STL/stl/inc/list

1863 строки
69 KiB
C++

// list standard header
// Copyright (c) Microsoft Corporation.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
#pragma once
#ifndef _LIST_
#define _LIST_
#include <yvals_core.h>
#if _STL_COMPILER_PREPROCESSOR
#include <xmemory>
#if _HAS_CXX17
#include <xpolymorphic_allocator.h>
#endif // _HAS_CXX17
#pragma pack(push, _CRT_PACKING)
#pragma warning(push, _STL_WARNING_LEVEL)
#pragma warning(disable : _STL_DISABLED_WARNINGS)
_STL_DISABLE_CLANG_WARNINGS
#pragma push_macro("new")
#undef new
_STD_BEGIN
// CLASS TEMPLATE _List_unchecked_const_iterator
template <class _Mylist, class _Base = _Iterator_base0>
class _List_unchecked_const_iterator : public _Base {
public:
using iterator_category = bidirectional_iterator_tag;
using _Nodeptr = typename _Mylist::_Nodeptr;
using value_type = typename _Mylist::value_type;
using difference_type = typename _Mylist::difference_type;
using pointer = typename _Mylist::const_pointer;
using reference = const value_type&;
_List_unchecked_const_iterator() noexcept : _Ptr() {}
_List_unchecked_const_iterator(_Nodeptr _Pnode, const _Mylist* _Plist) noexcept : _Ptr(_Pnode) {
this->_Adopt(_Plist);
}
_NODISCARD reference operator*() const {
return _Ptr->_Myval;
}
_NODISCARD pointer operator->() const {
return pointer_traits<pointer>::pointer_to(**this);
}
_List_unchecked_const_iterator& operator++() {
_Ptr = _Ptr->_Next;
return *this;
}
_List_unchecked_const_iterator operator++(int) {
_List_unchecked_const_iterator _Tmp = *this;
_Ptr = _Ptr->_Next;
return _Tmp;
}
_List_unchecked_const_iterator& operator--() {
_Ptr = _Ptr->_Prev;
return *this;
}
_List_unchecked_const_iterator operator--(int) {
_List_unchecked_const_iterator _Tmp = *this;
_Ptr = _Ptr->_Prev;
return _Tmp;
}
_NODISCARD bool operator==(const _List_unchecked_const_iterator& _Right) const {
return _Ptr == _Right._Ptr;
}
_NODISCARD bool operator!=(const _List_unchecked_const_iterator& _Right) const {
return !(*this == _Right);
}
_Nodeptr _Ptr; // pointer to node
};
// CLASS TEMPLATE _List_unchecked_iterator
template <class _Mylist>
class _List_unchecked_iterator : public _List_unchecked_const_iterator<_Mylist> {
public:
using _Mybase = _List_unchecked_const_iterator<_Mylist>;
using iterator_category = bidirectional_iterator_tag;
using _Nodeptr = typename _Mylist::_Nodeptr;
using value_type = typename _Mylist::value_type;
using difference_type = typename _Mylist::difference_type;
using pointer = typename _Mylist::pointer;
using reference = value_type&;
using _Mybase::_Mybase;
_NODISCARD reference operator*() const {
return const_cast<reference>(_Mybase::operator*());
}
_NODISCARD pointer operator->() const {
return pointer_traits<pointer>::pointer_to(**this);
}
_List_unchecked_iterator& operator++() {
_Mybase::operator++();
return *this;
}
_List_unchecked_iterator operator++(int) {
_List_unchecked_iterator _Tmp = *this;
_Mybase::operator++();
return _Tmp;
}
_List_unchecked_iterator& operator--() {
_Mybase::operator--();
return *this;
}
_List_unchecked_iterator operator--(int) {
_List_unchecked_iterator _Tmp = *this;
_Mybase::operator--();
return _Tmp;
}
};
// CLASS TEMPLATE _List_const_iterator
template <class _Mylist>
class _List_const_iterator : public _List_unchecked_const_iterator<_Mylist, _Iterator_base> {
public:
using _Mybase = _List_unchecked_const_iterator<_Mylist, _Iterator_base>;
using iterator_category = bidirectional_iterator_tag;
using _Nodeptr = typename _Mylist::_Nodeptr;
using value_type = typename _Mylist::value_type;
using difference_type = typename _Mylist::difference_type;
using pointer = typename _Mylist::const_pointer;
using reference = const value_type&;
using _Mybase::_Mybase;
_NODISCARD reference operator*() const {
#if _ITERATOR_DEBUG_LEVEL == 2
const auto _Mycont = static_cast<const _Mylist*>(this->_Getcont());
_STL_ASSERT(_Mycont, "cannot dereference value-initialized list iterator");
_STL_VERIFY(this->_Ptr != _Mycont->_Myhead, "cannot dereference end list iterator");
#endif // _ITERATOR_DEBUG_LEVEL == 2
return this->_Ptr->_Myval;
}
_NODISCARD pointer operator->() const {
return pointer_traits<pointer>::pointer_to(**this);
}
_List_const_iterator& operator++() {
#if _ITERATOR_DEBUG_LEVEL == 2
const auto _Mycont = static_cast<const _Mylist*>(this->_Getcont());
_STL_ASSERT(_Mycont, "cannot increment value-initialized list iterator");
_STL_VERIFY(this->_Ptr != _Mycont->_Myhead, "cannot increment end list iterator");
#endif // _ITERATOR_DEBUG_LEVEL == 2
this->_Ptr = this->_Ptr->_Next;
return *this;
}
_List_const_iterator operator++(int) {
_List_const_iterator _Tmp = *this;
++*this;
return _Tmp;
}
_List_const_iterator& operator--() {
const auto _New_ptr = this->_Ptr->_Prev;
#if _ITERATOR_DEBUG_LEVEL == 2
const auto _Mycont = static_cast<const _Mylist*>(this->_Getcont());
_STL_ASSERT(_Mycont, "cannot decrement value-initialized list iterator");
_STL_VERIFY(_New_ptr != _Mycont->_Myhead, "cannot decrement begin list iterator");
#endif // _ITERATOR_DEBUG_LEVEL == 2
this->_Ptr = _New_ptr;
return *this;
}
_List_const_iterator operator--(int) {
_List_const_iterator _Tmp = *this;
--*this;
return _Tmp;
}
_NODISCARD bool operator==(const _List_const_iterator& _Right) const {
#if _ITERATOR_DEBUG_LEVEL == 2
_STL_VERIFY(this->_Getcont() == _Right._Getcont(), "list iterators incompatible");
#endif // _ITERATOR_DEBUG_LEVEL == 2
return this->_Ptr == _Right._Ptr;
}
_NODISCARD bool operator!=(const _List_const_iterator& _Right) const {
return !(*this == _Right);
}
#if _ITERATOR_DEBUG_LEVEL == 2
friend void _Verify_range(const _List_const_iterator& _First, const _List_const_iterator& _Last) {
_STL_VERIFY(_First._Getcont() == _Last._Getcont(), "list iterators in range are from different containers");
}
#endif // _ITERATOR_DEBUG_LEVEL == 2
using _Prevent_inheriting_unwrap = _List_const_iterator;
_NODISCARD _List_unchecked_const_iterator<_Mylist> _Unwrapped() const {
return _List_unchecked_const_iterator<_Mylist>(this->_Ptr, static_cast<const _Mylist*>(this->_Getcont()));
}
void _Seek_to(const _List_unchecked_const_iterator<_Mylist> _It) {
this->_Ptr = _It._Ptr;
}
};
// CLASS TEMPLATE _List_iterator
template <class _Mylist>
class _List_iterator : public _List_const_iterator<_Mylist> {
public:
using _Mybase = _List_const_iterator<_Mylist>;
using iterator_category = bidirectional_iterator_tag;
using _Nodeptr = typename _Mylist::_Nodeptr;
using value_type = typename _Mylist::value_type;
using difference_type = typename _Mylist::difference_type;
using pointer = typename _Mylist::pointer;
using reference = value_type&;
using _Mybase::_Mybase;
_NODISCARD reference operator*() const {
return const_cast<reference>(_Mybase::operator*());
}
_NODISCARD pointer operator->() const {
return pointer_traits<pointer>::pointer_to(**this);
}
_List_iterator& operator++() {
_Mybase::operator++();
return *this;
}
_List_iterator operator++(int) {
_List_iterator _Tmp = *this;
_Mybase::operator++();
return _Tmp;
}
_List_iterator& operator--() {
_Mybase::operator--();
return *this;
}
_List_iterator operator--(int) {
_List_iterator _Tmp = *this;
_Mybase::operator--();
return _Tmp;
}
using _Prevent_inheriting_unwrap = _List_iterator;
_NODISCARD _List_unchecked_iterator<_Mylist> _Unwrapped() const {
return _List_unchecked_iterator<_Mylist>(this->_Ptr, static_cast<const _Mylist*>(this->_Getcont()));
}
};
// list TYPE WRAPPERS
template <class _Value_type, class _Size_type, class _Difference_type, class _Pointer, class _Const_pointer,
class _Reference, class _Const_reference, class _Nodeptr_type>
struct _List_iter_types {
using value_type = _Value_type;
using size_type = _Size_type;
using difference_type = _Difference_type;
using pointer = _Pointer;
using const_pointer = _Const_pointer;
using _Nodeptr = _Nodeptr_type;
};
template <class _Value_type, class _Voidptr>
struct _List_node { // list node
using value_type = _Value_type;
using _Nodeptr = _Rebind_pointer_t<_Voidptr, _List_node>;
_Nodeptr _Next; // successor node, or first element if head
_Nodeptr _Prev; // predecessor node, or last element if head
_Value_type _Myval; // the stored value, unused if head
_List_node(const _List_node&) = delete;
_List_node& operator=(const _List_node&) = delete;
template <class _Alnode>
static _Nodeptr _Buyheadnode(_Alnode& _Al) {
const auto _Result = _Al.allocate(1);
_Construct_in_place(_Result->_Next, _Result);
_Construct_in_place(_Result->_Prev, _Result);
return _Result;
}
template <class _Alnode>
static void _Freenode0(_Alnode& _Al, _Nodeptr _Ptr) noexcept {
// destroy pointer members in _Ptr and deallocate with _Al
static_assert(is_same_v<typename _Alnode::value_type, _List_node>, "Bad _Freenode0 call");
_Destroy_in_place(_Ptr->_Next);
_Destroy_in_place(_Ptr->_Prev);
allocator_traits<_Alnode>::deallocate(_Al, _Ptr, 1);
}
template <class _Alnode>
static void _Freenode(_Alnode& _Al, _Nodeptr _Ptr) noexcept { // destroy all members in _Ptr and deallocate with _Al
allocator_traits<_Alnode>::destroy(_Al, _STD addressof(_Ptr->_Myval));
_Freenode0(_Al, _Ptr);
}
template <class _Alnode>
static void _Free_non_head(
_Alnode& _Al, _Nodeptr _Head) noexcept { // free a list starting at _First and terminated at nullptr
_Head->_Prev->_Next = nullptr;
auto _Pnode = _Head->_Next;
for (_Nodeptr _Pnext; _Pnode; _Pnode = _Pnext) {
_Pnext = _Pnode->_Next;
_Freenode(_Al, _Pnode);
}
}
};
template <class _Ty>
struct _List_simple_types : _Simple_types<_Ty> {
using _Node = _List_node<_Ty, void*>;
using _Nodeptr = _Node*;
};
// CLASS TEMPLATE _List_val
template <class _Val_types>
class _List_val : public _Container_base {
public:
using _Nodeptr = typename _Val_types::_Nodeptr;
using value_type = typename _Val_types::value_type;
using size_type = typename _Val_types::size_type;
using difference_type = typename _Val_types::difference_type;
using pointer = typename _Val_types::pointer;
using const_pointer = typename _Val_types::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
_List_val() noexcept : _Myhead(), _Mysize(0) {} // initialize data
void _Orphan_ptr2(_Nodeptr _Ptr) noexcept { // orphan iterators with specified node pointers
#if _ITERATOR_DEBUG_LEVEL == 2
_Lockit _Lock(_LOCK_DEBUG);
_Iterator_base12** _Pnext = &this->_Myproxy->_Myfirstiter;
const auto _Head = _Myhead;
while (*_Pnext) {
_Iterator_base12** _Pnextnext = &(*_Pnext)->_Mynextiter;
const auto _Pnextptr = static_cast<_List_const_iterator<_List_val>&>(**_Pnext)._Ptr;
if (_Pnextptr == _Head || _Pnextptr != _Ptr) {
// iterator is end() or doesn't point at the one we are orphaning, move on
_Pnext = _Pnextnext;
} else { // orphan the iterator
(*_Pnext)->_Myproxy = nullptr;
*_Pnext = *_Pnextnext;
}
}
#else // ^^^ _ITERATOR_DEBUG_LEVEL == 2 ^^^ // vvv _ITERATOR_DEBUG_LEVEL != 2 vvv
(void) _Ptr;
#endif // _ITERATOR_DEBUG_LEVEL == 2
}
void _Orphan_non_end() noexcept { // orphan iterators except end()
#if _ITERATOR_DEBUG_LEVEL == 2
_Lockit _Lock(_LOCK_DEBUG);
_Iterator_base12** _Pnext = &this->_Myproxy->_Myfirstiter;
const auto _Head = _Myhead;
while (*_Pnext) {
_Iterator_base12** _Pnextnext = &(*_Pnext)->_Mynextiter;
if (static_cast<_List_const_iterator<_List_val>&>(**_Pnext)._Ptr == _Head) { // iterator is end(), move on
_Pnext = _Pnextnext;
} else { // orphan the iterator
(*_Pnext)->_Myproxy = nullptr;
*_Pnext = *_Pnextnext;
}
}
#endif // _ITERATOR_DEBUG_LEVEL == 2
}
_Nodeptr _Unlinknode(_Nodeptr _Pnode) noexcept { // unlink node at _Where from the list
_Orphan_ptr2(_Pnode);
_Pnode->_Prev->_Next = _Pnode->_Next;
_Pnode->_Next->_Prev = _Pnode->_Prev;
--_Mysize;
return _Pnode;
}
#if _ITERATOR_DEBUG_LEVEL == 2
void _Adopt_unique(_List_val& _Other, _Nodeptr _Pnode) noexcept {
// adopt iterators pointing to the spliced node
_Lockit _Lock(_LOCK_DEBUG);
_Iterator_base12** _Pnext = &_Other._Myproxy->_Myfirstiter;
const auto _Myproxy = this->_Myproxy;
while (*_Pnext) {
auto& _Iter = static_cast<_List_const_iterator<_List_val>&>(**_Pnext);
if (_Iter._Ptr == _Pnode) { // adopt the iterator
*_Pnext = _Iter._Mynextiter;
_Iter._Myproxy = _Myproxy;
_Iter._Mynextiter = _Myproxy->_Myfirstiter;
_Myproxy->_Myfirstiter = _STD addressof(_Iter);
} else { // skip the iterator
_Pnext = &_Iter._Mynextiter;
}
}
}
void _Adopt_all(_List_val& _Other) noexcept {
// adopt all iterators (except _Other.end())
_Lockit _Lock(_LOCK_DEBUG);
_Iterator_base12** _Pnext = &_Other._Myproxy->_Myfirstiter;
const auto _Myproxy = this->_Myproxy;
const auto _Otherhead = _Other._Myhead;
while (*_Pnext) {
auto& _Iter = static_cast<_List_const_iterator<_List_val>&>(**_Pnext);
if (_Iter._Ptr != _Otherhead) { // adopt the iterator
*_Pnext = _Iter._Mynextiter;
_Iter._Myproxy = _Myproxy;
_Iter._Mynextiter = _Myproxy->_Myfirstiter;
_Myproxy->_Myfirstiter = _STD addressof(_Iter);
} else { // skip the iterator
_Pnext = &_Iter._Mynextiter;
}
}
}
void _Adopt_range(_List_val& _Other, const _Nodeptr _First, const _Nodeptr _Last) noexcept {
// adopt all iterators pointing to nodes in the "range" [_First, _Last) by marking nodes
_Lockit _Lock(_LOCK_DEBUG);
_Iterator_base12** _Pnext = &_Other._Myproxy->_Myfirstiter;
const auto _Myproxy = this->_Myproxy;
_Nodeptr _Oldprev = _First->_Prev;
for (_Nodeptr _Ptr = _First; _Ptr != _Last; _Ptr = _Ptr->_Next) { // mark _Prev pointers
_Ptr->_Prev = nullptr;
}
while (*_Pnext) { // check the iterator
auto& _Iter = static_cast<_List_const_iterator<_List_val>&>(**_Pnext);
if (_Iter._Ptr->_Prev) { // skip the iterator
_Pnext = &_Iter._Mynextiter;
} else { // adopt the iterator
*_Pnext = _Iter._Mynextiter;
_Iter._Myproxy = _Myproxy;
_Iter._Mynextiter = _Myproxy->_Myfirstiter;
_Myproxy->_Myfirstiter = _STD addressof(_Iter);
}
}
for (_Nodeptr _Ptr = _First; _Ptr != _Last; _Ptr = _Ptr->_Next) { // restore _Prev pointers
_Ptr->_Prev = _Oldprev;
_Oldprev = _Ptr;
}
}
#endif // _ITERATOR_DEBUG_LEVEL == 2
static _Nodeptr _Unchecked_splice(const _Nodeptr _Before, const _Nodeptr _First, const _Nodeptr _Last) noexcept {
// splice [_First, _Last) before _Before; returns _Last
_STL_INTERNAL_CHECK(_Before != _First && _Before != _Last && _First != _Last);
// 3 reads and 6 writes
// fixup the _Next values
const auto _First_prev = _First->_Prev;
_First_prev->_Next = _Last;
const auto _Last_prev = _Last->_Prev;
_Last_prev->_Next = _Before;
const auto _Before_prev = _Before->_Prev;
_Before_prev->_Next = _First;
// fixup the _Prev values
_Before->_Prev = _Last_prev;
_Last->_Prev = _First_prev;
_First->_Prev = _Before_prev;
return _Last;
}
static _Nodeptr _Unchecked_splice(const _Nodeptr _Before, const _Nodeptr _First) noexcept {
// splice [_First, _First->_Next) before _Before; returns _First->_Next
_STL_INTERNAL_CHECK(_Before != _First && _First->_Next != _Before);
// still 3 reads and 6 writes, but 1 less read if the caller was going to get _First->_Next
const auto _Last = _First->_Next;
// fixup the _Next values
const auto _First_prev = _First->_Prev;
_First_prev->_Next = _Last;
// const auto _Last_prev = _First;
_First->_Next = _Before;
const auto _Before_prev = _Before->_Prev;
_Before_prev->_Next = _First;
// fixup the _Prev values
_Before->_Prev = _First;
_Last->_Prev = _First_prev;
_First->_Prev = _Before_prev;
return _Last;
}
template <class _Pr2>
static _Nodeptr _Merge_same(_Nodeptr _First, _Nodeptr _Mid, const _Nodeptr _Last, _Pr2 _Pred) {
// Merge the sorted ranges [_First, _Mid) and [_Mid, _Last)
// Returns the new beginning of the range (which won't be _First if it was spliced elsewhere)
_STL_INTERNAL_CHECK(_First != _Mid && _Mid != _Last);
_Nodeptr _Newfirst;
if (_DEBUG_LT_PRED(_Pred, _Mid->_Myval, _First->_Myval)) {
// _Mid will be spliced to the front of the range
_Newfirst = _Mid;
} else {
// Establish _Pred(_Mid->_Myval, _First->_Myval) by skipping over elements from the first
// range already in position.
_Newfirst = _First;
do {
_First = _First->_Next;
if (_First == _Mid) {
return _Newfirst;
}
} while (!_DEBUG_LT_PRED(_Pred, _Mid->_Myval, _First->_Myval));
}
for (;;) { // process one run splice
auto _Run_start = _Mid;
do { // find the end of the "run" of elements we need to splice from the second range into the first
_Mid = _Mid->_Next;
} while (_Mid != _Last && _DEBUG_LT_PRED(_Pred, _Mid->_Myval, _First->_Myval));
// [_Run_start, _Mid) goes before _First->_Myval
_Unchecked_splice(_First, _Run_start, _Mid);
if (_Mid == _Last) {
return _Newfirst;
}
// Reestablish _Pred(_Mid->_Myval, _First->_Myval) by skipping over elements from the first
// range already in position.
do {
_First = _First->_Next;
if (_First == _Mid) {
return _Newfirst;
}
} while (!_DEBUG_LT_PRED(_Pred, _Mid->_Myval, _First->_Myval));
}
}
template <class _Pr2>
static _Nodeptr _Sort(_Nodeptr& _First, const size_type _Size, _Pr2 _Pred) {
// order [_First, _Last), using _Pred, return _First + _Size
switch (_Size) {
case 0:
return _First;
case 1:
return _First->_Next;
default:
break;
}
auto _Mid = _Sort(_First, _Size / 2, _Pred);
const auto _Last = _Sort(_Mid, _Size - _Size / 2, _Pred);
_First = _Merge_same(_First, _Mid, _Last, _Pred);
return _Last;
}
_Nodeptr _Myhead; // pointer to head node
size_type _Mysize; // number of elements
};
// STRUCT TEMPLATE _List_node_emplace_op2
template <class _Alnode>
struct _List_node_emplace_op2 : _Alloc_construct_ptr<_Alnode> {
using _Alnode_traits = allocator_traits<_Alnode>;
using pointer = typename _Alnode_traits::pointer;
template <class... _Valtys>
explicit _List_node_emplace_op2(_Alnode& _Al_, _Valtys&&... _Vals) : _Alloc_construct_ptr<_Alnode>(_Al_) {
this->_Allocate();
_Alnode_traits::construct(this->_Al, _STD addressof(this->_Ptr->_Myval), _STD forward<_Valtys>(_Vals)...);
}
~_List_node_emplace_op2() {
if (this->_Ptr != pointer{}) {
_Alnode_traits::destroy(this->_Al, _STD addressof(this->_Ptr->_Myval));
}
}
_List_node_emplace_op2(const _List_node_emplace_op2&) = delete;
_List_node_emplace_op2& operator=(const _List_node_emplace_op2&) = delete;
pointer _Transfer_before(const pointer _Insert_before) noexcept {
const pointer _Insert_after = _Insert_before->_Prev;
_Construct_in_place(this->_Ptr->_Next, _Insert_before);
_Construct_in_place(this->_Ptr->_Prev, _Insert_after);
const auto _Result = this->_Ptr;
this->_Ptr = pointer{};
_Insert_before->_Prev = _Result;
_Insert_after->_Next = _Result;
return _Result;
}
};
// STRUCT TEMPLATE _List_node_insert_op2
template <class _Alnode>
struct _List_node_insert_op2 {
// list insert operation which maintains exception safety
using _Alnode_traits = allocator_traits<_Alnode>;
using pointer = typename _Alnode_traits::pointer;
using size_type = typename _Alnode_traits::size_type;
using value_type = typename _Alnode_traits::value_type;
explicit _List_node_insert_op2(_Alnode& _Al_) : _Al(_Al_), _Added(0) {}
_List_node_insert_op2(const _List_node_insert_op2&) = delete;
_List_node_insert_op2& operator=(const _List_node_insert_op2&) = delete;
template <class... _CArgT>
void _Append_n(size_type _Count, const _CArgT&... _Carg) {
// Append _Count elements constructed from _Carg
if (_Count <= 0) {
return;
}
_Alloc_construct_ptr<_Alnode> _Newnode(_Al);
if (_Added == 0) {
_Newnode._Allocate(); // throws
_Alnode_traits::construct(_Al, _STD addressof(_Newnode._Ptr->_Myval), _Carg...); // throws
_Head = _Newnode._Ptr;
_Tail = _Newnode._Ptr;
++_Added;
--_Count;
}
for (; 0 < _Count; --_Count) {
_Newnode._Allocate(); // throws
_Alnode_traits::construct(_Al, _STD addressof(_Newnode._Ptr->_Myval), _Carg...); // throws
_Construct_in_place(_Tail->_Next, _Newnode._Ptr);
_Construct_in_place(_Newnode._Ptr->_Prev, _Tail);
_Tail = _Newnode._Ptr;
++_Added;
}
_Newnode._Ptr = pointer{};
}
template <class _InIt, class _Sentinel>
void _Append_range_unchecked(_InIt _First, const _Sentinel _Last) {
// Append the values in [_First, _Last)
if (_First == _Last) { // throws
return;
}
_Alloc_construct_ptr<_Alnode> _Newnode(_Al);
if (_Added == 0) {
_Newnode._Allocate(); // throws
_Alnode_traits::construct(_Al, _STD addressof(_Newnode._Ptr->_Myval), *_First); // throws
const auto _Newhead = _STD exchange(_Newnode._Ptr, pointer{});
_Head = _Newhead;
_Tail = _Newhead;
++_Added;
++_First; // throws
}
while (_First != _Last) { // throws
_Newnode._Allocate(); // throws
_Alnode_traits::construct(_Al, _STD addressof(_Newnode._Ptr->_Myval), *_First); // throws
_Construct_in_place(_Tail->_Next, _Newnode._Ptr);
_Construct_in_place(_Newnode._Ptr->_Prev, _Tail);
_Tail = _STD exchange(_Newnode._Ptr, pointer{});
++_Added;
++_First; // throws
}
}
template <class _Val_types>
pointer _Attach_before(_List_val<_Val_types>& _List_data, const pointer _Insert_before) noexcept {
// Attach the elements in *this before _Insert_before.
// If *this is empty, returns _Insert_before; otherwise returns a pointer to the first inserted list node.
// Resets *this to the default-initialized state.
const auto _Local_added = _Added;
if (_Local_added == 0) {
return _Insert_before;
}
const auto _Local_head = _Head;
const auto _Local_tail = _Tail;
const auto _Insert_after = _Insert_before->_Prev;
_Construct_in_place(_Local_head->_Prev, _Insert_after);
_Insert_after->_Next = _Local_head;
_Construct_in_place(_Local_tail->_Next, _Insert_before);
_Insert_before->_Prev = _Local_tail;
_List_data._Mysize += _Local_added;
_Added = 0;
return _Local_head;
}
template <class _Val_types>
void _Attach_at_end(_List_val<_Val_types>& _List_data) noexcept {
_Attach_before(_List_data, _List_data._Myhead);
}
template <class _Val_types>
void _Attach_head(_List_val<_Val_types>& _List_data) {
_Alloc_construct_ptr<_Alnode> _Newnode(_Al);
_Newnode._Allocate(); // throws
const auto _Local_added = _STD exchange(_Added, size_type{0});
if (_Local_added == 0) {
_Construct_in_place(_Newnode._Ptr->_Next, _Newnode._Ptr);
_Construct_in_place(_Newnode._Ptr->_Prev, _Newnode._Ptr);
} else {
const auto _Local_head = _Head;
const auto _Local_tail = _Tail;
_Construct_in_place(_Newnode._Ptr->_Next, _Local_head);
_Construct_in_place(_Newnode._Ptr->_Prev, _Local_tail);
_Construct_in_place(_Local_head->_Prev, _Newnode._Ptr);
_Construct_in_place(_Local_tail->_Next, _Newnode._Ptr);
}
_List_data._Mysize = _Local_added;
_List_data._Myhead = _Newnode._Release();
}
~_List_node_insert_op2() {
if (_Added == 0) {
return;
}
_Construct_in_place(_Head->_Prev, pointer{});
_Construct_in_place(_Tail->_Next, pointer{});
pointer _Subject = _Head;
while (_Subject) {
value_type::_Freenode(_Al, _STD exchange(_Subject, _Subject->_Next));
}
}
private:
_Alnode& _Al;
size_type _Added; // if 0, the values of _Head and _Tail are indeterminate
pointer _Tail; // points to the most recently appended element; it doesn't have _Next constructed
pointer _Head; // points to the first appended element; it doesn't have _Prev constructed
};
template <class _Traits>
class _Hash;
// CLASS TEMPLATE list
template <class _Ty, class _Alloc = allocator<_Ty>>
class list { // bidirectional linked list
private:
template <class>
friend class _Hash;
template <class _Traits>
friend bool _Hash_equal(const _Hash<_Traits>&, const _Hash<_Traits>&);
#if !_HAS_IF_CONSTEXPR
template <class _Traits>
friend bool _Hash_equal_elements(const _Hash<_Traits>& _Left, const _Hash<_Traits>& _Right, false_type);
#endif // _HAS_IF_CONSTEXPR
using _Alty = _Rebind_alloc_t<_Alloc, _Ty>;
using _Alty_traits = allocator_traits<_Alty>;
using _Node = _List_node<_Ty, typename allocator_traits<_Alloc>::void_pointer>;
using _Alnode = _Rebind_alloc_t<_Alloc, _Node>;
using _Alnode_traits = allocator_traits<_Alnode>;
using _Nodeptr = typename _Alnode_traits::pointer;
using _Val_types = conditional_t<_Is_simple_alloc_v<_Alnode>, _List_simple_types<_Ty>,
_List_iter_types<_Ty, typename _Alty_traits::size_type, typename _Alty_traits::difference_type,
typename _Alty_traits::pointer, typename _Alty_traits::const_pointer, _Ty&, const _Ty&, _Nodeptr>>;
using _Scary_val = _List_val<_Val_types>;
public:
static_assert(!_ENFORCE_MATCHING_ALLOCATORS || is_same_v<_Ty, typename _Alloc::value_type>,
_MISMATCHED_ALLOCATOR_MESSAGE("list<T, Allocator>", "T"));
using value_type = _Ty;
using allocator_type = _Alloc;
using size_type = typename _Alty_traits::size_type;
using difference_type = typename _Alty_traits::difference_type;
using pointer = typename _Alty_traits::pointer;
using const_pointer = typename _Alty_traits::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using iterator = _List_iterator<_Scary_val>;
using const_iterator = _List_const_iterator<_Scary_val>;
using _Unchecked_iterator = _List_unchecked_iterator<_Scary_val>;
using _Unchecked_const_iterator = _List_unchecked_const_iterator<_Scary_val>;
using reverse_iterator = _STD reverse_iterator<iterator>;
using const_reverse_iterator = _STD reverse_iterator<const_iterator>;
list() : _Mypair(_Zero_then_variadic_args_t{}) {
_Alloc_sentinel_and_proxy();
}
explicit list(const _Alloc& _Al) : _Mypair(_One_then_variadic_args_t{}, _Al) {
_Alloc_sentinel_and_proxy();
}
private:
template <class _Any_alloc>
explicit list(_Move_allocator_tag, _Any_alloc& _Al) : _Mypair(_One_then_variadic_args_t{}, _STD move(_Al)) {
_Alloc_sentinel_and_proxy();
}
void _Construct_n(_CRT_GUARDOVERFLOW size_type _Count) {
auto&& _Alproxy = _GET_PROXY_ALLOCATOR(_Alnode, _Getal());
_Container_proxy_ptr<_Alty> _Proxy(_Alproxy, _Mypair._Myval2);
_List_node_insert_op2<_Alnode> _Appended(_Getal());
_Appended._Append_n(_Count);
_Appended._Attach_head(_Mypair._Myval2);
_Proxy._Release();
}
public:
explicit list(_CRT_GUARDOVERFLOW size_type _Count)
: _Mypair(_Zero_then_variadic_args_t{}) { // construct list from _Count * _Ty()
_Construct_n(_Count);
}
explicit list(_CRT_GUARDOVERFLOW size_type _Count, const _Alloc& _Al)
: _Mypair(_One_then_variadic_args_t{}, _Al) { // construct list from _Count * _Ty(), with allocator
_Construct_n(_Count);
}
private:
void _Construct_n(_CRT_GUARDOVERFLOW size_type _Count, const _Ty& _Val) {
auto&& _Alproxy = _GET_PROXY_ALLOCATOR(_Alnode, _Getal());
_Container_proxy_ptr<_Alty> _Proxy(_Alproxy, _Mypair._Myval2);
_List_node_insert_op2<_Alnode> _Appended(_Getal());
_Appended._Append_n(_Count, _Val);
_Appended._Attach_head(_Mypair._Myval2);
_Proxy._Release();
}
public:
list(_CRT_GUARDOVERFLOW size_type _Count, const _Ty& _Val)
: _Mypair(_Zero_then_variadic_args_t{}) { // construct list from _Count * _Val
_Construct_n(_Count, _Val);
}
list(_CRT_GUARDOVERFLOW size_type _Count, const _Ty& _Val, const _Alloc& _Al)
: _Mypair(_One_then_variadic_args_t{}, _Al) { // construct list from _Count * _Val, allocator
_Construct_n(_Count, _Val);
}
private:
template <class _Iter>
void _Construct_range_unchecked(_Iter _First, _Iter _Last) {
auto&& _Alproxy = _GET_PROXY_ALLOCATOR(_Alnode, _Getal());
_Container_proxy_ptr<_Alty> _Proxy(_Alproxy, _Mypair._Myval2);
_List_node_insert_op2<_Alnode> _Appended(_Getal());
_Appended._Append_range_unchecked(_First, _Last);
_Appended._Attach_head(_Mypair._Myval2);
_Proxy._Release();
}
public:
list(const list& _Right)
: _Mypair(_One_then_variadic_args_t{}, _Alnode_traits::select_on_container_copy_construction(_Right._Getal())) {
_Construct_range_unchecked(_Right._Unchecked_begin(), _Right._Unchecked_end());
}
list(const list& _Right, const _Alloc& _Al) : _Mypair(_One_then_variadic_args_t{}, _Al) {
_Construct_range_unchecked(_Right._Unchecked_begin(), _Right._Unchecked_end());
}
template <class _Iter, enable_if_t<_Is_iterator_v<_Iter>, int> = 0>
list(_Iter _First, _Iter _Last) : _Mypair(_Zero_then_variadic_args_t{}) {
_Adl_verify_range(_First, _Last);
_Construct_range_unchecked(_Get_unwrapped(_First), _Get_unwrapped(_Last));
}
template <class _Iter, enable_if_t<_Is_iterator_v<_Iter>, int> = 0>
list(_Iter _First, _Iter _Last, const _Alloc& _Al) : _Mypair(_One_then_variadic_args_t{}, _Al) {
_Adl_verify_range(_First, _Last);
_Construct_range_unchecked(_Get_unwrapped(_First), _Get_unwrapped(_Last));
}
list(list&& _Right) : _Mypair(_One_then_variadic_args_t{}, _STD move(_Right._Getal())) {
_Alloc_sentinel_and_proxy();
_Swap_val(_Right);
}
list(list&& _Right, const _Alloc& _Al) : _Mypair(_One_then_variadic_args_t{}, _Al) {
if _CONSTEXPR_IF (!_Alnode_traits::is_always_equal::value) {
if (_Getal() != _Right._Getal()) {
_Construct_range_unchecked(_STD make_move_iterator(_Right._Unchecked_begin()),
_STD make_move_iterator(_Right._Unchecked_end()));
return;
}
}
_Alloc_sentinel_and_proxy();
_Swap_val(_Right);
}
private:
void _Move_assign(list& _Right, _Equal_allocators) noexcept {
clear();
_Pocma(_Getal(), _Right._Getal());
_Swap_val(_Right);
}
void _Move_assign(list& _Right, _Propagate_allocators) {
auto& _Al = _Getal();
auto& _Right_al = _Right._Getal();
if (_Al == _Right_al) {
_Move_assign(_Right, _Equal_allocators{});
} else {
auto&& _Alproxy = _GET_PROXY_ALLOCATOR(_Alnode, _Al);
auto&& _Right_alproxy = _GET_PROXY_ALLOCATOR(_Alnode, _Right_al);
_Container_proxy_ptr<_Alty> _Proxy(_Right_alproxy, _Leave_proxy_unbound{});
auto& _My_data = _Mypair._Myval2;
auto& _Right_data = _Right._Mypair._Myval2;
const auto _Newhead = _STD exchange(_Right_data._Myhead, _Node::_Buyheadnode(_Right_al));
const auto _Newsize = _STD exchange(_Right_data._Mysize, size_type{0});
_Tidy();
_Pocma(_Al, _Right_al);
_My_data._Myhead = _Newhead;
_My_data._Mysize = _Newsize;
_Proxy._Bind(_Alproxy, _STD addressof(_My_data));
_My_data._Swap_proxy_and_iterators(_Right_data);
}
}
void _Move_assign(list& _Right, _No_propagate_allocators) {
if (_Getal() == _Right._Getal()) {
_Move_assign(_Right, _Equal_allocators{});
} else {
assign(
_STD make_move_iterator(_Right._Unchecked_begin()), _STD make_move_iterator(_Right._Unchecked_end()));
}
}
public:
list& operator=(list&& _Right) noexcept(
noexcept(_Move_assign(_Right, _Choose_pocma<_Alnode>{}))) /* strengthened */ {
if (this != _STD addressof(_Right)) {
_Move_assign(_Right, _Choose_pocma<_Alnode>{});
}
return *this;
}
private:
void _Swap_val(list& _Right) noexcept { // swap with _Right, same allocator
auto& _My_data = _Mypair._Myval2;
auto& _Right_data = _Right._Mypair._Myval2;
_My_data._Swap_proxy_and_iterators(_Right_data);
_Swap_adl(_My_data._Myhead, _Right_data._Myhead);
_STD swap(_My_data._Mysize, _Right_data._Mysize);
}
public:
void push_front(_Ty&& _Val) { // insert element at beginning
_Emplace(_Mypair._Myval2._Myhead->_Next, _STD move(_Val));
}
void push_back(_Ty&& _Val) { // insert element at end
_Emplace(_Mypair._Myval2._Myhead, _STD move(_Val));
}
iterator insert(const_iterator _Where, _Ty&& _Val) { // insert _Val at _Where
return emplace(_Where, _STD move(_Val));
}
template <class... _Valty>
decltype(auto) emplace_front(_Valty&&... _Val) { // insert element at beginning
reference _Result = _Emplace(_Mypair._Myval2._Myhead->_Next, _STD forward<_Valty>(_Val)...)->_Myval;
#if _HAS_CXX17
return _Result;
#else // ^^^ _HAS_CXX17 // !_HAS_CXX17 vvv
(void) _Result;
#endif // _HAS_CXX17
}
template <class... _Valty>
decltype(auto) emplace_back(_Valty&&... _Val) { // insert element at end
reference _Result = _Emplace(_Mypair._Myval2._Myhead, _STD forward<_Valty>(_Val)...)->_Myval;
#if _HAS_CXX17
return _Result;
#else // ^^^ _HAS_CXX17 // !_HAS_CXX17 vvv
(void) _Result;
#endif // _HAS_CXX17
}
template <class... _Valty>
iterator emplace(const const_iterator _Where, _Valty&&... _Val) { // insert element at _Where
#if _ITERATOR_DEBUG_LEVEL == 2
_STL_VERIFY(_Where._Getcont() == _STD addressof(_Mypair._Myval2), "list emplace iterator outside range");
#endif // _ITERATOR_DEBUG_LEVEL == 2
return _Make_iter(_Emplace(_Where._Ptr, _STD forward<_Valty>(_Val)...));
}
template <class... _Valty>
_Nodeptr _Emplace(const _Nodeptr _Where, _Valty&&... _Val) { // insert element at _Where
size_type& _Mysize = _Mypair._Myval2._Mysize;
if (_Mysize == max_size()) {
_Xlength_error("list too long");
}
_List_node_emplace_op2<_Alnode> _Op{_Getal(), _STD forward<_Valty>(_Val)...};
++_Mysize;
return _Op._Transfer_before(_Where);
}
list(initializer_list<_Ty> _Ilist) : _Mypair(_Zero_then_variadic_args_t{}) {
_Construct_range_unchecked(_Ilist.begin(), _Ilist.end());
}
list(initializer_list<_Ty> _Ilist, const _Alloc& _Al) : _Mypair(_One_then_variadic_args_t{}, _Al) {
_Construct_range_unchecked(_Ilist.begin(), _Ilist.end());
}
list& operator=(initializer_list<_Ty> _Ilist) {
assign(_Ilist.begin(), _Ilist.end());
return *this;
}
void assign(initializer_list<_Ty> _Ilist) {
assign(_Ilist.begin(), _Ilist.end());
}
iterator insert(const_iterator _Where,
initializer_list<_Ty> _Ilist) { // insert initializer_list
return insert(_Where, _Ilist.begin(), _Ilist.end());
}
~list() noexcept {
_Tidy();
#if _ITERATOR_DEBUG_LEVEL != 0 // TRANSITION, ABI
auto&& _Alproxy = _GET_PROXY_ALLOCATOR(_Alnode, _Getal());
_Delete_plain_internal(_Alproxy, _Mypair._Myval2._Myproxy);
#endif // _ITERATOR_DEBUG_LEVEL != 0
}
private:
void _Reload_sentinel_and_proxy(const list& _Right) { // reload sentinel / proxy from unequal POCCA _Right
auto& _Al = _Getal();
auto&& _Alproxy = _GET_PROXY_ALLOCATOR(_Alnode, _Al);
auto& _Right_al = _Right._Getal();
auto&& _Right_alproxy = _GET_PROXY_ALLOCATOR(_Alnode, _Right_al);
_Container_proxy_ptr<_Alty> _Proxy(_Right_alproxy, _Leave_proxy_unbound{});
auto _Right_al_non_const = _Right_al;
auto _Newhead = _Node::_Buyheadnode(_Right_al_non_const);
_Tidy();
_Pocca(_Al, _Right_al);
_Mypair._Myval2._Myhead = _Newhead;
_Mypair._Myval2._Mysize = 0;
_Proxy._Bind(_Alproxy, _STD addressof(_Mypair._Myval2));
}
void _Copy_assign(const list& _Right, false_type) {
_Pocca(_Getal(), _Right._Getal());
assign(_Right._Unchecked_begin(), _Right._Unchecked_end());
}
void _Copy_assign(const list& _Right, true_type) {
if (_Getal() != _Right._Getal()) {
_Reload_sentinel_and_proxy(_Right);
}
assign(_Right._Unchecked_begin(), _Right._Unchecked_end());
}
public:
list& operator=(const list& _Right) {
if (this != _STD addressof(_Right)) {
_Copy_assign(_Right, _Choose_pocca<_Alnode>{});
}
return *this;
}
_NODISCARD iterator begin() noexcept {
return iterator(_Mypair._Myval2._Myhead->_Next, _STD addressof(_Mypair._Myval2));
}
_NODISCARD const_iterator begin() const noexcept {
return const_iterator(_Mypair._Myval2._Myhead->_Next, _STD addressof(_Mypair._Myval2));
}
_NODISCARD iterator end() noexcept {
return iterator(_Mypair._Myval2._Myhead, _STD addressof(_Mypair._Myval2));
}
_NODISCARD const_iterator end() const noexcept {
return const_iterator(_Mypair._Myval2._Myhead, _STD addressof(_Mypair._Myval2));
}
_Unchecked_iterator _Unchecked_begin() noexcept {
return _Unchecked_iterator(_Mypair._Myval2._Myhead->_Next, nullptr);
}
_Unchecked_const_iterator _Unchecked_begin() const noexcept {
return _Unchecked_const_iterator(_Mypair._Myval2._Myhead->_Next, nullptr);
}
_Unchecked_iterator _Unchecked_end() noexcept {
return _Unchecked_iterator(_Mypair._Myval2._Myhead, nullptr);
}
_Unchecked_const_iterator _Unchecked_end() const noexcept {
return _Unchecked_const_iterator(_Mypair._Myval2._Myhead, nullptr);
}
iterator _Make_iter(_Nodeptr _Where) const noexcept {
return iterator(_Where, _STD addressof(_Mypair._Myval2));
}
const_iterator _Make_const_iter(_Nodeptr _Where) const noexcept {
return const_iterator(_Where, _STD addressof(_Mypair._Myval2));
}
_NODISCARD reverse_iterator rbegin() noexcept {
return reverse_iterator(end());
}
_NODISCARD const_reverse_iterator rbegin() const noexcept {
return const_reverse_iterator(end());
}
_NODISCARD reverse_iterator rend() noexcept {
return reverse_iterator(begin());
}
_NODISCARD const_reverse_iterator rend() const noexcept {
return const_reverse_iterator(begin());
}
_NODISCARD const_iterator cbegin() const noexcept {
return begin();
}
_NODISCARD const_iterator cend() const noexcept {
return end();
}
_NODISCARD const_reverse_iterator crbegin() const noexcept {
return rbegin();
}
_NODISCARD const_reverse_iterator crend() const noexcept {
return rend();
}
void resize(_CRT_GUARDOVERFLOW size_type _Newsize) { // determine new length, padding with _Ty() elements as needed
auto& _My_data = _Mypair._Myval2;
if (_My_data._Mysize < _Newsize) { // pad to make larger
_List_node_insert_op2<_Alnode> _Op(_Getal());
_Op._Append_n(_Newsize - _My_data._Mysize);
_Op._Attach_at_end(_My_data);
} else {
while (_Newsize < _My_data._Mysize) {
pop_back();
}
}
}
void resize(_CRT_GUARDOVERFLOW size_type _Newsize, const _Ty& _Val) {
// determine new length, padding with _Val elements as needed
auto& _My_data = _Mypair._Myval2;
if (_My_data._Mysize < _Newsize) { // pad to make larger
_List_node_insert_op2<_Alnode> _Op(_Getal());
_Op._Append_n(_Newsize - _My_data._Mysize, _Val);
_Op._Attach_at_end(_My_data);
} else {
while (_Newsize < _My_data._Mysize) {
pop_back();
}
}
}
_NODISCARD size_type size() const noexcept {
return _Mypair._Myval2._Mysize;
}
_NODISCARD size_type max_size() const noexcept {
return (_STD min)(
static_cast<size_type>((numeric_limits<difference_type>::max)()), _Alnode_traits::max_size(_Getal()));
}
_NODISCARD bool empty() const noexcept {
return _Mypair._Myval2._Mysize == 0;
}
_NODISCARD allocator_type get_allocator() const noexcept {
return static_cast<allocator_type>(_Getal());
}
_NODISCARD reference front() noexcept /* strengthened */ {
#if _CONTAINER_DEBUG_LEVEL > 0
_STL_VERIFY(_Mypair._Myval2._Mysize != 0, "front() called on empty list");
#endif // _CONTAINER_DEBUG_LEVEL > 0
return _Mypair._Myval2._Myhead->_Next->_Myval;
}
_NODISCARD const_reference front() const noexcept /* strengthened */ {
#if _CONTAINER_DEBUG_LEVEL > 0
_STL_VERIFY(_Mypair._Myval2._Mysize != 0, "front() called on empty list");
#endif // _CONTAINER_DEBUG_LEVEL > 0
return _Mypair._Myval2._Myhead->_Next->_Myval;
}
_NODISCARD reference back() noexcept /* strengthened */ {
#if _CONTAINER_DEBUG_LEVEL > 0
_STL_VERIFY(_Mypair._Myval2._Mysize != 0, "back() called on empty list");
#endif // _CONTAINER_DEBUG_LEVEL > 0
return _Mypair._Myval2._Myhead->_Prev->_Myval;
}
_NODISCARD const_reference back() const noexcept /* strengthened */ {
#if _CONTAINER_DEBUG_LEVEL > 0
_STL_VERIFY(_Mypair._Myval2._Mysize != 0, "back() called on empty list");
#endif // _CONTAINER_DEBUG_LEVEL > 0
return _Mypair._Myval2._Myhead->_Prev->_Myval;
}
void push_front(const _Ty& _Val) {
_Emplace(_Mypair._Myval2._Myhead->_Next, _Val);
}
void pop_front() noexcept /* strengthened */ {
#if _CONTAINER_DEBUG_LEVEL > 0
_STL_VERIFY(_Mypair._Myval2._Mysize != 0, "pop_front called on empty list");
#endif // _CONTAINER_DEBUG_LEVEL > 0
_Unchecked_erase(_Mypair._Myval2._Myhead->_Next);
}
void push_back(const _Ty& _Val) {
_Emplace(_Mypair._Myval2._Myhead, _Val);
}
void pop_back() noexcept /* strengthened */ {
#if _CONTAINER_DEBUG_LEVEL > 0
_STL_VERIFY(_Mypair._Myval2._Mysize != 0, "pop_back called on empty list");
#endif // _CONTAINER_DEBUG_LEVEL > 0
_Unchecked_erase(_Mypair._Myval2._Myhead->_Prev);
}
private:
template <class _Target_ref, class _UIter>
void _Assign_cast(_UIter _UFirst, const _UIter _ULast) {
// assign [_UFirst, _ULast), casting existing nodes to _Target_ref
const auto _Myend = _Mypair._Myval2._Myhead;
auto _Old = _Myend->_Next;
for (;;) { // attempt to reuse a node
if (_Old == _Myend) { // no more nodes to reuse, append the rest
_List_node_insert_op2<_Alnode> _Op(_Getal());
_Op._Append_range_unchecked(_UFirst, _ULast);
_Op._Attach_at_end(_Mypair._Myval2);
return;
}
if (_UFirst == _ULast) {
// input sequence was shorter than existing list, destroy and deallocate what's left
_Unchecked_erase(_Old, _Myend);
return;
}
// reuse the node
reinterpret_cast<_Target_ref>(_Old->_Myval) = *_UFirst;
_Old = _Old->_Next;
++_UFirst;
}
}
public:
template <class _Iter, enable_if_t<_Is_iterator_v<_Iter>, int> = 0>
void assign(_Iter _First, _Iter _Last) {
_Assign_cast<reference>(_Get_unwrapped(_First), _Get_unwrapped(_Last));
}
void assign(_CRT_GUARDOVERFLOW size_type _Count, const _Ty& _Val) { // assign _Count * _Val
const auto _Myend = _Mypair._Myval2._Myhead;
auto _Old = _Myend->_Next;
for (;;) { // attempt to reuse a node
if (_Old == _Myend) { // no more nodes to reuse, append the rest
_List_node_insert_op2<_Alnode> _Op(_Getal());
_Op._Append_n(_Count, _Val);
_Op._Attach_at_end(_Mypair._Myval2);
return;
}
if (_Count == 0) {
// input sequence was shorter than existing list, destroy and deallocate what's left
_Unchecked_erase(_Old, _Myend);
return;
}
// reuse the node
_Old->_Myval = _Val;
_Old = _Old->_Next;
--_Count;
}
}
iterator insert(const_iterator _Where, const _Ty& _Val) { // insert _Val at _Where
#if _ITERATOR_DEBUG_LEVEL == 2
_STL_VERIFY(_Where._Getcont() == _STD addressof(_Mypair._Myval2), "list insert iterator outside range");
#endif // _ITERATOR_DEBUG_LEVEL == 2
return _Make_iter(_Emplace(_Where._Ptr, _Val));
}
iterator insert(const_iterator _Where, _CRT_GUARDOVERFLOW size_type _Count,
const _Ty& _Val) { // insert _Count * _Val before _Where
#if _ITERATOR_DEBUG_LEVEL == 2
_STL_VERIFY(_Where._Getcont() == _STD addressof(_Mypair._Myval2), "list insert iterator outside range");
#endif // _ITERATOR_DEBUG_LEVEL == 2
_List_node_insert_op2<_Alnode> _Op(_Getal());
_Op._Append_n(_Count, _Val);
return _Make_iter(_Op._Attach_before(_Mypair._Myval2, _Where._Ptr));
}
template <class _Iter, enable_if_t<_Is_iterator_v<_Iter>, int> = 0>
iterator insert(const const_iterator _Where, _Iter _First, _Iter _Last) { // insert [_First, _Last) before _Where
#if _ITERATOR_DEBUG_LEVEL == 2
_STL_VERIFY(_Where._Getcont() == _STD addressof(_Mypair._Myval2), "list insert iterator outside range");
#endif // _ITERATOR_DEBUG_LEVEL == 2
_Adl_verify_range(_First, _Last);
_List_node_insert_op2<_Alnode> _Op(_Getal());
_Op._Append_range_unchecked(_Get_unwrapped(_First), _Get_unwrapped(_Last));
return _Make_iter(_Op._Attach_before(_Mypair._Myval2, _Where._Ptr));
}
public:
iterator erase(const const_iterator _Where) noexcept /* strengthened */ {
#if _ITERATOR_DEBUG_LEVEL == 2
_STL_VERIFY(_Where._Getcont() == _STD addressof(_Mypair._Myval2), "list erase iterator outside range");
#endif // _ITERATOR_DEBUG_LEVEL == 2
const auto _Result = _Where._Ptr->_Next;
_Node::_Freenode(_Getal(), _Mypair._Myval2._Unlinknode(_Where._Ptr));
return _Make_iter(_Result);
}
private:
_Nodeptr _Unchecked_erase(const _Nodeptr _Pnode) noexcept { // erase element at _Pnode
const auto _Result = _Pnode->_Next;
_Mypair._Myval2._Orphan_ptr2(_Pnode);
--_Mypair._Myval2._Mysize;
_Pnode->_Prev->_Next = _Result;
_Result->_Prev = _Pnode->_Prev;
_Node::_Freenode(_Getal(), _Pnode);
return _Result;
}
public:
iterator erase(const const_iterator _First, const const_iterator _Last) noexcept /* strengthened */ {
_Adl_verify_range(_First, _Last);
return _Make_iter(_Unchecked_erase(_First._Ptr, _Last._Ptr));
}
private:
_Nodeptr _Unchecked_erase(_Nodeptr _First, const _Nodeptr _Last) noexcept { // erase [_First, _Last)
if (_First == _Last) {
return _Last;
}
const auto _Predecessor = _First->_Prev;
#if _ITERATOR_DEBUG_LEVEL == 2
const auto _Head = _Mypair._Myval2._Myhead;
if (_First == _Head->_Next && _Last == _Head) { // orphan all non-end iterators
_Mypair._Myval2._Orphan_non_end();
} else { // orphan erased iterators
_Lockit _Lock(_LOCK_DEBUG);
for (auto _Marked = _First; _Marked != _Last; _Marked = _Marked->_Next) { // mark erased nodes
_Marked->_Prev = nullptr;
}
_Iterator_base12** _Pnext = &_Mypair._Myval2._Myproxy->_Myfirstiter;
while (*_Pnext) {
_Iterator_base12** _Pnextnext = &(*_Pnext)->_Mynextiter;
if (static_cast<const_iterator&>(**_Pnext)._Ptr->_Prev) { // node still has a _Prev, skip
_Pnext = _Pnextnext;
} else { // orphan the iterator
(*_Pnext)->_Myproxy = nullptr;
*_Pnext = *_Pnextnext;
}
}
// _Prev pointers not restored because we're about to delete the nodes of which they are a member anyway
}
#endif // _ITERATOR_DEBUG_LEVEL == 2
// snip out the removed range
_Predecessor->_Next = _Last;
_Last->_Prev = _Predecessor;
// count and deallocate the removed nodes
auto& _Al = _Getal();
size_type _Erasures = 0;
do {
const auto _Next = _First->_Next;
_Node::_Freenode(_Al, _First);
_First = _Next;
++_Erasures;
} while (_First != _Last);
_Mypair._Myval2._Mysize -= _Erasures;
return _Last;
}
public:
void clear() noexcept { // erase all
auto& _My_data = _Mypair._Myval2;
_My_data._Orphan_non_end();
_Node::_Free_non_head(_Getal(), _My_data._Myhead);
_My_data._Myhead->_Next = _My_data._Myhead;
_My_data._Myhead->_Prev = _My_data._Myhead;
_My_data._Mysize = 0;
}
private:
void _Tidy() noexcept {
auto& _Al = _Getal();
auto& _My_data = _Mypair._Myval2;
_My_data._Orphan_all();
_Node::_Free_non_head(_Al, _My_data._Myhead);
_Node::_Freenode0(_Al, _My_data._Myhead);
}
public:
void swap(list& _Right) noexcept /* strengthened */ {
if (this != _STD addressof(_Right)) {
_Pocs(_Getal(), _Right._Getal());
_Swap_val(_Right);
}
}
void splice(const const_iterator _Where, list& _Right) { // splice all of _Right at _Where
auto& _Right_data = _Right._Mypair._Myval2;
if (this != _STD addressof(_Right) && _Right_data._Mysize != 0) { // worth splicing, do it
#if _ITERATOR_DEBUG_LEVEL == 2
_STL_VERIFY(_Where._Getcont() == _STD addressof(_Mypair._Myval2), "list splice iterator outside range");
#endif // _ITERATOR_DEBUG_LEVEL == 2
const auto _Right_head = _Right_data._Myhead;
_Splice(_Where._Ptr, _Right, _Right_head->_Next, _Right_head, _Right_data._Mysize);
}
}
void splice(const const_iterator _Where, list&& _Right) { // splice all of _Right at _Where
splice(_Where, _Right);
}
void splice(const const_iterator _Where, list& _Right, const const_iterator _First) {
// splice _Right [_First, _First + 1) at _Where
#if _ITERATOR_DEBUG_LEVEL == 2
_STL_VERIFY(_Where._Getcont() == _STD addressof(_Mypair._Myval2)
&& _First._Getcont() == _STD addressof(_Right._Mypair._Myval2),
"list splice iterator outside range");
#endif // _ITERATOR_DEBUG_LEVEL == 2
const auto _UWhere = _Where._Ptr;
const auto _UFirst = _First._Ptr;
#if _ITERATOR_DEBUG_LEVEL == 2
if (_UFirst == _Right._Mypair._Myval2._Myhead) {
_STL_REPORT_ERROR("list splice iterator outside range");
}
#endif // _ITERATOR_DEBUG_LEVEL == 2
const auto _ULast = _UFirst->_Next;
if (this != _STD addressof(_Right) || (_UWhere != _UFirst && _UWhere != _ULast)) {
_Splice(_UWhere, _Right, _UFirst, _ULast, 1);
}
}
void splice(const const_iterator _Where, list&& _Right, const const_iterator _First) {
// splice _Right [_First, _First + 1) at _Where
splice(_Where, _Right, _First);
}
void splice(const const_iterator _Where, list& _Right, const const_iterator _First, const const_iterator _Last) {
// splice _Right [_First, _Last) at _Where
#if _ITERATOR_DEBUG_LEVEL == 2
const auto _Right_data_ptr = _STD addressof(_Right._Mypair._Myval2);
_STL_VERIFY(_Where._Getcont() == _STD addressof(_Mypair._Myval2) && _First._Getcont() == _Right_data_ptr
&& _Last._Getcont() == _Right_data_ptr,
"list splice iterator outside range");
#endif // _ITERATOR_DEBUG_LEVEL == 2
const auto _UWhere = _Where._Ptr;
const auto _UFirst = _First._Ptr;
const auto _ULast = _Last._Ptr;
if (_UFirst != _ULast && (this != _STD addressof(_Right) || _UWhere != _ULast)) { // worth splicing, do it
size_type _Count = 0;
if (this != _STD addressof(_Right)) {
const auto _Right_end = _Right._Mypair._Myval2._Myhead;
if (_UFirst == _Right_end->_Next && _ULast == _Right_end) {
_Count = _Right._Mypair._Myval2._Mysize; // splice in whole list
} else { // count nodes and check for knot
for (auto _To_check = _UFirst; _To_check != _ULast; _To_check = _To_check->_Next, (void) ++_Count) {
#if _ITERATOR_DEBUG_LEVEL != 0
_STL_VERIFY(_To_check != _Right_end, "list bad splice");
#endif // _ITERATOR_DEBUG_LEVEL != 0
}
}
}
_Splice(_UWhere, _Right, _UFirst, _ULast, _Count);
}
}
void splice(const const_iterator _Where, list&& _Right, const const_iterator _First, const const_iterator _Last) {
// splice _Right [_First, _Last) at _Where
splice(_Where, _Right, _First, _Last);
}
struct _List_node_remove_op {
// tracks nodes pending removal in a remove operation, so that program-defined predicates may reference those
// elements until the removal is complete.
explicit _List_node_remove_op(list& _List_) noexcept : _List(_List_), _Head(), _Tail(_STD addressof(_Head)) {}
_List_node_remove_op(const _List_node_remove_op&) = delete;
_List_node_remove_op& operator=(const _List_node_remove_op&) = delete;
_Nodeptr _Transfer_back(const _Nodeptr _Removed) noexcept {
// extract _Removed from the list, and add it to the singly-linked list of nodes to destroy
// returns the node after _Removed
_STL_INTERNAL_CHECK(_List._Mypair._Myval2._Myhead != _Removed);
// snip the node out
--_List._Mypair._Myval2._Mysize;
const auto _Next = _STD exchange(_Removed->_Next, _Nodeptr());
const auto _Prev = _Removed->_Prev;
_Prev->_Next = _Next;
_Next->_Prev = _Prev;
#if _ITERATOR_DEBUG_LEVEL == 2
// mark removed node for IDL to snip out later
_Removed->_Prev = _Nodeptr();
#endif // _ITERATOR_DEBUG_LEVEL == 2
*_Tail = _Removed;
_Tail = _STD addressof(_Removed->_Next);
return _Next;
}
~_List_node_remove_op() {
auto& _Al = _List._Getal();
#if _ITERATOR_DEBUG_LEVEL == 2
{
_Lockit _Lock(_LOCK_DEBUG);
_Iterator_base12** _Pnext = &_List._Mypair._Myval2._Myproxy->_Myfirstiter;
while (*_Pnext) {
_Iterator_base12** _Pnextnext = &(*_Pnext)->_Mynextiter;
const auto _Pnextptr = static_cast<const_iterator&>(**_Pnext)._Ptr;
if (_Pnextptr->_Prev) {
// iterator doesn't point to one of the elements we're removing
_Pnext = _Pnextnext;
} else { // orphan the iterator
(*_Pnext)->_Myproxy = nullptr;
*_Pnext = *_Pnextnext;
}
}
}
#endif // _ITERATOR_DEBUG_LEVEL == 2
auto _Target = _Head;
while (_Target) {
auto _Next = _Target->_Next;
_List._Mypair._Myval2._Orphan_ptr2(_Target);
_Alnode_traits::destroy(_Al, _STD addressof(_Target->_Next));
_Alnode_traits::destroy(_Al, _STD addressof(_Target->_Prev));
_Alnode_traits::destroy(_Al, _STD addressof(_Target->_Myval));
_Al.deallocate(_Target, 1);
_Target = _Next;
}
}
list& _List;
_Nodeptr _Head; // singly linked list of nodes to remove; their _Prev pointers set to _Nodeptr()
_Nodeptr* _Tail;
};
auto remove(const _Ty& _Val) { // erase each element matching _Val
return remove_if([&](const _Ty& _Other) { return _Other == _Val; });
}
template <class _Pr1>
auto remove_if(_Pr1 _Pred) { // erase each element satisfying _Pred
auto& _My_data = _Mypair._Myval2;
_List_node_remove_op _Op(*this);
const auto _Last = _My_data._Myhead;
const size_type _Oldsize = _My_data._Mysize;
for (auto _First = _Last->_Next; _First != _Last;) {
auto _Next = _First->_Next;
if (_Pred(_First->_Myval)) {
_Op._Transfer_back(_First);
}
_First = _Next;
}
#if _HAS_CXX20
return _Oldsize - _My_data._Mysize;
#else // _HAS_CXX20
(void) _Oldsize;
#endif // _HAS_CXX20
}
auto unique() { // erase each element matching previous
return unique(equal_to<>());
}
template <class _Pr2>
auto unique(_Pr2 _Pred) { // erase each element satisfying _Pred with previous
_List_node_remove_op _Op(*this);
const _Nodeptr _Phead = _Mypair._Myval2._Myhead;
_Nodeptr _Pprev = _Phead->_Next;
_Nodeptr _Pnode = _Pprev->_Next;
const size_type _Oldsize = _Mypair._Myval2._Mysize;
while (_Pnode != _Phead) {
if (_Pred(_Pprev->_Myval, _Pnode->_Myval)) { // match, remove it
_Pnode = _Op._Transfer_back(_Pnode);
} else { // no match, advance
_Pprev = _Pnode;
_Pnode = _Pnode->_Next;
}
}
#if _HAS_CXX20
return _Oldsize - _Mypair._Myval2._Mysize;
#else // _HAS_CXX20
(void) _Oldsize;
#endif // _HAS_CXX20
}
void merge(list& _Right) { // merge in elements from _Right, both ordered by operator<
_Merge1(_Right, less<>());
}
void merge(list&& _Right) { // merge in elements from _Right, both ordered by operator<
_Merge1(_Right, less<>());
}
template <class _Pr2>
void merge(list& _Right, _Pr2 _Pred) { // merge in elements from _Right, both ordered by _Pred
_Merge1(_Right, _Pass_fn(_Pred));
}
template <class _Pr2>
void merge(list&& _Right, _Pr2 _Pred) { // merge in elements from _Right, both ordered by _Pred
_Merge1(_Right, _Pass_fn(_Pred));
}
private:
template <class _Pr2>
void _Merge1(list& _Right, _Pr2 _Pred) { // merge in elements from _Right, both ordered by _Pred
#if _ITERATOR_DEBUG_LEVEL != 0
_DEBUG_ORDER_UNWRAPPED(_Unchecked_begin(), _Unchecked_end(), _Pred);
#endif // _ITERATOR_DEBUG_LEVEL != 0
if (this == _STD addressof(_Right)) {
return;
}
#if _ITERATOR_DEBUG_LEVEL != 0
_DEBUG_ORDER_UNWRAPPED(_Right._Unchecked_begin(), _Right._Unchecked_end(), _Pred);
if _CONSTEXPR_IF (!_Alnode_traits::is_always_equal::value) {
_STL_VERIFY(_Getal() == _Right._Getal(), "list allocators incompatible for merge");
}
#endif // _ITERATOR_DEBUG_LEVEL != 0
const auto _Right_size = _Right._Mypair._Myval2._Mysize;
if (_Right_size == 0) {
// nothing to do
return;
}
// splice all _Right's nodes on the end of *this
const auto _Myhead = _Mypair._Myval2._Myhead;
const auto _Right_head = _Right._Mypair._Myval2._Myhead;
const auto _Mid = _Right_head->_Next;
_Splice(_Myhead, _Right, _Mid, _Right_head, _Right_size);
// if *this had any elements, run the merge op between the range we just spliced and the old elements
if (_Myhead->_Next != _Mid) {
_Scary_val::_Merge_same(_Myhead->_Next, _Mid, _Myhead, _Pred);
}
}
public:
void sort() { // order sequence, using operator<
sort(less<>());
}
template <class _Pr2>
void sort(_Pr2 _Pred) { // order sequence, using _Pred
auto& _My_data = _Mypair._Myval2;
_Scary_val::_Sort(_My_data._Myhead->_Next, _My_data._Mysize, _Pass_fn(_Pred));
}
void reverse() noexcept { // reverse sequence
const _Nodeptr _Phead = _Mypair._Myval2._Myhead;
_Nodeptr _Pnode = _Phead;
for (;;) { // flip pointers in a node
const _Nodeptr _Pnext = _Pnode->_Next;
_Pnode->_Next = _Pnode->_Prev;
_Pnode->_Prev = _Pnext;
if (_Pnext == _Phead) {
break;
}
_Pnode = _Pnext;
}
}
private:
_Nodeptr _Splice(
const _Nodeptr _Where, list& _Right, const _Nodeptr _First, const _Nodeptr _Last, const size_type _Count) {
// splice _Right [_First, _Last) before _Where; returns _Last
if (this != _STD addressof(_Right)) { // splicing from another list, adjust counts
#if _ITERATOR_DEBUG_LEVEL != 0
if _CONSTEXPR_IF (!_Alnode_traits::is_always_equal::value) {
_STL_VERIFY(_Getal() == _Right._Getal(), "list allocators incompatible for splice");
}
#endif // _ITERATOR_DEBUG_LEVEL != 0
auto& _My_data = _Mypair._Myval2;
if (max_size() - _My_data._Mysize < _Count) {
_Xlength_error("list too long");
}
auto& _Right_data = _Right._Mypair._Myval2;
#if _ITERATOR_DEBUG_LEVEL == 2
// transfer ownership
if (_Count == 1) {
_My_data._Adopt_unique(_Right_data, _First);
} else if (_Count == _Right_data._Mysize) {
_My_data._Adopt_all(_Right_data);
} else {
_My_data._Adopt_range(_Right_data, _First, _Last);
}
#endif // _ITERATOR_DEBUG_LEVEL == 2
_My_data._Mysize += _Count;
_Right_data._Mysize -= _Count;
}
return _Scary_val::_Unchecked_splice(_Where, _First, _Last);
}
void _Alloc_sentinel_and_proxy() {
auto&& _Alproxy = _GET_PROXY_ALLOCATOR(_Alnode, _Getal());
_Container_proxy_ptr<_Alty> _Proxy(_Alproxy, _Mypair._Myval2);
auto& _Al = _Getal();
auto _Newhead = _Al.allocate(1);
_Construct_in_place(_Newhead->_Next, _Newhead);
_Construct_in_place(_Newhead->_Prev, _Newhead);
_Mypair._Myval2._Myhead = _Newhead;
_Proxy._Release();
}
void _Orphan_all() noexcept {
_Mypair._Myval2._Orphan_all();
}
_Alnode& _Getal() noexcept {
return _Mypair._Get_first();
}
const _Alnode& _Getal() const noexcept {
return _Mypair._Get_first();
}
_Compressed_pair<_Alnode, _Scary_val> _Mypair;
};
#if _HAS_CXX17
template <class _Iter, class _Alloc = allocator<_Iter_value_t<_Iter>>,
enable_if_t<conjunction_v<_Is_iterator<_Iter>, _Is_allocator<_Alloc>>, int> = 0>
list(_Iter, _Iter, _Alloc = _Alloc()) -> list<_Iter_value_t<_Iter>, _Alloc>;
#endif // _HAS_CXX17
template <class _Ty, class _Alloc>
void swap(list<_Ty, _Alloc>& _Left, list<_Ty, _Alloc>& _Right) noexcept /* strengthened */ {
_Left.swap(_Right);
}
template <class _Ty, class _Alloc>
_NODISCARD bool operator==(const list<_Ty, _Alloc>& _Left, const list<_Ty, _Alloc>& _Right) {
return _Left.size() == _Right.size() && _STD equal(_Left.begin(), _Left.end(), _Right.begin());
}
template <class _Ty, class _Alloc>
_NODISCARD bool operator!=(const list<_Ty, _Alloc>& _Left, const list<_Ty, _Alloc>& _Right) {
return !(_Left == _Right);
}
template <class _Ty, class _Alloc>
_NODISCARD bool operator<(const list<_Ty, _Alloc>& _Left, const list<_Ty, _Alloc>& _Right) {
return _STD lexicographical_compare(_Left.begin(), _Left.end(), _Right.begin(), _Right.end());
}
template <class _Ty, class _Alloc>
_NODISCARD bool operator>(const list<_Ty, _Alloc>& _Left, const list<_Ty, _Alloc>& _Right) {
return _Right < _Left;
}
template <class _Ty, class _Alloc>
_NODISCARD bool operator<=(const list<_Ty, _Alloc>& _Left, const list<_Ty, _Alloc>& _Right) {
return !(_Right < _Left);
}
template <class _Ty, class _Alloc>
_NODISCARD bool operator>=(const list<_Ty, _Alloc>& _Left, const list<_Ty, _Alloc>& _Right) {
return !(_Left < _Right);
}
#if _HAS_CXX20
template <class _Ty, class _Alloc, class _Uty>
typename list<_Ty, _Alloc>::size_type erase(list<_Ty, _Alloc>& _Cont, const _Uty& _Val) {
return _Cont.remove_if([&](_Ty& _Elem) { return _Elem == _Val; });
}
template <class _Ty, class _Alloc, class _Pr>
typename list<_Ty, _Alloc>::size_type erase_if(list<_Ty, _Alloc>& _Cont, _Pr _Pred) {
return _Cont.remove_if(_Pass_fn(_Pred));
}
#endif // _HAS_CXX20
#if _HAS_CXX17
namespace pmr {
template <class _Ty>
using list = _STD list<_Ty, polymorphic_allocator<_Ty>>;
} // namespace pmr
#endif // _HAS_CXX17
_STD_END
#pragma pop_macro("new")
_STL_RESTORE_CLANG_WARNINGS
#pragma warning(pop)
#pragma pack(pop)
#endif // _STL_COMPILER_PREPROCESSOR
#endif // _LIST_