зеркало из https://github.com/microsoft/STL.git
2286 строки
77 KiB
C++
2286 строки
77 KiB
C++
// complex standard header
|
|
|
|
// Copyright (c) Microsoft Corporation.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
#pragma once
|
|
#ifndef _COMPLEX_
|
|
#define _COMPLEX_
|
|
#include <yvals_core.h>
|
|
#if _STL_COMPILER_PREPROCESSOR
|
|
#include <cmath>
|
|
#include <cstdint>
|
|
#include <limits>
|
|
#include <sstream>
|
|
#include <type_traits>
|
|
#include <xutility>
|
|
#include <ymath.h>
|
|
|
|
#ifdef _M_CEE_PURE
|
|
// no intrinsics for /clr:pure
|
|
#elif defined(__clang__)
|
|
// TRANSITION, not using FMA intrinsics for Clang yet
|
|
#elif defined(_M_IX86) || (defined(_M_X64) && !defined(_M_ARM64EC))
|
|
#define _FMP_USING_X86_X64_INTRINSICS
|
|
#include <emmintrin.h>
|
|
#include <isa_availability.h>
|
|
extern "C" int __isa_available;
|
|
extern "C" __m128d __cdecl _mm_fmsub_sd(__m128d, __m128d, __m128d);
|
|
#elif defined(_M_ARM64) || defined(_M_ARM64EC)
|
|
#define _FMP_USING_ARM64_INTRINSICS
|
|
#include <arm64_neon.h>
|
|
#endif // ^^^ defined(_M_ARM64) || defined(_M_ARM64EC) ^^^
|
|
|
|
#pragma pack(push, _CRT_PACKING)
|
|
#pragma warning(push, _STL_WARNING_LEVEL)
|
|
#pragma warning(disable : _STL_DISABLED_WARNINGS)
|
|
_STL_DISABLE_CLANG_WARNINGS
|
|
#pragma push_macro("new")
|
|
#undef new
|
|
|
|
#ifndef _C_COMPLEX_T
|
|
#define _C_COMPLEX_T // Also defined by UCRT <complex.h>
|
|
|
|
struct _C_double_complex {
|
|
double _Val[2];
|
|
};
|
|
|
|
struct _C_float_complex {
|
|
float _Val[2];
|
|
};
|
|
|
|
struct _C_ldouble_complex {
|
|
long double _Val[2];
|
|
};
|
|
#endif // _C_COMPLEX_T
|
|
|
|
// COMPLEX _Val OFFSETS
|
|
#define _RE 0
|
|
#define _IM 1
|
|
|
|
_STD_BEGIN
|
|
|
|
// implements multi-precision floating-point arithmetic for numerical algorithms
|
|
#pragma float_control(precise, on, push)
|
|
namespace _Float_multi_prec {
|
|
// multi-precision floating-point types
|
|
template <class _Ty, int _Prec>
|
|
struct _Fmp_t;
|
|
|
|
template <class _Ty>
|
|
struct _Fmp_t<_Ty, 2> {
|
|
static_assert(is_floating_point_v<_Ty>, "_Ty must be floating-point");
|
|
_Ty _Val0; // most significant numeric_limits<_Ty>::precision bits
|
|
_Ty _Val1; // least significant numeric_limits<_Ty>::precision bits
|
|
};
|
|
|
|
// addition
|
|
|
|
// 1x precision + 1x precision -> 2x precision
|
|
// the result is exact when:
|
|
// 1) the result doesn't overflow
|
|
// 2) either underflow is gradual, or no internal underflow occurs
|
|
// 3) intermediate precision is either the same as _Ty, or greater than twice the precision of _Ty
|
|
// 4) parameters and local variables do not retain extra intermediate precision
|
|
// 5) rounding mode is rounding to nearest
|
|
// violation of condition 3 or 5 could lead to relative error on the order of epsilon^2
|
|
// violation of other conditions could lead to worse results
|
|
template <class _Ty>
|
|
_NODISCARD constexpr _Fmp_t<_Ty, 2> _Add_x2(const _Ty _Xval, const _Ty _Yval) noexcept {
|
|
const _Ty _Sum0 = _Xval + _Yval;
|
|
const _Ty _Ymod = _Sum0 - _Xval;
|
|
const _Ty _Xmod = _Sum0 - _Ymod;
|
|
const _Ty _Yerr = _Yval - _Ymod;
|
|
const _Ty _Xerr = _Xval - _Xmod;
|
|
return {_Sum0, _Xerr + _Yerr};
|
|
}
|
|
|
|
// 1x precision + 1x precision -> 2x precision
|
|
// requires: exponent(_Xval) + countr_zero(significand(_Xval)) >= exponent(_Yval) || _Xval == 0
|
|
// the result is exact when:
|
|
// 0) the requirement above is satisfied
|
|
// 1) no internal overflow occurs
|
|
// 2) either underflow is gradual, or no internal underflow occurs
|
|
// 3) intermediate precision is either the same as _Ty, or greater than twice the precision of _Ty
|
|
// 4) parameters and local variables do not retain extra intermediate precision
|
|
// 5) rounding mode is rounding to nearest
|
|
// violation of condition 3 or 5 could lead to relative error on the order of epsilon^2
|
|
// violation of other conditions could lead to worse results
|
|
template <class _Ty>
|
|
_NODISCARD constexpr _Fmp_t<_Ty, 2> _Add_small_x2(const _Ty _Xval, const _Ty _Yval) noexcept {
|
|
const _Ty _Sum0 = _Xval + _Yval;
|
|
const _Ty _Ymod = _Sum0 - _Xval;
|
|
const _Ty _Yerr = _Yval - _Ymod;
|
|
return {_Sum0, _Yerr};
|
|
}
|
|
|
|
// 1x precision + 2x precision -> 2x precision
|
|
// requires: exponent(_Xval) + countr_zero(significand(_Xval)) >= exponent(_Yval._Val0) || _Xval == 0
|
|
template <class _Ty>
|
|
_NODISCARD constexpr _Fmp_t<_Ty, 2> _Add_small_x2(const _Ty _Xval, const _Fmp_t<_Ty, 2>& _Yval) noexcept {
|
|
const _Fmp_t<_Ty, 2> _Sum0 = _Add_small_x2(_Xval, _Yval._Val0);
|
|
return _Add_small_x2(_Sum0._Val0, _Sum0._Val1 + _Yval._Val1);
|
|
}
|
|
|
|
// 2x precision + 2x precision -> 1x precision
|
|
template <class _Ty>
|
|
_NODISCARD constexpr _Ty _Add_x1(const _Fmp_t<_Ty, 2>& _Xval, const _Fmp_t<_Ty, 2>& _Yval) noexcept {
|
|
const _Fmp_t<_Ty, 2> _Sum00 = _Add_x2(_Xval._Val0, _Yval._Val0);
|
|
return _Sum00._Val0 + (_Sum00._Val1 + (_Xval._Val1 + _Yval._Val1));
|
|
}
|
|
|
|
// multiplication
|
|
|
|
// round to 26 significant bits, ties toward zero
|
|
_NODISCARD _CONSTEXPR_BIT_CAST double _High_half(const double _Val) noexcept {
|
|
const auto _Bits = _Bit_cast<unsigned long long>(_Val);
|
|
const auto _High_half_bits = (_Bits + 0x3ff'ffffULL) & 0xffff'ffff'f800'0000ULL;
|
|
return _Bit_cast<double>(_High_half_bits);
|
|
}
|
|
|
|
// _Xval * _Xval - _Prod0
|
|
// the result is exact when:
|
|
// 1) _Prod0 is _Xval^2 faithfully rounded
|
|
// 2) no internal overflow or underflow occurs
|
|
// violation of condition 1 could lead to relative error on the order of epsilon
|
|
_NODISCARD _CONSTEXPR_BIT_CAST double _Sqr_error_fallback(const double _Xval, const double _Prod0) noexcept {
|
|
const double _Xhigh = _High_half(_Xval);
|
|
const double _Xlow = _Xval - _Xhigh;
|
|
return ((_Xhigh * _Xhigh - _Prod0) + 2.0 * _Xhigh * _Xlow) + _Xlow * _Xlow;
|
|
}
|
|
|
|
#ifdef _FMP_USING_X86_X64_INTRINSICS
|
|
_NODISCARD inline double _Sqr_error_x86_x64_fma(const double _Xval, const double _Prod0) noexcept {
|
|
const __m128d _Mx = _mm_set_sd(_Xval);
|
|
const __m128d _Mprod0 = _mm_set_sd(_Prod0);
|
|
const __m128d _Mresult = _mm_fmsub_sd(_Mx, _Mx, _Mprod0);
|
|
double _Result;
|
|
_mm_store_sd(&_Result, _Mresult);
|
|
return _Result;
|
|
}
|
|
#endif // _FMP_USING_X86_X64_INTRINSICS
|
|
|
|
#ifdef _FMP_USING_ARM64_INTRINSICS
|
|
_NODISCARD inline double _Sqr_error_arm64_neon(const double _Xval, const double _Prod0) noexcept {
|
|
const float64x1_t _Mx = vld1_f64(&_Xval);
|
|
const float64x1_t _Mprod0 = vld1_f64(&_Prod0);
|
|
const float64x1_t _Mresult = vfma_f64(vneg_f64(_Mprod0), _Mx, _Mx);
|
|
double _Result;
|
|
vst1_f64(&_Result, _Mresult);
|
|
return _Result;
|
|
}
|
|
#endif // _FMP_USING_ARM64_INTRINSICS
|
|
|
|
// square(1x precision) -> 2x precision
|
|
// the result is exact when no internal overflow or underflow occurs
|
|
_NODISCARD inline _Fmp_t<double, 2> _Sqr_x2(const double _Xval) noexcept {
|
|
const double _Prod0 = _Xval * _Xval;
|
|
|
|
#if defined(_FMP_USING_X86_X64_INTRINSICS)
|
|
|
|
#ifdef __AVX2__
|
|
return {_Prod0, _Sqr_error_x86_x64_fma(_Xval, _Prod0)};
|
|
#else // ^^^ defined(__AVX2__) / !defined(__AVX2__) vvv
|
|
const bool _Definitely_have_fma = __isa_available >= __ISA_AVAILABLE_AVX2;
|
|
if (_Definitely_have_fma) {
|
|
return {_Prod0, _Sqr_error_x86_x64_fma(_Xval, _Prod0)};
|
|
} else {
|
|
return {_Prod0, _Sqr_error_fallback(_Xval, _Prod0)};
|
|
}
|
|
#endif // ^^^ !defined(__AVX2__) ^^^
|
|
|
|
#elif defined(_FMP_USING_ARM64_INTRINSICS)
|
|
// https://docs.microsoft.com/en-us/cpp/build/arm64-windows-abi-conventions?view=vs-2019#base-requirements
|
|
// Both floating-point and NEON support are presumed to be present in hardware.
|
|
return {_Prod0, _Sqr_error_arm64_neon(_Xval, _Prod0)};
|
|
#else // ^^^ defined(_FMP_USING_ARM64_INTRINSICS) / not using intrinsics vvv
|
|
return {_Prod0, _Sqr_error_fallback(_Xval, _Prod0)};
|
|
#endif // ^^^ not using intrinsics ^^^
|
|
}
|
|
} // namespace _Float_multi_prec
|
|
#pragma float_control(pop)
|
|
|
|
#undef _FMP_USING_X86_X64_INTRINSICS
|
|
#undef _FMP_USING_ARM64_INTRINSICS
|
|
|
|
#define _FMP ::std::_Float_multi_prec::
|
|
|
|
// implements numerical algorithms for <complex>
|
|
namespace _Math_algorithms {
|
|
// TRANSITION: sqrt() isn't constexpr
|
|
// _Hypot_leg_huge = _Ty{0.5} * _STD sqrt((_STD numeric_limits<_Ty>::max)());
|
|
// _Hypot_leg_tiny = _STD sqrt(_Ty{2.0} * (_STD numeric_limits<_Ty>::min)() / _STD numeric_limits<_Ty>::epsilon());
|
|
template <class _Ty>
|
|
struct _Hypot_leg_huge_helper {
|
|
static constexpr _Ty value{6.703903964971298e+153};
|
|
};
|
|
template <>
|
|
struct _Hypot_leg_huge_helper<float> {
|
|
static constexpr float value{9.2233715e+18f};
|
|
};
|
|
template <class _Ty>
|
|
_INLINE_VAR constexpr _Ty _Hypot_leg_huge = _Hypot_leg_huge_helper<_Ty>::value;
|
|
|
|
template <class _Ty>
|
|
struct _Hypot_leg_tiny_helper {
|
|
static constexpr _Ty value{1.4156865331029228e-146};
|
|
};
|
|
template <>
|
|
struct _Hypot_leg_tiny_helper<float> {
|
|
static constexpr float value{4.440892e-16f};
|
|
};
|
|
template <class _Ty>
|
|
_INLINE_VAR constexpr _Ty _Hypot_leg_tiny = _Hypot_leg_tiny_helper<_Ty>::value;
|
|
|
|
template <class _Ty>
|
|
_NODISCARD _Ty _Norm_minus_one(const _Ty _Xval, const _Ty _Yval) noexcept {
|
|
// requires |_Xval| >= |_Yval| and 0.5 <= |_Xval| < 2^12
|
|
// returns _Xval * _Xval + _Yval * _Yval - 1
|
|
const _FMP _Fmp_t<_Ty, 2> _Xsqr = _FMP _Sqr_x2(_Xval);
|
|
const _FMP _Fmp_t<_Ty, 2> _Ysqr = _FMP _Sqr_x2(_Yval);
|
|
const _FMP _Fmp_t<_Ty, 2> _Xsqr_m1 = _FMP _Add_small_x2(_Ty{-1.0}, _Xsqr);
|
|
return _Add_x1(_Xsqr_m1, _Ysqr);
|
|
}
|
|
|
|
_NODISCARD inline float _Norm_minus_one(const float _Xval, const float _Yval) noexcept {
|
|
const auto _Dx = static_cast<double>(_Xval);
|
|
const auto _Dy = static_cast<double>(_Yval);
|
|
return static_cast<float>((_Dx * _Dx - 1.0) + _Dy * _Dy);
|
|
}
|
|
|
|
// TRANSITION: CRT log1p can be inaccurate for tiny inputs under directed rounding modes
|
|
template <class _Ty>
|
|
_NODISCARD _Ty _Logp1(const _Ty _Xval) { // returns log(1 + _Xval)
|
|
static_assert(is_floating_point_v<_Ty>, "_Ty must be floating-point");
|
|
|
|
if (_Is_nan(_Xval)) { // NaN
|
|
return _Xval + _Xval; // raise FE_INVALID if _Xval is a signaling NaN
|
|
}
|
|
|
|
if (_Xval <= _Ty{-0.5} || _Ty{2.0} <= _Xval) { // naive formula is moderately accurate
|
|
if (_Xval == (numeric_limits<_Ty>::max) ()) { // avoid overflow
|
|
return _STD log(_Xval);
|
|
}
|
|
|
|
return _STD log(_Ty{1.0} + _Xval);
|
|
}
|
|
|
|
const _Ty _Xabs = _Float_abs(_Xval);
|
|
if (_Xabs < numeric_limits<_Ty>::epsilon()) { // zero or tiny
|
|
if (_Xval == _Ty{0.0}) {
|
|
return _Xval;
|
|
}
|
|
|
|
// honor rounding mode, raise FE_INEXACT
|
|
return _Xval - _Ty{0.5} * _Xval * _Xval;
|
|
}
|
|
|
|
// compute log(1 + _Xval) with fixup for small _Xval
|
|
const _FMP _Fmp_t<_Ty, 2> _Xp1 = _FMP _Add_small_x2(_Ty{1.0}, _Xval);
|
|
return _STD log(_Xp1._Val0) + _Xp1._Val1 / _Xp1._Val0;
|
|
}
|
|
|
|
template <class _Ty>
|
|
_NODISCARD _Ty _Log_hypot(const _Ty _Xval, const _Ty _Yval) noexcept { // returns log(hypot(_Xval, _Yval))
|
|
static_assert(is_floating_point_v<_Ty>, "_Ty must be floating-point");
|
|
|
|
if (!_Is_finite(_Xval) || !_Is_finite(_Yval)) { // Inf or NaN
|
|
// raise FE_INVALID and return NaN if at least one of them is a signaling NaN
|
|
if (_Is_signaling_nan(_Xval) || _Is_signaling_nan(_Yval)) {
|
|
return _Xval + _Yval;
|
|
}
|
|
|
|
// return +Inf if at least one of them is an infinity, even when the other is a quiet NaN
|
|
if (_Is_inf(_Xval)) {
|
|
return _Float_abs(_Xval);
|
|
}
|
|
|
|
if (_Is_inf(_Yval)) {
|
|
return _Float_abs(_Yval);
|
|
}
|
|
|
|
// at least one of them is a quiet NaN, and the other is not an infinity
|
|
return _Xval + _Yval;
|
|
}
|
|
|
|
_Ty _Av = _Float_abs(_Xval);
|
|
_Ty _Bv = _Float_abs(_Yval);
|
|
|
|
if (_Av < _Bv) { // ensure that _Bv <= _Av
|
|
_STD swap(_Av, _Bv);
|
|
}
|
|
|
|
if (_Bv == 0) {
|
|
return _STD log(_Av);
|
|
}
|
|
|
|
if (_Hypot_leg_tiny<_Ty> < _Av && _Av < _Hypot_leg_huge<_Ty>) { // no overflow or harmful underflow
|
|
constexpr _Ty _Norm_small = _Ty{0.5};
|
|
constexpr _Ty _Norm_big = _Ty{3.0};
|
|
|
|
const _Ty _Bv_sqr = _Bv * _Bv;
|
|
|
|
if (_Av == _Ty{1.0}) { // correctly return +0 when _Av == 1 and _Bv * _Bv underflows
|
|
// _Norm_minus_one(_Av, _Bv) could return -0 under FE_DOWNWARD rounding mode
|
|
return _Logp1(_Bv_sqr) * _Ty{0.5};
|
|
}
|
|
|
|
const _Ty _Norm = _Av * _Av + _Bv_sqr;
|
|
|
|
if (_Norm_small < _Norm && _Norm < _Norm_big) { // avoid catastrophic cancellation
|
|
return _Logp1(_Norm_minus_one(_Av, _Bv)) * _Ty{0.5};
|
|
} else {
|
|
return _STD log(_Norm) * _Ty{0.5};
|
|
}
|
|
} else { // use 1 1/2 precision to preserve bits
|
|
constexpr _Ty _Cm = _Ty{22713.0L / 32768.0L};
|
|
constexpr _Ty _Cl = _Ty{1.4286068203094172321214581765680755e-6L};
|
|
|
|
const int _Exponent = _STD ilogb(_Av);
|
|
const _Ty _Av_scaled = _STD scalbn(_Av, -_Exponent);
|
|
const _Ty _Bv_scaled = _STD scalbn(_Bv, -_Exponent);
|
|
const _Ty _Bv_scaled_sqr = _Bv_scaled * _Bv_scaled;
|
|
const _Ty _Norm_scaled = _Av_scaled * _Av_scaled + _Bv_scaled_sqr;
|
|
const _Ty _Real_shifted = _STD log(_Norm_scaled) * _Ty{0.5};
|
|
const auto _Fexponent = static_cast<_Ty>(_Exponent);
|
|
return (_Real_shifted + _Fexponent * _Cl) + _Fexponent * _Cm;
|
|
}
|
|
}
|
|
} // namespace _Math_algorithms
|
|
|
|
#undef _FMP
|
|
|
|
using _Dcomplex_value = _CSTD _C_double_complex;
|
|
using _Fcomplex_value = _CSTD _C_float_complex;
|
|
using _Lcomplex_value = _CSTD _C_ldouble_complex;
|
|
|
|
template <class _Ty>
|
|
class complex;
|
|
template <>
|
|
class complex<float>;
|
|
template <>
|
|
class complex<double>;
|
|
template <>
|
|
class complex<long double>;
|
|
|
|
// CLASS TEMPLATE _Ctraits
|
|
template <class _Ty>
|
|
class _Ctraits {
|
|
public:
|
|
static constexpr _Ty _Flt_eps() { // get epsilon
|
|
return numeric_limits<_Ty>::epsilon();
|
|
}
|
|
|
|
static constexpr _Ty _Flt_max() {
|
|
return (numeric_limits<_Ty>::max) ();
|
|
}
|
|
|
|
static constexpr _Ty _Flt_norm_min() {
|
|
return (numeric_limits<_Ty>::min) () > 0 ? (numeric_limits<_Ty>::min) () : 0;
|
|
}
|
|
|
|
static _Ty _Abs(_Ty _Left) {
|
|
return static_cast<_Ty>(_Signbit(_Left) ? -_Left : _Left);
|
|
}
|
|
|
|
static _Ty _Cosh(_Ty _Left, _Ty _Right) { // return cosh(_Left) * _Right
|
|
return static_cast<_Ty>(_CSTD _Cosh(static_cast<double>(_Left), static_cast<double>(_Right)));
|
|
}
|
|
|
|
static _Ty _Copysign(_Ty _Magnitude, _Ty _Sign) {
|
|
return static_cast<_Ty>(_Signbit(_Sign) ? -_Abs(_Magnitude) : _Abs(_Magnitude));
|
|
}
|
|
|
|
static short _Exp(_Ty* _Pleft, _Ty _Right, short _Exponent) { // compute exp(*_Pleft) * _Right * 2 ^ _Exponent
|
|
double _Tmp = static_cast<double>(*_Pleft);
|
|
short _Ans = _CSTD _Exp(&_Tmp, static_cast<double>(_Right), _Exponent);
|
|
*_Pleft = static_cast<_Ty>(_Tmp);
|
|
return _Ans;
|
|
}
|
|
|
|
static constexpr _Ty _Infv() { // return infinity
|
|
return numeric_limits<_Ty>::infinity();
|
|
}
|
|
|
|
static bool _Isinf(_Ty _Left) { // test for infinity
|
|
const auto _Tmp = static_cast<double>(_Left);
|
|
const auto _Uint = _Bit_cast<uint64_t>(_Tmp);
|
|
return (_Uint & 0x7fffffffffffffffU) == 0x7ff0000000000000U;
|
|
}
|
|
|
|
static _CONSTEXPR20 bool _Isnan(_Ty _Left) {
|
|
const auto _Tmp = static_cast<double>(_Left);
|
|
const auto _Uint = _Bit_cast<uint64_t>(_Tmp);
|
|
return (_Uint & 0x7fffffffffffffffU) > 0x7ff0000000000000U;
|
|
}
|
|
|
|
static constexpr _Ty _Nanv() { // return NaN
|
|
return numeric_limits<_Ty>::quiet_NaN();
|
|
}
|
|
|
|
static bool _Signbit(_Ty _Left) {
|
|
return (_STD signbit) (static_cast<double>(_Left));
|
|
}
|
|
|
|
static _Ty _Sinh(_Ty _Left, _Ty _Right) { // return sinh(_Left) * _Right
|
|
return static_cast<_Ty>(_CSTD _Sinh(static_cast<double>(_Left), static_cast<double>(_Right)));
|
|
}
|
|
|
|
static _Ty asinh(_Ty _Left) {
|
|
if (_Left == 0 || _Isnan(_Left) || _Isinf(_Left)) {
|
|
return _Left;
|
|
}
|
|
|
|
constexpr _Ty _Ln2 = 0.69314718055994530941723212145817658L;
|
|
|
|
const _Ty _Old_left = _Left;
|
|
_Ty _Ans;
|
|
|
|
_Left = _Abs(_Left);
|
|
|
|
if (_Left < 2 / _Flt_eps()) {
|
|
_Ans = log1p(_Left + _Left * _Left / (1 + sqrt(_Left * _Left + 1)));
|
|
} else {
|
|
_Ans = log(_Left) + _Ln2;
|
|
}
|
|
|
|
return _Copysign(_Ans, _Old_left);
|
|
}
|
|
|
|
static _Ty atan2(_Ty _Yval, _Ty _Xval) { // return atan(_Yval / _Xval)
|
|
return static_cast<_Ty>(_CSTD atan2(static_cast<double>(_Yval), static_cast<double>(_Xval)));
|
|
}
|
|
|
|
static _Ty cos(_Ty _Left) {
|
|
return static_cast<_Ty>(_CSTD cos(static_cast<double>(_Left)));
|
|
}
|
|
|
|
static _Ty exp(_Ty _Left) {
|
|
return static_cast<_Ty>(_CSTD exp(static_cast<double>(_Left)));
|
|
}
|
|
|
|
static _Ty ldexp(_Ty _Left, int _Exponent) { // return _Left * 2 ^ _Exponent
|
|
return static_cast<_Ty>(_CSTD ldexp(static_cast<double>(_Left), _Exponent));
|
|
}
|
|
|
|
static _Ty log(_Ty _Left) {
|
|
return static_cast<_Ty>(_CSTD log(static_cast<double>(_Left)));
|
|
}
|
|
|
|
static _Ty log1p(_Ty _Left) { // return log(1 + _Left)
|
|
if (_Left < -1) {
|
|
return _Nanv();
|
|
} else if (_Left == 0) {
|
|
return _Left;
|
|
} else { // compute log(1 + _Left) with fixup for small _Left
|
|
_Ty _Leftp1 = 1 + _Left;
|
|
return log(_Leftp1) - ((_Leftp1 - 1) - _Left) / _Leftp1;
|
|
}
|
|
}
|
|
|
|
static _Ty pow(_Ty _Left, _Ty _Right) {
|
|
return static_cast<_Ty>(_CSTD pow(static_cast<double>(_Left), static_cast<double>(_Right)));
|
|
}
|
|
|
|
static _Ty sin(_Ty _Left) {
|
|
return static_cast<_Ty>(_CSTD sin(static_cast<double>(_Left)));
|
|
}
|
|
|
|
static _Ty sqrt(_Ty _Left) {
|
|
return static_cast<_Ty>(_CSTD sqrt(static_cast<double>(_Left)));
|
|
}
|
|
|
|
static _Ty tan(_Ty _Left) {
|
|
return static_cast<_Ty>(_CSTD tan(static_cast<double>(_Left)));
|
|
}
|
|
|
|
static _Ty hypot(_Ty _Left, _Ty _Right) {
|
|
return static_cast<_Ty>(_CSTD hypot(static_cast<double>(_Left), static_cast<double>(_Right)));
|
|
}
|
|
};
|
|
|
|
// CLASS _Ctraits<long double>
|
|
template <>
|
|
class _Ctraits<long double> {
|
|
public:
|
|
using _Ty = long double;
|
|
|
|
static constexpr _Ty _Flt_eps() { // get epsilon
|
|
return numeric_limits<long double>::epsilon();
|
|
}
|
|
|
|
static constexpr _Ty _Flt_max() {
|
|
return (numeric_limits<long double>::max) ();
|
|
}
|
|
|
|
static constexpr _Ty _Flt_norm_min() {
|
|
return (numeric_limits<long double>::min) ();
|
|
}
|
|
|
|
static _Ty _Abs(_Ty _Left) {
|
|
// testing _Left < 0 would be incorrect when _Left is -0.0
|
|
return _CSTD fabsl(_Left);
|
|
}
|
|
|
|
static _Ty _Cosh(_Ty _Left, _Ty _Right) { // return cosh(_Left) * _Right
|
|
return _CSTD _LCosh(_Left, _Right);
|
|
}
|
|
|
|
static _Ty _Copysign(_Ty _Magnitude, _Ty _Sign) {
|
|
// testing _Sign < 0 would be incorrect when _Sign is -0.0
|
|
return _CSTD copysignl(_Magnitude, _Sign);
|
|
}
|
|
|
|
static short _Exp(_Ty* _Pleft, _Ty _Right, short _Exponent) { // compute exp(*_Pleft) * _Right * 2 ^ _Exponent
|
|
return _CSTD _LExp(_Pleft, _Right, _Exponent);
|
|
}
|
|
|
|
static constexpr _Ty _Infv() { // return infinity
|
|
return numeric_limits<long double>::infinity();
|
|
}
|
|
|
|
static bool _Isinf(_Ty _Left) { // test for infinity
|
|
#if defined(__LDBL_DIG__) && __LDBL_DIG__ == 18
|
|
return _CSTD _LDtest(&_Left) == _INFCODE;
|
|
#else // ^^^ 80-bit long double (not supported by MSVC in general, see GH-1316) / 64-bit long double vvv
|
|
const auto _Uint = _Bit_cast<uint64_t>(_Left);
|
|
return (_Uint & 0x7fffffffffffffffU) == 0x7ff0000000000000U;
|
|
#endif // ^^^ 64-bit long double ^^^
|
|
}
|
|
|
|
static _CONSTEXPR20 bool _Isnan(_Ty _Left) {
|
|
#if defined(__LDBL_DIG__) && __LDBL_DIG__ == 18
|
|
return _CSTD _LDtest(&_Left) == _NANCODE;
|
|
#else // ^^^ 80-bit long double (not supported by MSVC in general, see GH-1316) / 64-bit long double vvv
|
|
const auto _Uint = _Bit_cast<uint64_t>(_Left);
|
|
return (_Uint & 0x7fffffffffffffffU) > 0x7ff0000000000000U;
|
|
#endif // ^^^ 64-bit long double ^^^
|
|
}
|
|
|
|
static constexpr _Ty _Nanv() { // return NaN
|
|
return numeric_limits<long double>::quiet_NaN();
|
|
}
|
|
|
|
static bool _Signbit(_Ty _Left) {
|
|
// testing _Left < 0 would be incorrect when _Left is -0.0
|
|
return (_STD signbit) (_Left);
|
|
}
|
|
|
|
static _Ty _Sinh(_Ty _Left, _Ty _Right) { // return sinh(_Left) * _Right
|
|
return _CSTD _LSinh(_Left, _Right);
|
|
}
|
|
|
|
static _Ty asinh(_Ty _Left) {
|
|
if (_Left == 0 || _Isnan(_Left) || _Isinf(_Left)) {
|
|
return _Left;
|
|
}
|
|
|
|
constexpr _Ty _Ln2 = 0.69314718055994530941723212145817658L;
|
|
|
|
const _Ty _Old_left = _Left;
|
|
_Ty _Ans;
|
|
|
|
_Left = _Abs(_Left);
|
|
|
|
if (_Left < 2 / _Flt_eps()) {
|
|
_Ans = log1p(_Left + _Left * _Left / (1 + sqrt(_Left * _Left + 1)));
|
|
} else {
|
|
_Ans = log(_Left) + _Ln2;
|
|
}
|
|
|
|
return _Copysign(_Ans, _Old_left);
|
|
}
|
|
|
|
static _Ty atan2(_Ty _Yval, _Ty _Xval) { // return atan(_Yval / _Xval)
|
|
return _CSTD atan2l(_Yval, _Xval);
|
|
}
|
|
|
|
static _Ty cos(_Ty _Left) {
|
|
return _CSTD cosl(_Left);
|
|
}
|
|
|
|
static _Ty exp(_Ty _Left) {
|
|
return _CSTD expl(_Left);
|
|
}
|
|
|
|
static _Ty ldexp(_Ty _Left, int _Exponent) { // return _Left * 2 ^ _Exponent
|
|
return _CSTD ldexpl(_Left, _Exponent);
|
|
}
|
|
|
|
static _Ty log(_Ty _Left) {
|
|
return _CSTD logl(_Left);
|
|
}
|
|
|
|
static _Ty log1p(_Ty _Left) { // return log(1 + _Left)
|
|
if (_Left < -1) {
|
|
return _Nanv();
|
|
} else if (_Left == 0) {
|
|
return _Left;
|
|
} else { // compute log(1 + _Left) with fixup for small _Left
|
|
_Ty _Leftp1 = 1 + _Left;
|
|
return log(_Leftp1) - ((_Leftp1 - 1) - _Left) / _Leftp1;
|
|
}
|
|
}
|
|
|
|
static _Ty pow(_Ty _Left, _Ty _Right) {
|
|
return _CSTD powl(_Left, _Right);
|
|
}
|
|
|
|
static _Ty sin(_Ty _Left) {
|
|
return _CSTD sinl(_Left);
|
|
}
|
|
|
|
static _Ty sqrt(_Ty _Left) {
|
|
return _CSTD sqrtl(_Left);
|
|
}
|
|
|
|
static _Ty tan(_Ty _Left) {
|
|
return _CSTD tanl(_Left);
|
|
}
|
|
|
|
static _Ty hypot(_Ty _Left, _Ty _Right) {
|
|
return _CSTD hypotl(_Left, _Right);
|
|
}
|
|
};
|
|
|
|
// CLASS _Ctraits<double>
|
|
template <>
|
|
class _Ctraits<double> {
|
|
public:
|
|
using _Ty = double;
|
|
|
|
static constexpr _Ty _Flt_eps() { // get epsilon
|
|
return numeric_limits<double>::epsilon();
|
|
}
|
|
|
|
static constexpr _Ty _Flt_max() {
|
|
return (numeric_limits<double>::max) ();
|
|
}
|
|
|
|
static constexpr _Ty _Flt_norm_min() {
|
|
return (numeric_limits<double>::min) ();
|
|
}
|
|
|
|
static _Ty _Abs(_Ty _Left) {
|
|
// testing _Left < 0 would be incorrect when _Left is -0.0
|
|
return _CSTD fabs(_Left);
|
|
}
|
|
|
|
static _Ty _Cosh(_Ty _Left, _Ty _Right) { // return cosh(_Left) * _Right
|
|
return _CSTD _Cosh(_Left, _Right);
|
|
}
|
|
|
|
static _Ty _Copysign(_Ty _Magnitude, _Ty _Sign) {
|
|
// testing _Sign < 0 would be incorrect when _Sign is -0.0
|
|
return _CSTD copysign(_Magnitude, _Sign);
|
|
}
|
|
|
|
static short _Exp(_Ty* _Pleft, _Ty _Right, short _Exponent) { // compute exp(*_Pleft) * _Right * 2 ^ _Exponent
|
|
return _CSTD _Exp(_Pleft, _Right, _Exponent);
|
|
}
|
|
|
|
static constexpr _Ty _Infv() { // return infinity
|
|
return numeric_limits<double>::infinity();
|
|
}
|
|
|
|
static bool _Isinf(_Ty _Left) { // test for infinity
|
|
const auto _Uint = _Bit_cast<uint64_t>(_Left);
|
|
return (_Uint & 0x7fffffffffffffffU) == 0x7ff0000000000000U;
|
|
}
|
|
|
|
static _CONSTEXPR20 bool _Isnan(_Ty _Left) {
|
|
const auto _Uint = _Bit_cast<uint64_t>(_Left);
|
|
return (_Uint & 0x7fffffffffffffffU) > 0x7ff0000000000000U;
|
|
}
|
|
|
|
static constexpr _Ty _Nanv() { // return NaN
|
|
return numeric_limits<double>::quiet_NaN();
|
|
}
|
|
|
|
static bool _Signbit(_Ty _Left) {
|
|
// testing _Left < 0 would be incorrect when _Left is -0.0
|
|
return (_STD signbit) (_Left);
|
|
}
|
|
|
|
static _Ty _Sinh(_Ty _Left, _Ty _Right) { // return sinh(_Left) * _Right
|
|
return _CSTD _Sinh(_Left, _Right);
|
|
}
|
|
|
|
static _Ty asinh(_Ty _Left) {
|
|
if (_Isnan(_Left) || _Isinf(_Left) || _Left == 0) {
|
|
return _Left;
|
|
} else { // _Left finite nonzero
|
|
const _Ty _Old_left = _Left;
|
|
_Ty _Ans;
|
|
|
|
_Left = _Abs(_Left);
|
|
|
|
if (_Left < 2 / _Flt_eps()) {
|
|
_Ans = log1p(_Left + _Left * _Left / (1 + sqrt(_Left * _Left + 1)));
|
|
} else {
|
|
_Ans = log(_Left) // _Left big, compute log(_Left+_Left)
|
|
+ static_cast<_Ty>(0.69314718055994530941723212145817658L);
|
|
}
|
|
|
|
return _Copysign(_Ans, _Old_left);
|
|
}
|
|
}
|
|
|
|
static _Ty atan2(_Ty _Yval, _Ty _Xval) { // return atan(_Yval / _Xval)
|
|
return _CSTD atan2(_Yval, _Xval);
|
|
}
|
|
|
|
static _Ty cos(_Ty _Left) {
|
|
return _CSTD cos(_Left);
|
|
}
|
|
|
|
static _Ty exp(_Ty _Left) {
|
|
return _CSTD exp(_Left);
|
|
}
|
|
|
|
static _Ty ldexp(_Ty _Left, int _Exponent) { // return _Left * 2 ^ _Exponent
|
|
return _CSTD ldexp(_Left, _Exponent);
|
|
}
|
|
|
|
static _Ty log(_Ty _Left) {
|
|
return _CSTD log(_Left);
|
|
}
|
|
|
|
static _Ty log1p(_Ty _Left) { // return log(1 + _Left)
|
|
if (_Isnan(_Left) || _Left == 0 || (_Isinf(_Left) && 0 < _Left)) {
|
|
return _Left;
|
|
} else if (_Left < -1) {
|
|
return _Nanv();
|
|
} else if (_Left == -1) {
|
|
return -_Infv();
|
|
} else if (_Left == 0) {
|
|
return _Left;
|
|
} else { // compute log(1 + _Left) with fixup for small _Left
|
|
_Ty _Leftp1 = 1 + _Left;
|
|
return log(_Leftp1) - ((_Leftp1 - 1) - _Left) / _Leftp1;
|
|
}
|
|
}
|
|
|
|
static _Ty pow(_Ty _Left, _Ty _Right) {
|
|
return _CSTD pow(_Left, _Right);
|
|
}
|
|
|
|
static _Ty sin(_Ty _Left) {
|
|
return _CSTD sin(_Left);
|
|
}
|
|
|
|
static _Ty sqrt(_Ty _Left) {
|
|
return _CSTD sqrt(_Left);
|
|
}
|
|
|
|
static _Ty tan(_Ty _Left) {
|
|
return _CSTD tan(_Left);
|
|
}
|
|
|
|
static _Ty hypot(_Ty _Left, _Ty _Right) {
|
|
return _CSTD hypot(_Left, _Right);
|
|
}
|
|
};
|
|
|
|
// CLASS _Ctraits<float>
|
|
template <>
|
|
class _Ctraits<float> {
|
|
public:
|
|
using _Ty = float;
|
|
|
|
static constexpr _Ty _Flt_eps() { // get epsilon
|
|
return numeric_limits<float>::epsilon();
|
|
}
|
|
|
|
static constexpr _Ty _Flt_max() {
|
|
return (numeric_limits<float>::max) ();
|
|
}
|
|
|
|
static constexpr _Ty _Flt_norm_min() {
|
|
return (numeric_limits<float>::min) ();
|
|
}
|
|
|
|
static _Ty _Abs(_Ty _Left) {
|
|
// testing _Left < 0 would be incorrect when _Left is -0.0
|
|
return _CSTD fabsf(_Left);
|
|
}
|
|
|
|
static _Ty _Cosh(_Ty _Left, _Ty _Right) { // return cosh(_Left) * _Right
|
|
return _CSTD _FCosh(_Left, _Right);
|
|
}
|
|
|
|
static _Ty _Copysign(_Ty _Magnitude, _Ty _Sign) {
|
|
// testing _Sign < 0 would be incorrect when _Sign is -0.0
|
|
return _CSTD copysignf(_Magnitude, _Sign);
|
|
}
|
|
|
|
static short _Exp(_Ty* _Pleft, _Ty _Right, short _Exponent) { // compute exp(*_Pleft) * _Right * 2 ^ _Exponent
|
|
return _CSTD _FExp(_Pleft, _Right, _Exponent);
|
|
}
|
|
|
|
static constexpr _Ty _Infv() { // return infinity
|
|
return numeric_limits<float>::infinity();
|
|
}
|
|
|
|
static bool _Isinf(_Ty _Left) { // test for infinity
|
|
const auto _Uint = _Bit_cast<uint32_t>(_Left);
|
|
return (_Uint & 0x7fffffffU) == 0x7f800000U;
|
|
}
|
|
|
|
static _CONSTEXPR20 bool _Isnan(_Ty _Left) {
|
|
const auto _Uint = _Bit_cast<uint32_t>(_Left);
|
|
return (_Uint & 0x7fffffffU) > 0x7f800000U;
|
|
}
|
|
|
|
static constexpr _Ty _Nanv() { // return NaN
|
|
return numeric_limits<float>::quiet_NaN();
|
|
}
|
|
|
|
static bool _Signbit(_Ty _Left) {
|
|
// testing _Left < 0 would be incorrect when _Left is -0.0
|
|
return (_STD signbit) (_Left);
|
|
}
|
|
|
|
static _Ty _Sinh(_Ty _Left, _Ty _Right) { // return sinh(_Left) * _Right
|
|
return _CSTD _FSinh(_Left, _Right);
|
|
}
|
|
|
|
static _Ty asinh(_Ty _Left) {
|
|
if (_Left == 0 || _Isnan(_Left) || _Isinf(_Left)) {
|
|
return _Left;
|
|
}
|
|
|
|
constexpr _Ty _Ln2 = 0.69314718055994530941723212145817658F;
|
|
|
|
const _Ty _Old_left = _Left;
|
|
_Ty _Ans;
|
|
|
|
_Left = _Abs(_Left);
|
|
|
|
if (_Left < 2 / _Flt_eps()) {
|
|
_Ans = log1p(_Left + _Left * _Left / (1 + sqrt(_Left * _Left + 1)));
|
|
} else {
|
|
_Ans = log(_Left) + _Ln2;
|
|
}
|
|
|
|
return _Copysign(_Ans, _Old_left);
|
|
}
|
|
|
|
static _Ty atan2(_Ty _Yval, _Ty _Xval) { // return atan(_Yval / _Xval)
|
|
return _CSTD atan2f(_Yval, _Xval);
|
|
}
|
|
|
|
static _Ty cos(_Ty _Left) {
|
|
return _CSTD cosf(_Left);
|
|
}
|
|
|
|
static _Ty exp(_Ty _Left) {
|
|
return _CSTD expf(_Left);
|
|
}
|
|
|
|
static _Ty ldexp(_Ty _Left, int _Exponent) { // return _Left * 2 ^ _Exponent
|
|
return _CSTD ldexpf(_Left, _Exponent);
|
|
}
|
|
|
|
static _Ty log(_Ty _Left) {
|
|
return _CSTD logf(_Left);
|
|
}
|
|
|
|
static _Ty log1p(_Ty _Left) { // return log(1 + _Left)
|
|
if (_Left < -1) {
|
|
return _Nanv();
|
|
} else if (_Left == 0) {
|
|
return _Left;
|
|
} else { // compute log(1 + _Left) with fixup for small _Left
|
|
_Ty _Leftp1 = 1 + _Left;
|
|
return log(_Leftp1) - ((_Leftp1 - 1) - _Left) / _Leftp1;
|
|
}
|
|
}
|
|
|
|
static _Ty pow(_Ty _Left, _Ty _Right) {
|
|
return _CSTD powf(_Left, _Right);
|
|
}
|
|
|
|
static _Ty sin(_Ty _Left) {
|
|
return _CSTD sinf(_Left);
|
|
}
|
|
|
|
static _Ty sqrt(_Ty _Left) {
|
|
return _CSTD sqrtf(_Left);
|
|
}
|
|
|
|
static _Ty tan(_Ty _Left) {
|
|
return _CSTD tanf(_Left);
|
|
}
|
|
|
|
static _Ty hypot(_Ty _Left, _Ty _Right) {
|
|
return _CSTD hypotf(_Left, _Right);
|
|
}
|
|
};
|
|
|
|
// STRUCT TEMPLATE _Complex_value
|
|
template <class _Ty>
|
|
struct _Complex_value {
|
|
enum { _Re = 0, _Im = 1 };
|
|
_Ty _Val[2];
|
|
};
|
|
|
|
// CLASS TEMPLATE _Complex_base
|
|
template <class _Ty, class _Valbase>
|
|
class _Complex_base : public _Valbase {
|
|
public:
|
|
using _Myctraits = _Ctraits<_Ty>;
|
|
using value_type = _Ty;
|
|
|
|
constexpr _Complex_base(const _Ty& _Realval, const _Ty& _Imagval) : _Valbase{{_Realval, _Imagval}} {}
|
|
|
|
_CONSTEXPR20 void real(const _Ty& _Right) { // set real component
|
|
this->_Val[_RE] = _Right;
|
|
}
|
|
|
|
_CONSTEXPR20 void imag(const _Ty& _Right) { // set imaginary component
|
|
this->_Val[_IM] = _Right;
|
|
}
|
|
|
|
_NODISCARD constexpr _Ty real() const { // return real component
|
|
return this->_Val[_RE];
|
|
}
|
|
|
|
_NODISCARD constexpr _Ty imag() const { // return imaginary component
|
|
return this->_Val[_IM];
|
|
}
|
|
|
|
protected:
|
|
template <class _Other>
|
|
_CONSTEXPR20 void _Add(const complex<_Other>& _Right) {
|
|
this->_Val[_RE] = this->_Val[_RE] + static_cast<_Ty>(_Right.real());
|
|
this->_Val[_IM] = this->_Val[_IM] + static_cast<_Ty>(_Right.imag());
|
|
}
|
|
|
|
template <class _Other>
|
|
_CONSTEXPR20 void _Sub(const complex<_Other>& _Right) {
|
|
this->_Val[_RE] = this->_Val[_RE] - static_cast<_Ty>(_Right.real());
|
|
this->_Val[_IM] = this->_Val[_IM] - static_cast<_Ty>(_Right.imag());
|
|
}
|
|
|
|
template <class _Other>
|
|
_CONSTEXPR20 void _Mul(const complex<_Other>& _Right) {
|
|
_Ty _Rightreal = static_cast<_Ty>(_Right.real());
|
|
_Ty _Rightimag = static_cast<_Ty>(_Right.imag());
|
|
|
|
_Ty _Tmp = this->_Val[_RE] * _Rightreal - this->_Val[_IM] * _Rightimag;
|
|
this->_Val[_IM] = this->_Val[_RE] * _Rightimag + this->_Val[_IM] * _Rightreal;
|
|
this->_Val[_RE] = _Tmp;
|
|
}
|
|
|
|
template <class _Other>
|
|
_CONSTEXPR20 void _Div(const complex<_Other>& _Right) {
|
|
using _Myctraits = _Ctraits<_Ty>;
|
|
|
|
_Ty _Rightreal = static_cast<_Ty>(_Right.real());
|
|
_Ty _Rightimag = static_cast<_Ty>(_Right.imag());
|
|
|
|
if (_Myctraits::_Isnan(_Rightreal) || _Myctraits::_Isnan(_Rightimag)) { // set NaN result
|
|
this->_Val[_RE] = _Myctraits::_Nanv();
|
|
this->_Val[_IM] = this->_Val[_RE];
|
|
} else if ((_Rightimag < 0 ? -_Rightimag : +_Rightimag)
|
|
< (_Rightreal < 0 ? -_Rightreal : +_Rightreal)) { // |_Right.imag()| < |_Right.real()|
|
|
_Ty _Wr = _Rightimag / _Rightreal;
|
|
_Ty _Wd = _Rightreal + _Wr * _Rightimag;
|
|
|
|
if (_Myctraits::_Isnan(_Wd) || _Wd == 0) { // set NaN result
|
|
this->_Val[_RE] = _Myctraits::_Nanv();
|
|
this->_Val[_IM] = this->_Val[_RE];
|
|
} else { // compute representable result
|
|
_Ty _Tmp = (this->_Val[_RE] + this->_Val[_IM] * _Wr) / _Wd;
|
|
this->_Val[_IM] = (this->_Val[_IM] - this->_Val[_RE] * _Wr) / _Wd;
|
|
this->_Val[_RE] = _Tmp;
|
|
}
|
|
} else if (_Rightimag == 0) { // set NaN result
|
|
this->_Val[_RE] = _Myctraits::_Nanv();
|
|
this->_Val[_IM] = this->_Val[_RE];
|
|
} else { // 0 < |_Right.real()| <= |_Right.imag()|
|
|
_Ty _Wr = _Rightreal / _Rightimag;
|
|
_Ty _Wd = _Rightimag + _Wr * _Rightreal;
|
|
|
|
if (_Myctraits::_Isnan(_Wd) || _Wd == 0) { // set NaN result
|
|
this->_Val[_RE] = _Myctraits::_Nanv();
|
|
this->_Val[_IM] = this->_Val[_RE];
|
|
} else { // compute representable result
|
|
_Ty _Tmp = (this->_Val[_RE] * _Wr + this->_Val[_IM]) / _Wd;
|
|
this->_Val[_IM] = (this->_Val[_IM] * _Wr - this->_Val[_RE]) / _Wd;
|
|
this->_Val[_RE] = _Tmp;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
// CLASS complex<float>
|
|
template <>
|
|
class complex<float> : public _Complex_base<float, _Fcomplex_value> {
|
|
public:
|
|
using _Ty = float;
|
|
|
|
constexpr explicit complex(const complex<double>&); // defined below
|
|
constexpr explicit complex(const complex<long double>&); // defined below
|
|
|
|
constexpr complex(const _Ty& _Realval = 0, const _Ty& _Imagval = 0)
|
|
: _Complex_base<float, _Fcomplex_value>(_Realval, _Imagval) {}
|
|
|
|
_CONSTEXPR20 complex& operator=(const _Ty& _Right) {
|
|
_Val[_RE] = _Right;
|
|
_Val[_IM] = 0;
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator+=(const _Ty& _Right) {
|
|
_Val[_RE] = _Val[_RE] + _Right;
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator-=(const _Ty& _Right) {
|
|
_Val[_RE] = _Val[_RE] - _Right;
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator*=(const _Ty& _Right) {
|
|
_Val[_RE] = _Val[_RE] * _Right;
|
|
_Val[_IM] = _Val[_IM] * _Right;
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator/=(const _Ty& _Right) {
|
|
_Val[_RE] = _Val[_RE] / _Right;
|
|
_Val[_IM] = _Val[_IM] / _Right;
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator+=(const complex& _Right) {
|
|
this->_Add(_Right);
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator-=(const complex& _Right) {
|
|
this->_Sub(_Right);
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator*=(const complex& _Right) {
|
|
this->_Mul(_Right);
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator/=(const complex& _Right) {
|
|
this->_Div(_Right);
|
|
return *this;
|
|
}
|
|
|
|
template <class _Other>
|
|
_CONSTEXPR20 complex& operator=(const complex<_Other>& _Right) {
|
|
_Val[_RE] = static_cast<_Ty>(_Right._Val[_RE]);
|
|
_Val[_IM] = static_cast<_Ty>(_Right._Val[_IM]);
|
|
return *this;
|
|
}
|
|
|
|
template <class _Other>
|
|
_CONSTEXPR20 complex& operator+=(const complex<_Other>& _Right) {
|
|
this->_Add(_Right);
|
|
return *this;
|
|
}
|
|
|
|
template <class _Other>
|
|
_CONSTEXPR20 complex& operator-=(const complex<_Other>& _Right) {
|
|
this->_Sub(_Right);
|
|
return *this;
|
|
}
|
|
|
|
template <class _Other>
|
|
_CONSTEXPR20 complex& operator*=(const complex<_Other>& _Right) {
|
|
this->_Mul(_Right);
|
|
return *this;
|
|
}
|
|
|
|
template <class _Other>
|
|
_CONSTEXPR20 complex& operator/=(const complex<_Other>& _Right) {
|
|
this->_Div(_Right);
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
// CLASS complex<double>
|
|
template <>
|
|
class complex<double> : public _Complex_base<double, _Dcomplex_value> {
|
|
public:
|
|
using _Ty = double;
|
|
|
|
constexpr complex(const complex<float>&); // defined below
|
|
constexpr explicit complex(const complex<long double>&); // defined below
|
|
|
|
constexpr complex(const _Ty& _Realval = 0, const _Ty& _Imagval = 0)
|
|
: _Complex_base<double, _Dcomplex_value>(_Realval, _Imagval) {}
|
|
|
|
_CONSTEXPR20 complex& operator=(const _Ty& _Right) {
|
|
_Val[_RE] = _Right;
|
|
_Val[_IM] = 0;
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator+=(const _Ty& _Right) {
|
|
_Val[_RE] = _Val[_RE] + _Right;
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator-=(const _Ty& _Right) {
|
|
_Val[_RE] = _Val[_RE] - _Right;
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator*=(const _Ty& _Right) {
|
|
_Val[_RE] = _Val[_RE] * _Right;
|
|
_Val[_IM] = _Val[_IM] * _Right;
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator/=(const _Ty& _Right) {
|
|
_Val[_RE] = _Val[_RE] / _Right;
|
|
_Val[_IM] = _Val[_IM] / _Right;
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator+=(const complex& _Right) {
|
|
this->_Add(_Right);
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator-=(const complex& _Right) {
|
|
this->_Sub(_Right);
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator*=(const complex& _Right) {
|
|
this->_Mul(_Right);
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator/=(const complex& _Right) {
|
|
this->_Div(_Right);
|
|
return *this;
|
|
}
|
|
|
|
template <class _Other>
|
|
_CONSTEXPR20 complex& operator=(const complex<_Other>& _Right) {
|
|
_Val[_RE] = static_cast<_Ty>(_Right._Val[_RE]);
|
|
_Val[_IM] = static_cast<_Ty>(_Right._Val[_IM]);
|
|
return *this;
|
|
}
|
|
|
|
template <class _Other>
|
|
_CONSTEXPR20 complex& operator+=(const complex<_Other>& _Right) {
|
|
this->_Add(_Right);
|
|
return *this;
|
|
}
|
|
|
|
template <class _Other>
|
|
_CONSTEXPR20 complex& operator-=(const complex<_Other>& _Right) {
|
|
this->_Sub(_Right);
|
|
return *this;
|
|
}
|
|
|
|
template <class _Other>
|
|
_CONSTEXPR20 complex& operator*=(const complex<_Other>& _Right) {
|
|
this->_Mul(_Right);
|
|
return *this;
|
|
}
|
|
|
|
template <class _Other>
|
|
_CONSTEXPR20 complex& operator/=(const complex<_Other>& _Right) {
|
|
this->_Div(_Right);
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
// CLASS complex<long double>
|
|
template <>
|
|
class complex<long double> : public _Complex_base<long double, _Lcomplex_value> {
|
|
public:
|
|
using _Ty = long double;
|
|
|
|
constexpr complex(const complex<float>&); // defined below
|
|
constexpr complex(const complex<double>&); // defined below
|
|
|
|
constexpr complex(const _Ty& _Realval = 0, const _Ty& _Imagval = 0)
|
|
: _Complex_base<long double, _Lcomplex_value>(_Realval, _Imagval) {}
|
|
|
|
_CONSTEXPR20 complex& operator=(const _Ty& _Right) {
|
|
_Val[_RE] = _Right;
|
|
_Val[_IM] = 0;
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator+=(const _Ty& _Right) {
|
|
_Val[_RE] = _Val[_RE] + _Right;
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator-=(const _Ty& _Right) {
|
|
_Val[_RE] = _Val[_RE] - _Right;
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator*=(const _Ty& _Right) {
|
|
_Val[_RE] = _Val[_RE] * _Right;
|
|
_Val[_IM] = _Val[_IM] * _Right;
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator/=(const _Ty& _Right) {
|
|
_Val[_RE] = _Val[_RE] / _Right;
|
|
_Val[_IM] = _Val[_IM] / _Right;
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator+=(const complex& _Right) {
|
|
this->_Add(_Right);
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator-=(const complex& _Right) {
|
|
this->_Sub(_Right);
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator*=(const complex& _Right) {
|
|
this->_Mul(_Right);
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator/=(const complex& _Right) {
|
|
this->_Div(_Right);
|
|
return *this;
|
|
}
|
|
|
|
template <class _Other>
|
|
_CONSTEXPR20 complex& operator=(const complex<_Other>& _Right) {
|
|
_Val[_RE] = static_cast<_Ty>(_Right._Val[_RE]);
|
|
_Val[_IM] = static_cast<_Ty>(_Right._Val[_IM]);
|
|
return *this;
|
|
}
|
|
|
|
template <class _Other>
|
|
_CONSTEXPR20 complex& operator+=(const complex<_Other>& _Right) {
|
|
this->_Add(_Right);
|
|
return *this;
|
|
}
|
|
|
|
template <class _Other>
|
|
_CONSTEXPR20 complex& operator-=(const complex<_Other>& _Right) {
|
|
this->_Sub(_Right);
|
|
return *this;
|
|
}
|
|
|
|
template <class _Other>
|
|
_CONSTEXPR20 complex& operator*=(const complex<_Other>& _Right) {
|
|
this->_Mul(_Right);
|
|
return *this;
|
|
}
|
|
|
|
template <class _Other>
|
|
_CONSTEXPR20 complex& operator/=(const complex<_Other>& _Right) {
|
|
this->_Div(_Right);
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
// CONSTRUCTORS FOR complex SPECIALIZATIONS
|
|
constexpr complex<float>::complex(const complex<double>& _Right)
|
|
: _Complex_base<float, _Fcomplex_value>(static_cast<_Ty>(_Right.real()), static_cast<_Ty>(_Right.imag())) {}
|
|
|
|
constexpr complex<float>::complex(const complex<long double>& _Right)
|
|
: _Complex_base<float, _Fcomplex_value>(static_cast<_Ty>(_Right.real()), static_cast<_Ty>(_Right.imag())) {}
|
|
|
|
constexpr complex<double>::complex(const complex<float>& _Right)
|
|
: _Complex_base<double, _Dcomplex_value>(_Right.real(), _Right.imag()) {}
|
|
|
|
constexpr complex<double>::complex(const complex<long double>& _Right)
|
|
: _Complex_base<double, _Dcomplex_value>(static_cast<_Ty>(_Right.real()), static_cast<_Ty>(_Right.imag())) {}
|
|
|
|
constexpr complex<long double>::complex(const complex<float>& _Right)
|
|
: _Complex_base<long double, _Lcomplex_value>(_Right.real(), _Right.imag()) {}
|
|
|
|
constexpr complex<long double>::complex(const complex<double>& _Right)
|
|
: _Complex_base<long double, _Lcomplex_value>(_Right.real(), _Right.imag()) {}
|
|
|
|
// CLASS TEMPLATE complex
|
|
template <class _Ty>
|
|
class complex : public _Complex_base<_Ty, _Complex_value<_Ty>> {
|
|
public:
|
|
using _Mybase = _Complex_base<_Ty, _Complex_value<_Ty>>;
|
|
|
|
constexpr complex(const _Ty& _Realval = _Ty(), const _Ty& _Imagval = _Ty()) : _Mybase(_Realval, _Imagval) {}
|
|
|
|
_CONSTEXPR20 complex& operator=(const _Ty& _Right) {
|
|
this->_Val[_RE] = _Right;
|
|
this->_Val[_IM] = _Ty();
|
|
return *this;
|
|
}
|
|
|
|
template <class _Other>
|
|
constexpr complex(const complex<_Other>& _Right)
|
|
: _Mybase(static_cast<_Ty>(_Right.real()), static_cast<_Ty>(_Right.imag())) {}
|
|
|
|
template <class _Other>
|
|
_CONSTEXPR20 complex& operator=(const complex<_Other>& _Right) {
|
|
this->_Val[_RE] = static_cast<_Ty>(_Right.real());
|
|
this->_Val[_IM] = static_cast<_Ty>(_Right.imag());
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator+=(const _Ty& _Right) {
|
|
this->_Val[_RE] = this->_Val[_RE] + _Right;
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator-=(const _Ty& _Right) {
|
|
this->_Val[_RE] = this->_Val[_RE] - _Right;
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator*=(const _Ty& _Right) {
|
|
this->_Val[_RE] = this->_Val[_RE] * _Right;
|
|
this->_Val[_IM] = this->_Val[_IM] * _Right;
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator/=(const _Ty& _Right) {
|
|
this->_Val[_RE] = this->_Val[_RE] / _Right;
|
|
this->_Val[_IM] = this->_Val[_IM] / _Right;
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator+=(const complex& _Right) {
|
|
this->_Add(_Right);
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator-=(const complex& _Right) {
|
|
this->_Sub(_Right);
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator*=(const complex& _Right) {
|
|
this->_Mul(_Right);
|
|
return *this;
|
|
}
|
|
|
|
_CONSTEXPR20 complex& operator/=(const complex& _Right) {
|
|
this->_Div(_Right);
|
|
return *this;
|
|
}
|
|
|
|
template <class _Other>
|
|
_CONSTEXPR20 complex& operator+=(const complex<_Other>& _Right) {
|
|
this->_Add(_Right);
|
|
return *this;
|
|
}
|
|
|
|
template <class _Other>
|
|
_CONSTEXPR20 complex& operator-=(const complex<_Other>& _Right) {
|
|
this->_Sub(_Right);
|
|
return *this;
|
|
}
|
|
|
|
template <class _Other>
|
|
_CONSTEXPR20 complex& operator*=(const complex<_Other>& _Right) {
|
|
this->_Mul(_Right);
|
|
return *this;
|
|
}
|
|
|
|
template <class _Other>
|
|
_CONSTEXPR20 complex& operator/=(const complex<_Other>& _Right) {
|
|
this->_Div(_Right);
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
// FUNCTION TEMPLATE operator+
|
|
template <class _Ty>
|
|
_NODISCARD _CONSTEXPR20 complex<_Ty> operator+(const complex<_Ty>& _Left, const complex<_Ty>& _Right) {
|
|
complex<_Ty> _Tmp(_Left);
|
|
_Tmp += _Right;
|
|
return _Tmp;
|
|
}
|
|
|
|
template <class _Ty>
|
|
_NODISCARD _CONSTEXPR20 complex<_Ty> operator+(const complex<_Ty>& _Left, const _Ty& _Right) {
|
|
complex<_Ty> _Tmp(_Left);
|
|
_Tmp.real(_Tmp.real() + _Right);
|
|
return _Tmp;
|
|
}
|
|
|
|
template <class _Ty>
|
|
_NODISCARD _CONSTEXPR20 complex<_Ty> operator+(const _Ty& _Left, const complex<_Ty>& _Right) {
|
|
complex<_Ty> _Tmp(_Left);
|
|
_Tmp += _Right;
|
|
return _Tmp;
|
|
}
|
|
|
|
// FUNCTION TEMPLATE operator-
|
|
template <class _Ty>
|
|
_NODISCARD _CONSTEXPR20 complex<_Ty> operator-(const complex<_Ty>& _Left, const complex<_Ty>& _Right) {
|
|
complex<_Ty> _Tmp(_Left);
|
|
_Tmp -= _Right;
|
|
return _Tmp;
|
|
}
|
|
|
|
template <class _Ty>
|
|
_NODISCARD _CONSTEXPR20 complex<_Ty> operator-(const complex<_Ty>& _Left, const _Ty& _Right) {
|
|
complex<_Ty> _Tmp(_Left);
|
|
_Tmp.real(_Tmp.real() - _Right);
|
|
return _Tmp;
|
|
}
|
|
|
|
template <class _Ty>
|
|
_NODISCARD _CONSTEXPR20 complex<_Ty> operator-(const _Ty& _Left, const complex<_Ty>& _Right) {
|
|
complex<_Ty> _Tmp(_Left);
|
|
_Tmp -= _Right;
|
|
return _Tmp;
|
|
}
|
|
|
|
// FUNCTION TEMPLATE operator*
|
|
template <class _Ty>
|
|
_NODISCARD _CONSTEXPR20 complex<_Ty> operator*(const complex<_Ty>& _Left, const complex<_Ty>& _Right) {
|
|
complex<_Ty> _Tmp(_Left);
|
|
_Tmp *= _Right;
|
|
return _Tmp;
|
|
}
|
|
|
|
template <class _Ty>
|
|
_NODISCARD _CONSTEXPR20 complex<_Ty> operator*(const complex<_Ty>& _Left, const _Ty& _Right) {
|
|
complex<_Ty> _Tmp(_Left);
|
|
_Tmp.real(_Tmp.real() * _Right);
|
|
_Tmp.imag(_Tmp.imag() * _Right);
|
|
return _Tmp;
|
|
}
|
|
|
|
template <class _Ty>
|
|
_NODISCARD _CONSTEXPR20 complex<_Ty> operator*(const _Ty& _Left, const complex<_Ty>& _Right) {
|
|
complex<_Ty> _Tmp(_Left);
|
|
_Tmp *= _Right;
|
|
return _Tmp;
|
|
}
|
|
|
|
// FUNCTION TEMPLATE operator/
|
|
template <class _Ty>
|
|
_NODISCARD _CONSTEXPR20 complex<_Ty> operator/(const complex<_Ty>& _Left, const complex<_Ty>& _Right) {
|
|
complex<_Ty> _Tmp(_Left);
|
|
_Tmp /= _Right;
|
|
return _Tmp;
|
|
}
|
|
|
|
template <class _Ty>
|
|
_NODISCARD _CONSTEXPR20 complex<_Ty> operator/(const complex<_Ty>& _Left, const _Ty& _Right) {
|
|
complex<_Ty> _Tmp(_Left);
|
|
_Tmp.real(_Tmp.real() / _Right);
|
|
_Tmp.imag(_Tmp.imag() / _Right);
|
|
return _Tmp;
|
|
}
|
|
|
|
template <class _Ty>
|
|
_NODISCARD _CONSTEXPR20 complex<_Ty> operator/(const _Ty& _Left, const complex<_Ty>& _Right) {
|
|
complex<_Ty> _Tmp(_Left);
|
|
_Tmp /= _Right;
|
|
return _Tmp;
|
|
}
|
|
|
|
// FUNCTION TEMPLATE UNARY operator+
|
|
template <class _Ty>
|
|
_NODISCARD _CONSTEXPR20 complex<_Ty> operator+(const complex<_Ty>& _Left) {
|
|
return _Left;
|
|
}
|
|
|
|
// FUNCTION TEMPLATE UNARY operator-
|
|
template <class _Ty>
|
|
_NODISCARD _CONSTEXPR20 complex<_Ty> operator-(const complex<_Ty>& _Left) {
|
|
return complex<_Ty>(-_Left.real(), -_Left.imag());
|
|
}
|
|
|
|
// FUNCTION TEMPLATE operator==
|
|
template <class _Ty>
|
|
_NODISCARD constexpr bool operator==(const complex<_Ty>& _Left, const complex<_Ty>& _Right) {
|
|
return _Left.real() == _Right.real() && _Left.imag() == _Right.imag();
|
|
}
|
|
|
|
template <class _Ty>
|
|
_NODISCARD constexpr bool operator==(const complex<_Ty>& _Left, const _Ty& _Right) {
|
|
return _Left.real() == _Right && _Left.imag() == 0;
|
|
}
|
|
|
|
#if !_HAS_CXX20
|
|
template <class _Ty>
|
|
_NODISCARD constexpr bool operator==(const _Ty& _Left, const complex<_Ty>& _Right) {
|
|
return _Left == _Right.real() && 0 == _Right.imag();
|
|
}
|
|
#endif // !_HAS_CXX20
|
|
|
|
// FUNCTION TEMPLATE operator!=
|
|
#if !_HAS_CXX20
|
|
template <class _Ty>
|
|
_NODISCARD constexpr bool operator!=(const complex<_Ty>& _Left, const complex<_Ty>& _Right) {
|
|
return !(_Left == _Right);
|
|
}
|
|
|
|
template <class _Ty>
|
|
_NODISCARD constexpr bool operator!=(const complex<_Ty>& _Left, const _Ty& _Right) {
|
|
return !(_Left == _Right);
|
|
}
|
|
|
|
template <class _Ty>
|
|
_NODISCARD constexpr bool operator!=(const _Ty& _Left, const complex<_Ty>& _Right) {
|
|
return !(_Left == _Right);
|
|
}
|
|
#endif // !_HAS_CXX20
|
|
|
|
// FUNCTION TEMPLATE imag
|
|
template <class _Ty>
|
|
_NODISCARD constexpr _Ty imag(const complex<_Ty>& _Left) {
|
|
return _Left.imag();
|
|
}
|
|
|
|
// FUNCTION TEMPLATE real
|
|
template <class _Ty>
|
|
_NODISCARD constexpr _Ty real(const complex<_Ty>& _Left) {
|
|
return _Left.real();
|
|
}
|
|
|
|
template <class _Ty>
|
|
_NODISCARD complex<_Ty> sqrt(const complex<_Ty>& _Left);
|
|
|
|
// FUNCTION TEMPLATE abs
|
|
template <class _Ty>
|
|
_NODISCARD _Ty abs(const complex<_Ty>& _Left) {
|
|
return _Ctraits<_Ty>::hypot(_Left.real(), _Left.imag());
|
|
}
|
|
|
|
// FUNCTION TEMPLATE acos
|
|
template <class _Ty>
|
|
_NODISCARD complex<_Ty> acos(const complex<_Ty>& _Left) {
|
|
const _Ty _Arcbig = static_cast<_Ty>(0.25) * _Ctraits<_Ty>::sqrt(_Ctraits<_Ty>::_Flt_max());
|
|
constexpr _Ty _Pi = static_cast<_Ty>(3.1415926535897932384626433832795029L);
|
|
|
|
const _Ty _Re = real(_Left);
|
|
const _Ty _Im = imag(_Left);
|
|
_Ty _Ux;
|
|
_Ty _Vx;
|
|
|
|
if (_Ctraits<_Ty>::_Isnan(_Re) || _Ctraits<_Ty>::_Isnan(_Im)) { // at least one NaN
|
|
_Ux = _Ctraits<_Ty>::_Nanv();
|
|
_Vx = _Ux;
|
|
} else if (_Ctraits<_Ty>::_Isinf(_Re)) { // (+/-Inf, not NaN)
|
|
if (_Ctraits<_Ty>::_Isinf(_Im)) {
|
|
if (_Re < 0) {
|
|
_Ux = static_cast<_Ty>(0.75) * _Pi; // (-Inf, +/-Inf)
|
|
} else {
|
|
_Ux = static_cast<_Ty>(0.25) * _Pi; // (+Inf, +/-Inf)
|
|
}
|
|
} else if (_Re < 0) {
|
|
_Ux = _Pi; // (-Inf, finite)
|
|
} else {
|
|
_Ux = 0; // (+Inf, finite)
|
|
}
|
|
_Vx = -_Ctraits<_Ty>::_Copysign(_Ctraits<_Ty>::_Infv(), _Im);
|
|
} else if (_Ctraits<_Ty>::_Isinf(_Im)) { // (finite, finite)
|
|
_Ux = static_cast<_Ty>(0.50) * _Pi; // (finite, +/-Inf)
|
|
_Vx = -_Im;
|
|
} else { // (finite, finite)
|
|
const complex<_Ty> _Wx = sqrt(complex<_Ty>(1 + _Re, -_Im));
|
|
const complex<_Ty> _Zx = sqrt(complex<_Ty>(1 - _Re, -_Im));
|
|
const _Ty _Wr = real(_Wx);
|
|
const _Ty _Wi = imag(_Wx);
|
|
const _Ty _Zr = real(_Zx);
|
|
const _Ty _Zi = imag(_Zx);
|
|
_Ty _Alfa;
|
|
_Ty _Beta;
|
|
|
|
_Ux = 2 * _Ctraits<_Ty>::atan2(_Zr, _Wr);
|
|
|
|
if (_Arcbig < _Wr) { // real parts large
|
|
_Alfa = _Wr;
|
|
_Beta = _Zi + _Wi * (_Zr / _Alfa);
|
|
} else if (_Arcbig < _Wi) { // imag parts large
|
|
_Alfa = _Wi;
|
|
_Beta = _Wr * (_Zi / _Alfa) + _Zr;
|
|
} else if (_Wi < -_Arcbig) { // imag part of w large negative
|
|
_Alfa = -_Wi;
|
|
_Beta = _Wr * (_Zi / _Alfa) - _Zr;
|
|
} else { // shouldn't overflow
|
|
_Alfa = 0;
|
|
_Beta = _Wr * _Zi + _Wi * _Zr; // Im(w * z)
|
|
}
|
|
|
|
_Vx = _Ctraits<_Ty>::asinh(_Beta);
|
|
if (_Alfa != 0) {
|
|
if (0 <= _Vx) {
|
|
_Vx += _Ctraits<_Ty>::log(_Alfa);
|
|
} else {
|
|
_Vx -= _Ctraits<_Ty>::log(_Alfa); // asinh(a*b) = asinh(a)+log(b)
|
|
}
|
|
}
|
|
}
|
|
return complex<_Ty>(_Ux, _Vx);
|
|
}
|
|
|
|
// FUNCTION TEMPLATE acosh
|
|
template <class _Ty>
|
|
_NODISCARD complex<_Ty> acosh(const complex<_Ty>& _Left) {
|
|
const _Ty _Arcbig = static_cast<_Ty>(0.25) * _Ctraits<_Ty>::sqrt(_Ctraits<_Ty>::_Flt_max());
|
|
constexpr _Ty _Pi = static_cast<_Ty>(3.1415926535897932384626433832795029L);
|
|
|
|
const _Ty _Re = real(_Left);
|
|
_Ty _Im = imag(_Left);
|
|
_Ty _Ux;
|
|
_Ty _Vx;
|
|
|
|
if (_Ctraits<_Ty>::_Isnan(_Re) || _Ctraits<_Ty>::_Isnan(_Im)) { // at least one NaN
|
|
_Ux = _Ctraits<_Ty>::_Nanv();
|
|
_Vx = _Ux;
|
|
} else if (_Ctraits<_Ty>::_Isinf(_Re)) { // (+/-Inf, not NaN)
|
|
_Ux = _Ctraits<_Ty>::_Infv();
|
|
|
|
if (_Ctraits<_Ty>::_Isinf(_Im)) {
|
|
if (_Re < 0) {
|
|
_Vx = static_cast<_Ty>(0.75) * _Pi; // (-Inf, +/-Inf)
|
|
} else {
|
|
_Vx = static_cast<_Ty>(0.25) * _Pi; // (+Inf, +/-Inf)
|
|
}
|
|
} else if (_Re < 0) {
|
|
_Vx = _Pi; // (-Inf, finite)
|
|
} else {
|
|
_Vx = 0; // (+Inf, finite)
|
|
}
|
|
|
|
_Vx = _Ctraits<_Ty>::_Copysign(_Vx, _Im);
|
|
} else if (_Ctraits<_Ty>::_Isinf(_Im)) { // (finite, +/-Inf)
|
|
_Ux = _Ctraits<_Ty>::_Infv();
|
|
_Vx = _Ctraits<_Ty>::_Copysign(static_cast<_Ty>(0.50) * _Pi, _Im);
|
|
} else { // (finite, finite)
|
|
const complex<_Ty> _Wx = sqrt(complex<_Ty>(_Re - 1, -_Im));
|
|
const complex<_Ty> _Zx = sqrt(complex<_Ty>(_Re + 1, _Im));
|
|
const _Ty _Wr = real(_Wx);
|
|
const _Ty _Wi = imag(_Wx);
|
|
const _Ty _Zr = real(_Zx);
|
|
const _Ty _Zi = imag(_Zx);
|
|
_Ty _Alfa;
|
|
_Ty _Beta;
|
|
|
|
if (_Arcbig < _Wr) { // real parts large
|
|
_Alfa = _Wr;
|
|
_Beta = _Zr - _Wi * (_Zi / _Alfa);
|
|
} else if (_Arcbig < _Wi) { // imag parts large
|
|
_Alfa = _Wi;
|
|
_Beta = _Wr * (_Zr / _Alfa) - _Zi;
|
|
} else if (_Wi < -_Arcbig) { // imag part of w large negative
|
|
_Alfa = -_Wi;
|
|
_Beta = _Wr * (_Zr / _Alfa) + _Zi;
|
|
} else { // shouldn't overflow
|
|
_Alfa = 0;
|
|
_Beta = _Wr * _Zr - _Wi * _Zi; // Re(w * z)
|
|
}
|
|
|
|
_Ux = _Ctraits<_Ty>::asinh(_Beta);
|
|
if (_Alfa != 0) {
|
|
if (0 <= _Ux) {
|
|
_Ux += _Ctraits<_Ty>::log(_Alfa);
|
|
} else {
|
|
_Ux -= _Ctraits<_Ty>::log(_Alfa); // asinh(a*b) = asinh(a)+log(b)
|
|
}
|
|
}
|
|
|
|
_Vx = 2 * _Ctraits<_Ty>::atan2(imag(sqrt(complex<_Ty>(_Re - 1, _Im))), _Zr);
|
|
}
|
|
return complex<_Ty>(_Ux, _Vx);
|
|
}
|
|
|
|
// FUNCTION TEMPLATE asinh
|
|
template <class _Ty>
|
|
_NODISCARD complex<_Ty> asinh(const complex<_Ty>& _Left) {
|
|
const _Ty _Arcbig = static_cast<_Ty>(0.25) * _Ctraits<_Ty>::sqrt(_Ctraits<_Ty>::_Flt_max());
|
|
constexpr _Ty _Pi = static_cast<_Ty>(3.1415926535897932384626433832795029L);
|
|
|
|
const _Ty _Re = real(_Left);
|
|
_Ty _Im = imag(_Left);
|
|
_Ty _Ux;
|
|
_Ty _Vx;
|
|
|
|
if (_Ctraits<_Ty>::_Isnan(_Re) || _Ctraits<_Ty>::_Isnan(_Im)) { // at least one NaN/Inf
|
|
_Ux = _Ctraits<_Ty>::_Nanv();
|
|
_Vx = _Ux;
|
|
} else if (_Ctraits<_Ty>::_Isinf(_Re)) { // (+/-Inf, not NaN)
|
|
_Ux = _Ctraits<_Ty>::_Infv();
|
|
|
|
if (_Ctraits<_Ty>::_Isinf(_Im)) { // (+/-Inf, +/-Inf)
|
|
_Ux = _Re;
|
|
_Vx = _Ctraits<_Ty>::_Copysign(static_cast<_Ty>(0.25) * _Pi, _Im);
|
|
} else { // (+/-Inf, finite)
|
|
_Ux = _Re;
|
|
_Vx = _Ctraits<_Ty>::_Copysign(_Ty{0}, _Im);
|
|
}
|
|
} else if (_Ctraits<_Ty>::_Isinf(_Im)) { // (finite, +/-Inf)
|
|
_Ux = _Ctraits<_Ty>::_Copysign(_Ctraits<_Ty>::_Infv(), _Re);
|
|
_Vx = _Ctraits<_Ty>::_Copysign(static_cast<_Ty>(0.50) * _Pi, _Im);
|
|
} else { // (finite, finite)
|
|
const complex<_Ty> _Wx = sqrt(complex<_Ty>(1 - _Im, _Re));
|
|
const complex<_Ty> _Zx = sqrt(complex<_Ty>(1 + _Im, -_Re));
|
|
const _Ty _Wr = real(_Wx);
|
|
const _Ty _Wi = imag(_Wx);
|
|
const _Ty _Zr = real(_Zx);
|
|
const _Ty _Zi = imag(_Zx);
|
|
_Ty _Alfa;
|
|
_Ty _Beta;
|
|
|
|
if (_Arcbig < _Wr) { // real parts large
|
|
_Alfa = _Wr;
|
|
_Beta = _Wi * (_Zr / _Alfa) - _Zi;
|
|
} else if (_Arcbig < _Wi) { // imag parts large
|
|
_Alfa = _Wi;
|
|
_Beta = _Zr - _Wr * (_Zi / _Alfa);
|
|
} else if (_Wi < -_Arcbig) { // imag part of w large negative
|
|
_Alfa = -_Wi;
|
|
_Beta = -_Zr - _Wr * (_Zi / _Alfa);
|
|
} else { // shouldn't overflow
|
|
_Alfa = 0;
|
|
_Beta = _Wi * _Zr - _Wr * _Zi; // Im(w * conj(z))
|
|
}
|
|
|
|
_Ux = _Ctraits<_Ty>::asinh(_Beta);
|
|
if (_Alfa != 0) {
|
|
if (0 <= _Ux) {
|
|
_Ux += _Ctraits<_Ty>::log(_Alfa);
|
|
} else {
|
|
_Ux -= _Ctraits<_Ty>::log(_Alfa); // asinh(a*b) = asinh(a)+log(b)
|
|
}
|
|
}
|
|
|
|
_Vx = _Ctraits<_Ty>::atan2(_Im, real(_Wx * _Zx));
|
|
}
|
|
|
|
return complex<_Ty>(_Ux, _Vx);
|
|
}
|
|
|
|
// FUNCTION TEMPLATE asin
|
|
template <class _Ty>
|
|
_NODISCARD complex<_Ty> asin(const complex<_Ty>& _Left) {
|
|
complex<_Ty> _Asinh = _STD asinh(complex<_Ty>(-imag(_Left), real(_Left)));
|
|
|
|
return complex<_Ty>(imag(_Asinh), -real(_Asinh));
|
|
}
|
|
|
|
// FUNCTION TEMPLATE atanh
|
|
template <class _Ty>
|
|
_NODISCARD complex<_Ty> atanh(const complex<_Ty>& _Left) {
|
|
const _Ty _Arcbig = static_cast<_Ty>(0.25) * _Ctraits<_Ty>::sqrt(_Ctraits<_Ty>::_Flt_max());
|
|
constexpr _Ty _Piby2 = static_cast<_Ty>(1.5707963267948966192313216916397514L);
|
|
|
|
_Ty _Re = real(_Left);
|
|
_Ty _Im = imag(_Left);
|
|
_Ty _Ux;
|
|
_Ty _Vx;
|
|
|
|
if (_Ctraits<_Ty>::_Isnan(_Re) || _Ctraits<_Ty>::_Isnan(_Im)) { // at least one NaN
|
|
_Ux = _Ctraits<_Ty>::_Nanv();
|
|
_Vx = _Ux;
|
|
} else if (_Ctraits<_Ty>::_Isinf(_Re)) { // (+/-Inf, not NaN)
|
|
_Ux = _Ctraits<_Ty>::_Copysign(_Ty{0}, _Re);
|
|
_Vx = _Ctraits<_Ty>::_Copysign(_Piby2, _Im);
|
|
} else { // (finite, not _NaN)
|
|
const _Ty _Magim = _Ctraits<_Ty>::_Abs(_Im);
|
|
const _Ty _Old_re = _Re;
|
|
|
|
_Re = _Ctraits<_Ty>::_Abs(_Re);
|
|
|
|
if (_Arcbig < _Re) { // |re| is large
|
|
_Ty _Fx = _Im / _Re;
|
|
|
|
_Ux = 1 / _Re / (1 + _Fx * _Fx);
|
|
_Vx = _Ctraits<_Ty>::_Copysign(_Piby2, _Im);
|
|
} else if (_Arcbig < _Magim) { // |im| is large
|
|
_Ty _Fx = _Re / _Im;
|
|
|
|
_Ux = _Fx / _Im / (1 + _Fx * _Fx);
|
|
_Vx = _Ctraits<_Ty>::_Copysign(_Piby2, _Im);
|
|
} else if (_Re != 1) { // |re| is small
|
|
_Ty _Refrom1 = 1 - _Re;
|
|
_Ty _Imeps2 = _Magim * _Magim;
|
|
|
|
_Ux = static_cast<_Ty>(0.25) * _Ctraits<_Ty>::log1p(4 * _Re / (_Refrom1 * _Refrom1 + _Imeps2));
|
|
_Vx = static_cast<_Ty>(0.50) * _Ctraits<_Ty>::atan2(2 * _Im, _Refrom1 * (1 + _Re) - _Imeps2);
|
|
} else if (_Im == 0) { // {+/-1, 0)
|
|
_Ux = _Ctraits<_Ty>::_Infv();
|
|
_Vx = _Im;
|
|
} else { // {+/-1, nonzero)
|
|
_Ux = _Ctraits<_Ty>::log(
|
|
_Ctraits<_Ty>::sqrt(_Ctraits<_Ty>::sqrt(4 + _Im * _Im)) / _Ctraits<_Ty>::sqrt(_Magim));
|
|
_Vx = _Ctraits<_Ty>::_Copysign(static_cast<_Ty>(0.50) * (_Piby2 + _Ctraits<_Ty>::atan2(_Magim, 2)), _Im);
|
|
}
|
|
|
|
_Ux = _Ctraits<_Ty>::_Copysign(_Ux, _Old_re);
|
|
}
|
|
return complex<_Ty>(_Ux, _Vx);
|
|
}
|
|
|
|
// FUNCTION TEMPLATE atan
|
|
template <class _Ty>
|
|
_NODISCARD complex<_Ty> atan(const complex<_Ty>& _Left) {
|
|
complex<_Ty> _Atanh = _STD atanh(complex<_Ty>(-imag(_Left), real(_Left)));
|
|
|
|
return complex<_Ty>(imag(_Atanh), -real(_Atanh));
|
|
}
|
|
|
|
// FUNCTION TEMPLATE cosh
|
|
template <class _Ty>
|
|
_NODISCARD complex<_Ty> cosh(const complex<_Ty>& _Left) {
|
|
return complex<_Ty>(_Ctraits<_Ty>::_Cosh(real(_Left), _Ctraits<_Ty>::cos(imag(_Left))),
|
|
_Ctraits<_Ty>::_Sinh(real(_Left), _Ctraits<_Ty>::sin(imag(_Left))));
|
|
}
|
|
|
|
// FUNCTION TEMPLATE exp
|
|
template <class _Ty>
|
|
_NODISCARD complex<_Ty> exp(const complex<_Ty>& _Left) {
|
|
_Ty _Real(real(_Left)), _Imag(real(_Left));
|
|
_Ctraits<_Ty>::_Exp(&_Real, _Ctraits<_Ty>::cos(imag(_Left)), 0);
|
|
_Ctraits<_Ty>::_Exp(&_Imag, _Ctraits<_Ty>::sin(imag(_Left)), 0);
|
|
return complex<_Ty>(_Real, _Imag);
|
|
}
|
|
|
|
// FUNCTION TEMPLATE _Fabs
|
|
template <class _Ty>
|
|
_Ty _Fabs(const complex<_Ty>& _Left, int* _Pexp) { // Used by sqrt(), return magnitude and scale factor.
|
|
// Returns a non-zero even integer in *_Pexp when _Left is finite
|
|
// and non-zero.
|
|
// Returns 0 in *_Pexp when _Left is zero, infinity, or NaN.
|
|
*_Pexp = 0;
|
|
_Ty _Av = _Ctraits<_Ty>::_Abs(_STD real(_Left));
|
|
_Ty _Bv = _Ctraits<_Ty>::_Abs(_STD imag(_Left));
|
|
|
|
if (_Ctraits<_Ty>::_Isinf(_Av) || _Ctraits<_Ty>::_Isinf(_Bv)) {
|
|
return _Ctraits<_Ty>::_Infv(); // at least one component is INF
|
|
} else if (_Ctraits<_Ty>::_Isnan(_Av)) {
|
|
return _Av; // real component is NaN
|
|
} else if (_Ctraits<_Ty>::_Isnan(_Bv)) {
|
|
return _Bv; // imaginary component is NaN
|
|
} else { // neither component is NaN or INF
|
|
if (_Av < _Bv) { // ensure that |_Bv| <= |_Av|
|
|
_STD swap(_Av, _Bv);
|
|
}
|
|
|
|
if (_Av == 0) {
|
|
return _Av; // |0| == 0
|
|
}
|
|
|
|
if (1 <= _Av) {
|
|
*_Pexp = 4;
|
|
_Av = _Av * static_cast<_Ty>(0.0625);
|
|
_Bv = _Bv * static_cast<_Ty>(0.0625);
|
|
} else {
|
|
constexpr _Ty _Flt_eps = _Ctraits<_Ty>::_Flt_eps();
|
|
// TRANSITION, workaround for non-floating-point _Ty
|
|
constexpr _Ty _Leg_tiny = _Flt_eps == 0 ? _Ty{0} : 2 * _Ctraits<_Ty>::_Flt_norm_min() / _Flt_eps;
|
|
|
|
if (_Av < _Leg_tiny) {
|
|
constexpr int _Exponent = -2 * numeric_limits<_Ty>::digits;
|
|
|
|
*_Pexp = _Exponent;
|
|
_Av = _Ctraits<_Ty>::ldexp(_Av, -_Exponent);
|
|
_Bv = _Ctraits<_Ty>::ldexp(_Bv, -_Exponent);
|
|
} else {
|
|
*_Pexp = -2;
|
|
_Av = _Av * 4;
|
|
_Bv = _Bv * 4;
|
|
}
|
|
}
|
|
|
|
const _Ty _Tmp = _Av - _Bv;
|
|
if (_Tmp == _Av) {
|
|
return _Av; // _Bv unimportant
|
|
} else if (_Bv < _Tmp) { // use simple approximation
|
|
const _Ty _Qv = _Av / _Bv;
|
|
return _Av + _Bv / (_Qv + _Ctraits<_Ty>::sqrt(_Qv * _Qv + 1));
|
|
} else { // use 1 1/2 precision to preserve bits
|
|
constexpr _Ty _Root2 = static_cast<_Ty>(1.4142135623730950488016887242096981L);
|
|
constexpr _Ty _Oneplusroot2high = static_cast<_Ty>(10125945.0 / 4194304.0); // exact if prec >= 24 bits
|
|
constexpr _Ty _Oneplusroot2low = static_cast<_Ty>(1.4341252375973918872420969807856967e-7L);
|
|
|
|
const _Ty _Qv = _Tmp / _Bv;
|
|
const _Ty _Rv = (_Qv + 2) * _Qv;
|
|
const _Ty _Sv = _Rv / (_Root2 + _Ctraits<_Ty>::sqrt(_Rv + 2)) + _Oneplusroot2low + _Qv + _Oneplusroot2high;
|
|
return _Av + _Bv / _Sv;
|
|
}
|
|
}
|
|
}
|
|
|
|
// FUNCTION TEMPLATE log
|
|
template <class _Ty>
|
|
_NODISCARD _Ty _Log_abs(const complex<_Ty>& _Left) noexcept { // for double, long double, and non-floating-point types
|
|
return static_cast<_Ty>(
|
|
_Math_algorithms::_Log_hypot(static_cast<double>(_STD real(_Left)), static_cast<double>(_STD imag(_Left))));
|
|
}
|
|
|
|
_NODISCARD inline float _Log_abs(const complex<float>& _Left) noexcept {
|
|
return _Math_algorithms::_Log_hypot(_STD real(_Left), _STD imag(_Left));
|
|
}
|
|
|
|
template <class _Ty>
|
|
_NODISCARD complex<_Ty> log(const complex<_Ty>& _Left) {
|
|
const _Ty _Log_abs_v = _STD _Log_abs(_Left); // get logarithm of magnitude
|
|
const _Ty _Theta = _Ctraits<_Ty>::atan2(_STD imag(_Left), _STD real(_Left)); // get phase
|
|
return complex<_Ty>(_Log_abs_v, _Theta);
|
|
}
|
|
|
|
// FUNCTION TEMPLATE pow
|
|
template <class _Ty>
|
|
complex<_Ty> _Pow(const _Ty& _Left, const _Ty& _Right) {
|
|
if (0 <= _Left) {
|
|
return complex<_Ty>(_Ctraits<_Ty>::pow(_Left, _Right), _Ctraits<_Ty>::_Copysign(_Ty{0}, _Right));
|
|
} else {
|
|
return exp(_Right * log(complex<_Ty>(_Left)));
|
|
}
|
|
}
|
|
|
|
template <class _Ty>
|
|
_NODISCARD complex<_Ty> pow(const complex<_Ty>& _Left, const _Ty& _Right) {
|
|
if (imag(_Left) == 0) {
|
|
if (_Ctraits<_Ty>::_Signbit(imag(_Left))) {
|
|
return conj(_Pow(real(_Left), _Right));
|
|
} else {
|
|
return _Pow(real(_Left), _Right);
|
|
}
|
|
} else {
|
|
return exp(_Right * log(_Left));
|
|
}
|
|
}
|
|
|
|
template <class _Ty>
|
|
_NODISCARD complex<_Ty> pow(const _Ty& _Left, const complex<_Ty>& _Right) {
|
|
if (imag(_Right) == 0) {
|
|
return _Pow(_Left, real(_Right));
|
|
} else if (0 < _Left) {
|
|
return exp(_Right * _Ctraits<_Ty>::log(_Left));
|
|
} else {
|
|
return exp(_Right * log(complex<_Ty>(_Left)));
|
|
}
|
|
}
|
|
|
|
template <class _Ty>
|
|
_NODISCARD complex<_Ty> pow(const complex<_Ty>& _Left, const complex<_Ty>& _Right) {
|
|
if (imag(_Right) == 0) {
|
|
return pow(_Left, real(_Right));
|
|
} else if (imag(_Left) == 0 && 0 < real(_Left)) {
|
|
return exp(_Right * _Ctraits<_Ty>::log(real(_Left)));
|
|
} else {
|
|
return exp(_Right * log(_Left));
|
|
}
|
|
}
|
|
|
|
// FUNCTION TEMPLATE sinh
|
|
template <class _Ty>
|
|
_NODISCARD complex<_Ty> sinh(const complex<_Ty>& _Left) {
|
|
return complex<_Ty>(_Ctraits<_Ty>::_Sinh(real(_Left), _Ctraits<_Ty>::cos(imag(_Left))),
|
|
_Ctraits<_Ty>::_Cosh(real(_Left), _Ctraits<_Ty>::sin(imag(_Left))));
|
|
}
|
|
|
|
// FUNCTION TEMPLATE sqrt
|
|
template <class _Ty>
|
|
_NODISCARD complex<_Ty> sqrt(const complex<_Ty>& _Left) {
|
|
int _Leftexp;
|
|
_Ty _Rho = _Fabs(_Left, &_Leftexp); // get magnitude and scale factor
|
|
|
|
if (_Leftexp == 0) {
|
|
// argument is zero, INF, or NaN
|
|
if (_Rho == 0) {
|
|
return complex<_Ty>(_Ty{0}, imag(_Left));
|
|
} else if (_Ctraits<_Ty>::_Isinf(_Rho)) {
|
|
const _Ty _Re = real(_Left);
|
|
const _Ty _Im = imag(_Left);
|
|
|
|
if (_Ctraits<_Ty>::_Isinf(_Im)) {
|
|
return complex<_Ty>(_Ctraits<_Ty>::_Infv(), _Im); // (any, +/-Inf)
|
|
} else if (_Ctraits<_Ty>::_Isnan(_Im)) {
|
|
if (_Re < 0) {
|
|
return complex<_Ty>(_Ctraits<_Ty>::_Abs(_Im), _Ctraits<_Ty>::_Copysign(_Re, _Im)); // (-Inf, NaN)
|
|
} else {
|
|
return _Left; // (+Inf, NaN)
|
|
}
|
|
} else {
|
|
if (_Re < 0) {
|
|
return complex<_Ty>(_Ty{0}, _Ctraits<_Ty>::_Copysign(_Re, _Im)); // (-Inf, finite)
|
|
} else {
|
|
return complex<_Ty>(_Re, _Ctraits<_Ty>::_Copysign(_Ty{0}, _Im)); // (+Inf, finite)
|
|
}
|
|
}
|
|
} else {
|
|
return complex<_Ty>(_Rho, _Rho);
|
|
}
|
|
} else { // compute in safest quadrant
|
|
_Ty _Realmag = _Ctraits<_Ty>::ldexp(_Ctraits<_Ty>::_Abs(real(_Left)), -_Leftexp);
|
|
_Rho = _Ctraits<_Ty>::ldexp(_Ctraits<_Ty>::sqrt(2 * (_Realmag + _Rho)), _Leftexp / 2 - 1);
|
|
|
|
if (0 <= real(_Left)) {
|
|
return complex<_Ty>(_Rho, imag(_Left) / (2 * _Rho));
|
|
} else {
|
|
return complex<_Ty>(
|
|
_Ctraits<_Ty>::_Abs(imag(_Left) / (2 * _Rho)), _Ctraits<_Ty>::_Copysign(_Rho, imag(_Left)));
|
|
}
|
|
}
|
|
}
|
|
|
|
// FUNCTION TEMPLATE tanh
|
|
template <class _Ty>
|
|
_NODISCARD complex<_Ty> tanh(const complex<_Ty>& _Left) {
|
|
_Ty _Tv = _Ctraits<_Ty>::tan(imag(_Left));
|
|
_Ty _Sv = _Ctraits<_Ty>::_Sinh(real(_Left), _Ty{1});
|
|
_Ty _Bv = _Sv * (_Ty{1} + _Tv * _Tv);
|
|
_Ty _Dv = _Ty{1} + _Bv * _Sv;
|
|
|
|
if (_Ctraits<_Ty>::_Isinf(_Dv)) {
|
|
_Ty _Real;
|
|
|
|
if (_Sv < _Ty{0}) {
|
|
_Real = -_Ty{1};
|
|
} else {
|
|
_Real = _Ty{1};
|
|
}
|
|
|
|
return complex<_Ty>(_Real, _Tv * _Ty{0});
|
|
}
|
|
|
|
return complex<_Ty>((_Ctraits<_Ty>::sqrt(_Ty{1} + _Sv * _Sv)) * _Bv / _Dv, _Tv / _Dv);
|
|
}
|
|
|
|
// FUNCTION TEMPLATE arg
|
|
template <class _Ty>
|
|
_NODISCARD _Ty arg(const complex<_Ty>& _Left) { // return phase angle of complex as real
|
|
return _Ctraits<_Ty>::atan2(imag(_Left), real(_Left));
|
|
}
|
|
|
|
// FUNCTION TEMPLATE conj
|
|
template <class _Ty>
|
|
_NODISCARD _CONSTEXPR20 complex<_Ty> conj(const complex<_Ty>& _Left) { // return complex conjugate
|
|
return complex<_Ty>(real(_Left), -imag(_Left));
|
|
}
|
|
|
|
// FUNCTION TEMPLATE proj
|
|
template <class _Ty>
|
|
_NODISCARD complex<_Ty> proj(const complex<_Ty>& _Left) { // return complex projection
|
|
if (_Ctraits<_Ty>::_Isinf(real(_Left)) || _Ctraits<_Ty>::_Isinf(imag(_Left))) {
|
|
const _Ty _Imag = _Ctraits<_Ty>::_Copysign(_Ty{0}, imag(_Left));
|
|
return complex<_Ty>(_Ctraits<_Ty>::_Infv(), _Imag);
|
|
}
|
|
|
|
return _Left;
|
|
}
|
|
|
|
// FUNCTION TEMPLATE cos
|
|
template <class _Ty>
|
|
_NODISCARD complex<_Ty> cos(const complex<_Ty>& _Left) {
|
|
return complex<_Ty>(_Ctraits<_Ty>::_Cosh(imag(_Left), _Ctraits<_Ty>::cos(real(_Left))),
|
|
-_Ctraits<_Ty>::_Sinh(imag(_Left), _Ctraits<_Ty>::sin(real(_Left))));
|
|
}
|
|
|
|
// FUNCTION TEMPLATE log10
|
|
template <class _Ty>
|
|
_NODISCARD complex<_Ty> log10(const complex<_Ty>& _Left) {
|
|
return log(_Left) * static_cast<_Ty>(0.43429448190325182765112891891660508L);
|
|
}
|
|
|
|
// FUNCTION TEMPLATE norm
|
|
template <class _Ty>
|
|
_NODISCARD _CONSTEXPR20 _Ty norm(const complex<_Ty>& _Left) { // return squared magnitude
|
|
return real(_Left) * real(_Left) + imag(_Left) * imag(_Left);
|
|
}
|
|
|
|
// FUNCTION TEMPLATE polar
|
|
template <class _Ty>
|
|
_NODISCARD complex<_Ty> polar(const _Ty& _Rho, const _Ty& _Theta) { // return _Rho * exp(i * _Theta) as complex
|
|
return complex<_Ty>(_Rho * _Ctraits<_Ty>::cos(_Theta), _Rho * _Ctraits<_Ty>::sin(_Theta));
|
|
}
|
|
|
|
template <class _Ty>
|
|
_NODISCARD complex<_Ty> polar(const _Ty& _Rho) { // return _Rho * exp(i * 0) as complex
|
|
return complex<_Ty>(_Rho, _Ty{0});
|
|
}
|
|
|
|
// FUNCTION TEMPLATE sin
|
|
template <class _Ty>
|
|
_NODISCARD complex<_Ty> sin(const complex<_Ty>& _Left) {
|
|
return complex<_Ty>(_Ctraits<_Ty>::_Cosh(imag(_Left), _Ctraits<_Ty>::sin(real(_Left))),
|
|
_Ctraits<_Ty>::_Sinh(imag(_Left), _Ctraits<_Ty>::cos(real(_Left))));
|
|
}
|
|
|
|
// FUNCTION TEMPLATE tan
|
|
template <class _Ty>
|
|
_NODISCARD complex<_Ty> tan(const complex<_Ty>& _Left) {
|
|
complex<_Ty> _Zv(tanh(complex<_Ty>(-imag(_Left), real(_Left))));
|
|
return complex<_Ty>(imag(_Zv), -real(_Zv));
|
|
}
|
|
|
|
// ADDITIONAL OVERLOADS
|
|
template <class _Ty>
|
|
using _Upgrade_to_double = conditional_t<is_integral_v<_Ty>, double, _Ty>;
|
|
|
|
template <class _Ty, enable_if_t<is_arithmetic_v<_Ty>, int> = 0>
|
|
_NODISCARD _Upgrade_to_double<_Ty> arg(_Ty _Left) {
|
|
using _Upgraded = _Upgrade_to_double<_Ty>;
|
|
const auto _Val = static_cast<_Upgraded>(_Left);
|
|
|
|
return _Ctraits<_Upgraded>::atan2(0, _Val);
|
|
}
|
|
|
|
template <class _Ty, enable_if_t<is_arithmetic_v<_Ty>, int> = 0>
|
|
_NODISCARD _CONSTEXPR20 _Upgrade_to_double<_Ty> imag(_Ty) {
|
|
return 0;
|
|
}
|
|
|
|
template <class _Ty, enable_if_t<is_arithmetic_v<_Ty>, int> = 0>
|
|
_NODISCARD _CONSTEXPR20 _Upgrade_to_double<_Ty> real(_Ty _Left) {
|
|
using _Upgraded = _Upgrade_to_double<_Ty>;
|
|
const auto _Val = static_cast<_Upgraded>(_Left);
|
|
|
|
return _Val;
|
|
}
|
|
|
|
template <class _Ty, enable_if_t<is_arithmetic_v<_Ty>, int> = 0>
|
|
_NODISCARD _CONSTEXPR20 _Upgrade_to_double<_Ty> norm(_Ty _Left) {
|
|
using _Upgraded = _Upgrade_to_double<_Ty>;
|
|
const auto _Val = static_cast<_Upgraded>(_Left);
|
|
|
|
return _Val * _Val;
|
|
}
|
|
|
|
template <class _Ty, enable_if_t<is_arithmetic_v<_Ty>, int> = 0>
|
|
_NODISCARD _CONSTEXPR20 complex<_Upgrade_to_double<_Ty>> conj(_Ty _Left) {
|
|
using _Upgraded = _Upgrade_to_double<_Ty>;
|
|
const auto _Val = static_cast<_Upgraded>(_Left);
|
|
|
|
return complex<_Upgraded>(_Val, -_Upgraded{0});
|
|
}
|
|
|
|
template <class _Ty, enable_if_t<is_arithmetic_v<_Ty>, int> = 0>
|
|
_NODISCARD complex<_Upgrade_to_double<_Ty>> proj(_Ty _Left) {
|
|
using _Upgraded = _Upgrade_to_double<_Ty>;
|
|
const auto _Val = static_cast<_Upgraded>(_Left);
|
|
|
|
if (_Ctraits<_Upgraded>::_Isinf(_Val)) {
|
|
// C11 7.3.9.5/2: "z projects to z except that all complex infinities [...]
|
|
// project to positive infinity on the real axis."
|
|
return complex<_Upgraded>(_Ctraits<_Upgraded>::_Infv(), 0);
|
|
}
|
|
|
|
return complex<_Upgraded>(_Val, 0);
|
|
}
|
|
|
|
// FUNCTION TEMPLATE pow
|
|
template <class _Ty1, class _Ty2>
|
|
_NODISCARD complex<_Common_float_type_t<_Ty1, _Ty2>> pow(const complex<_Ty1>& _Left, const complex<_Ty2>& _Right) {
|
|
using _Type = complex<_Common_float_type_t<_Ty1, _Ty2>>;
|
|
return _STD pow(_Type(_Left), _Type(_Right));
|
|
}
|
|
|
|
template <class _Ty1, class _Ty2, enable_if_t<is_arithmetic_v<_Ty2>, int> = 0>
|
|
_NODISCARD complex<_Common_float_type_t<_Ty1, _Ty2>> pow(const complex<_Ty1>& _Left, const _Ty2& _Right) {
|
|
using _Promoted = _Common_float_type_t<_Ty1, _Ty2>;
|
|
using _Type = complex<_Promoted>;
|
|
return _STD pow(_Type(_Left), _Type(static_cast<_Promoted>(_Right)));
|
|
}
|
|
|
|
template <class _Ty1, class _Ty2, enable_if_t<is_arithmetic_v<_Ty1>, int> = 0>
|
|
_NODISCARD complex<_Common_float_type_t<_Ty1, _Ty2>> pow(const _Ty1& _Left, const complex<_Ty2>& _Right) {
|
|
using _Promoted = _Common_float_type_t<_Ty1, _Ty2>;
|
|
using _Type = complex<_Promoted>;
|
|
return _STD pow(_Type(static_cast<_Promoted>(_Left)), _Type(_Right));
|
|
}
|
|
|
|
// FUNCTION TEMPLATE operator>>
|
|
template <class _Ty, class _Elem, class _Tr>
|
|
basic_istream<_Elem, _Tr>& operator>>(basic_istream<_Elem, _Tr>& _Istr, complex<_Ty>& _Right) {
|
|
const ctype<_Elem>& _Ctype_fac = _STD use_facet<ctype<_Elem>>(_Istr.getloc());
|
|
_Elem _Ch = 0;
|
|
long double _Real = 0;
|
|
long double _Imag = 0;
|
|
|
|
if (_Istr >> _Ch && _Ch != _Ctype_fac.widen('(')) { // no leading '(', treat as real only
|
|
_Istr.putback(_Ch);
|
|
_Istr >> _Real;
|
|
_Imag = 0;
|
|
} else if (_Istr >> _Real >> _Ch && _Ch != _Ctype_fac.widen(',')) {
|
|
if (_Ch == _Ctype_fac.widen(')')) {
|
|
_Imag = 0; // (real)
|
|
} else { // no trailing ')' after real, treat as bad field
|
|
_Istr.putback(_Ch);
|
|
_Istr.setstate(ios_base::failbit);
|
|
}
|
|
} else if (_Istr >> _Imag >> _Ch && _Ch != _Ctype_fac.widen(')')) { // no imag or trailing ')', treat as bad field
|
|
_Istr.putback(_Ch);
|
|
_Istr.setstate(ios_base::failbit);
|
|
}
|
|
|
|
if (!_Istr.fail()) { // store valid result
|
|
_Ty _Tyreal(static_cast<_Ty>(_Real)), _Tyimag(static_cast<_Ty>(_Imag));
|
|
_Right = complex<_Ty>(_Tyreal, _Tyimag);
|
|
}
|
|
return _Istr;
|
|
}
|
|
|
|
// FUNCTION TEMPLATE operator<<
|
|
template <class _Ty, class _Elem, class _Tr>
|
|
basic_ostream<_Elem, _Tr>& operator<<(basic_ostream<_Elem, _Tr>& _Ostr, const complex<_Ty>& _Right) {
|
|
const ctype<_Elem>& _Ctype_fac = _STD use_facet<ctype<_Elem>>(_Ostr.getloc());
|
|
basic_ostringstream<_Elem, _Tr, allocator<_Elem>> _Sstr;
|
|
|
|
_Sstr.flags(_Ostr.flags());
|
|
_Sstr.imbue(_Ostr.getloc());
|
|
_Sstr.precision(_Ostr.precision());
|
|
_Sstr << _Ctype_fac.widen('(') << real(_Right) << _Ctype_fac.widen(',') << imag(_Right) << _Ctype_fac.widen(')');
|
|
|
|
return _Ostr << _Sstr.str();
|
|
}
|
|
|
|
// complex LITERALS
|
|
inline namespace literals {
|
|
inline namespace complex_literals {
|
|
_NODISCARD constexpr complex<long double> operator""il(long double _Val) {
|
|
return complex<long double>(0.0L, static_cast<long double>(_Val));
|
|
}
|
|
|
|
_NODISCARD constexpr complex<long double> operator""il(unsigned long long _Val) {
|
|
return complex<long double>(0.0L, static_cast<long double>(_Val));
|
|
}
|
|
|
|
_NODISCARD constexpr complex<double> operator""i(long double _Val) {
|
|
return complex<double>(0.0, static_cast<double>(_Val));
|
|
}
|
|
|
|
_NODISCARD constexpr complex<double> operator""i(unsigned long long _Val) {
|
|
return complex<double>(0.0, static_cast<double>(_Val));
|
|
}
|
|
|
|
_NODISCARD constexpr complex<float> operator""if(long double _Val) {
|
|
return complex<float>(0.0f, static_cast<float>(_Val));
|
|
}
|
|
|
|
_NODISCARD constexpr complex<float> operator""if(unsigned long long _Val) {
|
|
return complex<float>(0.0f, static_cast<float>(_Val));
|
|
}
|
|
} // namespace complex_literals
|
|
} // namespace literals
|
|
|
|
_STD_END
|
|
|
|
#undef _RE
|
|
#undef _IM
|
|
|
|
#pragma pop_macro("new")
|
|
_STL_RESTORE_CLANG_WARNINGS
|
|
#pragma warning(pop)
|
|
#pragma pack(pop)
|
|
#endif // _STL_COMPILER_PREPROCESSOR
|
|
#endif // _COMPLEX_
|