
while (!const_cast<_Atomic_floating*>(this)->_Base::compare_exchange_strong(
_Temp, _Temp - _Operand, _Order)) { // keep trying
}
return _Temp;
}
_Ty operator+=(const _Ty _Operand) const noexcept {
return fetch_add(_Operand) + _Operand;
}
_Ty operator-=(const _Ty _Operand) const noexcept {
return fetch_sub(_Operand) - _Operand;
}
};
#endif // _HAS_CXX20
// STRUCT TEMPLATE _Atomic_pointer
template <class _Ty>
struct _Atomic_pointer : _Atomic_storage<_Ty> {
using _Base = _Atomic_storage<_Ty>;
using difference_type = ptrdiff_t;
#ifdef __cplusplus_winrt // TRANSITION, VSO-1083296
_Atomic_pointer() = default;
/* implicit */ constexpr _Atomic_pointer(const _Ty _Value) noexcept : _Base(_Value) {}
#else // ^^^ workaround / no workaround vvv
using _Base::_Base;
#endif // ^^^ no workaround ^^^
_Ty fetch_add(const ptrdiff_t _Diff, const memory_order _Order = memory_order_seq_cst) noexcept {
const ptrdiff_t _Shift_bytes =
static_cast<ptrdiff_t>(static_cast<size_t>(_Diff) * sizeof(remove_pointer_t<_Ty>));
ptrdiff_t _Result;
#if defined(_M_IX86) || defined(_M_ARM)
_ATOMIC_CHOOSE_INTRINSIC(
_Order, _Result, _InterlockedExchangeAdd, _Atomic_address_as<long>(this->_Storage), _Shift_bytes);
#else // ^^^ 32 bits / 64 bits vvv
_ATOMIC_CHOOSE_INTRINSIC(
_Order, _Result, _InterlockedExchangeAdd64, _Atomic_address_as<long long>(this->_Storage), _Shift_bytes);
#endif // hardware
return reinterpret_cast<_Ty>(_Result);
}
// _Deprecate_non_lock_free_volatile is unnecessary here.
_Ty fetch_add(const ptrdiff_t _Diff) volatile noexcept {
return const_cast<_Atomic_pointer*>(this)->fetch_add(_Diff);
}
_Ty fetch_add(const ptrdiff_t _Diff, const memory_order _Order) volatile noexcept {
return const_cast<_Atomic_pointer*>(this)->fetch_add(_Diff, _Order);
}
_Ty fetch_sub(const ptrdiff_t _Diff) volatile noexcept {
return fetch_add(static_cast<ptrdiff_t>(0 - static_cast<size_t>(_Diff)));
}
_Ty fetch_sub(const ptrdiff_t _Diff) noexcept {
return fetch_add(static_cast<ptrdiff_t>(0 - static_cast<size_t>(_Diff)));
}
_Ty fetch_sub(const ptrdiff_t _Diff, const memory_order _Order) volatile noexcept {
return fetch_add(static_cast<ptrdiff_t>(0 - static_cast<size_t>(_Diff)), _Order);
}
_Ty fetch_sub(const ptrdiff_t _Diff, const memory_order _Order) noexcept {
return fetch_add(static_cast<ptrdiff_t>(0 - static_cast<size_t>(_Diff)), _Order);
}
_Ty operator++(int) volatile noexcept {
return fetch_add(1);
}
_Ty operator++(int) noexcept {
return fetch_add(1);
}
_Ty operator++() volatile noexcept {
return fetch_add(1) + 1;
}
_Ty operator++() noexcept {
return fetch_add(1) + 1;
}
_Ty operator--(int) volatile noexcept {
return fetch_add(-1);
}
_Ty operator--(int) noexcept {
return fetch_add(-1);
}
_Ty operator--() volatile noexcept {
return fetch_add(-1) - 1;
}
_Ty operator--() noexcept {
return fetch_add(-1) - 1;
}
_Ty operator+=(const ptrdiff_t _Diff) volatile noexcept {
return fetch_add(_Diff) + _Diff;
}
_Ty operator+=(const ptrdiff_t _Diff) noexcept {
return fetch_add(_Diff) + _Diff;
}
_Ty operator-=(const ptrdiff_t _Diff) volatile noexcept {
return fetch_add(static_cast<ptrdiff_t>(0 - static_cast<size_t>(_Diff))) - _Diff;
}
_Ty operator-=(const ptrdiff_t _Diff) noexcept {
return fetch_add(static_cast<ptrdiff_t>(0 - static_cast<size_t>(_Diff))) - _Diff;
}
};
// STRUCT TEMPLATE _Atomic_pointer
template <class _Ty>
struct _Atomic_pointer<_Ty&> : _Atomic_storage<_Ty&> {
using _Base = _Atomic_storage<_Ty&>;
using difference_type = ptrdiff_t;
#ifdef __cplusplus_winrt // TRANSITION, VSO-1083296
_Atomic_pointer() = default;
/* implicit */ constexpr _Atomic_pointer(_Ty& _Value) noexcept : _Base(_Value) {}
#else // ^^^ workaround / no workaround vvv
using _Base::_Base;
#endif // ^^^ no workaround ^^^
_Ty fetch_add(const ptrdiff_t _Diff, const memory_order _Order = memory_order_seq_cst) const noexcept {
const ptrdiff_t _Shift_bytes =
static_cast<ptrdiff_t>(static_cast<size_t>(_Diff) * sizeof(remove_pointer_t<_Ty>));
ptrdiff_t _Result;
#if defined(_M_IX86) || defined(_M_ARM)
_ATOMIC_CHOOSE_INTRINSIC(
_Order, _Result, _InterlockedExchangeAdd, _Atomic_address_as<long>(this->_Storage), _Shift_bytes);
#else // ^^^ 32 bits / 64 bits vvv
_ATOMIC_CHOOSE_INTRINSIC(
_Order, _Result, _InterlockedExchangeAdd64, _Atomic_address_as<long long>(this->_Storage), _Shift_bytes);
#endif // hardware
return reinterpret_cast<_Ty>(_Result);
}
_Ty fetch_sub(const ptrdiff_t _Diff) const noexcept {
return fetch_add(static_cast<ptrdiff_t>(0 - static_cast<size_t>(_Diff)));
}
_Ty fetch_sub(const ptrdiff_t _Diff, const memory_order _Order) const noexcept {
return fetch_add(static_cast<ptrdiff_t>(0 - static_cast<size_t>(_Diff)), _Order);
}
_Ty operator++(int) const noexcept {
return fetch_add(1);
}
_Ty operator++() const noexcept {
return fetch_add(1) + 1;
}
_Ty operator--(int) const noexcept {
return fetch_add(-1);
}
_Ty operator--() const noexcept {
return fetch_add(-1) - 1;
}
_Ty operator+=(const ptrdiff_t _Diff) const noexcept {
return fetch_add(_Diff) + _Diff;
}
_Ty operator-=(const ptrdiff_t _Diff) const noexcept {
return fetch_add(static_cast<ptrdiff_t>(0 - static_cast<size_t>(_Diff))) - _Diff;
}
};
// STRUCT TEMPLATE atomic
#define ATOMIC_VAR_INIT(_Value) \
{ _Value }
template <class _TVal, class _Ty = _TVal>
using _Choose_atomic_base2_t =
typename _Select<is_integral_v<_TVal> && !is_same_v<bool, _TVal>>::template _Apply<_Atomic_integral_facade<_Ty>,
typename _Select<is_pointer_v<_TVal> && is_object_v<remove_pointer_t<_TVal>>>::template _Apply<
_Atomic_pointer<_Ty>, _Atomic_storage<_Ty>>>;
#if _HAS_CXX20
template <class _TVal, class _Ty = _TVal>
using _Choose_atomic_base_t = typename _Select<is_floating_point_v<_TVal>>::template _Apply<_Atomic_floating<_Ty>,
_Choose_atomic_base2_t<_TVal, _Ty>>;
#else // ^^^ _HAS_CXX20 // !_HAS_CXX20 vvv
template <class _TVal, class _Ty = _TVal>
using _Choose_atomic_base_t = _Choose_atomic_base2_t<_TVal, _Ty>;
#endif //_HAS_CXX20
template <class _Ty>
struct atomic : _Choose_atomic_base_t<_Ty> { // atomic value
private:
using _Base = _Choose_atomic_base_t<_Ty>;
public:
// clang-format off
static_assert(is_trivially_copyable_v<_Ty> && is_copy_constructible_v<_Ty> && is_move_constructible_v<_Ty>
&& is_copy_assignable_v<_Ty> && is_move_assignable_v<_Ty>,
"atomic<T> requires T to be trivially copyable, copy constructible, move constructible, copy assignable, "
"and move assignable.");
// clang-format on
using value_type = _Ty;
#ifdef __cplusplus_winrt // TRANSITION, VSO-1083296
/* implicit */ constexpr atomic(const _Ty _Value) noexcept : _Base(_Value) {}
#else // ^^^ workaround / no workaround vvv
using _Base::_Base;
#endif // ^^^ no workaround ^^^
constexpr atomic() noexcept(is_nothrow_default_constructible_v<_Ty>) : _Base() {}
atomic(const atomic&) = delete;
atomic& operator=(const atomic&) = delete;
#if _HAS_CXX17
static constexpr bool is_always_lock_free = _Is_always_lock_free<sizeof(_Ty)>;
#endif // _HAS_CXX17
#if 1 // TRANSITION, ABI
_NODISCARD bool is_lock_free() const volatile noexcept {
constexpr bool _Result = sizeof(_Ty) <= 8 && (sizeof(_Ty) & sizeof(_Ty) - 1) == 0;
return _Result;
}
#else // ^^^ don't break ABI / break ABI vvv
_NODISCARD bool is_lock_free() const volatile noexcept {
#if _ATOMIC_HAS_DCAS
return sizeof(_Ty) <= 2 * sizeof(void*);
#else // ^^^ _ATOMIC_HAS_DCAS / !_ATOMIC_HAS_DCAS vvv
return sizeof(_Ty) <= sizeof(void*) || (sizeof(_Ty) <= 2 * sizeof(void*) && __std_atomic_has_cmpxchg16b());
#endif // _ATOMIC_HAS_DCAS
}
#endif // TRANSITION, ABI
_NODISCARD bool is_lock_free() const noexcept {
return static_cast<const volatile atomic*>(this)->is_lock_free();
}
_Ty operator=(const _Ty _Value) volatile noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
this->store(_Value);
return _Value;
}
_Ty operator=(const _Ty _Value) noexcept {
this->store(_Value);
return _Value;
}
// For the following, we do the real implementation in the non-volatile function, and const_cast
// to call the non-volatile function in the volatile one. This is safe because all of the
// non-volatile functions reapply volatile, as all our intrinsics accept only volatile T *.
// We expect most atomic<T>s to be non-volatile, so making the real implementations
// non-volatile should result in better debug codegen.
using _Base::store;
void store(const _Ty _Value) volatile noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
const_cast<atomic*>(this)->_Base::store(_Value);
}
void store(const _Ty _Value, const memory_order _Order) volatile noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
const_cast<atomic*>(this)->_Base::store(_Value, _Order);
}
using _Base::load;
_NODISCARD _Ty load() const volatile noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return const_cast<const atomic*>(this)->_Base::load();
}
_NODISCARD _Ty load(const memory_order _Order) const volatile noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return const_cast<const atomic*>(this)->_Base::load(_Order);
}
using _Base::exchange;
_Ty exchange(const _Ty _Value) volatile noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return const_cast<atomic*>(this)->_Base::exchange(_Value);
}
_Ty exchange(const _Ty _Value, const memory_order _Order) volatile noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return const_cast<atomic*>(this)->_Base::exchange(_Value, _Order);
}
using _Base::compare_exchange_strong;
bool compare_exchange_strong(_Ty& _Expected, const _Ty _Desired) volatile noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return const_cast<atomic*>(this)->_Base::compare_exchange_strong(_Expected, _Desired);
}
bool compare_exchange_strong(_Ty& _Expected, const _Ty _Desired, const memory_order _Order) volatile noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return const_cast<atomic*>(this)->_Base::compare_exchange_strong(_Expected, _Desired, _Order);
}
bool compare_exchange_strong(_Ty& _Expected, const _Ty _Desired, const memory_order _Success,
const memory_order _Failure) volatile noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return this->compare_exchange_strong(_Expected, _Desired, _Combine_cas_memory_orders(_Success, _Failure));
}
bool compare_exchange_strong(
_Ty& _Expected, const _Ty _Desired, const memory_order _Success, const memory_order _Failure) noexcept {
return this->compare_exchange_strong(_Expected, _Desired, _Combine_cas_memory_orders(_Success, _Failure));
}
bool compare_exchange_weak(_Ty& _Expected, const _Ty _Desired) volatile noexcept {
// we have no weak CAS intrinsics, even on ARM32/ARM64, so fall back to strong
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return this->compare_exchange_strong(_Expected, _Desired);
}
bool compare_exchange_weak(_Ty& _Expected, const _Ty _Desired) noexcept {
return this->compare_exchange_strong(_Expected, _Desired);
}
bool compare_exchange_weak(_Ty& _Expected, const _Ty _Desired, const memory_order _Order) volatile noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return this->compare_exchange_strong(_Expected, _Desired, _Order);
}
bool compare_exchange_weak(_Ty& _Expected, const _Ty _Desired, const memory_order _Order) noexcept {
return this->compare_exchange_strong(_Expected, _Desired, _Order);
}
bool compare_exchange_weak(_Ty& _Expected, const _Ty _Desired, const memory_order _Success,
const memory_order _Failure) volatile noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return this->compare_exchange_strong(_Expected, _Desired, _Combine_cas_memory_orders(_Success, _Failure));
}
bool compare_exchange_weak(
_Ty& _Expected, const _Ty _Desired, const memory_order _Success, const memory_order _Failure) noexcept {
return this->compare_exchange_strong(_Expected, _Desired, _Combine_cas_memory_orders(_Success, _Failure));
}
#if _HAS_CXX20
using _Base::wait;
void wait(const _Ty _Expected, const memory_order _Order = memory_order_seq_cst) const volatile noexcept {
const_cast<const atomic*>(this)->_Base::wait(_Expected, _Order);
}
using _Base::notify_one;
void notify_one() volatile noexcept {
const_cast<atomic*>(this)->_Base::notify_one();
}
using _Base::notify_all;
void notify_all() volatile noexcept {
const_cast<atomic*>(this)->_Base::notify_all();
}
#endif // _HAS_CXX20
operator _Ty() const volatile noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return this->load();
}
operator _Ty() const noexcept {
return this->load();
}
};
#if _HAS_CXX17
template <class _Ty>
atomic(_Ty) -> atomic<_Ty>;
#endif // _HAS_CXX17
#if _HAS_CXX20
template <class _Ty>
struct atomic_ref : _Choose_atomic_base_t<_Ty, _Ty&> { // atomic reference
private:
using _Base = _Choose_atomic_base_t<_Ty, _Ty&>;
public:
static_assert(is_trivially_copyable_v<_Ty>, "atomic_ref<T> requires T to be trivially copyable.");
using value_type = _Ty;
explicit atomic_ref(_Ty& _Value) noexcept /* strengthened */ : _Base(_Value) {
if constexpr (_Is_potentially_lock_free) {
_Check_alignment(_Value);
} else {
this->_Init_spinlock_for_ref();
}
}
atomic_ref(const atomic_ref&) noexcept = default;
atomic_ref& operator=(const atomic_ref&) = delete;
static constexpr bool is_always_lock_free = _Is_always_lock_free<sizeof(_Ty)>;
static constexpr bool _Is_potentially_lock_free =
sizeof(_Ty) <= 2 * sizeof(void*) && (sizeof(_Ty) & (sizeof(_Ty) - 1)) == 0;
static constexpr size_t required_alignment = _Is_potentially_lock_free ? sizeof(_Ty) : alignof(_Ty);
_NODISCARD bool is_lock_free() const noexcept {
#if _ATOMIC_HAS_DCAS
return is_always_lock_free;
#else // ^^^ _ATOMIC_HAS_DCAS / !_ATOMIC_HAS_DCAS vvv
if constexpr (is_always_lock_free) {
return true;
} else {
return __std_atomic_has_cmpxchg16b() != 0;
}
#endif // _ATOMIC_HAS_DCAS
}
void store(const _Ty _Value) const noexcept {
const_cast<atomic_ref*>(this)->_Base::store(_Value);
}
void store(const _Ty _Value, const memory_order _Order) const noexcept {
const_cast<atomic_ref*>(this)->_Base::store(_Value, _Order);
}
_Ty operator=(const _Ty _Value) const noexcept {
store(_Value);
return _Value;
}
_Ty exchange(const _Ty _Value) const noexcept {
return const_cast<atomic_ref*>(this)->_Base::exchange(_Value);
}
_Ty exchange(const _Ty _Value, const memory_order _Order) const noexcept {
return const_cast<atomic_ref*>(this)->_Base::exchange(_Value, _Order);
}
bool compare_exchange_strong(_Ty& _Expected, const _Ty _Desired) const noexcept {
return const_cast<atomic_ref*>(this)->_Base::compare_exchange_strong(_Expected, _Desired);
}
bool compare_exchange_strong(_Ty& _Expected, const _Ty _Desired, const memory_order _Order) const noexcept {
return const_cast<atomic_ref*>(this)->_Base::compare_exchange_strong(_Expected, _Desired, _Order);
}
bool compare_exchange_strong(
_Ty& _Expected, const _Ty _Desired, const memory_order _Success, const memory_order _Failure) const noexcept {
return compare_exchange_strong(_Expected, _Desired, _Combine_cas_memory_orders(_Success, _Failure));
}
bool compare_exchange_weak(_Ty& _Expected, const _Ty _Desired) const noexcept {
return compare_exchange_strong(_Expected, _Desired);
}
bool compare_exchange_weak(_Ty& _Expected, const _Ty _Desired, const memory_order _Order) const noexcept {
return compare_exchange_strong(_Expected, _Desired, _Order);
}
bool compare_exchange_weak(
_Ty& _Expected, const _Ty _Desired, const memory_order _Success, const memory_order _Failure) const noexcept {
return compare_exchange_strong(_Expected, _Desired, _Combine_cas_memory_orders(_Success, _Failure));
}
operator _Ty() const noexcept {
return this->load();
}
void notify_one() const noexcept {
const_cast<atomic_ref*>(this)->_Base::notify_one();
}
void notify_all() const noexcept {
const_cast<atomic_ref*>(this)->_Base::notify_all();
}
private:
static void _Check_alignment([[maybe_unused]] const _Ty& _Value) {
_ATOMIC_REF_CHECK_ALIGNMENT(
(reinterpret_cast<uintptr_t>(_STD addressof(_Value)) & (required_alignment - 1)) == 0,
"atomic_ref underlying object is not aligned as required_alignment");
}
};
#endif // _HAS_CXX20
// NONMEMBER OPERATIONS ON ATOMIC TYPES
template <class _Ty>
_NODISCARD bool atomic_is_lock_free(const volatile atomic<_Ty>* _Mem) noexcept {
return _Mem->is_lock_free();
}
template <class _Ty>
_NODISCARD bool atomic_is_lock_free(const atomic<_Ty>* _Mem) noexcept {
return _Mem->is_lock_free();
}
template <class _Ty>
void atomic_store(volatile atomic<_Ty>* const _Mem, const _Identity_t<_Ty> _Value) noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
_Mem->store(_Value);
}
template <class _Ty>
void atomic_store(atomic<_Ty>* const _Mem, const _Identity_t<_Ty> _Value) noexcept {
_Mem->store(_Value);
}
template <class _Ty>
void atomic_store_explicit(
volatile atomic<_Ty>* const _Mem, const _Identity_t<_Ty> _Value, const memory_order _Order) noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
_Mem->store(_Value, _Order);
}
template <class _Ty>
void atomic_store_explicit(atomic<_Ty>* const _Mem, const _Identity_t<_Ty> _Value, const memory_order _Order) noexcept {
_Mem->store(_Value, _Order);
}
template <class _Ty>
_CXX20_DEPRECATE_ATOMIC_INIT void atomic_init(
volatile atomic<_Ty>* const _Mem, const typename atomic<_Ty>::value_type _Value) noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
_STD atomic_store_explicit(_Mem, _Value, memory_order_relaxed);
}
template <class _Ty>
_CXX20_DEPRECATE_ATOMIC_INIT void atomic_init(
atomic<_Ty>* const _Mem, const typename atomic<_Ty>::value_type _Value) noexcept {
_STD atomic_store_explicit(_Mem, _Value, memory_order_relaxed);
}
template <class _Ty>
_NODISCARD _Ty atomic_load(const volatile atomic<_Ty>* const _Mem) noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return _Mem->load();
}
template <class _Ty>
_NODISCARD _Ty atomic_load(const atomic<_Ty>* const _Mem) noexcept {
return _Mem->load();
}
template <class _Ty>
_NODISCARD _Ty atomic_load_explicit(const volatile atomic<_Ty>* const _Mem, const memory_order _Order) noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return _Mem->load(_Order);
}
template <class _Ty>
_NODISCARD _Ty atomic_load_explicit(const atomic<_Ty>* const _Mem, const memory_order _Order) noexcept {
return _Mem->load(_Order);
}
template <class _Ty>
_Ty atomic_exchange(volatile atomic<_Ty>* const _Mem, const _Identity_t<_Ty> _Value) noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return _Mem->exchange(_Value);
}
template <class _Ty>
_Ty atomic_exchange(atomic<_Ty>* const _Mem, const _Identity_t<_Ty> _Value) noexcept {
return _Mem->exchange(_Value);
}
template <class _Ty>
_Ty atomic_exchange_explicit(
volatile atomic<_Ty>* const _Mem, const _Identity_t<_Ty> _Value, const memory_order _Order) noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return _Mem->exchange(_Value, _Order);
}
template <class _Ty>
_Ty atomic_exchange_explicit(
atomic<_Ty>* const _Mem, const _Identity_t<_Ty> _Value, const memory_order _Order) noexcept {
return _Mem->exchange(_Value, _Order);
}
template <class _Ty>
bool atomic_compare_exchange_strong(
volatile atomic<_Ty>* const _Mem, _Identity_t<_Ty>* const _Expected, const _Identity_t<_Ty> _Desired) noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return _Mem->compare_exchange_strong(*_Expected, _Desired);
}
template <class _Ty>
bool atomic_compare_exchange_strong(
atomic<_Ty>* const _Mem, _Identity_t<_Ty>* const _Expected, const _Identity_t<_Ty> _Desired) noexcept {
return _Mem->compare_exchange_strong(*_Expected, _Desired);
}
template <class _Ty>
bool atomic_compare_exchange_strong_explicit(volatile atomic<_Ty>* const _Mem, _Identity_t<_Ty>* const _Expected,
const _Identity_t<_Ty> _Desired, const memory_order _Success, const memory_order _Failure) noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return _Mem->compare_exchange_strong(*_Expected, _Desired, _Combine_cas_memory_orders(_Success, _Failure));
}
template <class _Ty>
bool atomic_compare_exchange_strong_explicit(atomic<_Ty>* const _Mem, _Identity_t<_Ty>* const _Expected,
const _Identity_t<_Ty> _Desired, const memory_order _Success, const memory_order _Failure) noexcept {
return _Mem->compare_exchange_strong(*_Expected, _Desired, _Combine_cas_memory_orders(_Success, _Failure));
}
template <class _Ty>
bool atomic_compare_exchange_weak(
volatile atomic<_Ty>* const _Mem, _Identity_t<_Ty>* const _Expected, const _Identity_t<_Ty> _Desired) noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return _Mem->compare_exchange_strong(*_Expected, _Desired);
}
template <class _Ty>
bool atomic_compare_exchange_weak(
atomic<_Ty>* const _Mem, _Identity_t<_Ty>* const _Expected, const _Identity_t<_Ty> _Desired) noexcept {
return _Mem->compare_exchange_strong(*_Expected, _Desired);
}
template <class _Ty>
bool atomic_compare_exchange_weak_explicit(volatile atomic<_Ty>* const _Mem, _Identity_t<_Ty>* const _Expected,
const _Identity_t<_Ty> _Desired, const memory_order _Success, const memory_order _Failure) noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return _Mem->compare_exchange_strong(*_Expected, _Desired, _Combine_cas_memory_orders(_Success, _Failure));
}
template <class _Ty>
bool atomic_compare_exchange_weak_explicit(atomic<_Ty>* const _Mem, _Identity_t<_Ty>* const _Expected,
const _Identity_t<_Ty> _Desired, const memory_order _Success, const memory_order _Failure) noexcept {
return _Mem->compare_exchange_strong(*_Expected, _Desired, _Combine_cas_memory_orders(_Success, _Failure));
}
template <class _Ty>
_Ty atomic_fetch_add(volatile atomic<_Ty>* _Mem, const typename atomic<_Ty>::difference_type _Value) noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return _Mem->fetch_add(_Value);
}
template <class _Ty>
_Ty atomic_fetch_add(atomic<_Ty>* _Mem, const typename atomic<_Ty>::difference_type _Value) noexcept {
return _Mem->fetch_add(_Value);
}
template <class _Ty>
_Ty atomic_fetch_add_explicit(volatile atomic<_Ty>* _Mem, const typename atomic<_Ty>::difference_type _Value,
const memory_order _Order) noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return _Mem->fetch_add(_Value, _Order);
}
template <class _Ty>
_Ty atomic_fetch_add_explicit(
atomic<_Ty>* _Mem, const typename atomic<_Ty>::difference_type _Value, const memory_order _Order) noexcept {
return _Mem->fetch_add(_Value, _Order);
}
template <class _Ty>
_Ty atomic_fetch_sub(volatile atomic<_Ty>* _Mem, const typename atomic<_Ty>::difference_type _Value) noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return _Mem->fetch_sub(_Value);
}
template <class _Ty>
_Ty atomic_fetch_sub(atomic<_Ty>* _Mem, const typename atomic<_Ty>::difference_type _Value) noexcept {
return _Mem->fetch_sub(_Value);
}
template <class _Ty>
_Ty atomic_fetch_sub_explicit(volatile atomic<_Ty>* _Mem, const typename atomic<_Ty>::difference_type _Value,
const memory_order _Order) noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return _Mem->fetch_sub(_Value, _Order);
}
template <class _Ty>
_Ty atomic_fetch_sub_explicit(
atomic<_Ty>* _Mem, const typename atomic<_Ty>::difference_type _Value, const memory_order _Order) noexcept {
return _Mem->fetch_sub(_Value, _Order);
}
template <class _Ty>
_Ty atomic_fetch_and(volatile atomic<_Ty>* _Mem, const typename atomic<_Ty>::value_type _Value) noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return _Mem->fetch_and(_Value);
}
template <class _Ty>
_Ty atomic_fetch_and(atomic<_Ty>* _Mem, const typename atomic<_Ty>::value_type _Value) noexcept {
return _Mem->fetch_and(_Value);
}
template <class _Ty>
_Ty atomic_fetch_and_explicit(
volatile atomic<_Ty>* _Mem, const typename atomic<_Ty>::value_type _Value, const memory_order _Order) noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return _Mem->fetch_and(_Value, _Order);
}
template <class _Ty>
_Ty atomic_fetch_and_explicit(
atomic<_Ty>* _Mem, const typename atomic<_Ty>::value_type _Value, const memory_order _Order) noexcept {
return _Mem->fetch_and(_Value, _Order);
}
template <class _Ty>
_Ty atomic_fetch_or(volatile atomic<_Ty>* _Mem, const typename atomic<_Ty>::value_type _Value) noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return _Mem->fetch_or(_Value);
}
template <class _Ty>
_Ty atomic_fetch_or(atomic<_Ty>* _Mem, const typename atomic<_Ty>::value_type _Value) noexcept {
return _Mem->fetch_or(_Value);
}
template <class _Ty>
_Ty atomic_fetch_or_explicit(
volatile atomic<_Ty>* _Mem, const typename atomic<_Ty>::value_type _Value, const memory_order _Order) noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return _Mem->fetch_or(_Value, _Order);
}
template <class _Ty>
_Ty atomic_fetch_or_explicit(
atomic<_Ty>* _Mem, const typename atomic<_Ty>::value_type _Value, const memory_order _Order) noexcept {
return _Mem->fetch_or(_Value, _Order);
}
template <class _Ty>
_Ty atomic_fetch_xor(volatile atomic<_Ty>* _Mem, const typename atomic<_Ty>::value_type _Value) noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return _Mem->fetch_xor(_Value);
}
template <class _Ty>
_Ty atomic_fetch_xor(atomic<_Ty>* _Mem, const typename atomic<_Ty>::value_type _Value) noexcept {
return _Mem->fetch_xor(_Value);
}
template <class _Ty>
_Ty atomic_fetch_xor_explicit(
volatile atomic<_Ty>* _Mem, const typename atomic<_Ty>::value_type _Value, const memory_order _Order) noexcept {
static_assert(_Deprecate_non_lock_free_volatile<_Ty>, "Never fails");
return _Mem->fetch_xor(_Value, _Order);
}
template <class _Ty>
_Ty atomic_fetch_xor_explicit(
atomic<_Ty>* _Mem, const typename atomic<_Ty>::value_type _Value, const memory_order _Order) noexcept {
return _Mem->fetch_xor(_Value, _Order);
}
#if _HAS_CXX20
template <class _Ty>
void atomic_wait(const volatile atomic<_Ty>* const _Mem, const typename atomic<_Ty>::value_type _Expected) noexcept
/* strengthened */ {
_Mem->wait(_Expected);
}
template <class _Ty>
void atomic_wait(const atomic<_Ty>* const _Mem, const typename atomic<_Ty>::value_type _Expected) noexcept
/* strengthened */ {
_Mem->wait(_Expected);
}
template <class _Ty>
void atomic_wait_explicit(const volatile atomic<_Ty>* const _Mem, const typename atomic<_Ty>::value_type _Expected,
const memory_order _Order) noexcept /* strengthened */ {
_Mem->wait(_Expected, _Order);
}
template <class _Ty>
void atomic_wait_explicit(const atomic<_Ty>* const _Mem, const typename atomic<_Ty>::value_type _Expected,
const memory_order _Order) noexcept /* strengthened */ {
_Mem->wait(_Expected, _Order);
}
template <class _Ty>
void atomic_notify_one(volatile atomic<_Ty>* const _Mem) noexcept /* strengthened */ {
_Mem->notify_one();
}
template <class _Ty>
void atomic_notify_one(atomic<_Ty>* const _Mem) noexcept /* strengthened */ {
_Mem->notify_one();
}
template <class _Ty>
void atomic_notify_all(volatile atomic<_Ty>* const _Mem) noexcept /* strengthened */ {
_Mem->notify_all();
}
template <class _Ty>
void atomic_notify_all(atomic<_Ty>* const _Mem) noexcept /* strengthened */ {
_Mem->notify_all();
}
#endif // _HAS_CXX20
// ATOMIC TYPEDEFS
using atomic_bool = atomic<bool>;
using atomic_char = atomic<char>;
using atomic_schar = atomic<signed char>;
using atomic_uchar = atomic<unsigned char>;
using atomic_short = atomic<short>;
using atomic_ushort = atomic<unsigned short>;
using atomic_int = atomic<int>;
using atomic_uint = atomic<unsigned int>;
using atomic_long = atomic<long>;
using atomic_ulong = atomic<unsigned long>;
using atomic_llong = atomic<long long>;
using atomic_ullong = atomic<unsigned long long>;
#ifdef __cpp_lib_char8_t
using atomic_char8_t = atomic<char8_t>;
#endif // __cpp_lib_char8_t
using atomic_char16_t = atomic<char16_t>;
using atomic_char32_t = atomic<char32_t>;
using atomic_wchar_t = atomic<wchar_t>;
using atomic_int8_t = atomic<int8_t>;
using atomic_uint8_t = atomic<uint8_t>;
using atomic_int16_t = atomic<int16_t>;
using atomic_uint16_t = atomic<uint16_t>;
using atomic_int32_t = atomic<int32_t>;
using atomic_uint32_t = atomic<uint32_t>;
using atomic_int64_t = atomic<int64_t>;
using atomic_uint64_t = atomic<uint64_t>;
using atomic_int_least8_t = atomic<int_least8_t>;
using atomic_uint_least8_t = atomic<uint_least8_t>;
using atomic_int_least16_t = atomic<int_least16_t>;
using atomic_uint_least16_t = atomic<uint_least16_t>;
using atomic_int_least32_t = atomic<int_least32_t>;
using atomic_uint_least32_t = atomic<uint_least32_t>;
using atomic_int_least64_t = atomic<int_least64_t>;
using atomic_uint_least64_t = atomic<uint_least64_t>;
using atomic_int_fast8_t = atomic<int_fast8_t>;
using atomic_uint_fast8_t = atomic<uint_fast8_t>;
using atomic_int_fast16_t = atomic<int_fast16_t>;
using atomic_uint_fast16_t = atomic<uint_fast16_t>;
using atomic_int_fast32_t = atomic<int_fast32_t>;
using atomic_uint_fast32_t = atomic<uint_fast32_t>;
using atomic_int_fast64_t = atomic<int_fast64_t>;
using atomic_uint_fast64_t = atomic<uint_fast64_t>;
using atomic_intptr_t = atomic<intptr_t>;
using atomic_uintptr_t = atomic<uintptr_t>;
using atomic_size_t = atomic<size_t>;
using atomic_ptrdiff_t = atomic<ptrdiff_t>;
using atomic_intmax_t = atomic<intmax_t>;
using atomic_uintmax_t = atomic<uintmax_t>;
#if _HAS_CXX20
// Though there are CMPXCHG8B and CMPXCHG16B,
// the largest atomics with a full set of efficient operations are pointer-sized.
using atomic_signed_lock_free = atomic_intptr_t;
using atomic_unsigned_lock_free = atomic_uintptr_t;
#endif // _HAS_CXX20
// STRUCT atomic_flag
#define ATOMIC_FLAG_INIT \
{}
struct atomic_flag { // flag with test-and-set semantics
#if _HAS_CXX20
_NODISCARD bool test(const memory_order _Order = memory_order_seq_cst) const noexcept {
return _Storage.load(_Order) != 0;
}
_NODISCARD bool test(const memory_order _Order = memory_order_seq_cst) const volatile noexcept {
return _Storage.load(_Order) != 0;
}
#endif // _HAS_CXX20
bool test_and_set(const memory_order _Order = memory_order_seq_cst) noexcept {
return _Storage.exchange(true, _Order) != 0;
}
bool test_and_set(const memory_order _Order = memory_order_seq_cst) volatile noexcept {
return _Storage.exchange(true, _Order) != 0;
}
void clear(const memory_order _Order = memory_order_seq_cst) noexcept {
_Storage.store(false, _Order);
}
void clear(const memory_order _Order = memory_order_seq_cst) volatile noexcept {
_Storage.store(false, _Order);
}
constexpr atomic_flag() noexcept = default;
#if _HAS_CXX20
void wait(const bool _Expected, const memory_order _Order = memory_order_seq_cst) const noexcept {
_Storage.wait(static_cast<decltype(_Storage)::value_type>(_Expected), _Order);
}
void wait(const bool _Expected, const memory_order _Order = memory_order_seq_cst) const volatile noexcept {
_Storage.wait(static_cast<decltype(_Storage)::value_type>(_Expected), _Order);
}
void notify_one() noexcept {
_Storage.notify_one();
}
void notify_one() volatile noexcept {
_Storage.notify_one();
}
void notify_all() noexcept {
_Storage.notify_all();
}
void notify_all() volatile noexcept {
_Storage.notify_all();
}
#endif // _HAS_CXX20
#if 1 // TRANSITION, ABI
atomic<long> _Storage;
#else // ^^^ don't break ABI / break ABI vvv
atomic<bool> _Storage;
#endif // TRANSITION, ABI
};
// atomic_flag NONMEMBERS
#if _HAS_CXX20
_NODISCARD inline bool atomic_flag_test(const volatile atomic_flag* const _Flag) noexcept {
return _Flag->test();
}
_NODISCARD inline bool atomic_flag_test(const atomic_flag* const _Flag) noexcept {
return _Flag->test();
}
_NODISCARD inline bool atomic_flag_test_explicit(
const volatile atomic_flag* const _Flag, const memory_order _Order) noexcept {
return _Flag->test(_Order);
}
_NODISCARD inline bool atomic_flag_test_explicit(const atomic_flag* const _Flag, const memory_order _Order) noexcept {
return _Flag->test(_Order);
}
#endif // _HAS_CXX20
inline bool atomic_flag_test_and_set(atomic_flag* const _Flag) noexcept {
return _Flag->test_and_set();
}
inline bool atomic_flag_test_and_set(volatile atomic_flag* const _Flag) noexcept {
return _Flag->test_and_set();
}
inline bool atomic_flag_test_and_set_explicit(atomic_flag* const _Flag, const memory_order _Order) noexcept {
return _Flag->test_and_set(_Order);
}
inline bool atomic_flag_test_and_set_explicit(volatile atomic_flag* const _Flag, const memory_order _Order) noexcept {
return _Flag->test_and_set(_Order);
}
inline void atomic_flag_clear(atomic_flag* const _Flag) noexcept {
_Flag->clear();
}
inline void atomic_flag_clear(volatile atomic_flag* const _Flag) noexcept {
_Flag->clear();
}
inline void atomic_flag_clear_explicit(atomic_flag* const _Flag, const memory_order _Order) noexcept {
_Flag->clear(_Order);
}
inline void atomic_flag_clear_explicit(volatile atomic_flag* const _Flag, const memory_order _Order) noexcept {
_Flag->clear(_Order);
}
#if _HAS_CXX20
inline void atomic_flag_wait(const volatile atomic_flag* const _Flag, const bool _Expected) noexcept {
return _Flag->wait(_Expected);
}
inline void atomic_flag_wait(const atomic_flag* const _Flag, const bool _Expected) noexcept {
return _Flag->wait(_Expected);
}
inline void atomic_flag_wait_explicit(
const volatile atomic_flag* const _Flag, const bool _Expected, const memory_order _Order) noexcept {
return _Flag->wait(_Expected, _Order);
}
inline void atomic_flag_wait_explicit(
const atomic_flag* const _Flag, const bool _Expected, const memory_order _Order) noexcept {
return _Flag->wait(_Expected, _Order);
}
inline void atomic_flag_notify_one(volatile atomic_flag* const _Flag) noexcept {
return _Flag->notify_one();
}
inline void atomic_flag_notify_one(atomic_flag* const _Flag) noexcept {
return _Flag->notify_one();
}
inline void atomic_flag_notify_all(volatile atomic_flag* const _Flag) noexcept {
return _Flag->notify_all();
}
inline void atomic_flag_notify_all(atomic_flag* const _Flag) noexcept {
return _Flag->notify_all();
}
template <class _Ty>
class _Locked_pointer {
public:
static_assert(alignof(_Ty) >= (1 << 2), "2 low order bits are needed by _Locked_pointer");
static constexpr uintptr_t _Lock_mask = 3;
static constexpr uintptr_t _Not_locked = 0;
static constexpr uintptr_t _Locked_notify_not_needed = 1;
static constexpr uintptr_t _Locked_notify_needed = 2;
static constexpr uintptr_t _Ptr_value_mask = ~_Lock_mask;
constexpr _Locked_pointer() noexcept : _Storage{} {}
explicit _Locked_pointer(_Ty* const _Ptr) noexcept : _Storage{reinterpret_cast<uintptr_t>(_Ptr)} {}
_Locked_pointer(const _Locked_pointer&) = delete;
_Locked_pointer& operator=(const _Locked_pointer&) = delete;
_NODISCARD _Ty* _Lock_and_load() noexcept {
uintptr_t _Rep = _Storage.load(memory_order_relaxed);
for (;;) {
switch (_Rep & _Lock_mask) {
case _Not_locked: // Can try to lock now
if (_Storage.compare_exchange_weak(_Rep, _Rep | _Locked_notify_not_needed)) {
return reinterpret_cast<_Ty*>(_Rep);
}
_YIELD_PROCESSOR();
break;
case _Locked_notify_not_needed: // Try to set "notify needed" and wait
if (!_Storage.compare_exchange_weak(_Rep, (_Rep & _Ptr_value_mask) | _Locked_notify_needed)) {
// Failed to set notify needed flag, try again
_YIELD_PROCESSOR();
break;
}
_Rep = (_Rep & _Ptr_value_mask) | _Locked_notify_needed;
[[fallthrough]];
case _Locked_notify_needed: // "Notify needed" is already set, just wait
_Storage.wait(_Rep, memory_order_relaxed);
_Rep = _Storage.load(memory_order_relaxed);
break;
default: // Unrecognized bit pattern
_CSTD abort();
}
}
}
void _Store_and_unlock(_Ty* const _Value) noexcept {
const auto _Rep = _Storage.exchange(reinterpret_cast<uintptr_t>(_Value));
if ((_Rep & _Lock_mask) == _Locked_notify_needed) {
// As we don't count waiters, every waiter is notified, and then some may re-request notification
_Storage.notify_all();
}
}
_NODISCARD _Ty* _Unsafe_load_relaxed() const noexcept {
return reinterpret_cast<_Ty*>(_Storage.load(memory_order_relaxed));
}
private:
atomic<uintptr_t> _Storage;
};
#endif // _HAS_CXX20
_STD_END
#undef _CMPXCHG_MASK_OUT_PADDING_BITS
#undef _ATOMIC_CHOOSE_INTRINSIC
#undef _ATOMIC_HAS_DCAS
#undef _STD_COMPARE_EXCHANGE_128
#undef _INVALID_MEMORY_ORDER
#undef _Compiler_or_memory_barrier
#undef _Memory_barrier
#undef _Compiler_barrier
#pragma pop_macro("new")
_STL_RESTORE_CLANG_WARNINGS
#pragma warning(pop)
#pragma pack(pop)
#endif // _STL_COMPILER_PREPROCESSOR
#endif // _ATOMIC_