STL/stl/inc/random

5210 строки
169 KiB
C++

// random standard header
// Copyright (c) Microsoft Corporation.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
#pragma once
#ifndef _RANDOM_
#define _RANDOM_
#include <yvals_core.h>
#if _STL_COMPILER_PREPROCESSOR
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <iosfwd>
#include <vector>
#include <xbit_ops.h>
#include <xstring>
#pragma pack(push, _CRT_PACKING)
#pragma warning(push, _STL_WARNING_LEVEL)
#pragma warning(disable : _STL_DISABLED_WARNINGS)
_STL_DISABLE_CLANG_WARNINGS
#pragma push_macro("new")
#undef new
#pragma warning(disable : 4127) // conditional expression is constant
_STD_BEGIN
// TYPE ASSERT MACROS
#define _RNG_PROHIBIT_CHAR(_CheckedType) \
static_assert(!_Is_character<_CheckedType>::value, \
"note: char, signed char, unsigned char, char8_t, int8_t, and uint8_t are not allowed")
#define _RNG_REQUIRE_REALTYPE(_RandType, _CheckedType) \
static_assert(_Is_any_of_v<_CheckedType, float, double, long double>, \
"invalid template argument for " #_RandType ": N4659 29.6.1.1 [rand.req.genl]/1d requires one of " \
"float, double, or long double")
#define _RNG_REQUIRE_INTTYPE(_RandType, _CheckedType) \
static_assert(_Is_any_of_v<_CheckedType, short, int, long, long long, unsigned short, unsigned int, unsigned long, \
unsigned long long>, \
"invalid template argument for " #_RandType ": N4659 29.6.1.1 [rand.req.genl]/1e requires one of " \
"short, int, long, long long, unsigned short, unsigned int, unsigned long, or unsigned long long"); \
_RNG_PROHIBIT_CHAR(_CheckedType)
#define _RNG_REQUIRE_UINTTYPE(_RandType, _CheckedType) \
static_assert(_Is_any_of_v<_CheckedType, unsigned short, unsigned int, unsigned long, unsigned long long>, \
"invalid template argument for " #_RandType ": N4659 29.6.1.1 [rand.req.genl]/1f requires one of " \
"unsigned short, unsigned int, unsigned long, or unsigned long long"); \
_RNG_PROHIBIT_CHAR(_CheckedType)
// ALIAS TEMPLATE _Enable_if_seed_seq_t
template <class _Seed_seq, class _Self, class _Engine = _Self>
using _Enable_if_seed_seq_t = enable_if_t<
!is_convertible_v<remove_cv_t<_Seed_seq>,
typename _Self::
result_type> && !is_same_v<remove_cv_t<_Seed_seq>, _Self> && !is_same_v<remove_cv_t<_Seed_seq>, _Engine>,
int>;
// CONSTANTS
_INLINE_VAR constexpr long double _Pi = 3.14159265358979323846264338327950288L;
_INLINE_VAR constexpr long double _Exp1 = 2.71828182845904523536028747135266250L;
_INLINE_VAR constexpr long double _Two32 = 4294967296.0L;
_INLINE_VAR constexpr long double _Two31 = 2147483648.0L;
// HELPER FUNCTIONS
_CRTIMP2_PURE float __CLRCALL_PURE_OR_CDECL _XLgamma(float);
_CRTIMP2_PURE double __CLRCALL_PURE_OR_CDECL _XLgamma(double);
_CRTIMP2_PURE long double __CLRCALL_PURE_OR_CDECL _XLgamma(long double);
// I/O HELPERS FOR FLOATING-POINT VALUES
_INLINE_VAR constexpr int _Nwords = 4;
template <class _Elem, class _Traits>
basic_ostream<_Elem, _Traits>& _Write(
basic_ostream<_Elem, _Traits>& _Os, long double _Dx) { // write long double to stream
int _Ex;
long double _Frac = _CSTD frexpl(_Dx, &_Ex);
for (int _Nw = 0; _Nw < _Nwords; ++_Nw) { // break into 31-bit words
_Frac *= _Two31;
long _Digits = static_cast<long>(_Frac);
_Frac -= _Digits;
_Os << ' ' << _Digits;
}
_Os << ' ' << _Ex;
return _Os;
}
template <class _Elem, class _Traits>
basic_istream<_Elem, _Traits>& _Read(
basic_istream<_Elem, _Traits>& _Is, long double& _Dx) { // read long double from stream
long double _Frac = 0.0;
long _Digits;
for (int _Nw = 0; _Nw < _Nwords; ++_Nw) { // accumulate 31-bit words
_Is >> _Digits;
long double _Temp = _Digits / _Two31;
for (int _Idx = 0; _Idx < _Nw; ++_Idx) {
_Temp /= _Two31;
}
_Frac += _Temp;
}
_Is >> _Digits;
_Dx = _CSTD ldexpl(_Frac, _Digits);
return _Is;
}
template <class _Elem, class _Traits, class _Ty>
basic_istream<_Elem, _Traits>& _In(basic_istream<_Elem, _Traits>& _Is, _Ty& _Dx) { // read from stream
long double _Vx;
_Ty _Max = (numeric_limits<_Ty>::max) ();
_Read(_Is, _Vx);
if (_CSTD fabsl(_Vx) <= _Max) {
_Dx = static_cast<_Ty>(_Vx);
} else if (_Vx < 0) {
_Dx = -_Max;
} else {
_Dx = _Max;
}
return _Is;
}
template <class _Elem, class _Traits, class _Ty>
basic_ostream<_Elem, _Traits>& _Out(basic_ostream<_Elem, _Traits>& _Os, _Ty _Dx) { // write to stream
return _Write(_Os, _Dx);
}
template <class _Elem, class _Traits, class _Ty>
class _Wrap_istream { // wrap input stream as function object
public:
_Wrap_istream(basic_istream<_Elem, _Traits>& _Is) : _Str(_Is) {}
_Ty operator()() { // read next value
_Ty _Data;
_Str >> _Data;
if (!_Str) {
_Xinvalid_argument("input stream corrupted");
}
return _Data;
}
_Wrap_istream& operator=(const _Wrap_istream&) = delete;
private:
basic_istream<_Elem, _Traits>& _Str;
};
// CLASS seed_seq
class seed_seq { // standard sequence of seed values
public:
using result_type = unsigned int;
seed_seq() {}
template <class _Ty>
seed_seq(initializer_list<_Ty> _Ilist) {
_Construct(_Ilist.begin(), _Ilist.end());
}
template <class _InIt>
seed_seq(_InIt _First, _InIt _Last) {
_Construct(_First, _Last);
}
template <class _RanIt>
void generate(_RanIt _First, _RanIt _Last) const { // generate randomized interval from seeds
_Adl_verify_range(_First, _Last);
auto _UFirst = _Get_unwrapped(_First);
const auto _Nx = static_cast<size_t>(_Get_unwrapped(_Last) - _UFirst);
if (0 < _Nx) { // finite interval, fill it
const size_t _Sx = _Myvec.size();
const size_t _Tx = 623 <= _Nx ? 11 : 68 <= _Nx ? 7 : 39 <= _Nx ? 5 : 7 <= _Nx ? 3 : (_Nx - 1) / 2;
const size_t _Px = (_Nx - _Tx) / 2;
const size_t _Qx = _Px + _Tx;
const size_t _Mx = _Nx <= _Sx ? _Sx + 1 : _Nx;
size_t _Kx;
_Iter_value_t<_RanIt> _Mask = _Iter_value_t<_RanIt>(1) << 31;
_Mask <<= 1; // build 32-bit mask safely
_Mask -= 1;
for (_Kx = 0; _Kx < _Nx; ++_Kx) {
_UFirst[_Kx] = 0x8b8b8b8b;
}
for (_Kx = 0; _Kx < _Mx; ++_Kx) { // scramble and add any vector contributions
result_type _Rx1 =
1664525 * _Xor27(_UFirst[_Kx % _Nx] ^ _UFirst[(_Kx + _Px) % _Nx] ^ _UFirst[(_Kx - 1) % _Nx]);
size_t _Off;
if (_Kx == 0) {
_Off = _Sx;
} else if (_Kx <= _Sx) {
_Off = _Kx % _Nx + _Myvec[_Kx - 1];
} else {
_Off = _Kx % _Nx;
}
result_type _Rx2 = static_cast<result_type>((_Rx1 + _Off) & _Mask);
_UFirst[(_Kx + _Px) % _Nx] = (_UFirst[(_Kx + _Px) % _Nx] + _Rx1) & _Mask;
_UFirst[(_Kx + _Qx) % _Nx] = (_UFirst[(_Kx + _Qx) % _Nx] + _Rx2) & _Mask;
_UFirst[_Kx % _Nx] = _Rx2;
}
for (; _Kx < _Mx + _Nx; ++_Kx) { // rescramble
result_type _Rx3 =
1566083941 * _Xor27(_UFirst[_Kx % _Nx] + _UFirst[(_Kx + _Px) % _Nx] + _UFirst[(_Kx - 1) % _Nx]);
result_type _Rx4 = static_cast<result_type>((_Rx3 - _Kx % _Nx) & _Mask);
_UFirst[(_Kx + _Px) % _Nx] = (_UFirst[(_Kx + _Px) % _Nx] ^ _Rx3) & _Mask;
_UFirst[(_Kx + _Qx) % _Nx] = (_UFirst[(_Kx + _Qx) % _Nx] ^ _Rx4) & _Mask;
_UFirst[_Kx % _Nx] = _Rx4;
}
}
}
template <class _OutIt>
void param(_OutIt _Dest) const { // copy seeds
_STD copy(_Myvec.begin(), _Myvec.end(), _Dest);
}
_NODISCARD size_t size() const noexcept { // get size of seed
return _Myvec.size();
}
seed_seq(const seed_seq&) = delete;
void operator=(const seed_seq&) = delete;
private:
template <class _InIt>
void _Construct(_InIt _First, _InIt _Last) {
for (; _First != _Last; ++_First) {
_Myvec.push_back(static_cast<unsigned int>(*_First));
}
}
result_type _Xor27(result_type _Val) const { // shift and merge
return _Val ^ (_Val >> 27);
}
vector<result_type> _Myvec;
};
// FUNCTION TEMPLATE generate_canonical
template <class _Real, size_t _Bits, class _Gen>
_NODISCARD _Real generate_canonical(_Gen& _Gx) { // build a floating-point value from random sequence
_RNG_REQUIRE_REALTYPE(generate_canonical, _Real);
const size_t _Digits = static_cast<size_t>(numeric_limits<_Real>::digits);
const size_t _Minbits = _Digits < _Bits ? _Digits : _Bits;
const _Real _Gxmin = static_cast<_Real>((_Gx.min) ());
const _Real _Gxmax = static_cast<_Real>((_Gx.max) ());
const _Real _Rx = (_Gxmax - _Gxmin) + _Real{1};
const int _Ceil = static_cast<int>(_STD ceil(static_cast<_Real>(_Minbits) / _STD log2(_Rx)));
const int _Kx = _Ceil < 1 ? 1 : _Ceil;
_Real _Ans{0};
_Real _Factor{1};
for (int _Idx = 0; _Idx < _Kx; ++_Idx) { // add in another set of bits
_Ans += (static_cast<_Real>(_Gx()) - _Gxmin) * _Factor;
_Factor *= _Rx;
}
return _Ans / _Factor;
}
#define _NRAND(eng, resty) (_STD generate_canonical<resty, static_cast<size_t>(-1)>(eng))
// CLASS TEMPLATE linear_congruential_engine
_INLINE_VAR constexpr int _MP_len = 5;
using _MP_arr = uint64_t[_MP_len];
_NODISCARD _CRTIMP2_PURE uint64_t __CLRCALL_PURE_OR_CDECL _MP_Get(_MP_arr) noexcept;
_CRTIMP2_PURE void __CLRCALL_PURE_OR_CDECL _MP_Add(_MP_arr, uint64_t) noexcept;
_CRTIMP2_PURE void __CLRCALL_PURE_OR_CDECL _MP_Mul(_MP_arr, uint64_t, uint64_t) noexcept;
_CRTIMP2_PURE void __CLRCALL_PURE_OR_CDECL _MP_Rem(_MP_arr, uint64_t) noexcept;
template <class _Uint, _Uint _Ax, _Uint _Cx, _Uint _Mx>
_NODISCARD _Uint _Next_linear_congruential_value(_Uint _Prev) noexcept {
// Choose intermediate type:
// To use type T for the intermediate calculation, we must show
// _Ax * (_Mx - 1) + _Cx <= numeric_limits<T>::max()
// Split _Cx:
// _Cx <= numeric_limits<T>::max()
// && _Ax * (_Mx - 1) <= numeric_limits<T>::max() - _Cx
// Divide by _Ax:
// _Cx <= numeric_limits<T>::max()
// && (_Mx - 1) <= (numeric_limits<T>::max() - _Cx) / _Ax
if constexpr (_Ax == 0) { // degenerate case; avoid divide by 0
return static_cast<_Uint>(_Cx); // relies on _Mx == 0 || _Cx <= _Mx, N4741 [rand.eng.lcong]/3
} else if constexpr (_Mx == 0) {
// N4762 [rand.eng.lcong]/2: "If the template parameter m is 0, the modulus m
// used throughout this subclause [rand.eng.lcong] is
// numeric_limits<result_type>::max() plus 1." That is: Just do the multiply
// and let normal unsigned modulo take care of it
return static_cast<_Uint>(static_cast<_Uint>(_Ax * _Prev) + _Cx);
} else if constexpr (_Cx <= UINT_MAX && static_cast<_Uint>(_Mx - 1) <= (UINT_MAX - _Cx) / _Ax) {
// unsigned int is sufficient to store intermediate calculation
const auto _Mul =
static_cast<unsigned int>(_Prev) * static_cast<unsigned int>(_Ax) + static_cast<unsigned int>(_Cx);
return static_cast<_Uint>(_Mul % _Mx);
} else if constexpr (_Cx <= ULLONG_MAX && static_cast<_Uint>(_Mx - 1) <= (ULLONG_MAX - _Cx) / _Ax) {
// unsigned long long is sufficient to store intermediate calculation
const auto _Mul = static_cast<unsigned long long>(_Prev) * _Ax + _Cx;
return static_cast<_Uint>(_Mul % _Mx);
} else { // no intermediate integral type fits; fall back to multiprecision
_MP_arr _Wx;
_MP_Mul(_Wx, _Prev, _Ax);
_MP_Add(_Wx, _Cx);
_MP_Rem(_Wx, _Mx);
return static_cast<_Uint>(_MP_Get(_Wx));
}
}
template <class _Seed_seq>
_NODISCARD constexpr unsigned int _Seed_seq_to_uint(_Seed_seq& _Seq) {
unsigned int _Arr[4]{};
_Seq.generate(_Arr, _Arr + 4);
return _Arr[3];
}
template <class _Seed_seq>
_NODISCARD constexpr unsigned long long _Seed_seq_to_ull(_Seed_seq& _Seq) {
unsigned int _Arr[5]{};
_Seq.generate(_Arr, _Arr + 5);
unsigned long long _Result = _Arr[4];
_Result <<= 32;
_Result |= _Arr[3];
return _Result;
}
template <class _Uint, _Uint _Cx, _Uint _Mx>
_NODISCARD constexpr _Uint _Get_linear_congruential_seed(_Uint _Sx) noexcept { // N4741 [rand.eng.lcong]/5
if constexpr (_Mx != 0) {
_Sx %= _Mx;
}
if constexpr (_Cx == 0) {
if (_Sx == 0) {
_Sx = _Uint{1};
}
}
return _Sx;
}
template <class _Uint, _Uint _Cx, _Uint _Mx, class _Seed_seq>
_NODISCARD _Uint _Get_linear_congruential_seed_from_seq(_Seed_seq& _Seq) { // N4741 [rand.eng.lcong]/6
_Uint _Sx;
if constexpr (_Mx == 0) {
if constexpr (sizeof(_Uint) <= sizeof(unsigned int)) {
_Sx = static_cast<_Uint>(_Seed_seq_to_uint(_Seq));
} else {
_Sx = static_cast<_Uint>(_Seed_seq_to_ull(_Seq));
}
} else if constexpr (_Mx <= UINT_MAX) {
_Sx = static_cast<_Uint>(_Seed_seq_to_uint(_Seq) % _Mx);
} else {
_Sx = static_cast<_Uint>(_Seed_seq_to_ull(_Seq) % _Mx);
}
return _Get_linear_congruential_seed<_Uint, _Cx, _Mx>(_Sx);
}
template <class _Uint, _Uint _Ax, _Uint _Cx, _Uint _Mx>
class linear_congruential_engine { // a linear congruential generator random engine
public:
_RNG_REQUIRE_UINTTYPE(linear_congruential_engine, _Uint);
static_assert(0 == _Mx || (_Ax < _Mx && _Cx < _Mx), "invalid template argument for linear_congruential_engine");
using result_type = _Uint;
static constexpr result_type multiplier = _Ax;
static constexpr result_type increment = _Cx;
static constexpr result_type modulus = _Mx;
_NODISCARD static constexpr result_type(min)() noexcept /* strengthened */ {
// return minimum possible generated value
return _Cx == 0;
}
#pragma warning(push)
#pragma warning(disable : 4309) // truncation of constant value
_NODISCARD static constexpr result_type(max)() noexcept /* strengthened */ {
// return maximum possible generated value
return static_cast<result_type>(_Mx - 1u); // note 0 wraps around to max
}
#pragma warning(pop)
static constexpr result_type default_seed = 1u;
linear_congruential_engine() noexcept // strengthened
: _Prev(_Get_linear_congruential_seed<result_type, _Cx, _Mx>(default_seed)) {}
explicit linear_congruential_engine(result_type _Sx) noexcept // strengthened
: _Prev(_Get_linear_congruential_seed<result_type, _Cx, _Mx>(_Sx)) {}
template <class _Seed_seq, _Enable_if_seed_seq_t<_Seed_seq, linear_congruential_engine> = 0>
explicit linear_congruential_engine(_Seed_seq& _Seq)
: _Prev(_Get_linear_congruential_seed_from_seq<result_type, _Cx, _Mx>(_Seq)) {}
void seed(result_type _Sx = default_seed) noexcept /* strengthened */ {
// reset sequence from numeric value
_Prev = _Get_linear_congruential_seed<result_type, _Cx, _Mx>(_Sx);
}
template <class _Seed_seq, _Enable_if_seed_seq_t<_Seed_seq, linear_congruential_engine> = 0>
void seed(_Seed_seq& _Seq) { // reset sequence from seed sequence
_Prev = _Get_linear_congruential_seed_from_seq<result_type, _Cx, _Mx>(_Seq);
}
_NODISCARD _Uint operator()() noexcept {
_Prev = _Next_linear_congruential_value<result_type, _Ax, _Cx, _Mx>(_Prev);
return _Prev;
}
void discard(unsigned long long _Nskip) noexcept /* strengthened */ {
// discard _Nskip elements
auto _Temp = _Prev;
for (; 0 < _Nskip; --_Nskip) {
_Temp = _Next_linear_congruential_value<_Uint, _Ax, _Cx, _Mx>(_Temp);
}
_Prev = _Temp;
}
#ifndef __CUDACC__ // TRANSITION, VSO-568006
_NODISCARD
#endif // TRANSITION, VSO-568006
friend bool operator==(const linear_congruential_engine& _Lhs, const linear_congruential_engine& _Rhs) noexcept
/* strengthened */ {
return _Lhs._Prev == _Rhs._Prev;
}
#ifndef __CUDACC__ // TRANSITION, VSO-568006
_NODISCARD
#endif // TRANSITION, VSO-568006
friend bool operator!=(const linear_congruential_engine& _Lhs, const linear_congruential_engine& _Rhs) noexcept
/* strengthened */ {
return _Lhs._Prev != _Rhs._Prev;
}
template <class _Elem, class _Traits>
friend basic_istream<_Elem, _Traits>& operator>>(
basic_istream<_Elem, _Traits>& _Istr, linear_congruential_engine& _Eng) {
return _Istr >> _Eng._Prev;
}
template <class _Elem, class _Traits>
friend basic_ostream<_Elem, _Traits>& operator<<(
basic_ostream<_Elem, _Traits>& _Ostr, const linear_congruential_engine& _Eng) {
return _Ostr << _Eng._Prev;
}
private:
result_type _Prev;
};
// CLASS TEMPLATE linear_congruential
template <class _Uint, _Uint _Ax, _Uint _Cx, _Uint _Mx>
class linear_congruential { // linear congruential random engine
public:
_RNG_REQUIRE_UINTTYPE(linear_congruential, _Uint);
static_assert(0 == _Mx || (_Ax < _Mx && _Cx < _Mx), "invalid template argument for linear_congruential");
using result_type = _Uint;
static constexpr _Uint multiplier = _Ax;
static constexpr _Uint increment = _Cx;
static constexpr _Uint modulus = _Mx;
linear_congruential() noexcept // strengthened
: _Prev(_Get_linear_congruential_seed<_Uint, _Cx, _Mx>(1u)) {}
explicit linear_congruential(_Uint _Xx0) noexcept // strengthened
: _Prev(_Get_linear_congruential_seed<_Uint, _Cx, _Mx>(_Xx0)) {}
template <class _Gen, _Enable_if_seed_seq_t<_Gen, linear_congruential> = 0>
linear_congruential(_Gen& _Seq) : _Prev(_Get_linear_congruential_seed<_Uint, _Cx, _Mx>(_Seq())) {}
void seed(_Uint _Xx0 = 1u) noexcept /* strengthened */ {
// reset sequence from numeric value
_Prev = _Get_linear_congruential_seed<_Uint, _Cx, _Mx>(_Xx0);
}
template <class _Gen, _Enable_if_seed_seq_t<_Gen, linear_congruential> = 0>
void seed(_Gen& _Seq) { // reset sequence from generator
_Prev = _Get_linear_congruential_seed<_Uint, _Cx, _Mx>(_Seq());
}
_NODISCARD _Uint(min)() const noexcept /* strengthened */ {
// return minimum possible generated value
return _Cx == 0;
}
#pragma warning(push)
#pragma warning(disable : 4309) // truncation of constant value
_NODISCARD _Uint(max)() const noexcept /* strengthened */ {
// return maximum possible generated value
return static_cast<_Uint>(_Mx - 1u); // note 0 wraps around to max
}
#pragma warning(pop)
_NODISCARD _Uint operator()() noexcept /* strengthened */ {
// return next value
_Prev = _Next_linear_congruential_value<_Uint, _Ax, _Cx, _Mx>(_Prev);
return _Prev;
}
void discard(unsigned long long _Nskip) noexcept /* strengthened */ {
// discard _Nskip elements
auto _Temp = _Prev;
for (; 0 < _Nskip; --_Nskip) {
_Temp = _Next_linear_congruential_value<_Uint, _Ax, _Cx, _Mx>(_Temp);
}
_Prev = _Temp;
}
#ifndef __CUDACC__ // TRANSITION, VSO-568006
_NODISCARD
#endif // TRANSITION, VSO-568006
friend bool operator==(const linear_congruential& _Lhs, const linear_congruential& _Rhs) noexcept
/* strengthened */ {
return _Lhs._Prev == _Rhs._Prev;
}
#ifndef __CUDACC__ // TRANSITION, VSO-568006
_NODISCARD
#endif // TRANSITION, VSO-568006
friend bool operator!=(const linear_congruential& _Lhs, const linear_congruential& _Rhs) noexcept
/* strengthened */ {
return _Lhs._Prev != _Rhs._Prev;
}
template <class _Elem, class _Traits>
friend basic_istream<_Elem, _Traits>& operator>>(basic_istream<_Elem, _Traits>& _Istr, linear_congruential& _Eng) {
return _Istr >> _Eng._Prev;
}
template <class _Elem, class _Traits>
friend basic_ostream<_Elem, _Traits>& operator<<(
basic_ostream<_Elem, _Traits>& _Ostr, const linear_congruential& _Eng) {
return _Ostr << _Eng._Prev;
}
private:
_Uint _Prev;
};
// CLASS TEMPLATE _Circ_buf FOR subtract_with_carry, subtract_with_carry_01, AND mersenne_twister
template <class _Ty, size_t _Nw>
struct _Circ_buf { // holds historical values for generators
_Ty _At(size_t _Ix) const {
return _Ax[_Base(_Ix)];
}
bool _Equals(const _Circ_buf& _Right) const {
const _Ty* _Last1 = _Ax + _Idx;
const _Ty* _Last2 = _Right._Ax + _Right._Idx;
const _Ty* _First;
const _Ty* _Last;
const _Ty* _Other;
bool _Use2 = _Base() < _Right._Base();
if (_Use2) { // _Right's range is higher up in the array
// than ours, so scan it first
_First = _Right._Ax + _Right._Base();
_Last = _Last2;
_Other = _Ax + _Base();
} else { // our range is higher up in the array
// than _Right's, so scan ours first
_First = _Ax + _Base();
_Last = _Last1;
_Other = _Right._Ax + _Right._Base();
}
ptrdiff_t _Nx0 = _Nw;
while (0 < _Nx0) { // scan
// note: may need up to three passes; each scan starts at the
// current highest array position and ends at the end of the
// array or the _Idx value, whichever comes first; the
// equality test succeeds only by reaching the _Idx value.
const _Ty* _Limit = _First < _Last ? _Last : _Use2 ? _Right._Ax + 2 * _Nw : _Ax + 2 * _Nw;
_Nx0 -= _Limit - _First;
while (_First != _Limit) {
if (*_First++ != *_Other++) {
return false;
}
}
_First = _Other;
_Last = _Use2 ? _Last1 : _Last2;
_Other = _Use2 ? _Right._Ax : _Ax;
_Use2 = !_Use2;
}
return true;
}
size_t _Base(size_t _Ix = 0) const {
return (_Ix += _Idx) < _Nw ? (_Ix + _Nw) : (_Ix - _Nw);
}
unsigned int _Idx;
_Ty _Ax[2 * _Nw];
};
// CLASS TEMPLATE _Swc_base (subtract_with_carry, subtract_with_carry_01)
template <class _Ty, size_t _Sx, size_t _Rx, class _Swc_Traits>
class _Swc_base : public _Circ_buf<_Ty, _Rx> { // common bits of subtract_with_carry/_01
public:
using result_type = _Ty;
using _Traits = _Swc_Traits;
using _Mybase = _Circ_buf<_Ty, _Rx>;
using _Seed_t = typename _Swc_Traits::_Seed_t;
static constexpr size_t short_lag = _Sx;
static constexpr size_t long_lag = _Rx;
static constexpr _Seed_t default_seed = static_cast<_Seed_t>(19780503U);
_Swc_base() {
seed();
}
_Swc_base(_Seed_t _Xx0) {
seed(_Xx0);
}
template <class _Gen, _Enable_if_seed_seq_t<_Gen, _Swc_base> = 0>
_Swc_base(_Gen& _Gx) {
seed(_Gx);
}
void seed(_Seed_t _Value = default_seed) { // set initial values from specified seed value
_Seed(_Value, false, true_type{});
}
template <class _Gen>
void seed(_Gen& _Gx, bool _Readcy = false) { // set initial values from range
_Seed(_Gx, _Readcy, is_arithmetic<_Gen>{});
}
_NODISCARD result_type(min)() const {
return 0;
}
_NODISCARD result_type(max)() const {
return _Swc_Traits::_Max;
}
_NODISCARD result_type operator()() {
const auto _Ix = 2 * _Rx <= this->_Idx ? 0 : this->_Idx;
if (_Ix < _Sx) {
_Setx(_Ix, this->_Ax[_Ix + 2 * _Rx - _Sx], this->_Ax[_Ix + _Rx]);
} else if (_Ix < _Rx) {
_Setx(_Ix, this->_Ax[_Ix - _Sx], this->_Ax[_Ix + _Rx]);
} else {
_Setx(_Ix, this->_Ax[_Ix - _Sx], this->_Ax[_Ix - _Rx]);
}
this->_Idx = _Ix + 1;
return this->_Ax[_Ix];
}
void discard(unsigned long long _Nskip) { // discard _Nskip elements
for (; 0 < _Nskip; --_Nskip) {
(void) (*this)();
}
}
bool _Equals(const _Swc_base& _Right) const {
return _Mybase::_Equals(_Right) && _Carry == _Right._Carry;
}
template <class _Elem, class _Traits>
basic_ostream<_Elem, _Traits>& _Write(basic_ostream<_Elem, _Traits>& _Ostr) const { // write state to _Ostr
_Swc_Traits::_Write(_Ostr, *this, _Carry);
return _Ostr;
}
protected:
template <class _Gen>
void _Seed(_Gen& _Gx, bool _Readcy, true_type) { // reset sequence from numeric value
linear_congruential<_Seed_t, 40014U, 0U, 2147483563U> _Lc(_Gx == 0U ? default_seed : _Gx);
_Reset(_Lc, _Readcy);
}
template <class _Gen>
void _Seed(_Gen& _Gx, bool _Readcy, false_type) { // reset sequence from generator
_Reset(_Gx, _Readcy);
}
template <class _Gen>
void _Reset(_Gen& _Gx, bool _Readcy) { // reset sequence
_Carry = _Swc_Traits::_Reset(_Gx, this->_Ax, _Readcy);
this->_Idx = _Rx;
}
void _Setx(size_t _Ix, _Ty _Xis, _Ty _Xir) { // update _Ax[_Ix] and _Carry
bool _Underflowed = false;
_Ty _Newx = _Xis;
if (_Newx < _Xir) {
_Underflowed = true;
}
_Newx -= _Xir;
if (_Newx < static_cast<typename _Swc_Traits::_UCy_t>(_Carry)) {
_Underflowed = true;
}
_Newx -= _Carry;
if (_Underflowed) { // underflowed, so add _Mod
_Newx += _Swc_Traits::_Mod;
_Carry = _Swc_Traits::_Cy;
} else {
_Carry = 0;
}
this->_Ax[_Ix] = _Newx;
}
typename _Swc_Traits::_Cy_t _Carry;
};
template <class _Ty, size_t _Sx, size_t _Rx, class _Swc_Traits>
_NODISCARD bool operator==(
const _Swc_base<_Ty, _Sx, _Rx, _Swc_Traits>& _Left, const _Swc_base<_Ty, _Sx, _Rx, _Swc_Traits>& _Right) {
return _Left._Equals(_Right);
}
template <class _Ty, size_t _Sx, size_t _Rx, class _Swc_Traits>
_NODISCARD bool operator!=(
const _Swc_base<_Ty, _Sx, _Rx, _Swc_Traits>& _Left, const _Swc_base<_Ty, _Sx, _Rx, _Swc_Traits>& _Right) {
return !_Left._Equals(_Right);
}
template <class _Elem, class _Traits, class _Ty, size_t _Sx, size_t _Rx, class _Swc_Traits>
basic_istream<_Elem, _Traits>& operator>>(
basic_istream<_Elem, _Traits>& _Istr, _Swc_base<_Ty, _Sx, _Rx, _Swc_Traits>& _Eng) { // read state from _Istr
_Wrap_istream<_Elem, _Traits, typename _Swc_Traits::_Seed_t> _Gen(_Istr);
_Eng.seed(_Gen, true);
return _Istr;
}
template <class _Elem, class _Traits, class _Ty, size_t _Sx, size_t _Rx, class _Swc_Traits>
basic_ostream<_Elem, _Traits>& operator<<(
basic_ostream<_Elem, _Traits>& _Ostr, const _Swc_base<_Ty, _Sx, _Rx, _Swc_Traits>& _Eng) { // write state to _Ostr
return _Eng._Write(_Ostr);
}
template <class _Ty, size_t _Sx, size_t _Rx, class _Swc_Traits>
const size_t _Swc_base<_Ty, _Sx, _Rx, _Swc_Traits>::short_lag;
template <class _Ty, size_t _Sx, size_t _Rx, class _Swc_Traits>
const size_t _Swc_base<_Ty, _Sx, _Rx, _Swc_Traits>::long_lag;
// STRUCT TEMPLATE _Swc_traits
template <class _Ty, _Ty _Mx, size_t _Nw>
struct _Swc_traits { // traits for subtract_with_carry generator
using _Cy_t = int;
using _UCy_t = unsigned int;
using _Mod_t = _Ty;
using _Seed_t = _Ty;
static constexpr _Cy_t _Cy = 1;
static constexpr _Mod_t _Mod = _Mx;
static constexpr _Ty _Max = _Mx - 1;
static int _Get_wc() { // compute number of 32-bit words per element
int _Kx;
if constexpr (_Mx == 0) {
_Kx = (8 * sizeof(_Ty) + 31) / 32;
} else { // compute number of 32-bit words required
unsigned long long _Val = 1ULL << 32;
for (_Kx = 1; 0 < _Val && _Val < _Mx; ++_Kx) {
_Val = _Val << 32;
}
}
return _Kx;
}
template <class _Gen>
static _Cy_t _Reset(_Gen& _Gx, _Ty* _Ax, bool _Readcy) { // set initial values of _Ax from generator _Gx
// return value of _Cy from range if _Readcy is true,
// otherwise compute from last value
int _Kx = _Get_wc();
for (size_t _Ix = 0; _Ix < _Nw; ++_Ix) { // pack _Kx words
_Ax[_Ix] = _Gx();
for (int _Jx = 1; _Jx < _Kx; ++_Jx) {
_Ax[_Ix] |= static_cast<_Ty>(_Gx()) << (32 * _Jx);
}
}
_Cy_t _Ans = _Reduce(_Ax);
if (!_Readcy) {
return _Ans;
} else {
return static_cast<_Cy_t>(_Gx()); // TRANSITION, investigate this conversion
}
}
#pragma warning(push)
#pragma warning(disable : 4724) // potential mod by 0
static _Cy_t _Reduce(_Ty* _Ax) { // reduce values to allowed range
if constexpr (_Mx != 0) {
for (size_t _Ix = 0; _Ix < _Nw; ++_Ix) {
_Ax[_Ix] = _Ax[_Ix] % _Mx;
}
}
return _Ax[_Nw - 1] == 0;
}
#pragma warning(pop)
template <class _Elem, class _Traits>
static void _Write(
basic_ostream<_Elem, _Traits>& _Ostr, const _Circ_buf<_Ty, _Nw>& _Buf, _Cy_t _Cy) { // write state to _Ostr
int _Kx = _Get_wc();
for (size_t _Ix = 0; _Ix < _Nw; ++_Ix) {
for (int _Jx = 1; _Jx <= _Kx; ++_Jx) { // unpack into _Kx words
unsigned int _Word = static_cast<unsigned int>(_Buf._At(_Ix) >> ((_Kx - _Jx) * 32));
_Ostr << _Word << ' ';
}
}
_Ostr << _Cy;
}
};
// CLASS TEMPLATE subtract_with_carry
template <class _Ty, _Ty _Mx, size_t _Sx, size_t _Rx>
class subtract_with_carry
: public _Swc_base<_Ty, _Sx, _Rx, _Swc_traits<_Ty, _Mx, _Rx>> { // subtract_with_carry generator
public:
using _Mybase = _Swc_base<_Ty, _Sx, _Rx, _Swc_traits<_Ty, _Mx, _Rx>>;
static constexpr _Ty modulus = _Mx;
using _Mybase::default_seed;
subtract_with_carry() : _Mybase(default_seed) {}
explicit subtract_with_carry(_Ty _Xx0) : _Mybase(_Xx0) {}
template <class _Gen, _Enable_if_seed_seq_t<_Gen, subtract_with_carry> = 0>
subtract_with_carry(_Gen& _Gx) : _Mybase(_Gx) {}
};
// CLASS TEMPLATE subtract_with_carry_engine
template <class _Ty, size_t _Wx, size_t _Sx, size_t _Rx>
class subtract_with_carry_engine : public subtract_with_carry<_Ty, (_Ty{1} << (_Wx - 1)) << 1, _Sx, _Rx> {
// subtract_with_carry generator
public:
_RNG_REQUIRE_UINTTYPE(subtract_with_carry_engine, _Ty);
static_assert(0U < _Sx && _Sx < _Rx && 0 < _Wx && _Wx <= numeric_limits<_Ty>::digits,
"invalid template argument for subtract_with_carry_engine");
static constexpr _Ty _Mx = (_Ty{1} << (_Wx - 1)) << 1;
static constexpr size_t word_size = _Wx;
static constexpr size_t short_lag = _Sx;
static constexpr size_t long_lag = _Rx;
using _Mybase = subtract_with_carry<_Ty, _Mx, _Sx, _Rx>;
using _Traits = typename _Mybase::_Traits;
using result_type = _Ty;
using _Mybase::default_seed;
subtract_with_carry_engine() : _Mybase(default_seed) {}
explicit subtract_with_carry_engine(_Ty _Xx0) : _Mybase(_Xx0) {}
template <class _Seed_seq, _Enable_if_seed_seq_t<_Seed_seq, subtract_with_carry_engine> = 0>
explicit subtract_with_carry_engine(_Seed_seq& _Seq) : _Mybase() {
seed(_Seq);
}
void seed(_Ty _Value = default_seed) { // set initial values from specified seed value
this->_Seed(_Value, false, true_type{});
}
static constexpr int _Kx = (8 * sizeof(_Ty) + 31) / 32;
template <class _Seed_seq, _Enable_if_seed_seq_t<_Seed_seq, subtract_with_carry_engine> = 0>
void seed(_Seed_seq& _Seq) { // reset sequence from seed sequence
unsigned long _Arr[_Kx * _Rx];
_Seq.generate(&_Arr[0], &_Arr[_Kx * _Rx]);
size_t _Idx0 = 0;
for (size_t _Ix = 0; _Ix < _Rx; ++_Ix, _Idx0 += _Kx) { // pack _Kx words
this->_Ax[_Ix] = _Arr[_Idx0];
for (int _Jx = 1; _Jx < _Kx; ++_Jx) {
this->_Ax[_Ix] |= static_cast<_Ty>(_Arr[_Idx0 + _Jx]) << (32 * _Jx);
}
constexpr bool _Mod_non_zero = _Traits::_Mod != 0;
if constexpr (_Mod_non_zero) {
this->_Ax[_Ix] %= _Traits::_Mod;
}
}
this->_Carry = _Traits::_Reduce(this->_Ax);
this->_Idx = _Rx;
}
_NODISCARD static constexpr _Ty(min)() {
return 0;
}
_NODISCARD static constexpr _Ty(max)() {
return _Mx - 1;
}
};
#if _HAS_TR1_NAMESPACE
// STRUCT TEMPLATE _Swc_01_traits
template <class _Ty, size_t _Wx, size_t _Rx>
struct _Swc_01_traits { // traits for subtract_with_carry_01 generator
using _Cy_t = _Ty;
using _UCy_t = _Ty;
using _Mod_t = _Ty;
using _Seed_t = unsigned int;
static const _Cy_t _Cy;
static const _Mod_t _Mod;
static const _Ty _Max;
static constexpr int _Nwords = (_Wx + 31) / 32;
template <class _Gen>
static _Cy_t _Reset(_Gen& _Gx, _Ty* _Ax, bool _Readcy) { // set initial values of _Ax from generator _Gx
// return value of _Cy from range if _Readcy is true,
// otherwise from last value
for (size_t _Ix = 0; _Ix < _Rx; ++_Ix) { // read values
_Ty _Factor = 1;
_Ty _Val = 0;
for (int _Jx = 0; _Jx < _Nwords - 1; ++_Jx) { // read components of value
_Factor /= static_cast<_Ty>(_Two32);
_Val += _Gx() * _Factor;
}
_Ty _Temp = (static_cast<unsigned long>(_Gx()) & _Mask) / _Scale1;
_Val += (_Temp - static_cast<unsigned long>(_Temp)) * _Factor;
_Ax[_Ix] = _Val;
}
if (!_Readcy) {
return _Ax[_Rx - 1] != 0 ? 0 : _Cy;
} else {
return _Gx() == 0 ? 0 : _Cy;
}
}
template <class _Elem, class _Traits>
static void _Write(
basic_ostream<_Elem, _Traits>& _Ostr, const _Circ_buf<_Ty, _Rx>& _Buf, _Cy_t _Cy) { // write state to _Ostr
for (size_t _Ix = 0; _Ix < _Rx; ++_Ix) { // write values
_Ty _Val = _Buf._At(_Ix);
unsigned long _Temp;
for (int _Jx = 0; _Jx < _Nwords - 1; ++_Jx) { // write components of value
_Val *= static_cast<_Ty>(_Two32);
_Temp = static_cast<unsigned long>(_Val);
_Val -= _Temp;
_Ostr << _Temp << ' ';
}
_Temp = static_cast<unsigned long>(_Val * _Scale1);
_Ostr << _Temp << ' ';
}
_Ostr << (_Cy ? 1 : 0);
}
private:
static const _Ty _Scale1;
static constexpr unsigned long _Mask = ~((~0UL) << (_Wx % 32));
};
template <class _Ty, size_t _Wx, size_t _Rx>
const typename _Swc_01_traits<_Ty, _Wx, _Rx>::_Cy_t
_Swc_01_traits<_Ty, _Wx, _Rx>::_Cy = static_cast<typename _Swc_01_traits<_Ty, _Wx, _Rx>::_Cy_t>(
_CSTD ldexp(1.0, static_cast<int>(-static_cast<ptrdiff_t>(_Wx))));
template <class _Ty, size_t _Wx, size_t _Rx>
const typename _Swc_01_traits<_Ty, _Wx, _Rx>::_Mod_t _Swc_01_traits<_Ty, _Wx, _Rx>::_Mod = 1;
template <class _Ty, size_t _Wx, size_t _Rx>
const _Ty _Swc_01_traits<_Ty, _Wx, _Rx>::_Max = 1;
template <class _Ty, size_t _Wx, size_t _Rx>
const _Ty _Swc_01_traits<_Ty, _Wx, _Rx>::_Scale1 = static_cast<_Ty>(_CSTD ldexp(1.0, _Wx % 32));
// CLASS TEMPLATE subtract_with_carry_01
template <class _Ty, size_t _Wx, size_t _Sx, size_t _Rx>
class _DEPRECATE_TR1_NAMESPACE subtract_with_carry_01
: public _Swc_base<_Ty, _Sx, _Rx, _Swc_01_traits<_Ty, _Wx, _Rx>> { // subtract_with_carry_01 generator
public:
static constexpr size_t word_size = _Wx;
using _Mybase = _Swc_base<_Ty, _Sx, _Rx, _Swc_01_traits<_Ty, _Wx, _Rx>>;
subtract_with_carry_01() : _Mybase() {}
explicit subtract_with_carry_01(typename _Mybase::_Seed_t _Value) : _Mybase(_Value) {}
template <class _Gen, _Enable_if_seed_seq_t<_Gen, subtract_with_carry_01> = 0>
subtract_with_carry_01(_Gen& _Gx) : _Mybase(_Gx) {}
};
_STL_DISABLE_DEPRECATED_WARNING
template <class _Ty, size_t _Wx, size_t _Sx, size_t _Rx>
const size_t subtract_with_carry_01<_Ty, _Wx, _Sx, _Rx>::word_size;
_STL_RESTORE_DEPRECATED_WARNING
#endif // _HAS_TR1_NAMESPACE
// CLASS TEMPLATE mersenne_twister
template <class _Ty, int _Wx, int _Nx, int _Mx, int _Rx, _Ty _Px, int _Ux, int _Sx, _Ty _Bx, int _Tx, _Ty _Cx, int _Lx>
class mersenne_twister : public _Circ_buf<_Ty, _Nx> { // mersenne twister generator
public:
using result_type = _Ty;
static constexpr int word_size = _Wx;
static constexpr int state_size = _Nx;
static constexpr int shift_size = _Mx;
static constexpr int mask_bits = _Rx;
static constexpr _Ty parameter_a = _Px;
static constexpr int output_u = _Ux;
static constexpr int output_s = _Sx;
static constexpr _Ty output_b = _Bx;
static constexpr int output_t = _Tx;
static constexpr _Ty output_c = _Cx;
static constexpr int output_l = _Lx;
static constexpr _Ty default_seed = 5489U;
mersenne_twister() : _Dxval(_WMSK) {
seed(default_seed, static_cast<_Ty>(1812433253));
}
explicit mersenne_twister(_Ty _Xx0, _Ty _Dxarg = _WMSK, _Ty _Fxarg = static_cast<_Ty>(1812433253))
: _Dxval(_Dxarg) {
seed(_Xx0, _Fxarg);
}
template <class _Gen, _Enable_if_seed_seq_t<_Gen, mersenne_twister> = 0>
explicit mersenne_twister(_Gen& _Gx) : _Dxval(_WMSK) {
seed(_Gx);
}
void seed(_Ty _Xx0 = default_seed, _Ty _Fx = static_cast<_Ty>(1812433253)) {
// set initial values from specified value
_Ty _Prev = this->_Ax[0] = _Xx0 & _WMSK;
for (size_t _Ix = 1; _Ix < _Nx; ++_Ix) {
_Prev = this->_Ax[_Ix] = (_Ix + _Fx * (_Prev ^ (_Prev >> (_Wx - 2)))) & _WMSK;
}
this->_Idx = _Nx;
}
template <class _Gen, _Enable_if_seed_seq_t<_Gen, mersenne_twister> = 0>
void seed(_Gen& _Gx, bool = false) { // set initial values from range
for (size_t _Ix = 0; _Ix < _Nx; ++_Ix) {
this->_Ax[_Ix] = _Gx() & _WMSK;
}
this->_Idx = _Nx;
}
template <class _Elem, class _S_Traits>
basic_ostream<_Elem, _S_Traits>& _Write(basic_ostream<_Elem, _S_Traits>& _Ostr) const { // write state to _Ostr
_Ostr << this->_At(0);
for (size_t _Ix = 1; _Ix < _Nx; ++_Ix) {
_Ostr << ' ' << this->_At(_Ix);
}
return _Ostr;
}
_NODISCARD result_type(min)() const {
return 0;
}
_NODISCARD result_type(max)() const {
return _WMSK;
}
_NODISCARD result_type operator()() {
if (this->_Idx == _Nx) {
_Refill_upper();
} else if (2 * _Nx <= this->_Idx) {
_Refill_lower();
}
_Ty _Res = this->_Ax[this->_Idx++] & _WMSK;
_Res ^= (_Res >> _Ux) & _Dxval;
_Res ^= (_Res << _Sx) & _Bx;
_Res ^= (_Res << _Tx) & _Cx;
_Res ^= (_Res & _WMSK) >> _Lx;
return _Res;
}
void discard(unsigned long long _Nskip) { // discard _Nskip elements
for (; 0 < _Nskip; --_Nskip) {
(void) (*this)();
}
}
protected:
_Post_satisfies_(this->_Idx == 0)
void _Refill_lower() { // compute values for the lower half of the history array
constexpr size_t _Wrap_bound_one = _Nx - _One_mod_n;
constexpr size_t _Wrap_bound_m = _Nx - _M_mod_n;
if constexpr (_M_mod_n == 0) {
for (size_t _Ix = 0; _Ix < _Wrap_bound_one; ++_Ix) { // fill in values
const _Ty _Tmp = (this->_Ax[_Ix + _Nx] & _HMSK) | (this->_Ax[_Ix + _Nx + _One_mod_n] & _LMSK);
this->_Ax[_Ix] = (_Tmp >> 1) ^ (_Tmp & 1 ? _Px : 0) ^ this->_Ax[_Ix + _Nx + _M_mod_n];
}
if constexpr (_One_mod_n == 1) { // fill in _Ax[_Nx - 1]
constexpr size_t _Ix = _Wrap_bound_one;
const _Ty _Tmp = (this->_Ax[_Ix + _Nx] & _HMSK) | (this->_Ax[_Ix - _Nx + _One_mod_n] & _LMSK);
this->_Ax[_Ix] = (_Tmp >> 1) ^ (_Tmp & 1 ? _Px : 0) ^ this->_Ax[_Ix + _Nx + _M_mod_n];
}
} else {
for (size_t _Ix = 0; _Ix < _Wrap_bound_m; ++_Ix) { // fill in lower region
const _Ty _Tmp = (this->_Ax[_Ix + _Nx] & _HMSK) | (this->_Ax[_Ix + _Nx + _One_mod_n] & _LMSK);
this->_Ax[_Ix] = (_Tmp >> 1) ^ (_Tmp & 1 ? _Px : 0) ^ this->_Ax[_Ix + _Nx + _M_mod_n];
}
for (size_t _Ix = _Wrap_bound_m; _Ix < _Wrap_bound_one; ++_Ix) {
// fill in upper region (avoids modulus operation)
const _Ty _Tmp = (this->_Ax[_Ix + _Nx] & _HMSK) | (this->_Ax[_Ix + _Nx + _One_mod_n] & _LMSK);
this->_Ax[_Ix] = (_Tmp >> 1) ^ (_Tmp & 1 ? _Px : 0) ^ this->_Ax[_Ix - _Nx + _M_mod_n];
}
if constexpr (_One_mod_n == 1) { // fill in _Ax[_Nx - 1]
constexpr size_t _Ix = _Wrap_bound_one;
const _Ty _Tmp = (this->_Ax[_Ix + _Nx] & _HMSK) | (this->_Ax[_Ix - _Nx + _One_mod_n] & _LMSK);
this->_Ax[_Ix] = (_Tmp >> 1) ^ (_Tmp & 1 ? _Px : 0) ^ this->_Ax[_Ix - _Nx + _M_mod_n];
}
}
this->_Idx = 0;
}
void _Refill_upper() { // compute values for the upper half of the history array
for (size_t _Ix = _Nx; _Ix < 2 * _Nx; ++_Ix) { // fill in values
const _Ty _Tmp = (this->_Ax[_Ix - _Nx] & _HMSK) | (this->_Ax[_Ix - _Nx + _One_mod_n] & _LMSK);
this->_Ax[_Ix] = (_Tmp >> 1) ^ (_Tmp & 1 ? _Px : 0) ^ this->_Ax[_Ix - _Nx + _M_mod_n];
}
}
_Ty _Dxval;
static constexpr _Ty _WMSK = ~((~_Ty{0} << (_Wx - 1)) << 1);
static constexpr _Ty _HMSK = (_WMSK << _Rx) & _WMSK;
static constexpr _Ty _LMSK = ~_HMSK & _WMSK;
static constexpr int _One_mod_n = 1 % _Nx; // either 0 or 1
static constexpr int _M_mod_n = _Mx % _Nx;
};
template <class _Ty, int _Wx, int _Nx, int _Mx, int _Rx, _Ty _Px, int _Ux, int _Sx, _Ty _Bx, int _Tx, _Ty _Cx, int _Lx>
_NODISCARD bool operator==(const mersenne_twister<_Ty, _Wx, _Nx, _Mx, _Rx, _Px, _Ux, _Sx, _Bx, _Tx, _Cx, _Lx>& _Left,
const mersenne_twister<_Ty, _Wx, _Nx, _Mx, _Rx, _Px, _Ux, _Sx, _Bx, _Tx, _Cx, _Lx>& _Right) {
return _Left._Equals(_Right);
}
template <class _Ty, int _Wx, int _Nx, int _Mx, int _Rx, _Ty _Px, int _Ux, int _Sx, _Ty _Bx, int _Tx, _Ty _Cx, int _Lx>
_NODISCARD bool operator!=(const mersenne_twister<_Ty, _Wx, _Nx, _Mx, _Rx, _Px, _Ux, _Sx, _Bx, _Tx, _Cx, _Lx>& _Left,
const mersenne_twister<_Ty, _Wx, _Nx, _Mx, _Rx, _Px, _Ux, _Sx, _Bx, _Tx, _Cx, _Lx>& _Right) {
return !_Left._Equals(_Right);
}
template <class _Elem, class _S_Traits, class _Ty, int _Wx, int _Nx, int _Mx, int _Rx, _Ty _Px, int _Ux, int _Sx,
_Ty _Bx, int _Tx, _Ty _Cx, int _Lx>
basic_istream<_Elem, _S_Traits>& operator>>(basic_istream<_Elem, _S_Traits>& _Istr,
mersenne_twister<_Ty, _Wx, _Nx, _Mx, _Rx, _Px, _Ux, _Sx, _Bx, _Tx, _Cx, _Lx>& _Eng) { // read state from _Istr
_Wrap_istream<_Elem, _S_Traits, _Ty> _Gen(_Istr);
_Eng.seed(_Gen);
return _Istr;
}
template <class _Elem, class _S_Traits, class _Ty, int _Wx, int _Nx, int _Mx, int _Rx, _Ty _Px, int _Ux, int _Sx,
_Ty _Bx, int _Tx, _Ty _Cx, int _Lx>
basic_ostream<_Elem, _S_Traits>& operator<<(basic_ostream<_Elem, _S_Traits>& _Ostr,
const mersenne_twister<_Ty, _Wx, _Nx, _Mx, _Rx, _Px, _Ux, _Sx, _Bx, _Tx, _Cx, _Lx>& _Eng) { // write state to _Ostr
return _Eng._Write(_Ostr);
}
// CLASS TEMPLATE mersenne_twister_engine
template <class _Ty, size_t _Wx, size_t _Nx, size_t _Mx, size_t _Rx, _Ty _Px, size_t _Ux, _Ty _Dx, size_t _Sx, _Ty _Bx,
size_t _Tx, _Ty _Cx, size_t _Lx, _Ty _Fx>
class mersenne_twister_engine : public mersenne_twister<_Ty, _Wx, _Nx, _Mx, _Rx, _Px, _Ux, _Sx, _Bx, _Tx, _Cx, _Lx> {
public:
static constexpr unsigned long long _Max = (((1ULL << (_Wx - 1)) - 1) << 1) + 1;
_RNG_REQUIRE_UINTTYPE(mersenne_twister_engine, _Ty);
static_assert(0 < _Mx && _Mx <= _Nx && 2U < _Wx && _Rx <= _Wx && _Ux <= _Wx && _Sx <= _Wx && _Tx <= _Wx
&& _Lx <= _Wx && _Wx <= numeric_limits<_Ty>::digits && _Px <= _Max && _Bx <= _Max && _Cx <= _Max
&& _Dx <= _Max && _Fx <= _Max,
"invalid template argument for mersenne_twister_engine");
using _Mybase = mersenne_twister<_Ty, _Wx, _Nx, _Mx, _Rx, _Px, _Ux, _Sx, _Bx, _Tx, _Cx, _Lx>;
using result_type = _Ty;
static constexpr size_t word_size = _Wx;
static constexpr size_t state_size = _Nx;
static constexpr size_t shift_size = _Mx;
static constexpr size_t mask_bits = _Rx;
static constexpr _Ty xor_mask = _Px;
static constexpr size_t tempering_u = _Ux;
static constexpr _Ty tempering_d = _Dx;
static constexpr size_t tempering_s = _Sx;
static constexpr _Ty tempering_b = _Bx;
static constexpr size_t tempering_t = _Tx;
static constexpr _Ty tempering_c = _Cx;
static constexpr size_t tempering_l = _Lx;
static constexpr _Ty initialization_multiplier = _Fx;
static constexpr result_type default_seed = 5489U;
mersenne_twister_engine() : _Mybase(default_seed, _Dx, _Fx) {}
explicit mersenne_twister_engine(result_type _Xx0) : _Mybase(_Xx0, _Dx, _Fx) {}
template <class _Seed_seq, _Enable_if_seed_seq_t<_Seed_seq, mersenne_twister_engine> = 0>
explicit mersenne_twister_engine(_Seed_seq& _Seq) : _Mybase(default_seed, _Dx, _Fx) {
seed(_Seq);
}
void seed(result_type _Xx0 = default_seed) { // set initial values from specified value
_Mybase::seed(_Xx0, _Fx);
}
template <class _Seed_seq, _Enable_if_seed_seq_t<_Seed_seq, mersenne_twister_engine> = 0>
void seed(_Seed_seq& _Seq) { // reset sequence from seed sequence
constexpr int _Kx = (_Wx + 31) / 32;
unsigned long _Arr[_Kx * _Nx];
_Seq.generate(&_Arr[0], &_Arr[_Kx * _Nx]);
int _Idx0 = 0;
_Ty _Sum = 0;
for (size_t _Ix = 0; _Ix < _Nx; ++_Ix, _Idx0 += _Kx) { // pack _Kx words
this->_Ax[_Ix] = static_cast<_Ty>(_Arr[_Idx0]);
for (int _Jx = 1; _Jx < _Kx; ++_Jx) {
this->_Ax[_Ix] |= static_cast<_Ty>(_Arr[_Idx0 + _Jx]) << (32 * _Jx);
}
this->_Ax[_Ix] &= this->_WMSK;
if (_Ix == 0) {
_Sum = this->_Ax[_Ix] >> _Rx;
} else {
_Sum |= this->_Ax[_Ix];
}
}
if (_Sum == 0) {
this->_Ax[0] = _Ty{1} << (_Wx - 1);
}
this->_Idx = _Nx;
}
_NODISCARD static constexpr result_type(min)() {
return 0;
}
_NODISCARD static constexpr result_type(max)() {
return _Mybase::_WMSK;
}
};
// CLASS TEMPLATE discard_block
template <class _Engine, int _Px, int _Rx>
class discard_block { // discard_block compound engine
public:
using base_type = _Engine;
using result_type = typename _Engine::result_type;
static constexpr int block_size = _Px;
static constexpr int used_block = _Rx;
discard_block() : _Eng(), _Nx(0) {}
explicit discard_block(const _Engine& _Ex) : _Eng(_Ex), _Nx(0) {}
explicit discard_block(result_type _Seed) : _Eng(_Seed), _Nx(0) {}
template <class _Seed_seq, _Enable_if_seed_seq_t<_Seed_seq, discard_block, _Engine> = 0>
explicit discard_block(_Seed_seq& _Seq) : _Eng(_Seq), _Nx(0) {}
void seed() { // seed engine from default value
_Eng.seed();
_Nx = 0;
}
void seed(result_type _Xx0) { // seed engine from specified value
_Eng.seed(_Xx0);
_Nx = 0;
}
template <class _Seed_seq, _Enable_if_seed_seq_t<_Seed_seq, discard_block> = 0>
void seed(_Seed_seq& _Seq) { // seed engine from seed sequence
_Eng.seed(_Seq);
_Nx = 0;
}
_NODISCARD const base_type& base() const noexcept {
return _Eng;
}
_NODISCARD result_type(min)() const {
return (_Eng.min) ();
}
_NODISCARD result_type(max)() const {
return (_Eng.max) ();
}
_NODISCARD result_type operator()() {
if (_Rx <= _Nx) { // discard values
while (_Nx++ < _Px) {
(void) _Eng();
}
_Nx = 0;
}
++_Nx;
return _Eng();
}
void discard(unsigned long long _Nskip) { // discard _Nskip elements
for (; 0 < _Nskip; --_Nskip) {
(void) (*this)();
}
}
bool _Equals(const discard_block& _Right) const {
return _Eng == _Right._Eng && _Nx == _Right._Nx;
}
template <class _Elem, class _Traits>
basic_istream<_Elem, _Traits>& _Read(basic_istream<_Elem, _Traits>& _Istr) { // read state from _Istr
return _Istr >> _Eng >> _Nx;
}
template <class _Elem, class _Traits>
basic_ostream<_Elem, _Traits>& _Write(basic_ostream<_Elem, _Traits>& _Ostr) const { // write state to _Ostr
return _Ostr << _Eng << ' ' << _Nx;
}
private:
base_type _Eng;
int _Nx;
};
template <class _Engine, int _Px, int _Rx>
const int discard_block<_Engine, _Px, _Rx>::block_size;
template <class _Engine, int _Px, int _Rx>
const int discard_block<_Engine, _Px, _Rx>::used_block;
template <class _Engine, int _Px, int _Rx>
_NODISCARD bool operator==(
const discard_block<_Engine, _Px, _Rx>& _Left, const discard_block<_Engine, _Px, _Rx>& _Right) {
return _Left._Equals(_Right);
}
template <class _Engine, int _Px, int _Rx>
_NODISCARD bool operator!=(
const discard_block<_Engine, _Px, _Rx>& _Left, const discard_block<_Engine, _Px, _Rx>& _Right) {
return !(_Left == _Right);
}
template <class _Elem, class _Traits, class _Engine, int _Px, int _Rx>
basic_istream<_Elem, _Traits>& operator>>(
basic_istream<_Elem, _Traits>& _Istr, discard_block<_Engine, _Px, _Rx>& _Eng) { // read state from _Istr
return _Eng._Read(_Istr);
}
template <class _Elem, class _Traits, class _Engine, int _Px, int _Rx>
basic_ostream<_Elem, _Traits>& operator<<(
basic_ostream<_Elem, _Traits>& _Ostr, const discard_block<_Engine, _Px, _Rx>& _Eng) { // write state to _Ostr
return _Eng._Write(_Ostr);
}
// CLASS TEMPLATE discard_block_engine
template <class _Engine, size_t _Px, size_t _Rx>
class discard_block_engine : public discard_block<_Engine, _Px, _Rx> { // discard_block_engine compound engine
public:
static_assert(0 < _Rx && _Rx <= _Px, "invalid template argument for discard_block_engine");
using _Mybase = discard_block<_Engine, _Px, _Rx>;
using result_type = typename _Engine::result_type;
discard_block_engine() : _Mybase() {}
explicit discard_block_engine(const _Engine& _Ex) : _Mybase(_Ex) {}
explicit discard_block_engine(_Engine&& _Ex) : _Mybase(_STD move(_Ex)) {}
explicit discard_block_engine(result_type _Xx0) : _Mybase(_Xx0) {}
template <class _Seed_seq, _Enable_if_seed_seq_t<_Seed_seq, discard_block_engine, _Engine> = 0>
explicit discard_block_engine(_Seed_seq& _Seq) : _Mybase(_Seq) {}
_NODISCARD static constexpr typename _Engine::result_type(min)() {
return (_Engine::min) ();
}
_NODISCARD static constexpr typename _Engine::result_type(max)() {
return (_Engine::max) ();
}
};
// CLASS TEMPLATE independent_bits_engine
template <class _Engine, size_t _Wx, class _UIntType>
class independent_bits_engine { // independent_bits_engine compound engine
public:
_RNG_REQUIRE_UINTTYPE(independent_bits_engine, _UIntType);
static_assert(
0 < _Wx && _Wx <= numeric_limits<_UIntType>::digits, "invalid template argument for independent_bits_engine");
using base_type = _Engine;
using result_type = _UIntType;
using _Eres = typename _Engine::result_type;
independent_bits_engine() {
_Init();
}
explicit independent_bits_engine(const _Engine& _Ex) : _Eng(_Ex) {
_Init();
}
explicit independent_bits_engine(_Engine&& _Ex) : _Eng(_STD move(_Ex)) {
_Init();
}
explicit independent_bits_engine(result_type _Xx0) : _Eng(static_cast<_Eres>(_Xx0)) {
_Init();
}
template <class _Seed_seq, _Enable_if_seed_seq_t<_Seed_seq, independent_bits_engine, _Engine> = 0>
explicit independent_bits_engine(_Seed_seq& _Seq) : _Eng(_Seq) {
_Init();
}
void seed() { // seed engine from default value
_Eng.seed();
}
void seed(result_type _Xx0) { // seed engine from specified value
_Eng.seed(static_cast<_Eres>(_Xx0));
}
template <class _Seed_seq, _Enable_if_seed_seq_t<_Seed_seq, independent_bits_engine> = 0>
void seed(_Seed_seq& _Seq) { // seed engine from seed sequence
_Eng.seed(_Seq);
}
_NODISCARD const _Engine& base() const noexcept {
return _Eng;
}
_NODISCARD static constexpr result_type(min)() {
return 0;
}
_NODISCARD static constexpr result_type(max)() {
return ((result_type{1} << (_Wx - 1)) << 1) - 1;
}
_NODISCARD result_type operator()() {
size_t _Idx = 0;
result_type _Res = 0;
result_type _Mask = ((result_type{1} << (_Wx0 - 1)) << 1) - 1;
_Eres _Val;
for (; _Idx < _Nx0; ++_Idx) { // pack _Wx0-bit values
for (;;) { // get a small enough value
_Val = _Eng() - (_Engine::min) ();
if (_Val <= _Yx0) {
break;
}
}
_Res = _Res << _Wx0 | (static_cast<result_type>(_Val) & _Mask);
}
_Mask = _Mask << 1 | 1;
for (; _Idx < _Nx; ++_Idx) { // pack _Wx0+1-bit values
for (;;) { // get a small enough value
_Val = _Eng() - (_Engine::min) ();
if (_Val <= _Yx1) {
break;
}
}
_Res = _Res << (_Wx0 + 1) | (static_cast<result_type>(_Val) & _Mask);
}
return _Res;
}
void discard(unsigned long long _Nskip) { // discard _Nskip elements
for (; 0 < _Nskip; --_Nskip) {
(void) (*this)();
}
}
template <class _Elem, class _Traits>
basic_istream<_Elem, _Traits>& _Read(basic_istream<_Elem, _Traits>& _Istr) { // read state from _Istr
return _Istr >> _Eng;
}
template <class _Elem, class _Traits>
basic_ostream<_Elem, _Traits>& _Write(basic_ostream<_Elem, _Traits>& _Ostr) const { // write state to _Ostr
return _Ostr << _Eng;
}
private:
void _Init() { // compute values for operator()
size_t _Mx = 0;
_Eres _Rx = (_Engine::max) () - (_Engine::min) () + 1;
_Eres _Tmp = _Rx;
if (_Tmp == 0) { // all bits used, make _Rx finite
_Mx = 1;
--_Tmp;
}
for (; 1 < _Tmp; _Tmp >>= 1) {
++_Mx; // compute _Mx = floor(log2(_Rx))
}
for (size_t _Nfix = 0;; ++_Nfix) { // compute consistent set of parameters
_Nx = (_Wx + _Mx - 1) / _Mx + _Nfix; // trial _Nx
_Wx0 = _Wx / _Nx;
_Nx0 = _Nx - _Wx % _Nx;
_Yx0 = (_Rx >> _Wx0) << _Wx0;
_Yx1 = (((_Rx >> _Wx0) >> 1) << _Wx0) << 1;
if (_Nfix == 1 || _Rx - _Yx0 <= _Yx0 / _Nx) {
break; // also works if _Rx == 0 (_Mx == all bits)
}
}
--_Yx0;
--_Yx1;
}
_Engine _Eng; // the stored engine
size_t _Nx0; // number of smaller packing words
size_t _Nx; // total number of packing words
size_t _Wx0; // bits per smaller packing word
_Eres _Yx0; // max value for smaller packing word
_Eres _Yx1; // max value for larger packing word
};
template <class _Engine, size_t _Wx, class _UIntType>
_NODISCARD bool operator==(const independent_bits_engine<_Engine, _Wx, _UIntType>& _Left,
const independent_bits_engine<_Engine, _Wx, _UIntType>& _Right) {
return _Left.base() == _Right.base();
}
template <class _Engine, size_t _Wx, class _UIntType>
_NODISCARD bool operator!=(const independent_bits_engine<_Engine, _Wx, _UIntType>& _Left,
const independent_bits_engine<_Engine, _Wx, _UIntType>& _Right) {
return !(_Left == _Right);
}
template <class _Elem, class _Traits, class _Engine, size_t _Wx, class _UIntType>
basic_istream<_Elem, _Traits>& operator>>(basic_istream<_Elem, _Traits>& _Istr,
independent_bits_engine<_Engine, _Wx, _UIntType>& _Eng) { // read state from _Istr
return _Eng._Read(_Istr);
}
template <class _Elem, class _Traits, class _Engine, size_t _Wx, class _UIntType>
basic_ostream<_Elem, _Traits>& operator<<(basic_ostream<_Elem, _Traits>& _Ostr,
const independent_bits_engine<_Engine, _Wx, _UIntType>& _Eng) { // write state to _Ostr
return _Eng._Write(_Ostr);
}
// CLASS TEMPLATE shuffle_order_engine
template <class _Engine, size_t _Kx>
class shuffle_order_engine { // shuffle_order_engine compound engine
public:
static_assert(0 < _Kx, "invalid template argument for shuffle_order_engine");
using base_type = _Engine;
using result_type = typename _Engine::result_type;
static constexpr size_t table_size = _Kx;
shuffle_order_engine() {
_Init();
}
explicit shuffle_order_engine(const _Engine& _Ex) : _Eng(_Ex) {
_Init();
}
explicit shuffle_order_engine(_Engine&& _Ex) : _Eng(_STD move(_Ex)) {
_Init();
}
explicit shuffle_order_engine(result_type _Xx0) : _Eng(_Xx0) {
_Init();
}
template <class _Seed_seq, _Enable_if_seed_seq_t<_Seed_seq, shuffle_order_engine, _Engine> = 0>
explicit shuffle_order_engine(_Seed_seq& _Seq) : _Eng(_Seq) {
_Init();
}
void seed() { // seed engine from default value
_Eng.seed();
_Init();
}
void seed(result_type _Xx0) { // seed engine from specified value
_Eng.seed(_Xx0);
_Init();
}
template <class _Seed_seq, _Enable_if_seed_seq_t<_Seed_seq, shuffle_order_engine> = 0>
void seed(_Seed_seq& _Seq) { // seed engine from seed sequence
_Eng.seed(_Seq);
_Init();
}
_NODISCARD const _Engine& base() const noexcept {
return _Eng;
}
_NODISCARD static constexpr result_type(min)() {
return (_Engine::min) ();
}
_NODISCARD static constexpr result_type(max)() {
return (_Engine::max) ();
}
_NODISCARD result_type operator()() {
size_t _Idx = static_cast<size_t>(static_cast<double>(_Yx - (_Eng.min) ()) * _Scale);
_Yx = _Arr[_Idx];
_Arr[_Idx] = _Eng();
return _Yx;
}
void discard(unsigned long long _Nskip) { // discard _Nskip elements
for (; 0 < _Nskip; --_Nskip) {
(void) (*this)();
}
}
template <class _Elem, class _Traits>
basic_istream<_Elem, _Traits>& _Read(basic_istream<_Elem, _Traits>& _Istr) { // read state from _Istr
_Istr >> _Eng;
for (size_t _Idx = 0; _Idx < _Kx; ++_Idx) {
_Istr >> _Arr[_Idx];
}
return _Istr >> _Yx;
}
template <class _Elem, class _Traits>
basic_ostream<_Elem, _Traits>& _Write(basic_ostream<_Elem, _Traits>& _Ostr) const { // write state to _Ostr
_Ostr << _Eng;
for (size_t _Idx = 0; _Idx < _Kx; ++_Idx) {
_Ostr << ' ' << _Arr[_Idx];
}
return _Ostr << ' ' << _Yx;
}
private:
void _Init() { // compute values for operator()
for (size_t _Idx = 0; _Idx < _Kx; ++_Idx) {
_Arr[_Idx] = _Eng();
}
_Yx = _Eng();
_Scale =
static_cast<double>(_Kx) / (static_cast<double>((_Eng.max) ()) - static_cast<double>((_Eng.min) ()) + 1.0);
}
_Engine _Eng; // the stored engine
result_type _Arr[_Kx];
result_type _Yx;
double _Scale;
};
template <class _Engine, size_t _Kx>
_NODISCARD bool operator==(
const shuffle_order_engine<_Engine, _Kx>& _Left, const shuffle_order_engine<_Engine, _Kx>& _Right) {
return _Left.base() == _Right.base();
}
template <class _Engine, size_t _Kx>
_NODISCARD bool operator!=(
const shuffle_order_engine<_Engine, _Kx>& _Left, const shuffle_order_engine<_Engine, _Kx>& _Right) {
return !(_Left == _Right);
}
template <class _Elem, class _Traits, class _Engine, size_t _Kx>
basic_istream<_Elem, _Traits>& operator>>(
basic_istream<_Elem, _Traits>& _Istr, shuffle_order_engine<_Engine, _Kx>& _Eng) { // read state from _Istr
return _Eng._Read(_Istr);
}
template <class _Elem, class _Traits, class _Engine, size_t _Kx>
basic_ostream<_Elem, _Traits>& operator<<(
basic_ostream<_Elem, _Traits>& _Ostr, const shuffle_order_engine<_Engine, _Kx>& _Eng) { // write state to _Ostr
return _Eng._Write(_Ostr);
}
// CLASS TEMPLATE uniform_int
template <class _Ty = int>
class uniform_int { // uniform integer distribution
public:
using result_type = _Ty;
struct param_type { // parameter package
using distribution_type = uniform_int;
param_type() {
_Init(0, 9);
}
explicit param_type(result_type _Min0, result_type _Max0 = 9) {
_Init(_Min0, _Max0);
}
_NODISCARD bool operator==(const param_type& _Right) const {
return _Min == _Right._Min && _Max == _Right._Max;
}
_NODISCARD bool operator!=(const param_type& _Right) const {
return !(*this == _Right);
}
_NODISCARD result_type a() const {
return _Min;
}
_NODISCARD result_type b() const {
return _Max;
}
void _Init(_Ty _Min0, _Ty _Max0) { // set internal state
_STL_ASSERT(_Min0 <= _Max0, "invalid min and max arguments for uniform_int");
_Min = _Min0;
_Max = _Max0;
}
result_type _Min;
result_type _Max;
};
uniform_int() : _Par(0, 9) {}
explicit uniform_int(_Ty _Min0, _Ty _Max0 = 9) : _Par(_Min0, _Max0) {}
explicit uniform_int(const param_type& _Par0) : _Par(_Par0) {}
_NODISCARD result_type a() const {
return _Par.a();
}
_NODISCARD result_type b() const {
return _Par.b();
}
_NODISCARD param_type param() const {
return _Par;
}
void param(const param_type& _Par0) { // set parameter package
_Par = _Par0;
}
_NODISCARD result_type(min)() const {
return _Par._Min;
}
_NODISCARD result_type(max)() const {
return _Par._Max;
}
void reset() {} // clear internal state
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng) const {
return _Eval(_Eng, _Par._Min, _Par._Max);
}
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng, const param_type& _Par0) const {
return _Eval(_Eng, _Par0._Min, _Par0._Max);
}
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng, result_type _Nx) const {
return _Eval(_Eng, 0, _Nx - 1);
}
template <class _Elem, class _Traits>
basic_istream<_Elem, _Traits>& _Read(basic_istream<_Elem, _Traits>& _Istr) { // read state from _Istr
_Ty _Min0;
_Ty _Max0;
_Istr >> _Min0 >> _Max0;
_Par._Init(_Min0, _Max0);
return _Istr;
}
template <class _Elem, class _Traits>
basic_ostream<_Elem, _Traits>& _Write(basic_ostream<_Elem, _Traits>& _Ostr) const { // write state to _Ostr
return _Ostr << _Par._Min << ' ' << _Par._Max;
}
private:
using _Uty = make_unsigned_t<_Ty>;
template <class _Engine>
result_type _Eval(_Engine& _Eng, _Ty _Min, _Ty _Max) const { // compute next value in range [_Min, _Max]
_Rng_from_urng<_Uty, _Engine> _Generator(_Eng);
const _Uty _Umin = _Adjust(static_cast<_Uty>(_Min));
const _Uty _Umax = _Adjust(static_cast<_Uty>(_Max));
_Uty _Uret;
if (_Umax - _Umin == static_cast<_Uty>(-1)) {
_Uret = static_cast<_Uty>(_Generator._Get_all_bits());
} else {
_Uret = static_cast<_Uty>(_Generator(static_cast<_Uty>(_Umax - _Umin + 1)));
}
return static_cast<_Ty>(_Adjust(static_cast<_Uty>(_Uret + _Umin)));
}
static _Uty _Adjust(_Uty _Uval) { // convert signed ranges to unsigned ranges and vice versa
if constexpr (is_signed_v<_Ty>) {
const _Uty _Adjuster = (static_cast<_Uty>(-1) >> 1) + 1; // 2^(N-1)
if (_Uval < _Adjuster) {
return static_cast<_Uty>(_Uval + _Adjuster);
} else {
return static_cast<_Uty>(_Uval - _Adjuster);
}
} else { // _Ty is already unsigned, do nothing
return _Uval;
}
}
param_type _Par;
};
template <class _Elem, class _Traits, class _Ty>
basic_istream<_Elem, _Traits>& operator>>(basic_istream<_Elem, _Traits>& _Istr,
uniform_int<_Ty>& _Dist) { // read state from _Istr
return _Dist._Read(_Istr);
}
template <class _Elem, class _Traits, class _Ty>
basic_ostream<_Elem, _Traits>& operator<<(basic_ostream<_Elem, _Traits>& _Ostr,
const uniform_int<_Ty>& _Dist) { // write state to _Ostr
return _Dist._Write(_Ostr);
}
// CLASS TEMPLATE uniform_int_distribution
template <class _Ty = int>
class uniform_int_distribution : public uniform_int<_Ty> { // uniform integer distribution
public:
_RNG_REQUIRE_INTTYPE(uniform_int_distribution, _Ty);
using _Mybase = uniform_int<_Ty>;
using _Mypbase = typename _Mybase::param_type;
using result_type = typename _Mybase::result_type;
struct param_type : _Mypbase { // parameter package
using distribution_type = uniform_int_distribution;
param_type() : _Mypbase(0, (numeric_limits<_Ty>::max) ()) {}
explicit param_type(result_type _Min0, result_type _Max0 = (numeric_limits<_Ty>::max) ())
: _Mypbase(_Min0, _Max0) {}
param_type(const _Mypbase& _Right) : _Mypbase(_Right) {}
};
uniform_int_distribution() : _Mybase(0, (numeric_limits<_Ty>::max) ()) {}
explicit uniform_int_distribution(_Ty _Min0, _Ty _Max0 = (numeric_limits<_Ty>::max) ()) : _Mybase(_Min0, _Max0) {}
explicit uniform_int_distribution(const param_type& _Par0) : _Mybase(_Par0) {}
};
template <class _Ty>
_NODISCARD bool operator==(const uniform_int_distribution<_Ty>& _Left, const uniform_int_distribution<_Ty>& _Right) {
return _Left.param() == _Right.param();
}
template <class _Ty>
_NODISCARD bool operator!=(const uniform_int_distribution<_Ty>& _Left, const uniform_int_distribution<_Ty>& _Right) {
return !(_Left == _Right);
}
// CLASS bernoulli_distribution
class bernoulli_distribution { // class for bernoulli distribution
public:
using result_type = bool;
struct param_type { // parameter package
using distribution_type = bernoulli_distribution;
param_type() {
_Init(0.5);
}
explicit param_type(double _Px0) {
_Init(_Px0);
}
_NODISCARD bool operator==(const param_type& _Right) const {
return _Px == _Right._Px;
}
_NODISCARD bool operator!=(const param_type& _Right) const {
return !(*this == _Right);
}
_NODISCARD double p() const {
return _Px;
}
void _Init(double _Px0) { // set internal state
_STL_ASSERT(0.0 <= _Px0 && _Px0 <= 1.0, "invalid probability argument for bernoulli_distribution");
_Px = _Px0;
}
double _Px;
};
bernoulli_distribution() : _Par(0.5) {}
explicit bernoulli_distribution(double _Px0) : _Par(_Px0) {}
explicit bernoulli_distribution(const param_type& _Par0) : _Par(_Par0) {}
_NODISCARD double p() const {
return _Par.p();
}
_NODISCARD param_type param() const {
return _Par;
}
void param(const param_type& _Par0) { // set parameter package
_Par = _Par0;
}
_NODISCARD result_type(min)() const { // get smallest possible result
return false;
}
_NODISCARD result_type(max)() const { // get largest possible result
return true;
}
void reset() {} // clear internal state
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng) const {
return _Eval(_Eng, _Par);
}
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng, const param_type& _Par0) const {
return _Eval(_Eng, _Par0);
}
template <class _Elem, class _Traits>
basic_istream<_Elem, _Traits>& _Read(basic_istream<_Elem, _Traits>& _Istr) { // read state from _Istr
double _Px0;
_In(_Istr, _Px0);
_Par._Init(_Px0);
return _Istr;
}
template <class _Elem, class _Traits>
basic_ostream<_Elem, _Traits>& _Write(basic_ostream<_Elem, _Traits>& _Ostr) const { // write state to _Ostr
_Out(_Ostr, _Par._Px);
return _Ostr;
}
private:
template <class _Engine>
result_type _Eval(_Engine& _Eng, const param_type& _Par0) const {
return _NRAND(_Eng, double) < _Par0._Px;
}
param_type _Par;
};
_NODISCARD inline bool operator==(const bernoulli_distribution& _Left, const bernoulli_distribution& _Right) {
return _Left.param() == _Right.param();
}
_NODISCARD inline bool operator!=(const bernoulli_distribution& _Left, const bernoulli_distribution& _Right) {
return !(_Left == _Right);
}
template <class _Elem, class _Traits>
basic_istream<_Elem, _Traits>& operator>>(basic_istream<_Elem, _Traits>& _Istr,
bernoulli_distribution& _Dist) { // read state from _Istr
return _Dist._Read(_Istr);
}
template <class _Elem, class _Traits>
basic_ostream<_Elem, _Traits>& operator<<(basic_ostream<_Elem, _Traits>& _Ostr,
const bernoulli_distribution& _Dist) { // write state to _Ostr
return _Dist._Write(_Ostr);
}
// FUNCTION TEMPLATE _Float_upper_bound
// Returns smallest _Flt such that static_cast<_Ty>(_Result) > _Val.
// First truncate to largest _Flt <= _Val, then add ceil(ulp).
template <class _Flt, class _Ty>
_NODISCARD _Flt _Float_upper_bound(_Ty _Val) {
static_assert(is_unsigned_v<_Ty> && is_integral_v<_Ty> && is_floating_point_v<_Flt>,
"invalid template argument for _Float_upper_bound");
constexpr auto _Ty_digits = numeric_limits<_Ty>::digits;
constexpr auto _Flt_digits = numeric_limits<_Flt>::digits;
using _Ty_32or64 = conditional_t<_Ty_digits <= 32, uint32_t, uint64_t>;
if constexpr (_Ty_digits <= _Flt_digits) {
return static_cast<_Flt>(_Val) + _Flt{1};
} else {
#pragma warning(push)
#pragma warning(disable : 4146 4293) // unary minus of unsigned, negative shift
constexpr auto _Mask = static_cast<_Ty>(-1) << (_Ty_digits - _Flt_digits);
#ifdef _M_CEE_PURE
constexpr auto _Ty_32or64_digits = numeric_limits<_Ty_32or64>::digits;
const auto _Log_plus1 = _Ty_32or64_digits - _Countl_zero_fallback(static_cast<_Ty_32or64>(_Val | _Ty{1}));
#else // _M_CEE_PURE
const auto _Log_plus1 = _Bit_scan_reverse(static_cast<_Ty_32or64>(_Val | _Ty{1}));
#endif // _M_CEE_PURE
const auto _Shifted_mask = _Mask >> (_Ty_digits - _Log_plus1);
const auto _Ceil_ulp = _Shifted_mask & -_Shifted_mask;
_Val &= _Shifted_mask;
if (_Val == _Mask) {
// integer add would overflow
constexpr auto _Big_ulp = static_cast<_Flt>(_Mask & -_Mask);
return static_cast<_Flt>(_Val) + _Big_ulp;
} else {
return static_cast<_Flt>(_Val + _Ceil_ulp);
}
#pragma warning(pop)
}
}
// CLASS TEMPLATE geometric_distribution
template <class _Ty = int>
class geometric_distribution { // geometric distribution
public:
using _Ty1 = double;
using result_type = _Ty;
_RNG_REQUIRE_INTTYPE(geometric_distribution, _Ty);
struct param_type { // parameter package
using distribution_type = geometric_distribution;
param_type() {
_Init(_Ty1(0.5));
}
explicit param_type(_Ty1 _Px0) {
_Init(_Px0);
}
_NODISCARD bool operator==(const param_type& _Right) const {
return _Px == _Right._Px;
}
_NODISCARD bool operator!=(const param_type& _Right) const {
return !(*this == _Right);
}
_NODISCARD _Ty1 p() const {
return _Px;
}
void _Init(_Ty1 _Px0) { // initialize
_STL_ASSERT(0.0 < _Px0 && _Px0 < 1.0, "invalid probability argument for geometric_distribution");
_Px = _Px0;
_Log_1_p = _CSTD log(1 - _Px);
}
_Ty1 _Px;
_Ty1 _Log_1_p;
};
geometric_distribution() : _Par(_Ty1(0.5)) {}
explicit geometric_distribution(_Ty1 _Px0) : _Par(_Px0) {}
explicit geometric_distribution(const param_type& _Par0) : _Par(_Par0) {}
_NODISCARD _Ty1 p() const {
return _Par.p();
}
_NODISCARD param_type param() const {
return _Par;
}
void param(const param_type& _Par0) { // set parameter package
_Par = _Par0;
}
_NODISCARD result_type(min)() const { // get smallest possible result
return 0;
}
_NODISCARD result_type(max)() const { // get largest possible result
return (numeric_limits<result_type>::max) ();
}
void reset() {} // clear internal state
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng) const {
return _Eval(_Eng, _Par);
}
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng, const param_type& _Par0) const {
return _Eval(_Eng, _Par0);
}
template <class _Elem, class _Traits>
basic_istream<_Elem, _Traits>& _Read(basic_istream<_Elem, _Traits>& _Istr) { // read state from _Istr
_Ty1 _Px0;
_In(_Istr, _Px0);
_Par._Init(_Px0);
return _Istr;
}
template <class _Elem, class _Traits>
basic_ostream<_Elem, _Traits>& _Write(basic_ostream<_Elem, _Traits>& _Ostr) const { // write state to _Ostr
_Out(_Ostr, _Par._Px);
return _Ostr;
}
private:
template <class _Engine>
result_type _Eval(_Engine& _Eng, const param_type& _Par0) const {
using _Uty = make_unsigned_t<_Ty>;
constexpr auto _Ty_max{(numeric_limits<_Ty>::max) ()};
const auto _Ty1_max{_Float_upper_bound<_Ty1>(static_cast<_Uty>(_Ty_max))};
_Ty1 _Val;
do {
_Val = _CSTD log(_NRAND(_Eng, _Ty1)) / _Par0._Log_1_p;
} while (_Val >= _Ty1_max);
return static_cast<_Ty>(_Val);
}
param_type _Par;
};
template <class _Ty>
_NODISCARD bool operator==(const geometric_distribution<_Ty>& _Left, const geometric_distribution<_Ty>& _Right) {
return _Left.param() == _Right.param();
}
template <class _Ty>
_NODISCARD bool operator!=(const geometric_distribution<_Ty>& _Left, const geometric_distribution<_Ty>& _Right) {
return !(_Left == _Right);
}
template <class _Elem, class _Traits, class _Ty>
basic_istream<_Elem, _Traits>& operator>>(basic_istream<_Elem, _Traits>& _Istr,
geometric_distribution<_Ty>& _Dist) { // read state from _Istr
return _Dist._Read(_Istr);
}
template <class _Elem, class _Traits, class _Ty>
basic_ostream<_Elem, _Traits>& operator<<(basic_ostream<_Elem, _Traits>& _Ostr,
const geometric_distribution<_Ty>& _Dist) { // write state to _Ostr
return _Dist._Write(_Ostr);
}
// CLASS TEMPLATE poisson_distribution AND HELPER
template <class _Ty = int>
class _Small_poisson_distribution { // poisson distribution with small mean
public:
using _Ty1 = double;
template <class _Engine>
_NODISCARD _Ty operator()(_Engine& _Eng) const {
_Ty _Res;
_Ty1 _Val;
for (_Res = 0, _Val = 1.0;; ++_Res) { // count repetitions
_Val *= _NRAND(_Eng, _Ty1);
if (_Val <= _Gx0) {
break;
}
}
return _Res;
}
void _Init(const _Ty1& _Mean0) { // set internal state
_Gx0 = _CSTD exp(-_Mean0);
}
private:
_Ty1 _Gx0;
};
template <class _Ty = int>
class poisson_distribution { // poisson distribution
public:
using _Ty1 = double;
using result_type = _Ty;
_RNG_REQUIRE_INTTYPE(poisson_distribution, _Ty);
struct param_type { // parameter package
using distribution_type = poisson_distribution;
param_type() {
_Init(_Ty1(1));
}
explicit param_type(_Ty1 _Mean0) {
_Init(_Mean0);
}
_NODISCARD bool operator==(const param_type& _Right) const {
return _Mean == _Right._Mean;
}
_NODISCARD bool operator!=(const param_type& _Right) const {
return !(*this == _Right);
}
_NODISCARD _Ty1 mean() const {
return _Mean;
}
void _Init(_Ty1 _Mean0) { // set internal state
_STL_ASSERT(0.0 < _Mean0, "invalid mean argument for poisson_distribution");
_Mean = _Mean0;
_Sqrt = _CSTD sqrt(2.0 * _Mean0);
_Logm = _CSTD log(_Mean0);
_Gx1 = _Mean0 * _Logm - _XLgamma(_Mean0 + 1.0);
_Small._Init(_Mean0);
}
_Ty1 _Mean;
_Ty1 _Sqrt;
_Ty1 _Logm;
_Ty1 _Gx1;
_Small_poisson_distribution<_Ty> _Small;
};
poisson_distribution() : _Par(_Ty1(1)) {}
explicit poisson_distribution(_Ty1 _Mean0) : _Par(_Mean0) {}
explicit poisson_distribution(const param_type& _Par0) : _Par(_Par0) {}
_NODISCARD _Ty1 mean() const {
return _Par.mean();
}
_NODISCARD param_type param() const {
return _Par;
}
void param(const param_type& _Par0) { // set parameter package
_Par = _Par0;
}
_NODISCARD result_type(min)() const { // get smallest possible result
return 0;
}
_NODISCARD result_type(max)() const { // get largest possible result
return (numeric_limits<result_type>::max) ();
}
void reset() {} // clear internal state
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng) const {
return _Eval(_Eng, _Par);
}
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng, const param_type& _Par0) const {
return _Eval(_Eng, _Par0);
}
template <class _Elem, class _Traits>
basic_istream<_Elem, _Traits>& _Read(basic_istream<_Elem, _Traits>& _Istr) { // read state from _Istr
_Ty1 _Mean0;
_In(_Istr, _Mean0);
_Par._Init(_Mean0);
return _Istr;
}
template <class _Elem, class _Traits>
basic_ostream<_Elem, _Traits>& _Write(basic_ostream<_Elem, _Traits>& _Ostr) const { // write state to _Ostr
_Out(_Ostr, _Par._Mean);
return _Ostr;
}
private:
template <class _Engine>
result_type _Eval(_Engine& _Eng, const param_type& _Par0) const {
if (_Par0._Mean < 12.0) {
return _Par0._Small(_Eng);
}
for (;;) { // generate and reject
using _Uty = make_unsigned_t<_Ty>;
constexpr auto _Ty_max{(numeric_limits<_Ty>::max) ()};
const auto _Ty1_max{_Float_upper_bound<_Ty1>(static_cast<_Uty>(_Ty_max))};
_Ty _Res;
_Ty1 _Yx;
for (;;) { // generate a tentative value
_Yx = static_cast<_Ty1>(_CSTD tan(_Pi * _NRAND(_Eng, _Ty1)));
const _Ty1 _Mx{_Par0._Sqrt * _Yx + _Par0._Mean};
if (0.0 <= _Mx && _Mx < _Ty1_max) {
_Res = static_cast<_Ty>(_Mx);
break;
}
}
if (_NRAND(_Eng, _Ty1)
<= 0.9 * (1.0 + _Yx * _Yx) * _CSTD exp(_Res * _Par0._Logm - _XLgamma(_Res + 1.0) - _Par0._Gx1)) {
return _Res;
}
}
}
param_type _Par;
};
template <class _Ty>
_NODISCARD bool operator==(const poisson_distribution<_Ty>& _Left, const poisson_distribution<_Ty>& _Right) {
return _Left.param() == _Right.param();
}
template <class _Ty>
_NODISCARD bool operator!=(const poisson_distribution<_Ty>& _Left, const poisson_distribution<_Ty>& _Right) {
return !(_Left == _Right);
}
template <class _Elem, class _Traits, class _Ty>
basic_istream<_Elem, _Traits>& operator>>(basic_istream<_Elem, _Traits>& _Istr,
poisson_distribution<_Ty>& _Dist) { // read state from _Istr
return _Dist._Read(_Istr);
}
template <class _Elem, class _Traits, class _Ty>
basic_ostream<_Elem, _Traits>& operator<<(basic_ostream<_Elem, _Traits>& _Ostr,
const poisson_distribution<_Ty>& _Dist) { // write state to _Ostr
return _Dist._Write(_Ostr);
}
// CLASS TEMPLATE binomial_distribution
template <class _Ty = int>
class binomial_distribution { // binomial distribution
public:
using _Ty1 = double;
using result_type = _Ty;
_RNG_REQUIRE_INTTYPE(binomial_distribution, _Ty);
struct param_type { // parameter package
using distribution_type = binomial_distribution;
param_type() {
_Init(1, _Ty1(0.5));
}
explicit param_type(_Ty _Tx0, _Ty1 _Px0 = _Ty1(0.5)) {
_Init(_Tx0, _Px0);
}
_NODISCARD bool operator==(const param_type& _Right) const {
return _Tx == _Right._Tx && _Px == _Right._Px;
}
_NODISCARD bool operator!=(const param_type& _Right) const {
return !(*this == _Right);
}
_NODISCARD _Ty t() const {
return _Tx;
}
_NODISCARD _Ty1 p() const {
return _Px;
}
void _Init(_Ty _Tx0, _Ty1 _Px0) { // initialize
_STL_ASSERT(0.0 <= _Tx0, "invalid max argument for binomial_distribution");
_STL_ASSERT(0.0 <= _Px0 && _Px0 <= 1.0, "invalid probability argument for binomial_distribution");
_Tx = _Tx0;
_Px = _Px0;
_Pp = _Px < 0.5 ? _Px : (1.0 - _Px);
_Mean = _Tx * _Pp;
_Gx1 = _XLgamma(_Tx + 1.0);
_Sqrt = _CSTD sqrt(2 * _Mean * (1 - _Pp));
_Logp = _CSTD log(_Pp);
_Logp1 = _CSTD log(1.0 - _Pp);
_Small._Init(_Mean);
}
_Ty _Tx;
_Ty1 _Px;
_Ty1 _Pp;
_Ty1 _Mean;
_Ty1 _Gx1;
_Ty1 _Sqrt;
_Ty1 _Logp;
_Ty1 _Logp1;
_Small_poisson_distribution<_Ty> _Small; // TRANSITION, ABI: unused
};
binomial_distribution() : _Par(1, _Ty1(0.5)) {}
explicit binomial_distribution(_Ty _Tx0, _Ty1 _Px0 = _Ty1(0.5)) : _Par(_Tx0, _Px0) {}
explicit binomial_distribution(const param_type& _Par0) : _Par(_Par0) {}
_NODISCARD _Ty t() const {
return _Par.t();
}
_NODISCARD _Ty1 p() const {
return _Par.p();
}
_NODISCARD param_type param() const {
return _Par;
}
void param(const param_type& _Par0) { // set parameter package
_Par = _Par0;
}
_NODISCARD result_type(min)() const { // get smallest possible result
return 0;
}
_NODISCARD result_type(max)() const { // get largest possible result
return _Par.t();
}
void reset() {} // clear internal state
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng) const {
return _Eval(_Eng, _Par);
}
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng, const param_type& _Par0) const {
return _Eval(_Eng, _Par0);
}
template <class _Elem, class _Traits>
basic_istream<_Elem, _Traits>& _Read(basic_istream<_Elem, _Traits>& _Istr) { // read state from _Istr
_Ty _Tx0;
_Ty1 _Px0;
_In(_Istr, _Px0);
_In(_Istr, _Tx0);
_Par._Init(_Tx0, _Px0);
return _Istr;
}
template <class _Elem, class _Traits>
basic_ostream<_Elem, _Traits>& _Write(basic_ostream<_Elem, _Traits>& _Ostr) const { // write state to _Ostr
_Out(_Ostr, _Par._Px);
_Out(_Ostr, _Par._Tx);
return _Ostr;
}
private:
template <class _Engine>
result_type _Eval(
_Engine& _Eng, const param_type& _Par0) const { // Press et al., Numerical Recipes in C, 2nd ed., pp 295-296.
_Ty _Res;
if (_Par0._Tx < 25) { // generate directly
_Res = 0;
for (_Ty _Ix = 0; _Ix < _Par0._Tx; ++_Ix) {
if (_NRAND(_Eng, _Ty1) < _Par0._Px) {
++_Res;
}
}
return _Res;
} else if (_Par0._Mean < 1.0) {
// Events are rare, use waiting time method (Luc Devroye, Non-Uniform Random Variate Generation, p. 525).
const _Ty1 _Rand = _NRAND(_Eng, _Ty1);
// The exit condition is log(1 - _Rand)/t < log(1-p), which is equivalent to _Rand > 1 - (1-p)^t. If
// we have a cheap upper bound for 1-(1-p)^t, we can exit early without having to call log. We use two
// such bounds, one that is tight for mean ~0 and another for mean ~1. In the first case, Bernoulli's
// inequality gives -1+p*t >= -(1-p)^t, so 1 - (1-p)^t <= p*t = mean. For the other bound, 1-(1-p)^t =
// 1-(1-p)(1-mean/t)^(t-1) <= 1-(1-p)(1-1/t)^(t-1) <= 1-(1-p)/e.
const _Ty1 _Ub =
(_STD min) (_Par0._Mean, _Ty1{3.678794411714423216e-1} * _Par0._Pp + _Ty1{6.32120558828557678e-1});
if (_Rand > _Ub) {
_Res = _Ty{0};
} else {
_Ty _Denom = _Par0._Tx;
_Ty1 _Sum = _CSTD log(_Ty1{1.0} - _Rand) / _Denom;
while (_Sum >= _Par0._Logp1 && --_Denom != 0) {
_Sum += _CSTD log(_Ty1{1.0} - _NRAND(_Eng, _Ty1)) / _Denom;
}
_Res = static_cast<_Ty>(_Par0._Tx - _Denom);
}
} else { // no shortcuts
using _Uty = make_unsigned_t<_Ty>;
const auto _Ty1_Tx{_Float_upper_bound<_Ty1>(static_cast<_Uty>(_Par0._Tx))};
for (;;) { // generate and reject
_Ty1 _Yx;
for (;;) { // generate a tentative value
_Yx = static_cast<_Ty1>(_CSTD tan(_Pi * _NRAND(_Eng, _Ty1)));
const _Ty1 _Mx{_Par0._Sqrt * _Yx + _Par0._Mean};
if (0.0 <= _Mx && _Mx < _Ty1_Tx) {
_Res = static_cast<_Ty>(_Mx);
break;
}
}
if (_NRAND(_Eng, _Ty1)
<= 1.2 * _Par0._Sqrt * (1.0 + _Yx * _Yx)
* _CSTD exp(_Par0._Gx1 - _XLgamma(_Res + 1.0) - _XLgamma(_Par0._Tx - _Res + 1.0)
+ _Res * _Par0._Logp + (_Par0._Tx - _Res) * _Par0._Logp1)) {
break;
}
}
}
return _Par0._Px == _Par0._Pp ? _Res : static_cast<_Ty>(_Par0._Tx - _Res);
}
param_type _Par;
};
template <class _Ty>
_NODISCARD bool operator==(const binomial_distribution<_Ty>& _Left, const binomial_distribution<_Ty>& _Right) {
return _Left.param() == _Right.param();
}
template <class _Ty>
_NODISCARD bool operator!=(const binomial_distribution<_Ty>& _Left, const binomial_distribution<_Ty>& _Right) {
return !(_Left == _Right);
}
template <class _Elem, class _Traits, class _Ty>
basic_istream<_Elem, _Traits>& operator>>(basic_istream<_Elem, _Traits>& _Istr,
binomial_distribution<_Ty>& _Dist) { // read state from _Istr
return _Dist._Read(_Istr);
}
template <class _Elem, class _Traits, class _Ty>
basic_ostream<_Elem, _Traits>& operator<<(basic_ostream<_Elem, _Traits>& _Ostr,
const binomial_distribution<_Ty>& _Dist) { // write state to _Ostr
return _Dist._Write(_Ostr);
}
// CLASS TEMPLATE uniform_real
template <class _Ty = double>
class uniform_real { // uniform real distribution
public:
using result_type = _Ty;
struct param_type { // parameter package
using distribution_type = uniform_real;
param_type() {
_Init(_Ty{0}, _Ty{1});
}
explicit param_type(_Ty _Min0, _Ty _Max0 = _Ty{1}) {
_Init(_Min0, _Max0);
}
_NODISCARD bool operator==(const param_type& _Right) const {
return _Min == _Right._Min && _Max == _Right._Max;
}
_NODISCARD bool operator!=(const param_type& _Right) const {
return !(*this == _Right);
}
_NODISCARD result_type a() const {
return _Min;
}
_NODISCARD result_type b() const {
return _Max;
}
void _Init(_Ty _Min0, _Ty _Max0) { // set internal state
_STL_ASSERT(_Min0 <= _Max0 && (0 <= _Min0 || _Max0 <= _Min0 + (numeric_limits<_Ty>::max) ()),
"invalid min and max arguments for uniform_real");
_Min = _Min0;
_Max = _Max0;
}
result_type _Min;
result_type _Max;
};
uniform_real() : _Par(_Ty{0}, _Ty{1}) {}
explicit uniform_real(_Ty _Min0, _Ty _Max0 = _Ty{1}) : _Par(_Min0, _Max0) {}
explicit uniform_real(const param_type& _Par0) : _Par(_Par0) {}
_NODISCARD result_type a() const {
return _Par.a();
}
_NODISCARD result_type b() const {
return _Par.b();
}
_NODISCARD param_type param() const {
return _Par;
}
void param(const param_type& _Par0) { // set parameter package
_Par = _Par0;
}
_NODISCARD result_type(min)() const {
return _Par._Min;
}
_NODISCARD result_type(max)() const {
return _Par._Max;
}
void reset() {} // clear internal state
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng) const {
return _Eval(_Eng, _Par);
}
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng, const param_type& _Par0) const {
return _Eval(_Eng, _Par0);
}
template <class _Elem, class _Traits>
basic_istream<_Elem, _Traits>& _Read(basic_istream<_Elem, _Traits>& _Istr) { // read state from _Istr
_Ty _Min0;
_Ty _Max0;
_In(_Istr, _Min0);
_In(_Istr, _Max0);
_Par._Init(_Min0, _Max0);
return _Istr;
}
template <class _Elem, class _Traits>
basic_ostream<_Elem, _Traits>& _Write(basic_ostream<_Elem, _Traits>& _Ostr) const { // write state to _Ostr
_Out(_Ostr, _Par._Min);
_Out(_Ostr, _Par._Max);
return _Ostr;
}
private:
template <class _Engine>
result_type _Eval(_Engine& _Eng, const param_type& _Par0) const {
return _NRAND(_Eng, _Ty) * (_Par0._Max - _Par0._Min) + _Par0._Min;
}
param_type _Par;
};
template <class _Elem, class _Traits, class _Ty>
basic_istream<_Elem, _Traits>& operator>>(basic_istream<_Elem, _Traits>& _Istr,
uniform_real<_Ty>& _Dist) { // read state from _Istr
return _Dist._Read(_Istr);
}
template <class _Elem, class _Traits, class _Ty>
basic_ostream<_Elem, _Traits>& operator<<(basic_ostream<_Elem, _Traits>& _Ostr,
const uniform_real<_Ty>& _Dist) { // write state to _Ostr
return _Dist._Write(_Ostr);
}
// CLASS TEMPLATE uniform_real_distribution
template <class _Ty = double>
class uniform_real_distribution : public uniform_real<_Ty> { // uniform real distribution
public:
_RNG_REQUIRE_REALTYPE(uniform_real_distribution, _Ty);
using _Mybase = uniform_real<_Ty>;
using _Mypbase = typename _Mybase::param_type;
using result_type = typename _Mybase::result_type;
struct param_type : _Mypbase { // parameter package
using distribution_type = uniform_real_distribution;
param_type() : _Mypbase(_Ty{0}, _Ty{1}) {}
explicit param_type(_Ty _Min0, _Ty _Max0 = _Ty{1}) : _Mypbase(_Min0, _Max0) {}
param_type(const _Mypbase& _Right) : _Mypbase(_Right) {}
};
uniform_real_distribution() : _Mybase(_Ty{0}, _Ty{1}) {}
explicit uniform_real_distribution(_Ty _Min0, _Ty _Max0 = _Ty{1}) : _Mybase(_Min0, _Max0) {}
explicit uniform_real_distribution(const param_type& _Par0) : _Mybase(_Par0) {}
};
template <class _Ty>
_NODISCARD bool operator==(const uniform_real_distribution<_Ty>& _Left, const uniform_real_distribution<_Ty>& _Right) {
return _Left.param() == _Right.param();
}
template <class _Ty>
_NODISCARD bool operator!=(const uniform_real_distribution<_Ty>& _Left, const uniform_real_distribution<_Ty>& _Right) {
return !(_Left == _Right);
}
// CLASS TEMPLATE exponential_distribution
template <class _Ty = double>
class exponential_distribution { // exponential distribution
public:
_RNG_REQUIRE_REALTYPE(exponential_distribution, _Ty);
using result_type = _Ty;
struct param_type { // parameter package
using distribution_type = exponential_distribution;
param_type() {
_Init(_Ty{1});
}
explicit param_type(_Ty _Lambda0) {
_Init(_Lambda0);
}
_NODISCARD bool operator==(const param_type& _Right) const {
return _Lambda == _Right._Lambda;
}
_NODISCARD bool operator!=(const param_type& _Right) const {
return !(*this == _Right);
}
_NODISCARD _Ty lambda() const {
return _Lambda;
}
void _Init(_Ty _Lambda0) { // set internal state
_STL_ASSERT(0.0 < _Lambda0, "invalid lambda argument for exponential_distribution");
_Lambda = _Lambda0;
}
_Ty _Lambda;
};
exponential_distribution() : _Par(_Ty{1}) {}
explicit exponential_distribution(_Ty _Lambda0) : _Par(_Lambda0) {}
explicit exponential_distribution(const param_type& _Par0) : _Par(_Par0) {}
_NODISCARD _Ty lambda() const {
return _Par.lambda();
}
_NODISCARD param_type param() const {
return _Par;
}
void param(const param_type& _Par0) { // set parameter package
_Par = _Par0;
}
_NODISCARD result_type(min)() const { // get smallest possible result
return 0;
}
_NODISCARD result_type(max)() const { // get largest possible result
return numeric_limits<result_type>::infinity();
}
void reset() {} // clear internal state
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng) const {
return _Eval(_Eng, _Par);
}
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng, const param_type& _Par0) const {
return _Eval(_Eng, _Par0);
}
template <class _Elem, class _Traits>
basic_istream<_Elem, _Traits>& _Read(basic_istream<_Elem, _Traits>& _Istr) { // read state from _Istr
_Ty _Lambda0;
_In(_Istr, _Lambda0);
_Par._Init(_Lambda0);
return _Istr;
}
template <class _Elem, class _Traits>
basic_ostream<_Elem, _Traits>& _Write(basic_ostream<_Elem, _Traits>& _Ostr) const { // write state to _Ostr
_Out(_Ostr, _Par._Lambda);
return _Ostr;
}
private:
template <class _Engine>
result_type _Eval(_Engine& _Eng, const param_type& _Par0) const {
return -_CSTD log(_Ty{1} - _NRAND(_Eng, _Ty)) / _Par0._Lambda;
}
param_type _Par;
};
template <class _Ty>
_NODISCARD bool operator==(const exponential_distribution<_Ty>& _Left, const exponential_distribution<_Ty>& _Right) {
return _Left.param() == _Right.param();
}
template <class _Ty>
_NODISCARD bool operator!=(const exponential_distribution<_Ty>& _Left, const exponential_distribution<_Ty>& _Right) {
return !(_Left == _Right);
}
template <class _Elem, class _Traits, class _Ty>
basic_istream<_Elem, _Traits>& operator>>(basic_istream<_Elem, _Traits>& _Istr,
exponential_distribution<_Ty>& _Dist) { // read state from _Istr
return _Dist._Read(_Istr);
}
template <class _Elem, class _Traits, class _Ty>
basic_ostream<_Elem, _Traits>& operator<<(basic_ostream<_Elem, _Traits>& _Ostr,
const exponential_distribution<_Ty>& _Dist) { // write state to _Ostr
return _Dist._Write(_Ostr);
}
// CLASS TEMPLATE normal_distribution
template <class _Ty = double>
class normal_distribution { // normal distribution
public:
_RNG_REQUIRE_REALTYPE(normal_distribution, _Ty);
using result_type = _Ty;
struct param_type { // parameter package
using distribution_type = normal_distribution;
param_type() {
_Init(0.0, 1.0);
}
explicit param_type(_Ty _Mean0, _Ty _Sigma0 = 1.0) {
_Init(_Mean0, _Sigma0);
}
_NODISCARD bool operator==(const param_type& _Right) const {
return _Mean == _Right._Mean && _Sigma == _Right._Sigma;
}
_NODISCARD bool operator!=(const param_type& _Right) const {
return !(*this == _Right);
}
_NODISCARD _Ty mean() const {
return _Mean;
}
_NODISCARD _Ty sigma() const {
return _Sigma;
}
_NODISCARD _Ty stddev() const {
return _Sigma;
}
void _Init(_Ty _Mean0, _Ty _Sigma0) { // set internal state
_STL_ASSERT(0.0 < _Sigma0, "invalid sigma argument for normal_distribution");
_Mean = _Mean0;
_Sigma = _Sigma0;
}
_Ty _Mean;
_Ty _Sigma;
};
normal_distribution() : _Par(0.0, 1.0), _Valid(false), _Xx2(0) {}
explicit normal_distribution(_Ty _Mean0, _Ty _Sigma0 = 1.0) : _Par(_Mean0, _Sigma0), _Valid(false), _Xx2(0) {}
explicit normal_distribution(const param_type& _Par0) : _Par(_Par0), _Valid(false), _Xx2(0) {}
_NODISCARD _Ty mean() const {
return _Par.mean();
}
_NODISCARD _Ty sigma() const {
return _Par.sigma();
}
_NODISCARD _Ty stddev() const {
return _Par.sigma();
}
_NODISCARD param_type param() const {
return _Par;
}
void param(const param_type& _Par0) { // set parameter package
_Par = _Par0;
reset();
}
_NODISCARD result_type(min)() const { // get smallest possible result
return -numeric_limits<result_type>::infinity();
}
_NODISCARD result_type(max)() const { // get largest possible result
return numeric_limits<result_type>::infinity();
}
void reset() { // clear internal state
_Valid = false;
}
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng) {
return _Eval(_Eng, _Par);
}
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng, const param_type& _Par0) {
reset();
return _Eval(_Eng, _Par0, false);
}
template <class _Elem, class _Traits>
basic_istream<_Elem, _Traits>& _Read(basic_istream<_Elem, _Traits>& _Istr) { // read state from _Istr
_Ty _Mean0;
_Ty _Sigma0;
_In(_Istr, _Mean0);
_In(_Istr, _Sigma0);
_Par._Init(_Mean0, _Sigma0);
_Istr >> _Valid;
_In(_Istr, _Xx2);
return _Istr;
}
template <class _Elem, class _Traits>
basic_ostream<_Elem, _Traits>& _Write(basic_ostream<_Elem, _Traits>& _Ostr) const { // write state to _Ostr
_Out(_Ostr, _Par._Mean);
_Out(_Ostr, _Par._Sigma);
_Ostr << ' ' << _Valid;
_Out(_Ostr, _Xx2);
return _Ostr;
}
private:
template <class _Engine>
result_type _Eval(_Engine& _Eng, const param_type& _Par0,
bool _Keep = true) { // compute next value
// Knuth, vol. 2, p. 122, alg. P
_Ty _Res;
if (_Keep && _Valid) {
_Res = _Xx2;
_Valid = false;
} else { // generate two values, store one, return one
_Ty _Vx1;
_Ty _Vx2;
_Ty _Sx;
for (;;) { // reject bad values to avoid generating NaN/Inf on the next calculations
_Vx1 = 2 * _NRAND(_Eng, _Ty) - 1;
_Vx2 = 2 * _NRAND(_Eng, _Ty) - 1;
_Sx = _Vx1 * _Vx1 + _Vx2 * _Vx2;
if (_Sx < _Ty{1} && _Vx1 != _Ty{0} && _Vx2 != _Ty{0}) {
// good values!
break;
}
}
_Ty _LogSx;
if (_Sx > _Ty{1e-4}) {
_LogSx = _STD log(_Sx);
} else {
// Bad _Sx value! Very small values will overflow log(_Sx) / _Sx.
// Generate a new value based on scaling method.
const _Ty _Ln2{_Ty{0.69314718055994530941723212145818}};
const _Ty _Maxabs{(_STD max) (_STD abs(_Vx1), _STD abs(_Vx2))};
const int _ExpMax{_STD ilogb(_Maxabs)};
_Vx1 = _STD scalbn(_Vx1, -_ExpMax);
_Vx2 = _STD scalbn(_Vx2, -_ExpMax);
_Sx = _Vx1 * _Vx1 + _Vx2 * _Vx2;
_LogSx = _STD log(_Sx) + static_cast<_Ty>(_ExpMax) * (_Ln2 * 2);
}
const auto _Fx = _Ty{_STD sqrt(_Ty{-2} * _LogSx / _Sx)};
if (_Keep) { // save second value for next call
_Xx2 = _Fx * _Vx2;
_Valid = true;
}
_Res = _Fx * _Vx1;
}
return _Res * _Par0._Sigma + _Par0._Mean;
}
param_type _Par;
bool _Valid;
_Ty _Xx2;
};
template <class _Ty>
_NODISCARD bool operator==(const normal_distribution<_Ty>& _Left, const normal_distribution<_Ty>& _Right) {
return _Left.param() == _Right.param();
}
template <class _Ty>
_NODISCARD bool operator!=(const normal_distribution<_Ty>& _Left, const normal_distribution<_Ty>& _Right) {
return !(_Left == _Right);
}
template <class _Elem, class _Traits, class _Ty>
basic_istream<_Elem, _Traits>& operator>>(basic_istream<_Elem, _Traits>& _Istr,
normal_distribution<_Ty>& _Dist) { // read state from _Istr
return _Dist._Read(_Istr);
}
template <class _Elem, class _Traits, class _Ty>
basic_ostream<_Elem, _Traits>& operator<<(basic_ostream<_Elem, _Traits>& _Ostr,
const normal_distribution<_Ty>& _Dist) { // write state to _Ostr
return _Dist._Write(_Ostr);
}
// CLASS TEMPLATE gamma_distribution
template <class _Ty = double>
class gamma_distribution { // gamma distribution
public:
_RNG_REQUIRE_REALTYPE(gamma_distribution, _Ty);
using result_type = _Ty;
struct param_type { // parameter package
using distribution_type = gamma_distribution;
param_type() {
_Init(_Ty{1}, _Ty{1});
}
explicit param_type(_Ty _Alpha0, _Ty _Beta0 = _Ty{1}) {
_Init(_Alpha0, _Beta0);
}
_NODISCARD bool operator==(const param_type& _Right) const {
return _Alpha == _Right._Alpha && _Beta == _Right._Beta;
}
_NODISCARD bool operator!=(const param_type& _Right) const {
return !(*this == _Right);
}
_NODISCARD _Ty alpha() const {
return _Alpha;
}
_NODISCARD _Ty beta() const {
return _Beta;
}
void _Init(_Ty _Alpha0, _Ty _Beta0) { // initialize
_STL_ASSERT(0.0 < _Alpha0, "invalid alpha argument for gamma_distribution");
_STL_ASSERT(0.0 < _Beta0, "invalid beta argument for gamma_distribution");
_Alpha = _Alpha0;
_Beta = _Beta0;
_Px = static_cast<_Ty>(_Exp1 / (_Alpha + _Exp1));
_Sqrt = _CSTD sqrt(2 * _Alpha - 1);
}
_Ty _Alpha;
_Ty _Beta;
_Ty _Px;
_Ty _Sqrt;
exponential_distribution<_Ty> _Exp;
};
gamma_distribution() : _Par(_Ty{1}, _Ty{1}) {}
explicit gamma_distribution(_Ty _Alpha0, _Ty _Beta0 = _Ty{1}) : _Par(_Alpha0, _Beta0) {}
explicit gamma_distribution(const param_type& _Par0) : _Par(_Par0) {}
_NODISCARD _Ty alpha() const {
return _Par.alpha();
}
_NODISCARD _Ty beta() const {
return _Par.beta();
}
_NODISCARD param_type param() const {
return _Par;
}
void param(const param_type& _Par0) { // set parameter package
_Par = _Par0;
}
_NODISCARD result_type(min)() const { // get smallest possible result
return result_type{0.0};
}
_NODISCARD result_type(max)() const { // get largest possible result
return numeric_limits<result_type>::infinity();
}
void reset() {} // clear internal state
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng) const {
return _Eval(_Eng, _Par);
}
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng, const param_type& _Par0) const {
return _Eval(_Eng, _Par0);
}
template <class _Elem, class _Traits>
basic_istream<_Elem, _Traits>& _Read(basic_istream<_Elem, _Traits>& _Istr) { // read state from _Istr
_Ty _Alpha0;
_Ty _Beta0;
_In(_Istr, _Alpha0);
_In(_Istr, _Beta0);
_Par._Init(_Alpha0, _Beta0);
return _Istr;
}
template <class _Elem, class _Traits>
basic_ostream<_Elem, _Traits>& _Write(basic_ostream<_Elem, _Traits>& _Ostr) const { // write state to _Ostr
_Out(_Ostr, _Par._Alpha);
_Out(_Ostr, _Par._Beta);
return _Ostr;
}
private:
template <class _Engine>
result_type _Eval(_Engine& _Eng, param_type _Par0) const {
_Ty _Ux;
_Ty _Vx;
_Ty _Xx;
_Ty _Yx;
_Ty _Qx;
int _Count;
if (_Par0._Alpha < 1) { // small values of alpha
// from Knuth
for (;;) { // generate and reject
_Ux = _NRAND(_Eng, _Ty);
do {
_Vx = _NRAND(_Eng, _Ty);
} while (_Vx == 0);
if (_Ux < _Par0._Px) { // small _Ux
_Xx = _CSTD pow(_Vx, _Ty{1} / _Par0._Alpha);
_Qx = _CSTD exp(-_Xx);
} else { // large _Ux
_Xx = 1 - _CSTD log(_Vx);
_Qx = _CSTD pow(_Xx, _Par0._Alpha - 1);
}
if (_NRAND(_Eng, _Ty) < _Qx) {
return _Par0._Beta * _Xx;
}
}
}
if (_Par0._Alpha == 1) {
return _Par0._Beta * _Par0._Exp(_Eng);
}
if (_Par0._Alpha < 20.0 && (_Count = static_cast<int>(_Par0._Alpha)) == _Par0._Alpha) {
// _Alpha is small integer, compute directly
_Yx = _NRAND(_Eng, _Ty);
while (--_Count) { // adjust result
do {
_Ux = _NRAND(_Eng, _Ty);
} while (_Ux == 0);
_Yx *= _Ux;
}
return _Par0._Beta * -_CSTD log(_Yx);
}
// no shortcuts
for (;;) { // generate and reject
_Yx = static_cast<_Ty>(_CSTD tan(_Pi * _NRAND(_Eng, _Ty)));
_Xx = _Par0._Sqrt * _Yx + _Par0._Alpha - 1;
if (0 < _Xx
&& _NRAND(_Eng, _Ty) <= (1 + _Yx * _Yx)
* _CSTD exp((_Par0._Alpha - 1) * _CSTD log(_Xx / (_Par0._Alpha - 1))
- _Par0._Sqrt * _Yx)) {
return _Par0._Beta * _Xx;
}
}
}
param_type _Par;
};
template <class _Ty>
_NODISCARD bool operator==(const gamma_distribution<_Ty>& _Left, const gamma_distribution<_Ty>& _Right) {
return _Left.param() == _Right.param();
}
template <class _Ty>
_NODISCARD bool operator!=(const gamma_distribution<_Ty>& _Left, const gamma_distribution<_Ty>& _Right) {
return !(_Left == _Right);
}
template <class _Elem, class _Traits, class _Ty>
basic_istream<_Elem, _Traits>& operator>>(basic_istream<_Elem, _Traits>& _Istr,
gamma_distribution<_Ty>& _Dist) { // read state from _Istr
return _Dist._Read(_Istr);
}
template <class _Elem, class _Traits, class _Ty>
basic_ostream<_Elem, _Traits>& operator<<(basic_ostream<_Elem, _Traits>& _Ostr,
const gamma_distribution<_Ty>& _Dist) { // write state to _Ostr
return _Dist._Write(_Ostr);
}
// CLASS TEMPLATE weibull_distribution
template <class _Ty = double>
class weibull_distribution { // weibull distribution
public:
_RNG_REQUIRE_REALTYPE(weibull_distribution, _Ty);
using result_type = _Ty;
struct param_type { // parameter package
using distribution_type = weibull_distribution;
param_type() {
_Init(_Ty{1}, _Ty{1});
}
explicit param_type(_Ty _Ax0, _Ty _Bx0 = _Ty{1}) {
_Init(_Ax0, _Bx0);
}
_NODISCARD bool operator==(const param_type& _Right) const {
return _Ax == _Right._Ax && _Bx == _Right._Bx;
}
_NODISCARD bool operator!=(const param_type& _Right) const {
return !(*this == _Right);
}
_NODISCARD _Ty a() const {
return _Ax;
}
_NODISCARD _Ty b() const {
return _Bx;
}
void _Init(_Ty _Ax0, _Ty _Bx0) { // initialize
_STL_ASSERT(0.0 < _Ax0, "invalid a argument for weibull_distribution");
_STL_ASSERT(0.0 < _Bx0, "invalid b argument for weibull_distribution");
_Ax = _Ax0;
_Bx = _Bx0;
}
_Ty _Ax;
_Ty _Bx;
};
weibull_distribution() : _Par(_Ty{1}, _Ty{1}) {}
explicit weibull_distribution(_Ty _Ax0, _Ty _Bx0 = _Ty{1}) : _Par(_Ax0, _Bx0) {}
explicit weibull_distribution(const param_type& _Par0) : _Par(_Par0) {}
_NODISCARD _Ty a() const {
return _Par.a();
}
_NODISCARD _Ty b() const {
return _Par.b();
}
_NODISCARD param_type param() const {
return _Par;
}
void param(const param_type& _Par0) { // set parameter package
_Par = _Par0;
}
_NODISCARD result_type(min)() const { // get smallest possible result
return 0;
}
_NODISCARD result_type(max)() const { // get largest possible result
return numeric_limits<result_type>::infinity();
}
void reset() {} // clear internal state
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng) const {
return _Eval(_Eng, _Par);
}
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng, const param_type& _Par0) const {
return _Eval(_Eng, _Par0);
}
template <class _Elem, class _Traits>
basic_istream<_Elem, _Traits>& _Read(basic_istream<_Elem, _Traits>& _Istr) { // read state from _Istr
_Ty _Ax0;
_Ty _Bx0;
_In(_Istr, _Ax0);
_In(_Istr, _Bx0);
_Par._Init(_Ax0, _Bx0);
return _Istr;
}
template <class _Elem, class _Traits>
basic_ostream<_Elem, _Traits>& _Write(basic_ostream<_Elem, _Traits>& _Ostr) const { // write state to _Ostr
_Out(_Ostr, _Par._Ax);
_Out(_Ostr, _Par._Bx);
return _Ostr;
}
private:
template <class _Engine>
result_type _Eval(_Engine& _Eng, const param_type& _Par0) const { // generate pseudo-random value
_Ty _Px = (_Ty{1} - _NRAND(_Eng, _Ty));
return _Par0._Bx * _CSTD pow(-_CSTD log(_Px), _Ty{1} / _Par0._Ax);
}
param_type _Par;
};
template <class _Ty>
_NODISCARD bool operator==(const weibull_distribution<_Ty>& _Left, const weibull_distribution<_Ty>& _Right) {
return _Left.param() == _Right.param();
}
template <class _Ty>
_NODISCARD bool operator!=(const weibull_distribution<_Ty>& _Left, const weibull_distribution<_Ty>& _Right) {
return !(_Left == _Right);
}
template <class _Elem, class _Traits, class _Ty>
basic_istream<_Elem, _Traits>& operator>>(basic_istream<_Elem, _Traits>& _Istr,
weibull_distribution<_Ty>& _Dist) { // read state from _Istr
return _Dist._Read(_Istr);
}
template <class _Elem, class _Traits, class _Ty>
basic_ostream<_Elem, _Traits>& operator<<(basic_ostream<_Elem, _Traits>& _Ostr,
const weibull_distribution<_Ty>& _Dist) { // write state to _Ostr
return _Dist._Write(_Ostr);
}
// CLASS TEMPLATE extreme_value_distribution
template <class _Ty = double>
class extreme_value_distribution { // extreme value distribution
public:
_RNG_REQUIRE_REALTYPE(extreme_value_distribution, _Ty);
using result_type = _Ty;
struct param_type { // parameter package
using distribution_type = extreme_value_distribution;
param_type() {
_Init(_Ty{0}, _Ty{1});
}
explicit param_type(_Ty _Ax0, _Ty _Bx0 = _Ty{1}) {
_Init(_Ax0, _Bx0);
}
_NODISCARD bool operator==(const param_type& _Right) const {
return _Ax == _Right._Ax && _Bx == _Right._Bx;
}
_NODISCARD bool operator!=(const param_type& _Right) const {
return !(*this == _Right);
}
_NODISCARD _Ty a() const {
return _Ax;
}
_NODISCARD _Ty b() const {
return _Bx;
}
void _Init(_Ty _Ax0, _Ty _Bx0) { // initialize
_STL_ASSERT(0.0 < _Bx0, "invalid b argument for extreme_value_distribution");
_Ax = _Ax0;
_Bx = _Bx0;
}
_Ty _Ax;
_Ty _Bx;
};
extreme_value_distribution() : _Par(_Ty{0}, _Ty{1}) {}
explicit extreme_value_distribution(_Ty _Ax0, _Ty _Bx0 = _Ty{1}) : _Par(_Ax0, _Bx0) {}
explicit extreme_value_distribution(const param_type& _Par0) : _Par(_Par0) {}
_NODISCARD _Ty a() const {
return _Par.a();
}
_NODISCARD _Ty b() const {
return _Par.b();
}
_NODISCARD param_type param() const {
return _Par;
}
void param(const param_type& _Par0) { // set parameter package
_Par = _Par0;
}
_NODISCARD result_type(min)() const { // get smallest possible result
return -numeric_limits<result_type>::infinity();
}
_NODISCARD result_type(max)() const { // get largest possible result
return numeric_limits<result_type>::infinity();
}
void reset() {} // clear internal state
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng) const {
return _Eval(_Eng, _Par);
}
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng, const param_type& _Par0) const {
return _Eval(_Eng, _Par0);
}
template <class _Elem, class _Traits>
basic_istream<_Elem, _Traits>& _Read(basic_istream<_Elem, _Traits>& _Istr) { // read state from _Istr
_Ty _Ax0;
_Ty _Bx0;
_In(_Istr, _Ax0);
_In(_Istr, _Bx0);
_Par._Init(_Ax0, _Bx0);
return _Istr;
}
template <class _Elem, class _Traits>
basic_ostream<_Elem, _Traits>& _Write(basic_ostream<_Elem, _Traits>& _Ostr) const { // write state to _Ostr
_Out(_Ostr, _Par._Ax);
_Out(_Ostr, _Par._Bx);
return _Ostr;
}
private:
template <class _Engine>
result_type _Eval(_Engine& _Eng, const param_type& _Par0) const { // generate pseudo-random value
_Ty _Px = _NRAND(_Eng, _Ty);
return _Par0._Ax - _Par0._Bx * _CSTD log(-_CSTD log(_Px));
}
param_type _Par;
};
template <class _Ty>
_NODISCARD bool operator==(
const extreme_value_distribution<_Ty>& _Left, const extreme_value_distribution<_Ty>& _Right) {
return _Left.param() == _Right.param();
}
template <class _Ty>
_NODISCARD bool operator!=(
const extreme_value_distribution<_Ty>& _Left, const extreme_value_distribution<_Ty>& _Right) {
return !(_Left == _Right);
}
template <class _Elem, class _Traits, class _Ty>
basic_istream<_Elem, _Traits>& operator>>(basic_istream<_Elem, _Traits>& _Istr,
extreme_value_distribution<_Ty>& _Dist) { // read state from _Istr
return _Dist._Read(_Istr);
}
template <class _Elem, class _Traits, class _Ty>
basic_ostream<_Elem, _Traits>& operator<<(basic_ostream<_Elem, _Traits>& _Ostr,
const extreme_value_distribution<_Ty>& _Dist) { // write state to _Ostr
return _Dist._Write(_Ostr);
}
// CLASS TEMPLATE lognormal_distribution
template <class _Ty = double>
class lognormal_distribution { // lognormal_distribution
public:
_RNG_REQUIRE_REALTYPE(lognormal_distribution, _Ty);
using result_type = _Ty;
struct param_type { // parameter package
using distribution_type = lognormal_distribution;
param_type() {
_Init(_Ty{0}, _Ty{1});
}
explicit param_type(_Ty _Mx0, _Ty _Sx0 = _Ty{1}) {
_Init(_Mx0, _Sx0);
}
_NODISCARD bool operator==(const param_type& _Right) const {
return _Mx == _Right._Mx && _Sx == _Right._Sx;
}
_NODISCARD bool operator!=(const param_type& _Right) const {
return !(*this == _Right);
}
_NODISCARD _Ty m() const {
return _Mx;
}
_NODISCARD _Ty s() const {
return _Sx;
}
void _Init(_Ty _Mx0, _Ty _Sx0) { // initialize
_STL_ASSERT(0.0 < _Sx0, "invalid s argument for lognormal_distribution");
_Mx = _Mx0;
_Sx = _Sx0;
}
_Ty _Mx;
_Ty _Sx;
};
lognormal_distribution() : _Par(_Ty{0}, _Ty{1}) {}
explicit lognormal_distribution(_Ty _Mx0, _Ty _Sx0 = _Ty{1}) : _Par(_Mx0, _Sx0) {}
explicit lognormal_distribution(const param_type& _Par0) : _Par(_Par0) {}
_NODISCARD _Ty m() const {
return _Par.m();
}
_NODISCARD _Ty s() const {
return _Par.s();
}
_NODISCARD param_type param() const {
return _Par;
}
void param(const param_type& _Par0) { // set parameter package
_Par = _Par0;
}
_NODISCARD result_type(min)() const { // get smallest possible result
return result_type{0.0};
}
_NODISCARD result_type(max)() const { // get largest possible result
return numeric_limits<result_type>::infinity();
}
void reset() {} // clear internal state
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng) const {
return _Eval(_Eng, _Par);
}
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng, const param_type& _Par0) const {
return _Eval(_Eng, _Par0);
}
template <class _Elem, class _Traits>
basic_istream<_Elem, _Traits>& _Read(basic_istream<_Elem, _Traits>& _Istr) { // read state from _Istr
_Ty _Mx0;
_Ty _Sx0;
_In(_Istr, _Mx0);
_In(_Istr, _Sx0);
_Par._Init(_Mx0, _Sx0);
return _Istr;
}
template <class _Elem, class _Traits>
basic_ostream<_Elem, _Traits>& _Write(basic_ostream<_Elem, _Traits>& _Ostr) const { // write state to _Ostr
_Out(_Ostr, _Par._Mx);
_Out(_Ostr, _Par._Sx);
return _Ostr;
}
private:
template <class _Engine>
result_type _Eval(_Engine& _Eng, param_type _Par0) const { // generate pseudo-random value
normal_distribution<_Ty> _Dist(_Par0._Mx, _Par0._Sx);
return _CSTD exp(_Dist(_Eng));
}
param_type _Par;
};
template <class _Ty>
_NODISCARD bool operator==(const lognormal_distribution<_Ty>& _Left, const lognormal_distribution<_Ty>& _Right) {
return _Left.param() == _Right.param();
}
template <class _Ty>
_NODISCARD bool operator!=(const lognormal_distribution<_Ty>& _Left, const lognormal_distribution<_Ty>& _Right) {
return !(_Left == _Right);
}
template <class _Elem, class _Traits, class _Ty>
basic_istream<_Elem, _Traits>& operator>>(basic_istream<_Elem, _Traits>& _Istr,
lognormal_distribution<_Ty>& _Dist) { // read state from _Istr
return _Dist._Read(_Istr);
}
template <class _Elem, class _Traits, class _Ty>
basic_ostream<_Elem, _Traits>& operator<<(basic_ostream<_Elem, _Traits>& _Ostr,
const lognormal_distribution<_Ty>& _Dist) { // write state to _Ostr
return _Dist._Write(_Ostr);
}
// CLASS TEMPLATE chi_squared_distribution
template <class _Ty = double>
class chi_squared_distribution { // chi squared distribution
public:
_RNG_REQUIRE_REALTYPE(chi_squared_distribution, _Ty);
using result_type = _Ty;
struct param_type { // parameter package
using distribution_type = chi_squared_distribution;
param_type() {
_Init(_Ty{1});
}
explicit param_type(_Ty _Nx0) {
_Init(_Nx0);
}
_NODISCARD bool operator==(const param_type& _Right) const {
return _Nx == _Right._Nx;
}
_NODISCARD bool operator!=(const param_type& _Right) const {
return !(*this == _Right);
}
_NODISCARD _Ty n() const {
return _Nx;
}
void _Init(_Ty _Nx0) { // initialize
_STL_ASSERT(0 < _Nx0, "invalid n argument for chi_squared_distribution");
_Nx = _Nx0;
}
_Ty _Nx;
};
chi_squared_distribution() : _Par(_Ty{1}) {}
explicit chi_squared_distribution(_Ty _Nx0) : _Par(_Nx0) {}
explicit chi_squared_distribution(const param_type& _Par0) : _Par(_Par0) {}
_NODISCARD _Ty n() const {
return _Par.n();
}
_NODISCARD param_type param() const {
return _Par;
}
void param(const param_type& _Par0) { // set parameter package
_Par = _Par0;
}
_NODISCARD result_type(min)() const { // get smallest possible result
return result_type{0.0};
}
_NODISCARD result_type(max)() const { // get largest possible result
return numeric_limits<result_type>::infinity();
}
void reset() {} // clear internal state
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng) const {
return _Eval(_Eng, _Par);
}
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng, const param_type& _Par0) const {
return _Eval(_Eng, _Par0);
}
template <class _Elem, class _Traits>
basic_istream<_Elem, _Traits>& _Read(basic_istream<_Elem, _Traits>& _Istr) { // read state from _Istr
_Ty _Nx0;
_Istr >> _Nx0;
_Par._Init(_Nx0);
return _Istr;
}
template <class _Elem, class _Traits>
basic_ostream<_Elem, _Traits>& _Write(basic_ostream<_Elem, _Traits>& _Ostr) const { // write state to _Ostr
return _Ostr << ' ' << _Par._Nx;
}
private:
template <class _Engine>
result_type _Eval(_Engine& _Eng, const param_type& _Par0) const {
gamma_distribution<_Ty> _Dist(static_cast<_Ty>(_Par0._Nx) * static_cast<_Ty>(0.5), _Ty{2});
return _Dist(_Eng);
}
param_type _Par;
};
template <class _Ty>
_NODISCARD bool operator==(const chi_squared_distribution<_Ty>& _Left, const chi_squared_distribution<_Ty>& _Right) {
return _Left.param() == _Right.param();
}
template <class _Ty>
_NODISCARD bool operator!=(const chi_squared_distribution<_Ty>& _Left, const chi_squared_distribution<_Ty>& _Right) {
return !(_Left == _Right);
}
template <class _Elem, class _Traits, class _Ty>
basic_istream<_Elem, _Traits>& operator>>(basic_istream<_Elem, _Traits>& _Istr,
chi_squared_distribution<_Ty>& _Dist) { // read state from _Istr
return _Dist._Read(_Istr);
}
template <class _Elem, class _Traits, class _Ty>
basic_ostream<_Elem, _Traits>& operator<<(basic_ostream<_Elem, _Traits>& _Ostr,
const chi_squared_distribution<_Ty>& _Dist) { // write state to _Ostr
return _Dist._Write(_Ostr);
}
// CLASS TEMPLATE cauchy_distribution
template <class _Ty = double>
class cauchy_distribution { // Cauchy distribution
public:
_RNG_REQUIRE_REALTYPE(cauchy_distribution, _Ty);
using result_type = _Ty;
struct param_type { // parameter package
using distribution_type = cauchy_distribution;
param_type() {
_Init(_Ty{0}, _Ty{1});
}
explicit param_type(_Ty _Ax0, _Ty _Bx0 = _Ty{1}) {
_Init(_Ax0, _Bx0);
}
_NODISCARD bool operator==(const param_type& _Right) const {
return _Ax == _Right._Ax && _Bx == _Right._Bx;
}
_NODISCARD bool operator!=(const param_type& _Right) const {
return !(*this == _Right);
}
_NODISCARD _Ty a() const {
return _Ax;
}
_NODISCARD _Ty b() const {
return _Bx;
}
void _Init(_Ty _Ax0, _Ty _Bx0) { // initialize
_STL_ASSERT(0.0 < _Bx0, "invalid b argument for cauchy_distribution");
_Ax = _Ax0;
_Bx = _Bx0;
}
_Ty _Ax;
_Ty _Bx;
};
cauchy_distribution() : _Par(_Ty{0}, _Ty{1}) {}
explicit cauchy_distribution(_Ty _Ax0, _Ty _Bx0 = _Ty{1}) : _Par(_Ax0, _Bx0) {}
explicit cauchy_distribution(const param_type& _Par0) : _Par(_Par0) {}
_NODISCARD _Ty a() const {
return _Par.a();
}
_NODISCARD _Ty b() const {
return _Par.b();
}
_NODISCARD param_type param() const {
return _Par;
}
void param(const param_type& _Par0) { // set parameter package
_Par = _Par0;
}
_NODISCARD result_type(min)() const { // get smallest possible result
return -numeric_limits<result_type>::infinity();
}
_NODISCARD result_type(max)() const { // get largest possible result
return numeric_limits<result_type>::infinity();
}
void reset() {} // clear internal state
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng) const {
return _Eval(_Eng, _Par);
}
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng, const param_type& _Par0) const {
return _Eval(_Eng, _Par0);
}
template <class _Elem, class _Traits>
basic_istream<_Elem, _Traits>& _Read(basic_istream<_Elem, _Traits>& _Istr) { // read state from _Istr
_Ty _Ax0;
_Ty _Bx0;
_In(_Istr, _Ax0);
_In(_Istr, _Bx0);
_Par._Init(_Ax0, _Bx0);
return _Istr;
}
template <class _Elem, class _Traits>
basic_ostream<_Elem, _Traits>& _Write(basic_ostream<_Elem, _Traits>& _Ostr) const { // write state to _Ostr
_Out(_Ostr, _Par._Ax);
_Out(_Ostr, _Par._Bx);
return _Ostr;
}
private:
template <class _Engine>
result_type _Eval(_Engine& _Eng, const param_type& _Par0) const { // generate pseudo-random value
_Ty Px = _NRAND(_Eng, _Ty);
return static_cast<_Ty>(_Par0._Ax + _Par0._Bx * _CSTD tan(_Pi * (Px - static_cast<_Ty>(0.5))));
}
param_type _Par;
};
template <class _Ty>
_NODISCARD bool operator==(const cauchy_distribution<_Ty>& _Left, const cauchy_distribution<_Ty>& _Right) {
return _Left.param() == _Right.param();
}
template <class _Ty>
_NODISCARD bool operator!=(const cauchy_distribution<_Ty>& _Left, const cauchy_distribution<_Ty>& _Right) {
return !(_Left == _Right);
}
template <class _Elem, class _Traits, class _Ty>
basic_istream<_Elem, _Traits>& operator>>(basic_istream<_Elem, _Traits>& _Istr,
cauchy_distribution<_Ty>& _Dist) { // read state from _Istr
return _Dist._Read(_Istr);
}
template <class _Elem, class _Traits, class _Ty>
basic_ostream<_Elem, _Traits>& operator<<(basic_ostream<_Elem, _Traits>& _Ostr,
const cauchy_distribution<_Ty>& _Dist) { // write state to _Ostr
return _Dist._Write(_Ostr);
}
// CLASS TEMPLATE _Beta_distribution
template <class _Ty = double>
class _Beta_distribution { // beta distribution
public:
using result_type = _Ty;
explicit _Beta_distribution(const _Ty& _Ax0 = _Ty{1}, const _Ty& _Bx0 = _Ty{1}) {
_Init(_Ax0, _Bx0);
}
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng) const {
if (_Ax < _Ty{1} && _Bx < _Ty{1}) { // look for a good value
_Ty _Wx;
_Ty _Px1;
_Ty _Px2;
for (;;) { // reject large values
_Px1 = _NRAND(_Eng, _Ty);
_Px2 = _NRAND(_Eng, _Ty);
_Px1 = _CSTD pow(_Px1, _Ty{1} / _Ax);
_Px2 = _CSTD pow(_Px2, _Ty{1} / _Bx);
_Wx = _Px1 + _Px2;
if (_Wx <= _Ty{1} && _Wx != _Ty{0}) {
break;
}
}
return _Px1 / _Wx;
} else { // use gamma distributions instead
_Ty _Px1;
_Ty _Px2;
_Ty _PSum;
gamma_distribution<_Ty> _Dist1(_Ax, 1);
gamma_distribution<_Ty> _Dist2(_Bx, 1);
for (;;) { // reject pairs whose sum is zero
_Px1 = _Dist1(_Eng);
_Px2 = _Dist2(_Eng);
_PSum = _Px1 + _Px2;
if (_PSum != _Ty{0}) {
break;
}
}
return _Px1 / _PSum;
}
}
private:
void _Init(_Ty _Ax0, _Ty _Bx0) { // initialize
_STL_ASSERT(0.0 < _Ax0, "invalid a argument for _Beta_distribution");
_STL_ASSERT(0.0 < _Bx0, "invalid b argument for _Beta_distribution");
_Ax = _Ax0;
_Bx = _Bx0;
}
_Ty _Ax;
_Ty _Bx;
};
// CLASS TEMPLATE fisher_f_distribution
template <class _Ty = double>
class fisher_f_distribution { // fisher_f distribution
public:
_RNG_REQUIRE_REALTYPE(fisher_f_distribution, _Ty);
using result_type = _Ty;
struct param_type { // parameter package
using distribution_type = fisher_f_distribution;
param_type() {
_Init(_Ty{1}, _Ty{1});
}
explicit param_type(_Ty _Mx0, _Ty _Nx0 = _Ty{1}) {
_Init(_Mx0, _Nx0);
}
_NODISCARD bool operator==(const param_type& _Right) const {
return _Mx == _Right._Mx && _Nx == _Right._Nx;
}
_NODISCARD bool operator!=(const param_type& _Right) const {
return !(*this == _Right);
}
_NODISCARD _Ty m() const {
return _Mx;
}
_NODISCARD _Ty n() const {
return _Nx;
}
void _Init(_Ty _Mx0, _Ty _Nx0) { // initialize
_STL_ASSERT(0 < _Mx0, "invalid m argument for fisher_f_distribution");
_STL_ASSERT(0 < _Nx0, "invalid n argument for fisher_f_distribution");
_Mx = _Mx0;
_Nx = _Nx0;
}
_Ty _Mx;
_Ty _Nx;
};
fisher_f_distribution() : _Par(_Ty{1}, _Ty{1}) {}
explicit fisher_f_distribution(_Ty _Mx0, _Ty _Nx0 = _Ty{1}) : _Par(_Mx0, _Nx0) {}
explicit fisher_f_distribution(const param_type& _Par0) : _Par(_Par0) {}
_NODISCARD _Ty m() const {
return _Par.m();
}
_NODISCARD _Ty n() const {
return _Par.n();
}
_NODISCARD param_type param() const {
return _Par;
}
void param(const param_type& _Par0) { // set parameter package
_Par = _Par0;
}
_NODISCARD result_type(min)() const { // get smallest possible result
return result_type(0);
}
_NODISCARD result_type(max)() const { // get largest possible result
return numeric_limits<result_type>::infinity();
}
void reset() {} // clear internal state
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng) const {
return _Eval(_Eng, _Par);
}
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng, const param_type& _Par0) const {
return _Eval(_Eng, _Par0);
}
template <class _Elem, class _Traits>
basic_istream<_Elem, _Traits>& _Read(basic_istream<_Elem, _Traits>& _Istr) { // read state from _Istr
_Ty _Mx0;
_Ty _Nx0;
_Istr >> _Mx0 >> _Nx0;
_Par._Init(_Mx0, _Nx0);
return _Istr;
}
template <class _Elem, class _Traits>
basic_ostream<_Elem, _Traits>& _Write(basic_ostream<_Elem, _Traits>& _Ostr) const { // write state to _Ostr
_Ostr << ' ' << _Par._Mx << ' ' << _Par._Nx;
return _Ostr;
}
private:
template <class _Engine>
result_type _Eval(_Engine& _Eng, const param_type& _Par0) const {
_Ty _Px;
_Ty _Vx1;
_Ty _Vx2;
const _Ty _Vx3{1};
_Vx1 = static_cast<_Ty>(_Par0._Mx) * static_cast<_Ty>(0.5);
_Vx2 = static_cast<_Ty>(_Par0._Nx) * static_cast<_Ty>(0.5);
_Beta_distribution<_Ty> _Dist(_Vx1, _Vx2);
for (;;) { // reject bad values
_Px = _Dist(_Eng);
if (_Px != _Vx3) {
break;
}
}
return (_Vx2 / _Vx1) * (_Px / (_Vx3 - _Px));
}
param_type _Par;
};
template <class _Ty>
_NODISCARD bool operator==(const fisher_f_distribution<_Ty>& _Left, const fisher_f_distribution<_Ty>& _Right) {
return _Left.param() == _Right.param();
}
template <class _Ty>
_NODISCARD bool operator!=(const fisher_f_distribution<_Ty>& _Left, const fisher_f_distribution<_Ty>& _Right) {
return !(_Left == _Right);
}
template <class _Elem, class _Traits, class _Ty>
basic_istream<_Elem, _Traits>& operator>>(basic_istream<_Elem, _Traits>& _Istr,
fisher_f_distribution<_Ty>& _Dist) { // read state from _Istr
return _Dist._Read(_Istr);
}
template <class _Elem, class _Traits, class _Ty>
basic_ostream<_Elem, _Traits>& operator<<(basic_ostream<_Elem, _Traits>& _Ostr,
const fisher_f_distribution<_Ty>& _Dist) { // write state to _Ostr
return _Dist._Write(_Ostr);
}
// CLASS TEMPLATE student_t_distribution
template <class _Ty = double>
class student_t_distribution { // student_t distribution
public:
_RNG_REQUIRE_REALTYPE(student_t_distribution, _Ty);
using result_type = _Ty;
struct param_type { // parameter package
using distribution_type = student_t_distribution;
param_type() {
_Init(_Ty{1});
}
explicit param_type(_Ty _Nx0) {
_Init(_Nx0);
}
_NODISCARD bool operator==(const param_type& _Right) const {
return _Nx == _Right._Nx;
}
_NODISCARD bool operator!=(const param_type& _Right) const {
return !(*this == _Right);
}
_NODISCARD _Ty n() const {
return _Nx;
}
void _Init(_Ty _Nx0) { // initialize
_STL_ASSERT(0 < _Nx0, "invalid n argument for student_t_distribution");
_Nx = _Nx0;
}
_Ty _Nx;
};
student_t_distribution() : _Par(_Ty{1}) {}
explicit student_t_distribution(_Ty _Nx0) : _Par(_Nx0) {}
explicit student_t_distribution(const param_type& _Par0) : _Par(_Par0) {}
_NODISCARD _Ty n() const {
return _Par.n();
}
_NODISCARD param_type param() const {
return _Par;
}
void param(const param_type& _Par0) { // set parameter package
_Par = _Par0;
}
_NODISCARD result_type(min)() const { // get smallest possible result
return -numeric_limits<result_type>::infinity();
}
_NODISCARD result_type(max)() const { // get largest possible result
return numeric_limits<result_type>::infinity();
}
void reset() {} // clear internal state
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng) const {
return _Eval(_Eng, _Par);
}
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng, const param_type& _Par0) const {
return _Eval(_Eng, _Par0);
}
template <class _Elem, class _Traits>
basic_istream<_Elem, _Traits>& _Read(basic_istream<_Elem, _Traits>& _Istr) { // read state from _Istr
_Ty _Nx0;
_Istr >> _Nx0;
_Par._Init(_Nx0);
return _Istr;
}
template <class _Elem, class _Traits>
basic_ostream<_Elem, _Traits>& _Write(basic_ostream<_Elem, _Traits>& _Ostr) const { // write state to _Ostr
return _Ostr << ' ' << _Par._Nx;
}
private:
template <class _Engine>
result_type _Eval(_Engine& _Eng, const param_type& _Par0) const {
_Ty _Vx1;
_Ty _Vx2;
_Ty _Rx0;
_Ty _Rs;
uniform_real<_Ty> _Dist(-1, 1);
for (;;) { // get a point inside unit circle
_Vx1 = _Dist(_Eng);
_Vx2 = _Dist(_Eng);
_Rs = _Vx1 * _Vx1 + _Vx2 * _Vx2;
// very small _Rs will overflow on pow(_Rx0, -_Ty{4} / _Par0._Nx)
if (_Rs < _Ty{1} && _Rs > _Ty{1e-12}) {
break;
}
}
_Rx0 = _STD sqrt(_Rs);
return _Vx1 * _STD sqrt(_Par0._Nx * (_STD pow(_Rx0, -_Ty{4} / _Par0._Nx) - _Ty{1}) / _Rs);
}
param_type _Par;
};
template <class _Ty>
_NODISCARD bool operator==(const student_t_distribution<_Ty>& _Left, const student_t_distribution<_Ty>& _Right) {
return _Left.param() == _Right.param();
}
template <class _Ty>
_NODISCARD bool operator!=(const student_t_distribution<_Ty>& _Left, const student_t_distribution<_Ty>& _Right) {
return !(_Left == _Right);
}
template <class _Elem, class _Traits, class _Ty>
basic_istream<_Elem, _Traits>& operator>>(basic_istream<_Elem, _Traits>& _Istr,
student_t_distribution<_Ty>& _Dist) { // read state from _Istr
return _Dist._Read(_Istr);
}
template <class _Elem, class _Traits, class _Ty>
basic_ostream<_Elem, _Traits>& operator<<(basic_ostream<_Elem, _Traits>& _Ostr,
const student_t_distribution<_Ty>& _Dist) { // write state to _Ostr
return _Dist._Write(_Ostr);
}
// CLASS TEMPLATE negative_binomial_distribution
template <class _Ty = int>
class negative_binomial_distribution { // negative binomial distribution
public:
_RNG_REQUIRE_INTTYPE(negative_binomial_distribution, _Ty);
using result_type = _Ty;
struct param_type { // parameter package
using distribution_type = negative_binomial_distribution;
param_type() {
_Init(1, 0.5);
}
explicit param_type(_Ty _Kx0, double _Px0 = 0.5) {
_Init(_Kx0, _Px0);
}
_NODISCARD bool operator==(const param_type& _Right) const {
return _Kx == _Right._Kx && _Px == _Right._Px;
}
_NODISCARD bool operator!=(const param_type& _Right) const {
return !(*this == _Right);
}
_NODISCARD _Ty k() const {
return _Kx;
}
_NODISCARD double p() const {
return _Px;
}
void _Init(_Ty _Kx0, double _Px0) { // initialize
_STL_ASSERT(0.0 < _Kx0, "invalid max argument for "
"negative_binomial_distribution");
_STL_ASSERT(0.0 < _Px0 && _Px0 <= 1.0, "invalid probability argument for "
"negative_binomial_distribution");
_Kx = _Kx0;
_Px = _Px0;
}
_Ty _Kx;
double _Px;
};
negative_binomial_distribution() : _Par(1, 0.5) {}
explicit negative_binomial_distribution(_Ty _Kx0, double _Px0 = 0.5) : _Par(_Kx0, _Px0) {}
explicit negative_binomial_distribution(const param_type& _Par0) : _Par(_Par0) {}
_NODISCARD _Ty k() const {
return _Par.k();
}
_NODISCARD double p() const {
return _Par.p();
}
_NODISCARD param_type param() const {
return _Par;
}
void param(const param_type& _Par0) { // set parameter package
_Par = _Par0;
}
_NODISCARD result_type(min)() const { // get smallest possible result
return 0;
}
_NODISCARD result_type(max)() const { // get largest possible result
return (numeric_limits<result_type>::max) ();
}
void reset() {} // clear internal state
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng) const {
return _Eval(_Eng, _Par);
}
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng, const param_type& _Par0) const {
return _Eval(_Eng, _Par0);
}
template <class _Elem, class _Traits>
basic_istream<_Elem, _Traits>& _Read(basic_istream<_Elem, _Traits>& _Istr) { // read state from _Istr
_Ty _Kx0;
double _Px0;
_In(_Istr, _Px0);
_In(_Istr, _Kx0);
_Par._Init(_Kx0, _Px0);
return _Istr;
}
template <class _Elem, class _Traits>
basic_ostream<_Elem, _Traits>& _Write(basic_ostream<_Elem, _Traits>& _Ostr) const { // write state to _Ostr
_Out(_Ostr, _Par._Px);
_Out(_Ostr, _Par._Kx);
return _Ostr;
}
private:
template <class _Engine>
result_type _Eval(_Engine& _Eng, const param_type& _Par0) const {
double _Vx1;
gamma_distribution<double> _Dist1(
static_cast<double>(_Par0._Kx), static_cast<double>((_Ty{1} - _Par0._Px) / _Par0._Px));
_Vx1 = _Dist1(_Eng);
poisson_distribution<_Ty> _Dist2(_Vx1);
return _Dist2(_Eng);
}
param_type _Par;
};
template <class _Ty>
_NODISCARD bool operator==(
const negative_binomial_distribution<_Ty>& _Left, const negative_binomial_distribution<_Ty>& _Right) {
return _Left.param() == _Right.param();
}
template <class _Ty>
_NODISCARD bool operator!=(
const negative_binomial_distribution<_Ty>& _Left, const negative_binomial_distribution<_Ty>& _Right) {
return !(_Left == _Right);
}
template <class _Elem, class _Traits, class _Ty>
basic_istream<_Elem, _Traits>& operator>>(basic_istream<_Elem, _Traits>& _Istr,
negative_binomial_distribution<_Ty>& _Dist) { // read state from _Istr
return _Dist._Read(_Istr);
}
template <class _Elem, class _Traits, class _Ty>
basic_ostream<_Elem, _Traits>& operator<<(basic_ostream<_Elem, _Traits>& _Ostr,
const negative_binomial_distribution<_Ty>& _Dist) { // write state to _Ostr
return _Dist._Write(_Ostr);
}
// CLASS TEMPLATE discrete_distribution
template <class _Ty = int>
class discrete_distribution { // discrete integer distribution
public:
_RNG_REQUIRE_INTTYPE(discrete_distribution, _Ty);
using _Myvec = vector<double>;
using result_type = _Ty;
struct param_type { // parameter package
using distribution_type = discrete_distribution;
param_type(_Uninitialized) {} // do-nothing constructor for derived classes
param_type() {
_Init();
}
template <class _InIt>
param_type(_InIt _First, _InIt _Last) : _Pvec(_First, _Last) {
_Init();
}
param_type(initializer_list<double> _Ilist) : _Pvec(_Ilist) {
_Init();
}
template <class _Fn>
param_type(size_t _Count, double _Low, double _High, _Fn _Func) {
double _Range = _High - _Low;
_STL_ASSERT(0.0 < _Range, "invalid range for discrete_distribution");
if (_Count <= 0) {
_Count = 1;
}
_Range /= static_cast<double>(_Count);
_Low += 0.5 * _Range; // evaluate in center of each interval
for (size_t _Idx = 0; _Idx < _Count; ++_Idx) {
_Pvec.push_back(_Func(_Low + _Idx * _Range));
}
_Init();
}
_NODISCARD bool operator==(const param_type& _Right) const {
return _Pvec == _Right._Pvec;
}
_NODISCARD bool operator!=(const param_type& _Right) const {
return !(*this == _Right);
}
_NODISCARD _Myvec probabilities() const {
return _Pvec;
}
void _Init(bool _Renorm = true) { // initialize
size_t _Size = _Pvec.size();
size_t _Idx;
if (_Renorm) {
if (_Pvec.empty()) {
_Pvec.push_back(1.0); // make empty vector degenerate
} else { // normalize probabilities
double _Sum = 0;
for (_Idx = 0; _Idx < _Size; ++_Idx) { // sum all probabilities
_STL_ASSERT(0.0 <= _Pvec[_Idx], "invalid probability for discrete_distribution");
_Sum += _Pvec[_Idx];
}
_STL_ASSERT(0.0 < _Sum, "invalid probability vector for discrete_distribution");
if (_Sum != 1.0) {
for (_Idx = 0; _Idx < _Size; ++_Idx) {
_Pvec[_Idx] /= _Sum;
}
}
}
}
_Pcdf.assign(1, _Pvec[0]);
for (_Idx = 1; _Idx < _Size; ++_Idx) {
_Pcdf.push_back(_Pvec[_Idx] + _Pcdf[_Idx - 1]);
}
}
_Myvec _Pvec;
_Myvec _Pcdf;
};
discrete_distribution() {}
template <class _InIt>
discrete_distribution(_InIt _First, _InIt _Last) : _Par(_First, _Last) {}
discrete_distribution(initializer_list<double> _Ilist) : _Par(_Ilist) {}
template <class _Fn>
discrete_distribution(size_t _Count, double _Low, double _High, _Fn _Func) : _Par(_Count, _Low, _High, _Func) {}
explicit discrete_distribution(const param_type& _Par0) : _Par(_Par0) {}
_NODISCARD _Myvec probabilities() const {
return _Par.probabilities();
}
_NODISCARD param_type param() const {
return _Par;
}
void param(const param_type& _Par0) { // set parameter package
_Par = _Par0;
}
_NODISCARD result_type(min)() const {
return 0;
}
_NODISCARD result_type(max)() const {
return static_cast<result_type>(_Par._Pvec.size() - 1);
}
void reset() {} // clear internal state
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng) const {
return _Eval(_Eng, _Par);
}
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng, const param_type& _Par0) const {
return _Eval(_Eng, _Par0);
}
template <class _Elem, class _Traits>
basic_istream<_Elem, _Traits>& _Read(basic_istream<_Elem, _Traits>& _Istr,
param_type& _Par0) { // read state from _Istr
size_t _Nvals;
_Istr >> _Nvals;
_Par0._Pvec.clear();
for (; 0 < _Nvals; --_Nvals) { // get a value and add to vector
double _Val;
_In(_Istr, _Val);
_Par0._Pvec.push_back(_Val);
}
_Par0._Init(false); // don't renormalize, just compute CDF
return _Istr;
}
template <class _Elem, class _Traits>
basic_ostream<_Elem, _Traits>& _Write(basic_ostream<_Elem, _Traits>& _Ostr,
const param_type& _Par0) const { // write state to _Ostr
size_t _Nvals = _Par0._Pvec.size();
_Ostr << ' ' << _Nvals;
for (size_t _Idx = 0; _Idx < _Par0._Pvec.size(); ++_Idx) {
_Out(_Ostr, _Par0._Pvec[_Idx]);
}
return _Ostr;
}
private:
template <class _Engine>
result_type _Eval(_Engine& _Eng, const param_type& _Par0) const {
double _Px = _NRAND(_Eng, double);
const auto _First = _Par0._Pcdf.begin();
const auto _Position = _STD lower_bound(_First, _Prev_iter(_Par0._Pcdf.end()), _Px);
return static_cast<result_type>(_Position - _First);
}
public:
param_type _Par;
};
template <class _Ty>
_NODISCARD bool operator==(const discrete_distribution<_Ty>& _Left, const discrete_distribution<_Ty>& _Right) {
return _Left.param() == _Right.param();
}
template <class _Ty>
_NODISCARD bool operator!=(const discrete_distribution<_Ty>& _Left, const discrete_distribution<_Ty>& _Right) {
return !(_Left == _Right);
}
template <class _Elem, class _Traits, class _Ty>
basic_istream<_Elem, _Traits>& operator>>(basic_istream<_Elem, _Traits>& _Istr,
discrete_distribution<_Ty>& _Dist) { // read state from _Istr
return _Dist._Read(_Istr, _Dist._Par);
}
template <class _Elem, class _Traits, class _Ty>
basic_ostream<_Elem, _Traits>& operator<<(basic_ostream<_Elem, _Traits>& _Ostr,
const discrete_distribution<_Ty>& _Dist) { // write state to _Ostr
return _Dist._Write(_Ostr, _Dist._Par);
}
// CLASS TEMPLATE piecewise_constant_distribution
template <class _Ty = double>
class piecewise_constant_distribution
: public discrete_distribution<size_t> { // piecewise constant floating-point distribution
public:
_RNG_REQUIRE_REALTYPE(piecewise_constant_distribution, _Ty);
using _Mybase = discrete_distribution<size_t>;
using _Mypbase = typename _Mybase::param_type;
using result_type = _Ty;
struct param_type : _Mypbase { // parameter package
using distribution_type = piecewise_constant_distribution;
param_type() : _Bvec{0, 1} {}
template <class _InIt1, class _InIt2>
param_type(_InIt1 _First1, _InIt1 _Last1, _InIt2 _First2) : _Mypbase(_Noinit), _Bvec(_First1, _Last1) {
if (2 <= _Bvec.size()) {
for (size_t _Idx = 0; _Idx < _Bvec.size() - 1; ++_Idx) {
this->_Pvec.push_back(static_cast<double>(*_First2++));
}
} else { // default construct
_Bvec = {0, 1};
}
_Init();
}
template <class _Fn>
param_type(initializer_list<_Ty> _Ilist, _Fn _Func) : _Mypbase(_Noinit) {
if (2 <= _Ilist.size()) {
_Bvec.assign(_Ilist);
for (size_t _Idx = 0; _Idx < _Bvec.size() - 1; ++_Idx) {
this->_Pvec.push_back(_Func(_Ty{0.5} * (_Bvec[_Idx] + _Bvec[_Idx + 1])));
}
} else { // default construct
_Bvec = {0, 1};
}
_Init();
}
template <class _Fn>
param_type(size_t _Count, _Ty _Low, _Ty _High, _Fn _Func) : _Mypbase(_Count, _Low, _High, _Func) {
_Ty _Range = _High - _Low;
if (_Count <= 0) {
_Count = 1;
}
_Range /= static_cast<_Ty>(_Count);
for (size_t _Idx = 0; _Idx <= _Count; ++_Idx) {
_Bvec.push_back(_Low + _Idx * _Range);
}
}
_NODISCARD bool operator==(const param_type& _Right) const {
return static_cast<const _Mypbase&>(*this) == static_cast<const _Mypbase&>(_Right) && _Bvec == _Right._Bvec;
}
_NODISCARD bool operator!=(const param_type& _Right) const {
return !(*this == _Right);
}
_NODISCARD vector<_Ty> intervals() const {
return _Bvec;
}
_NODISCARD vector<_Ty> densities() const {
vector<_Ty> _Ans(this->_Pvec.begin(), this->_Pvec.end());
for (size_t _Idx = 0; _Idx < _Ans.size(); ++_Idx) {
_Ans[_Idx] /= _Bvec[_Idx + 1] - _Bvec[_Idx];
}
return _Ans;
}
void _Init() { // initialize
_Mypbase::_Init();
}
vector<_Ty> _Bvec;
};
piecewise_constant_distribution() {}
template <class _InIt1, class _InIt2>
piecewise_constant_distribution(_InIt1 _First1, _InIt1 _Last1, _InIt2 _First2) : _Par(_First1, _Last1, _First2) {}
template <class _Fn>
piecewise_constant_distribution(initializer_list<_Ty> _Ilist, _Fn _Func) : _Par(_Ilist, _Func) {}
template <class _Fn>
piecewise_constant_distribution(size_t _Count, _Ty _Low, _Ty _High, _Fn _Func) : _Par(_Count, _Low, _High, _Func) {}
explicit piecewise_constant_distribution(const param_type& _Par0) : _Par(_Par0) {}
_NODISCARD vector<_Ty> intervals() const {
return _Par.intervals();
}
_NODISCARD vector<_Ty> densities() const {
return _Par.densities();
}
_NODISCARD param_type param() const {
return _Par;
}
void param(const param_type& _Par0) { // set parameter package
_Par = _Par0;
}
_NODISCARD result_type(min)() const {
return _Par._Bvec.front();
}
_NODISCARD result_type(max)() const {
return _Par._Bvec.back();
}
void reset() {} // clear internal state
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng) const {
return _Eval(_Eng, _Par);
}
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng, const param_type& _Par0) const {
return _Eval(_Eng, _Par0);
}
template <class _Elem, class _Traits>
basic_istream<_Elem, _Traits>& _Read(basic_istream<_Elem, _Traits>& _Istr) { // read state from _Istr
_Mybase::_Read(_Istr, _Par);
_Par._Bvec.clear();
for (size_t _Idx = _Par._Pvec.size() + 1; 0 < _Idx; --_Idx) { // get a value and add to intervals vector
double _Val;
_In(_Istr, _Val);
_Par._Bvec.push_back(_Val);
}
return _Istr;
}
template <class _Elem, class _Traits>
basic_ostream<_Elem, _Traits>& _Write(basic_ostream<_Elem, _Traits>& _Ostr) const { // write state to _Ostr
_Mybase::_Write(_Ostr, _Par);
for (size_t _Idx = 0; _Idx < _Par._Bvec.size(); ++_Idx) {
_Out(_Ostr, _Par._Bvec[_Idx]);
}
return _Ostr;
}
template <class _Engine>
result_type _Eval(_Engine& _Eng, const param_type& _Par0) const {
size_t _Px = _Mybase::operator()(_Eng, _Par0);
uniform_real<_Ty> _Dist(_Par0._Bvec[_Px], _Par0._Bvec[_Px + 1]);
return _Dist(_Eng);
}
param_type _Par;
};
template <class _Ty>
_NODISCARD bool operator==(
const piecewise_constant_distribution<_Ty>& _Left, const piecewise_constant_distribution<_Ty>& _Right) {
return _Left.param() == _Right.param();
}
template <class _Ty>
_NODISCARD bool operator!=(
const piecewise_constant_distribution<_Ty>& _Left, const piecewise_constant_distribution<_Ty>& _Right) {
return !(_Left == _Right);
}
template <class _Elem, class _Traits, class _Ty>
basic_istream<_Elem, _Traits>& operator>>(basic_istream<_Elem, _Traits>& _Istr,
piecewise_constant_distribution<_Ty>& _Dist) { // read state from _Istr
return _Dist._Read(_Istr);
}
template <class _Elem, class _Traits, class _Ty>
basic_ostream<_Elem, _Traits>& operator<<(basic_ostream<_Elem, _Traits>& _Ostr,
const piecewise_constant_distribution<_Ty>& _Dist) { // write state to _Ostr
return _Dist._Write(_Ostr);
}
// CLASS TEMPLATE piecewise_linear_distribution
template <class _Ty = double>
class piecewise_linear_distribution
: public discrete_distribution<size_t> { // piecewise linear floating-point distribution
public:
_RNG_REQUIRE_REALTYPE(piecewise_linear_distribution, _Ty);
using _Mybase = discrete_distribution<size_t>;
using _Mypbase = typename _Mybase::param_type;
using result_type = _Ty;
struct param_type : _Mypbase { // parameter package
// TRANSITION, ABI: stores probability densities (N + 1 elements) in _Mybase::_Pvec
// this breaks invariants of discrete_distribution<size_t>::param_type
using distribution_type = piecewise_linear_distribution;
param_type() : _Bvec{0, 1} {
this->_Pvec.push_back(1.0);
}
template <class _InIt1, class _InIt2>
param_type(_InIt1 _First1, _InIt1 _Last1, _InIt2 _First2) : _Mypbase(_Noinit), _Bvec(_First1, _Last1) {
if (2 <= _Bvec.size()) {
for (size_t _Idx = 0; _Idx < _Bvec.size(); ++_Idx) {
this->_Pvec.push_back(static_cast<double>(*_First2++));
}
} else { // default construct
_Bvec = {0, 1};
}
_Init();
}
template <class _Fn>
param_type(initializer_list<_Ty> _Ilist, _Fn _Func) : _Mypbase(_Noinit) {
if (2 <= _Ilist.size()) {
_Bvec.assign(_Ilist);
for (const auto& _Bval : _Bvec) {
this->_Pvec.push_back(_Func(_Bval));
}
} else { // default construct
_Bvec = {0, 1};
}
_Init();
}
template <class _Fn>
param_type(size_t _Count, _Ty _Low, _Ty _High, _Fn _Func) : _Mypbase(_Noinit) {
_Ty _Range = _High - _Low;
_STL_ASSERT(_Ty{0} < _Range, "invalid range for piecewise_linear_distribution");
if (_Count < 1) {
_Count = 1;
}
_Range /= static_cast<double>(_Count);
for (size_t _Idx = 0; _Idx <= _Count; ++_Idx) { // compute _Bvec and _Pvec
_Ty _Bval = _Low + _Idx * _Range;
_Bvec.push_back(_Bval);
this->_Pvec.push_back(_Func(_Bval));
}
_Init();
}
_NODISCARD bool operator==(const param_type& _Right) const {
return static_cast<const _Mypbase&>(*this) == static_cast<const _Mypbase&>(_Right) && _Bvec == _Right._Bvec;
}
_NODISCARD bool operator!=(const param_type& _Right) const {
return !(*this == _Right);
}
_NODISCARD vector<_Ty> intervals() const {
return _Bvec;
}
_NODISCARD vector<_Ty> densities() const {
vector<_Ty> _Ans(this->_Pvec.begin(), this->_Pvec.end());
return _Ans;
}
_NODISCARD double _Piece_probability(const size_t _Idx) const {
return 0.5 * (this->_Pvec[_Idx] + this->_Pvec[_Idx + 1])
* static_cast<double>(_Bvec[_Idx + 1] - _Bvec[_Idx]);
}
void _Init(bool _Renorm = true) { // initialize
size_t _Size = this->_Pvec.size();
size_t _Idx;
if (_Renorm) {
if (this->_Pvec.empty()) { // make empty vector degenerate
this->_Pvec = {1.0, 1.0};
} else { // normalize probabilities
double _Sum = 0;
_STL_ASSERT(0.0 <= this->_Pvec[0], "invalid probability for "
"piecewise_linear_distribution");
for (_Idx = 1; _Idx < _Size; ++_Idx) { // sum all probabilities
_STL_ASSERT(0.0 <= this->_Pvec[_Idx], "invalid probability for "
"piecewise_linear_distribution");
_Sum += _Piece_probability(_Idx - 1);
}
_STL_ASSERT(0.0 < _Sum, "invalid probability vector for "
"piecewise_linear_distribution");
if (_Sum != 1.0) {
for (_Idx = 0; _Idx < _Size; ++_Idx) {
this->_Pvec[_Idx] /= _Sum;
}
}
}
}
this->_Pcdf.assign(1, _Piece_probability(0));
for (_Idx = 2; _Idx < _Size; ++_Idx) {
this->_Pcdf.push_back(_Piece_probability(_Idx - 1) + this->_Pcdf[_Idx - 2]);
}
}
vector<_Ty> _Bvec;
};
piecewise_linear_distribution() {}
template <class _InIt1, class _InIt2>
piecewise_linear_distribution(_InIt1 _First1, _InIt1 _Last1, _InIt2 _First2) : _Par(_First1, _Last1, _First2) {}
template <class _Fn>
piecewise_linear_distribution(initializer_list<_Ty> _Ilist, _Fn _Func) : _Par(_Ilist, _Func) {}
template <class _Fn>
piecewise_linear_distribution(size_t _Count, _Ty _Low, _Ty _High, _Fn _Func) : _Par(_Count, _Low, _High, _Func) {}
explicit piecewise_linear_distribution(const param_type& _Par0) : _Par(_Par0) {}
_NODISCARD vector<_Ty> intervals() const {
return _Par.intervals();
}
_NODISCARD vector<_Ty> densities() const {
return _Par.densities();
}
_NODISCARD param_type param() const {
return _Par;
}
void param(const param_type& _Par0) { // set parameter package
_Par = _Par0;
}
_NODISCARD result_type(min)() const {
return _Par._Bvec.front();
}
_NODISCARD result_type(max)() const {
return _Par._Bvec.back();
}
void reset() {} // clear internal state
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng) const {
return _Eval(_Eng, _Par);
}
template <class _Engine>
_NODISCARD result_type operator()(_Engine& _Eng, const param_type& _Par0) const {
return _Eval(_Eng, _Par0);
}
template <class _Elem, class _Traits>
basic_istream<_Elem, _Traits>& _Read(basic_istream<_Elem, _Traits>& _Istr,
param_type& _Par0) { // read state from _Istr
size_t _Nvals;
_Istr >> _Nvals;
_Par0._Pvec.clear();
for (; 0 < _Nvals; --_Nvals) { // get a value and add to vector
double _Val;
_In(_Istr, _Val);
_Par0._Pvec.push_back(_Val);
}
_Par0._Bvec.clear();
for (size_t _Idx = _Par0._Pvec.size(); 0 < _Idx; --_Idx) { // get a value and add to intervals vector
double _Val;
_In(_Istr, _Val);
_Par0._Bvec.push_back(_Val);
}
_Par0._Init(false); // don't renormalize, just compute CDF
return _Istr;
}
template <class _Elem, class _Traits>
basic_ostream<_Elem, _Traits>& _Write(basic_ostream<_Elem, _Traits>& _Ostr) const { // write state to _Ostr
_Mybase::_Write(_Ostr, _Par);
for (size_t _Idx = 0; _Idx < _Par._Bvec.size(); ++_Idx) {
_Out(_Ostr, _Par._Bvec[_Idx]);
}
return _Ostr;
}
template <class _Engine>
result_type _Eval(_Engine& _Eng, const param_type& _Par0) const {
size_t _Px = _Mybase::operator()(_Eng, _Par0);
double _Px0 = _Par0._Pvec[_Px];
double _Px1 = _Par0._Pvec[_Px + 1];
uniform_real<_Ty> _Dist;
result_type _Xx0 = _Dist(_Eng);
if (_Px0 != _Px1) {
_Xx0 = static_cast<result_type>(
(_STD sqrt(_Px0 * _Px0 * (1.0 - _Xx0) + _Px1 * _Px1 * _Xx0) - _Px0) / (_Px1 - _Px0));
}
return _Par0._Bvec[_Px] + _Xx0 * (_Par0._Bvec[_Px + 1] - _Par0._Bvec[_Px]);
}
param_type _Par;
};
template <class _Ty>
_NODISCARD bool operator==(
const piecewise_linear_distribution<_Ty>& _Left, const piecewise_linear_distribution<_Ty>& _Right) {
return _Left.param() == _Right.param();
}
template <class _Ty>
_NODISCARD bool operator!=(
const piecewise_linear_distribution<_Ty>& _Left, const piecewise_linear_distribution<_Ty>& _Right) {
return !(_Left == _Right);
}
template <class _Elem, class _Traits, class _Ty>
basic_istream<_Elem, _Traits>& operator>>(basic_istream<_Elem, _Traits>& _Istr,
piecewise_linear_distribution<_Ty>& _Dist) { // read state from _Istr
return _Dist._Read(_Istr, _Dist._Par);
}
template <class _Elem, class _Traits, class _Ty>
basic_ostream<_Elem, _Traits>& operator<<(basic_ostream<_Elem, _Traits>& _Ostr,
const piecewise_linear_distribution<_Ty>& _Dist) { // write state to _Ostr
return _Dist._Write(_Ostr);
}
// PREDEFINED GENERATORS
using minstd_rand0 = linear_congruential_engine<unsigned int, 16807, 0, 2147483647>;
using minstd_rand = linear_congruential_engine<unsigned int, 48271, 0, 2147483647>;
using mt19937 = mersenne_twister_engine<unsigned int, 32, 624, 397, 31, 0x9908b0df, 11, 0xffffffff, 7, 0x9d2c5680, 15,
0xefc60000, 18, 1812433253>;
#if _HAS_TR1_NAMESPACE
_STL_DISABLE_DEPRECATED_WARNING
using _Ranbase = subtract_with_carry<unsigned int, 1 << 24, 10, 24>;
_DEPRECATE_TR1_NAMESPACE typedef discard_block<_Ranbase, 223, 24> ranlux3;
_DEPRECATE_TR1_NAMESPACE typedef discard_block<_Ranbase, 389, 24> ranlux4;
_DEPRECATE_TR1_NAMESPACE typedef subtract_with_carry_01<float, 24, 10, 24> ranlux_base_01;
_DEPRECATE_TR1_NAMESPACE typedef subtract_with_carry_01<double, 48, 5, 12> ranlux64_base_01;
_DEPRECATE_TR1_NAMESPACE typedef discard_block<ranlux_base_01, 223, 24> ranlux3_01;
_DEPRECATE_TR1_NAMESPACE typedef discard_block<ranlux_base_01, 389, 24> ranlux4_01;
_STL_RESTORE_DEPRECATED_WARNING
#endif // _HAS_TR1_NAMESPACE
using mt19937_64 = mersenne_twister_engine<unsigned long long, 64, 312, 156, 31, 0xb5026f5aa96619e9ULL, 29,
0x5555555555555555ULL, 17, 0x71d67fffeda60000ULL, 37, 0xfff7eee000000000ULL, 43, 6364136223846793005ULL>;
using ranlux24_base = subtract_with_carry_engine<unsigned int, 24, 10, 24>;
using ranlux48_base = subtract_with_carry_engine<unsigned long long, 48, 5, 12>;
using ranlux24 = discard_block_engine<ranlux24_base, 223, 23>;
using ranlux48 = discard_block_engine<ranlux48_base, 389, 11>;
using knuth_b = shuffle_order_engine<minstd_rand0, 256>;
using default_random_engine = mt19937;
// CLASS random_device
_CRTIMP2_PURE unsigned int __CLRCALL_PURE_OR_CDECL _Random_device();
class random_device { // class to generate random numbers (from hardware where available)
public:
using result_type = unsigned int;
random_device() {}
explicit random_device(const string&) {}
_NODISCARD static constexpr result_type(min)() {
return 0;
}
_NODISCARD static constexpr result_type(max)() {
return static_cast<result_type>(-1);
}
_NODISCARD double entropy() const noexcept {
return 32.0;
}
_NODISCARD result_type operator()() {
return _Random_device();
}
random_device(const random_device&) = delete;
random_device& operator=(const random_device&) = delete;
};
#if _HAS_TR1_NAMESPACE
_STL_DISABLE_DEPRECATED_WARNING
namespace _DEPRECATE_TR1_NAMESPACE tr1 {
using _STD bernoulli_distribution;
using _STD binomial_distribution;
using _STD discard_block;
using _STD exponential_distribution;
using _STD gamma_distribution;
using _STD geometric_distribution;
using _STD linear_congruential;
using _STD mersenne_twister;
using _STD minstd_rand;
using _STD minstd_rand0;
using _STD mt19937;
using _STD normal_distribution;
using _STD poisson_distribution;
using _STD random_device;
using _STD ranlux3;
using _STD ranlux3_01;
using _STD ranlux4;
using _STD ranlux4_01;
using _STD ranlux64_base_01;
using _STD ranlux_base_01;
using _STD subtract_with_carry;
using _STD subtract_with_carry_01;
using _STD uniform_int;
using _STD uniform_real;
using _STD cauchy_distribution;
using _STD chi_squared_distribution;
using _STD default_random_engine;
using _STD discard_block_engine;
using _STD discrete_distribution;
using _STD extreme_value_distribution;
using _STD fisher_f_distribution;
using _STD generate_canonical;
using _STD independent_bits_engine;
using _STD knuth_b;
using _STD linear_congruential_engine;
using _STD lognormal_distribution;
using _STD mersenne_twister_engine;
using _STD mt19937_64;
using _STD negative_binomial_distribution;
using _STD piecewise_constant_distribution;
using _STD piecewise_linear_distribution;
using _STD ranlux24;
using _STD ranlux24_base;
using _STD ranlux48;
using _STD ranlux48_base;
using _STD seed_seq;
using _STD shuffle_order_engine;
using _STD student_t_distribution;
using _STD subtract_with_carry_engine;
using _STD uniform_int_distribution;
using _STD uniform_real_distribution;
using _STD weibull_distribution;
} // namespace tr1
_STL_RESTORE_DEPRECATED_WARNING
#endif // _HAS_TR1_NAMESPACE
_STD_END
#undef _NRAND
#pragma pop_macro("new")
_STL_RESTORE_CLANG_WARNINGS
#pragma warning(pop)
#pragma pack(pop)
#endif // _STL_COMPILER_PREPROCESSOR
#endif // _RANDOM_