STL/stl/inc/regex

4619 строки
165 KiB
C++

// regex standard header
// Copyright (c) Microsoft Corporation.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
#pragma once
#ifndef _REGEX_
#define _REGEX_
#include <yvals_core.h>
#if _STL_COMPILER_PREPROCESSOR
#include <algorithm>
#include <cctype>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <cwchar>
#include <iterator>
#include <locale>
#include <memory>
#include <stdexcept>
#include <string>
#include <utility>
#include <vector>
#if _HAS_CXX17
#include <xpolymorphic_allocator.h>
#endif // _HAS_CXX17
#pragma pack(push, _CRT_PACKING)
#pragma warning(push, _STL_WARNING_LEVEL)
#pragma warning(disable : _STL_DISABLED_WARNINGS)
_STL_DISABLE_CLANG_WARNINGS
#pragma push_macro("new")
#undef new
#ifndef _REGEX_MAX_COMPLEXITY_COUNT
#define _REGEX_MAX_COMPLEXITY_COUNT 10000000L // set to 0 to disable
#endif // _REGEX_MAX_COMPLEXITY_COUNT
#ifndef _REGEX_MAX_STACK_COUNT
#ifdef _WIN64
#define _REGEX_MAX_STACK_COUNT 600L // set to 0 to disable
#else // _WIN64
#define _REGEX_MAX_STACK_COUNT 1000L // set to 0 to disable
#endif // _WIN64
#endif // _REGEX_MAX_STACK_COUNT
#ifndef _ENHANCED_REGEX_VISUALIZER
#ifdef _DEBUG
#define _ENHANCED_REGEX_VISUALIZER 1
#else // _DEBUG
#define _ENHANCED_REGEX_VISUALIZER 0
#endif // _DEBUG
#endif // _ENHANCED_REGEX_VISUALIZER
_STD_BEGIN
// NAMED CONSTANTS
enum _Meta_type { // meta character representations for parser
_Meta_lpar = '(',
_Meta_rpar = ')',
_Meta_dlr = '$',
_Meta_caret = '^',
_Meta_dot = '.',
_Meta_star = '*',
_Meta_plus = '+',
_Meta_query = '?',
_Meta_lsq = '[',
_Meta_rsq = ']',
_Meta_bar = '|',
_Meta_esc = '\\',
_Meta_dash = '-',
_Meta_lbr = '{',
_Meta_rbr = '}',
_Meta_comma = ',',
_Meta_colon = ':',
_Meta_equal = '=',
_Meta_exc = '!',
_Meta_eos = -1,
_Meta_nl = '\n',
_Meta_cr = '\r',
_Meta_bsp = '\b',
_Meta_chr = 0,
_Esc_bsl = '\\',
_Esc_word = 'b',
_Esc_not_word = 'B',
_Esc_ctrl_a = 'a',
_Esc_ctrl_b = 'b',
_Esc_ctrl_f = 'f',
_Esc_ctrl_n = 'n',
_Esc_ctrl_r = 'r',
_Esc_ctrl_t = 't',
_Esc_ctrl_v = 'v',
_Esc_ctrl = 'c',
_Esc_hex = 'x',
_Esc_uni = 'u'
};
// NAMESPACE regex_constants
namespace regex_constants {
// constants used in regular expressions
enum syntax_option_type : int { // specify RE syntax rules
ECMAScript = 0x01,
basic = 0x02,
extended = 0x04,
awk = 0x08,
grep = 0x10,
egrep = 0x20,
_Gmask = 0x3F,
icase = 0x0100,
nosubs = 0x0200,
optimize = 0x0400,
collate = 0x0800
};
_BITMASK_OPS(syntax_option_type)
enum match_flag_type : int { // specify matching and formatting rules
match_default = 0x0000,
match_not_bol = 0x0001,
match_not_eol = 0x0002,
match_not_bow = 0x0004,
match_not_eow = 0x0008,
match_any = 0x0010,
match_not_null = 0x0020,
match_continuous = 0x0040,
match_prev_avail = 0x0100,
format_default = 0x0000,
format_sed = 0x0400,
format_no_copy = 0x0800,
format_first_only = 0x1000,
_Match_not_null = 0x2000,
_Skip_zero_length = 0x4000,
};
_BITMASK_OPS(match_flag_type)
enum error_type { // identify error
error_collate,
error_ctype,
error_escape,
error_backref,
error_brack,
error_paren,
error_brace,
error_badbrace,
error_range,
error_space,
error_badrepeat,
error_complexity,
error_stack,
error_parse,
error_syntax
};
} // namespace regex_constants
[[noreturn]] _CRTIMP2_PURE void __CLRCALL_PURE_OR_CDECL _Xregex_error(regex_constants::error_type _Code);
// CLASS TEMPLATE regex_traits
template <class _Elem>
class regex_traits;
struct _Cl_names { // structure to associate class name with mask value
const char* _Narrow;
const wchar_t* _Wide;
unsigned int _Len;
ctype_base::mask _Ctype;
template <class _Elem>
const _Elem* _Get() const;
};
template <>
inline const char* _Cl_names::_Get<char>() const { // get narrow pointer
return _Narrow;
}
template <>
inline const wchar_t* _Cl_names::_Get<wchar_t>() const { // get wide pointer
return _Wide;
}
template <class _RxTraits>
struct _Cmp_cs { // functor to compare two character values for equality
using _Elem = typename _RxTraits::char_type;
bool operator()(_Elem _E1, _Elem _E2) {
return _E1 == _E2;
}
};
template <class _RxTraits>
struct _Cmp_icase { // functor to compare for case-insensitive equality
using _Elem = typename _RxTraits::char_type;
explicit _Cmp_icase(const _RxTraits& _Tr) : _Traits(_Tr) {}
bool operator()(_Elem _E1, _Elem _E2) {
return _Traits.translate_nocase(_E1) == _Traits.translate_nocase(_E2);
}
const _RxTraits& _Traits;
_Cmp_icase& operator=(const _Cmp_icase&) = delete;
};
template <class _RxTraits>
struct _Cmp_collate { // functor to compare for locale-specific equality
using _Elem = typename _RxTraits::char_type;
explicit _Cmp_collate(const _RxTraits& _Tr) : _Traits(_Tr) {}
bool operator()(_Elem _E1, _Elem _E2) {
return _Traits.translate(_E1) == _Traits.translate(_E2);
}
const _RxTraits& _Traits;
_Cmp_collate& operator=(const _Cmp_collate&) = delete;
};
struct _Regex_traits_base { // base of all regular expression traits
enum _Char_class_type {
_Ch_none = 0,
_Ch_alnum = ctype_base::alnum,
_Ch_alpha = ctype_base::alpha,
_Ch_cntrl = ctype_base::cntrl,
_Ch_digit = ctype_base::digit,
_Ch_graph = ctype_base::graph,
_Ch_lower = ctype_base::lower,
_Ch_print = ctype_base::print,
_Ch_punct = ctype_base::punct,
_Ch_space = ctype_base::space,
_Ch_upper = ctype_base::upper,
_Ch_xdigit = ctype_base::xdigit,
_Ch_blank = ctype_base::blank
};
using char_class_type = ctype_base::mask;
};
template <class _Elem>
class _Regex_traits : public _Regex_traits_base { // base class for regular expression traits
public:
using _Uelem = make_unsigned_t<_Elem>;
using char_type = _Elem;
using size_type = size_t;
using string_type = basic_string<_Elem>;
using locale_type = locale;
static size_type length(const _Elem* _Str) {
return char_traits<_Elem>::length(_Str);
}
_Regex_traits() {
_Cache_locale();
}
_Regex_traits(const _Regex_traits& _Right) : _Loc(_Right._Loc) {
_Cache_locale();
}
_Regex_traits& operator=(const _Regex_traits& _Right) {
_Loc = _Right._Loc;
_Cache_locale();
return *this;
}
_Elem translate(_Elem _Ch) const { // provide locale-sensitive mapping
string_type _Res = _Getcoll()->transform(_STD addressof(_Ch), _STD addressof(_Ch) + 1);
return _Res.length() == 1 ? _Res[0] : _Ch;
}
_Elem translate_nocase(_Elem _Ch) const { // provide case-insensitive mapping
return _Getctype()->tolower(_Ch);
}
template <class _FwdIt>
string_type transform(_FwdIt _First, _FwdIt _Last) const { // apply locale-specific transformation
return _Getcoll()->transform(_First, _Last);
}
template <class _FwdIt>
string_type transform_primary(_FwdIt _First, _FwdIt _Last) const {
// apply locale-specific case-insensitive transformation
string_type _Res;
if (_First != _Last) { // non-empty string, transform it
vector<_Elem> _Temp(_First, _Last);
_Getctype()->tolower(_Temp.data(), _Temp.data() + _Temp.size());
_Res = _Getcoll()->transform(_Temp.data(), _Temp.data() + _Temp.size());
}
return _Res;
}
bool isctype(_Elem _Ch, char_class_type _Fx) const {
if (_Fx != static_cast<char_class_type>(-1)) {
return _Getctype()->is(_Fx, _Ch);
} else {
return _Ch == '_' // assumes L'_' == '_'
|| _Getctype()->is(_Ch_alnum, _Ch);
}
}
template <class _Iter>
char_class_type lookup_classname(_Iter _First, _Iter _Last, bool _Icase = false) const {
// map [_First, _Last) to character class mask value
#define _REGEX_CHAR_CLASS_NAME(n, c) \
{ n, L##n, sizeof(n) / sizeof(n[0]) - 1, c }
static constexpr _Cl_names _Names[] = {
// map class names to numeric constants
_REGEX_CHAR_CLASS_NAME("alnum", _Ch_alnum),
_REGEX_CHAR_CLASS_NAME("alpha", _Ch_alpha),
_REGEX_CHAR_CLASS_NAME("blank", _Ch_blank),
_REGEX_CHAR_CLASS_NAME("cntrl", _Ch_cntrl),
_REGEX_CHAR_CLASS_NAME("d", _Ch_digit),
_REGEX_CHAR_CLASS_NAME("digit", _Ch_digit),
_REGEX_CHAR_CLASS_NAME("graph", _Ch_graph),
_REGEX_CHAR_CLASS_NAME("lower", _Ch_lower),
_REGEX_CHAR_CLASS_NAME("print", _Ch_print),
_REGEX_CHAR_CLASS_NAME("punct", _Ch_punct),
_REGEX_CHAR_CLASS_NAME("space", _Ch_space),
_REGEX_CHAR_CLASS_NAME("s", _Ch_space),
_REGEX_CHAR_CLASS_NAME("upper", _Ch_upper),
_REGEX_CHAR_CLASS_NAME("w", static_cast<ctype_base::mask>(-1)),
_REGEX_CHAR_CLASS_NAME("xdigit", _Ch_xdigit),
{nullptr, nullptr, 0, 0},
};
#undef _REGEX_CHAR_CLASS_NAME
_Adl_verify_range(_First, _Last);
unsigned int _Ix = 0;
for (; _Names[_Ix]._Get<_Elem>(); ++_Ix) {
if (_STD equal(_Get_unwrapped(_First), _Get_unwrapped(_Last), _Names[_Ix]._Get<_Elem>(),
_Names[_Ix]._Get<_Elem>() + _Names[_Ix]._Len, _Cmp_icase<_Regex_traits<_Elem>>(*this))) {
break;
}
}
char_class_type _Mask{};
if (_Names[_Ix]._Get<_Elem>()) {
_Mask = _Names[_Ix]._Ctype;
}
if (_Icase && (_Mask & (_Ch_lower | _Ch_upper))) {
_Mask |= _Ch_lower | _Ch_upper;
}
return _Mask;
}
template <class _FwdIt>
string_type lookup_collatename(_FwdIt _First, _FwdIt _Last) const { // map [_First, _Last) to collation element
return string_type(_First, _Last);
}
locale_type imbue(locale_type _Lx) { // store locale object
locale_type _Tmp = _Loc;
_Loc = _Lx;
_Cache_locale();
return _Tmp;
}
locale_type getloc() const {
return _Loc;
}
const collate<_Elem>* _Getcoll() const { // get collate facet pointer
return _Pcoll;
}
const ctype<_Elem>* _Getctype() const { // get ctype facet pointer
return _Pctype;
}
private:
void _Cache_locale() { // populate _Pcoll and _Pctype with _Loc locale
_Pcoll = _STD addressof(_STD use_facet<collate<_Elem>>(_Loc));
_Pctype = _STD addressof(_STD use_facet<ctype<_Elem>>(_Loc));
}
const collate<_Elem>* _Pcoll;
const ctype<_Elem>* _Pctype;
locale_type _Loc;
};
// CLASS regex_traits<char>
template <>
class regex_traits<char> : public _Regex_traits<char> {
public:
int value(char _Ch, int _Base) const { // map character value to numeric value
if ((_Base != 8 && '0' <= _Ch && _Ch <= '9') || (_Base == 8 && '0' <= _Ch && _Ch <= '7')) {
return _Ch - '0';
}
if (_Base != 16) {
return -1;
}
if ('a' <= _Ch && _Ch <= 'f') {
return _Ch - 'a' + 10;
}
if ('A' <= _Ch && _Ch <= 'F') {
return _Ch - 'A' + 10;
}
return -1;
}
};
// CLASS regex_traits<wchar_t>
template <>
class regex_traits<wchar_t> : public _Regex_traits<wchar_t> {
public:
int value(wchar_t _Ch, int _Base) const { // map character value to numeric value
if ((_Base != 8 && L'0' <= _Ch && _Ch <= L'9') || (_Base == 8 && L'0' <= _Ch && _Ch <= L'7')) {
return _Ch - L'0';
}
if (_Base != 16) {
return -1;
}
if (L'a' <= _Ch && _Ch <= L'f') {
return _Ch - L'a' + 10;
}
if (L'A' <= _Ch && _Ch <= L'F') {
return _Ch - L'A' + 10;
}
return -1;
}
};
// CLASS regex_error
class regex_error : public runtime_error { // type of all regular expression exceptions
public:
explicit regex_error(regex_constants::error_type _Ex) : runtime_error(_Stringify(_Ex)), _Err(_Ex) {}
_NODISCARD regex_constants::error_type code() const {
return _Err;
}
private:
static const char* _Stringify(regex_constants::error_type _Ex) { // map error code to string
switch (_Ex) { // select known error_type message
case regex_constants::error_collate:
return "regex_error(error_collate): The expression "
"contained an invalid collating element name.";
case regex_constants::error_ctype:
return "regex_error(error_ctype): The expression "
"contained an invalid character class name.";
case regex_constants::error_escape:
return "regex_error(error_escape): The expression "
"contained an invalid escaped character, "
"or a trailing escape.";
case regex_constants::error_backref:
return "regex_error(error_backref): The expression "
"contained an invalid back reference.";
case regex_constants::error_brack:
return "regex_error(error_brack): The expression "
"contained mismatched [ and ].";
case regex_constants::error_paren:
return "regex_error(error_paren): The expression "
"contained mismatched ( and ).";
case regex_constants::error_brace:
return "regex_error(error_brace): The expression "
"contained mismatched { and }.";
case regex_constants::error_badbrace:
return "regex_error(error_badbrace): The expression "
"contained an invalid range in a { expression }.";
case regex_constants::error_range:
return "regex_error(error_range): The expression "
"contained an invalid character range, "
"such as [b-a] in most encodings.";
case regex_constants::error_space:
return "regex_error(error_space): There was insufficient "
"memory to convert the expression into "
"a finite state machine.";
case regex_constants::error_badrepeat:
return "regex_error(error_badrepeat): One of *?+{ "
"was not preceded by a valid regular expression.";
case regex_constants::error_complexity:
return "regex_error(error_complexity): The complexity of "
"an attempted match against a regular expression "
"exceeded a pre-set level.";
case regex_constants::error_stack:
return "regex_error(error_stack): There was insufficient "
"memory to determine whether the regular expression "
"could match the specified character sequence.";
case regex_constants::error_parse:
return "regex_error(error_parse)";
case regex_constants::error_syntax:
return "regex_error(error_syntax)";
default:
return "regex_error";
}
}
regex_constants::error_type _Err;
};
// FUNCTION TEMPLATE _Iter_compare
template <class _Traits, class _FwdIt1, class _FwdIt2>
int _Iter_compare3(_FwdIt1 _First1, _FwdIt1 _Last1, _FwdIt2 _First2, _FwdIt2 _Last2, true_type) {
// _Iter_compare for memory buffer ranges
return _Traits_compare<_Traits>(
_First1, static_cast<size_t>(_Last1 - _First1), _First2, static_cast<size_t>(_Last2 - _First2));
}
template <class _Traits, class _FwdIt1, class _FwdIt2>
int _Iter_compare3(_FwdIt1 _First1, _FwdIt1 _Last1, _FwdIt2 _First2, _FwdIt2 _Last2, false_type) {
// _Iter_compare for general ranges
const pair<_FwdIt1, _FwdIt2> _Cmp = _STD mismatch(_First1, _Last1, _First2, _Last2, _Char_traits_eq<_Traits>{});
if (_Cmp.first == _Last1) {
if (_Cmp.second == _Last2) {
return 0;
} else {
return -1;
}
}
if (_Cmp.second == _Last2) {
return 1;
}
if (_Traits::lt(*_Cmp.first, *_Cmp.second)) {
return -1;
} else {
return 1;
}
}
template <class _Traits, class _FwdIt1, class _FwdIt2>
int _Iter_compare2(_FwdIt1 _First1, _FwdIt1 _Last1, _FwdIt2 _First2, _FwdIt2 _Last2) {
// decide which _Iter_compare implementation to use
return _Iter_compare3<_Traits>(
_First1, _Last1, _First2, _Last2, bool_constant<conjunction_v<is_pointer<_FwdIt1>, is_pointer<_FwdIt2>>>{});
}
template <class _Traits, class _FwdIt1, class _FwdIt2>
int _Iter_compare(_FwdIt1 _First1, _FwdIt1 _Last1, _FwdIt2 _First2, _FwdIt2 _Last2) {
// compare two iterator ranges:
// if [_First1, _Last1) is lexicographically less than [_First2, _Last2), a negative value
// if [_First2, _Last2) is lexicographically less than [_First1, _Last1), a positive value
// otherwise, zero
using _Elem = typename _Traits::char_type;
static_assert(is_same_v<_Iter_value_t<_FwdIt1>, _Elem>, "bad _FwdIt1 to _Iter_compare");
static_assert(is_same_v<_Iter_value_t<_FwdIt2>, _Elem>, "bad _FwdIt2 to _Iter_compare");
_Adl_verify_range(_First1, _Last1);
_Adl_verify_range(_First2, _Last2);
return _Iter_compare2<_Traits>(
_Get_unwrapped(_First1), _Get_unwrapped(_Last1), _Get_unwrapped(_First2), _Get_unwrapped(_Last2));
}
// FUNCTION TEMPLATE _Is_word
inline bool _Is_word(unsigned char _UCh) {
// special casing char to avoid branches for std::regex in this path
static constexpr bool _Is_word_table[(numeric_limits<unsigned char>::max)() + 1] = {
// X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 XA XB XC XD XE XF
/* 0X */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 1X */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 2X */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 3X */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, // 0-9
/* 4X */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // A-Z
/* 5X */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, // 5F == _
/* 6X */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // a-z
/* 7X */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0
// non-ASCII values initialized to 0
};
return _Is_word_table[_UCh];
}
inline bool _Is_word(char _Ch) {
return _Is_word(static_cast<unsigned char>(_Ch));
}
template <class _Elem>
bool _Is_word(_Elem _Ch) {
// assumes 'x' == L'x' for the ASCII range
using _UElem = make_unsigned_t<_Elem>;
const auto _UCh = static_cast<_UElem>(_Ch);
return _UCh <= static_cast<_UElem>('z') && _Is_word(static_cast<unsigned char>(_UCh));
}
// CLASS TEMPLATE sub_match
template <class _BidIt>
class sub_match : public pair<_BidIt, _BidIt> { // class to hold contents of a capture group
public:
using _Mybase = pair<_BidIt, _BidIt>;
using value_type = typename iterator_traits<_BidIt>::value_type;
using difference_type = typename iterator_traits<_BidIt>::difference_type;
using iterator = _BidIt;
using string_type = basic_string<value_type>;
// Note that _Traits should always be std::char_traits<value_type>
using _Traits = typename string_type::traits_type;
// Note that _Size_type should always be std::size_t
using _Size_type = typename string_type::size_type;
constexpr sub_match() : _Mybase(), matched(false) {}
bool matched;
_NODISCARD difference_type length() const {
const _Mybase _Range(_Effective_range());
return _STD distance(_Range.first, _Range.second);
}
operator string_type() const { // convert matched text to string
return str();
}
_NODISCARD string_type str() const { // convert matched text to string
const _Mybase _Range(_Effective_range());
return string_type(_Range.first, _Range.second);
}
_NODISCARD int compare(const sub_match& _Right) const { // compare *this to _Right
const _Mybase _LRange(_Effective_range());
const _Mybase _RRange(_Right._Effective_range());
return _Iter_compare<_Traits>(_LRange.first, _LRange.second, _RRange.first, _RRange.second);
}
_NODISCARD int compare(const string_type& _Right) const { // compare *this to _Right
return _Compare(_Right.data(), _Right.size());
}
_NODISCARD int compare(_In_z_ const value_type* _Ptr) const { // compare *this to array pointed to by _Ptr
return _Compare(_Ptr, _Traits::length(_Ptr));
}
int _Compare(const value_type* const _Ptr, const _Size_type _Count) const {
// compare *this to array [_Ptr, _Ptr + _Count)
const _Mybase _Range(_Effective_range());
return _Iter_compare<_Traits>(_Range.first, _Range.second, _Ptr, _Ptr + _Count);
}
bool _Match_equal(const sub_match& _Right) const { // check *this to _Right for equality
const _Mybase _LRange(_Effective_range());
const _Mybase _RRange(_Right._Effective_range());
return _STD equal(_LRange.first, _LRange.second, _RRange.first, _RRange.second, _Char_traits_eq<_Traits>{});
}
bool _Match_equal(const value_type* const _Ptr, const _Size_type _Count) const {
// check *this to array [_Ptr, _Ptr + _Count) for equality
const _Mybase _Range(_Effective_range());
return _STD equal(_Range.first, _Range.second, _Ptr, _Ptr + _Count, _Char_traits_eq<_Traits>{});
}
bool _Match_equal(const value_type* const _Ptr) const { // check *this to C-string _Ptr for equality
return _Match_equal(_Ptr, _Traits::length(_Ptr));
}
bool _Less(const sub_match& _Right) const { // check whether *this is less than _Right
const _Mybase _LRange(_Effective_range());
const _Mybase _RRange(_Right._Effective_range());
return _STD lexicographical_compare(
_LRange.first, _LRange.second, _RRange.first, _RRange.second, _Char_traits_lt<_Traits>{});
}
bool _Less(const value_type* const _Ptr, const _Size_type _Count) const {
// check whether *this is less than [_Ptr, _Ptr + _Count)
const _Mybase _Range(_Effective_range());
return _STD lexicographical_compare(
_Range.first, _Range.second, _Ptr, _Ptr + _Count, _Char_traits_lt<_Traits>{});
}
bool _Less(const value_type* const _Ptr) const { // check whether *this is less than C-string _Ptr
return _Less(_Ptr, _Traits::length(_Ptr));
}
bool _Greater(const value_type* const _Ptr, const _Size_type _Count) const {
// check whether *this is greater than [_Ptr, _Ptr + _Count)
const _Mybase _Range(_Effective_range());
return _STD lexicographical_compare(
_Ptr, _Ptr + _Count, _Range.first, _Range.second, _Char_traits_lt<_Traits>{});
}
bool _Greater(const value_type* const _Ptr) const { // check whether *this is greater than C-string _Ptr
return _Greater(_Ptr, _Traits::length(_Ptr));
}
_Mybase _Effective_range() const { // if matched, returns *this; otherwise returns an empty range
if (matched) {
return *this;
} else {
return _Mybase{};
}
}
};
using csub_match = sub_match<const char*>;
using wcsub_match = sub_match<const wchar_t*>;
using ssub_match = sub_match<string::const_iterator>;
using wssub_match = sub_match<wstring::const_iterator>;
template <class _BidIt>
_NODISCARD bool operator==(const sub_match<_BidIt>& _Left, const sub_match<_BidIt>& _Right) {
return _Left._Match_equal(_Right);
}
template <class _BidIt>
_NODISCARD bool operator!=(const sub_match<_BidIt>& _Left, const sub_match<_BidIt>& _Right) {
return !(_Left == _Right);
}
template <class _BidIt>
_NODISCARD bool operator<(const sub_match<_BidIt>& _Left, const sub_match<_BidIt>& _Right) {
return _Left._Less(_Right);
}
template <class _BidIt>
_NODISCARD bool operator>(const sub_match<_BidIt>& _Left, const sub_match<_BidIt>& _Right) {
return _Right < _Left;
}
template <class _BidIt>
_NODISCARD bool operator<=(const sub_match<_BidIt>& _Left, const sub_match<_BidIt>& _Right) {
return !(_Right < _Left);
}
template <class _BidIt>
_NODISCARD bool operator>=(const sub_match<_BidIt>& _Left, const sub_match<_BidIt>& _Right) {
return !(_Left < _Right);
}
// COMPARE sub_match AND NTBS
template <class _BidIt>
_NODISCARD bool operator==(const _Iter_value_t<_BidIt>* _Left, const sub_match<_BidIt>& _Right) {
return _Right._Match_equal(_Left);
}
template <class _BidIt>
_NODISCARD bool operator!=(const _Iter_value_t<_BidIt>* _Left, const sub_match<_BidIt>& _Right) {
return !(_Left == _Right);
}
template <class _BidIt>
_NODISCARD bool operator<(const _Iter_value_t<_BidIt>* _Left, const sub_match<_BidIt>& _Right) {
return _Right._Greater(_Left);
}
template <class _BidIt>
_NODISCARD bool operator>(const _Iter_value_t<_BidIt>* _Left, const sub_match<_BidIt>& _Right) {
return _Right < _Left;
}
template <class _BidIt>
_NODISCARD bool operator<=(const _Iter_value_t<_BidIt>* _Left, const sub_match<_BidIt>& _Right) {
return !(_Right < _Left);
}
template <class _BidIt>
_NODISCARD bool operator>=(const _Iter_value_t<_BidIt>* _Left, const sub_match<_BidIt>& _Right) {
return !(_Left < _Right);
}
template <class _BidIt>
_NODISCARD bool operator==(const sub_match<_BidIt>& _Left, const _Iter_value_t<_BidIt>* _Right) {
return _Left._Match_equal(_Right);
}
template <class _BidIt>
_NODISCARD bool operator!=(const sub_match<_BidIt>& _Left, const _Iter_value_t<_BidIt>* _Right) {
return !(_Left == _Right);
}
template <class _BidIt>
_NODISCARD bool operator<(const sub_match<_BidIt>& _Left, const _Iter_value_t<_BidIt>* _Right) {
return _Left._Less(_Right);
}
template <class _BidIt>
_NODISCARD bool operator>(const sub_match<_BidIt>& _Left, const _Iter_value_t<_BidIt>* _Right) {
return _Right < _Left;
}
template <class _BidIt>
_NODISCARD bool operator<=(const sub_match<_BidIt>& _Left, const _Iter_value_t<_BidIt>* _Right) {
return !(_Right < _Left);
}
template <class _BidIt>
_NODISCARD bool operator>=(const sub_match<_BidIt>& _Left, const _Iter_value_t<_BidIt>* _Right) {
return !(_Left < _Right);
}
// COMPARE sub_match AND ELEMENT
template <class _BidIt>
_NODISCARD bool operator==(const _Iter_value_t<_BidIt>& _Left, const sub_match<_BidIt>& _Right) {
return _Right._Match_equal(_STD addressof(_Left), 1);
}
template <class _BidIt>
_NODISCARD bool operator!=(const _Iter_value_t<_BidIt>& _Left, const sub_match<_BidIt>& _Right) {
return !(_Left == _Right);
}
template <class _BidIt>
_NODISCARD bool operator<(const _Iter_value_t<_BidIt>& _Left, const sub_match<_BidIt>& _Right) {
return _Right._Greater(_STD addressof(_Left), 1);
}
template <class _BidIt>
_NODISCARD bool operator>(const _Iter_value_t<_BidIt>& _Left, const sub_match<_BidIt>& _Right) {
return _Right < _Left;
}
template <class _BidIt>
_NODISCARD bool operator<=(const _Iter_value_t<_BidIt>& _Left, const sub_match<_BidIt>& _Right) {
return !(_Right < _Left);
}
template <class _BidIt>
_NODISCARD bool operator>=(const _Iter_value_t<_BidIt>& _Left, const sub_match<_BidIt>& _Right) {
return !(_Left < _Right);
}
template <class _BidIt>
_NODISCARD bool operator==(const sub_match<_BidIt>& _Left, const _Iter_value_t<_BidIt>& _Right) {
return _Left._Match_equal(_STD addressof(_Right), 1);
}
template <class _BidIt>
_NODISCARD bool operator!=(const sub_match<_BidIt>& _Left, const _Iter_value_t<_BidIt>& _Right) {
return !(_Left == _Right);
}
template <class _BidIt>
_NODISCARD bool operator<(const sub_match<_BidIt>& _Left, const _Iter_value_t<_BidIt>& _Right) {
return _Left._Less(_STD addressof(_Right), 1);
}
template <class _BidIt>
_NODISCARD bool operator>(const sub_match<_BidIt>& _Left, const _Iter_value_t<_BidIt>& _Right) {
return _Right < _Left;
}
template <class _BidIt>
_NODISCARD bool operator<=(const sub_match<_BidIt>& _Left, const _Iter_value_t<_BidIt>& _Right) {
return !(_Right < _Left);
}
template <class _BidIt>
_NODISCARD bool operator>=(const sub_match<_BidIt>& _Left, const _Iter_value_t<_BidIt>& _Right) {
return !(_Left < _Right);
}
// COMPARE sub_match AND string
template <class _BidIt, class _Traits, class _Alloc>
_NODISCARD bool operator==(
const sub_match<_BidIt>& _Left, const basic_string<_Iter_value_t<_BidIt>, _Traits, _Alloc>& _Right) {
return _Left._Match_equal(_Right.data(), _Right.size());
}
template <class _BidIt, class _Traits, class _Alloc>
_NODISCARD bool operator!=(
const sub_match<_BidIt>& _Left, const basic_string<_Iter_value_t<_BidIt>, _Traits, _Alloc>& _Right) {
return !(_Left == _Right);
}
template <class _BidIt, class _Traits, class _Alloc>
_NODISCARD bool operator<(
const sub_match<_BidIt>& _Left, const basic_string<_Iter_value_t<_BidIt>, _Traits, _Alloc>& _Right) {
return _Left._Less(_Right.data(), _Right.size());
}
template <class _BidIt, class _Traits, class _Alloc>
_NODISCARD bool operator>(
const sub_match<_BidIt>& _Left, const basic_string<_Iter_value_t<_BidIt>, _Traits, _Alloc>& _Right) {
return _Right < _Left;
}
template <class _BidIt, class _Traits, class _Alloc>
_NODISCARD bool operator<=(
const sub_match<_BidIt>& _Left, const basic_string<_Iter_value_t<_BidIt>, _Traits, _Alloc>& _Right) {
return !(_Right < _Left);
}
template <class _BidIt, class _Traits, class _Alloc>
_NODISCARD bool operator>=(
const sub_match<_BidIt>& _Left, const basic_string<_Iter_value_t<_BidIt>, _Traits, _Alloc>& _Right) {
return !(_Left < _Right);
}
template <class _BidIt, class _Traits, class _Alloc>
_NODISCARD bool operator==(
const basic_string<_Iter_value_t<_BidIt>, _Traits, _Alloc>& _Left, const sub_match<_BidIt>& _Right) {
return _Right._Match_equal(_Left.data(), _Left.size());
}
template <class _BidIt, class _Traits, class _Alloc>
_NODISCARD bool operator!=(
const basic_string<_Iter_value_t<_BidIt>, _Traits, _Alloc>& _Left, const sub_match<_BidIt>& _Right) {
return !(_Left == _Right);
}
template <class _BidIt, class _Traits, class _Alloc>
_NODISCARD bool operator<(
const basic_string<_Iter_value_t<_BidIt>, _Traits, _Alloc>& _Left, const sub_match<_BidIt>& _Right) {
return _Right._Greater(_Left.data(), _Left.size());
}
template <class _BidIt, class _Traits, class _Alloc>
_NODISCARD bool operator>(
const basic_string<_Iter_value_t<_BidIt>, _Traits, _Alloc>& _Left, const sub_match<_BidIt>& _Right) {
return _Right < _Left;
}
template <class _BidIt, class _Traits, class _Alloc>
_NODISCARD bool operator<=(
const basic_string<_Iter_value_t<_BidIt>, _Traits, _Alloc>& _Left, const sub_match<_BidIt>& _Right) {
return !(_Right < _Left);
}
template <class _BidIt, class _Traits, class _Alloc>
_NODISCARD bool operator>=(
const basic_string<_Iter_value_t<_BidIt>, _Traits, _Alloc>& _Left, const sub_match<_BidIt>& _Right) {
return !(_Left < _Right);
}
// INSERT sub_match IN STREAM
template <class _Elem, class _Traits, class _BidIt>
basic_ostream<_Elem, _Traits>& operator<<(basic_ostream<_Elem, _Traits>& _Ostr, const sub_match<_BidIt>& _Match) {
return _Ostr << _Match.str();
}
// FORWARD DECLARATIONS
template <class _BidIt, class _Allocator = allocator<sub_match<_BidIt>>>
class match_results;
template <class _BidIt, class _Alloc, class _InIt, class _OutIt>
_OutIt _Format_default(const match_results<_BidIt, _Alloc>& _Match, _OutIt _Out, _InIt _First, _InIt _Last,
regex_constants::match_flag_type _Flags = regex_constants::format_default);
template <class _BidIt, class _Alloc, class _InIt, class _OutIt>
_OutIt _Format_sed(const match_results<_BidIt, _Alloc>& _Match, _OutIt _Out, _InIt _First, _InIt _Last,
regex_constants::match_flag_type _Flags = regex_constants::format_default);
// CLASS TEMPLATE match_results
template <class _BidIt, class _Alloc>
class match_results { // class to hold contents of all capture groups
public:
using _Elem = sub_match<_BidIt>;
using _MyCont = vector<_Elem, _Alloc>;
using _Mytraits = allocator_traits<_Alloc>;
using value_type = _Elem;
using const_reference = const value_type&;
using reference = value_type&;
using const_iterator = typename _MyCont::const_iterator;
using iterator = const_iterator;
using difference_type = typename iterator_traits<_BidIt>::difference_type;
using size_type = typename _Mytraits::size_type;
using allocator_type = _Alloc;
using char_type = typename iterator_traits<_BidIt>::value_type;
using string_type = basic_string<char_type>;
match_results() : _Org(), _Ready(false) {}
explicit match_results(const _Alloc& _Al) : _Org(), _Ready(false), _Matches(_Al) {}
_NODISCARD bool ready() const noexcept /* strengthened */ {
return _Ready;
}
_NODISCARD size_type size() const noexcept /* strengthened */ {
return _Matches.size();
}
_NODISCARD size_type max_size() const {
return _Matches.max_size();
}
_NODISCARD bool empty() const noexcept /* strengthened */ {
return _Matches.empty();
}
_NODISCARD difference_type length(size_type _Sub = 0) const {
return (*this)[_Sub].length();
}
_NODISCARD difference_type position(size_type _Sub = 0) const {
return _STD distance(_Org, (*this)[_Sub].first);
}
_NODISCARD string_type str(size_type _Sub = 0) const {
return string_type((*this)[_Sub]);
}
_NODISCARD const_reference operator[](size_type _Sub) const noexcept /* strengthened */ {
return _Matches.size() <= _Sub ? _Null_elem : _Matches[_Sub];
}
_NODISCARD const_reference prefix() const noexcept /* strengthened */ {
return _Prefix;
}
_NODISCARD const_reference suffix() const noexcept /* strengthened */ {
return _Suffix;
}
_NODISCARD const_iterator begin() const noexcept /* strengthened */ {
return _Matches.begin();
}
_NODISCARD const_iterator end() const noexcept /* strengthened */ {
return _Matches.end();
}
_NODISCARD const_iterator cbegin() const noexcept /* strengthened */ {
return _Matches.begin();
}
_NODISCARD const_iterator cend() const noexcept /* strengthened */ {
return _Matches.end();
}
const _Elem* _Unchecked_begin() const noexcept {
return _Matches._Unchecked_begin();
}
const _Elem* _Unchecked_end() const noexcept {
return _Matches._Unchecked_end();
}
template <class _OutIt>
_OutIt _Format1(_OutIt _Out, const char_type* _Fmt_begin, const char_type* _Fmt_end,
regex_constants::match_flag_type _Flags) const { // format text, replacing matches
return _Flags & regex_constants::format_sed ? _Format_sed(*this, _Out, _Fmt_begin, _Fmt_end, _Flags)
: _Format_default(*this, _Out, _Fmt_begin, _Fmt_end, _Flags);
}
template <class _OutIt>
_OutIt format(_OutIt _Out, const char_type* _Fmt_begin, const char_type* _Fmt_end,
regex_constants::match_flag_type _Flags = regex_constants::format_default) const {
// format text, replacing matches
_Adl_verify_range(_Fmt_begin, _Fmt_end);
_Seek_wrapped(_Out, _Format1(_Get_unwrapped_unverified(_Out), _Fmt_begin, _Fmt_end, _Flags));
return _Out;
}
template <class _OutIt, class _Traits1, class _Alloc1>
_OutIt format(_OutIt _Out, const basic_string<char_type, _Traits1, _Alloc1>& _Fmt,
regex_constants::match_flag_type _Flags = regex_constants::format_default) const {
// format text, replacing matches
_Seek_wrapped(_Out, _Format1(_Get_unwrapped_unverified(_Out), _Fmt.data(), _Fmt.data() + _Fmt.size(), _Flags));
return _Out;
}
template <class _Traits1, class _Alloc1>
_NODISCARD basic_string<char_type, _Traits1, _Alloc1> format(const basic_string<char_type, _Traits1, _Alloc1>& _Fmt,
regex_constants::match_flag_type _Flags = regex_constants::format_default) const {
// format text, replacing matches
basic_string<char_type, _Traits1, _Alloc1> _Str;
format(_STD back_inserter(_Str), _Fmt.data(), _Fmt.data() + _Fmt.size(), _Flags);
return _Str;
}
_NODISCARD string_type format(
const char_type* _Fmt_begin, regex_constants::match_flag_type _Flags = regex_constants::format_default) const {
// format text, replacing matches
return format(static_cast<string_type>(_Fmt_begin), _Flags);
}
_NODISCARD allocator_type get_allocator() const noexcept /* strengthened */ {
return static_cast<allocator_type>(_Matches.get_allocator());
}
void swap(match_results& _Right) noexcept(_Is_nothrow_swappable<_BidIt>::value) /* strengthened */ {
_STD swap(_Ready, _Right._Ready);
_Swap_adl(_Org, _Right._Org);
_Matches.swap(_Right._Matches);
_STD swap(_Prefix, _Right._Prefix);
_STD swap(_Suffix, _Right._Suffix);
}
void _Resize(unsigned int _Nx) {
_Matches.resize(_Nx);
}
_Elem& _Pfx() noexcept {
return _Prefix;
}
_Elem& _Sfx() noexcept {
return _Suffix;
}
_Elem& _Null() noexcept {
return _Null_elem;
}
_Elem& _At(unsigned int _Sub) noexcept {
return _Matches[_Sub];
}
_Elem _At(unsigned int _Sub) const noexcept {
return _Matches[_Sub];
}
_BidIt _Org;
bool _Ready;
private:
_MyCont _Matches;
_Elem _Prefix;
_Elem _Suffix;
_Elem _Null_elem;
};
template <class _BidIt, class _Alloc>
_NODISCARD bool operator==(const match_results<_BidIt, _Alloc>& _Left, const match_results<_BidIt, _Alloc>& _Right) {
if (!_Left.ready() && !_Right.ready()) {
return true;
} else if (!_Left.ready() || !_Right.ready()) {
return false;
} else if (_Left.empty() && _Right.empty()) {
return true;
} else if (_Left.empty() || _Right.empty()) {
return false;
} else {
return _Left.size() == _Right.size() && _Left.prefix() == _Right.prefix() && _Left.suffix() == _Right.suffix()
&& _STD equal(_Left.begin(), _Left.end(), _Right.begin());
}
}
template <class _BidIt, class _Alloc>
_NODISCARD bool operator!=(const match_results<_BidIt, _Alloc>& _Left, const match_results<_BidIt, _Alloc>& _Right) {
return !(_Left == _Right);
}
// NFA PROPERTIES
const unsigned int _BRE_MAX_GRP = 9U;
const unsigned int _Bmp_max = 256U; // must fit in an unsigned int
const unsigned int _Bmp_shift = 3U;
const unsigned int _Bmp_chrs = 1U << _Bmp_shift; // # of bits to be stored in each char
const unsigned int _Bmp_mask = _Bmp_chrs - 1U;
const unsigned int _Bmp_size = (_Bmp_max + _Bmp_chrs - 1U) / _Bmp_chrs;
const unsigned int _Buf_incr = 16U;
const unsigned int _ARRAY_THRESHOLD = 4U;
enum _Node_flags : int { // flags for nfa nodes with special properties
_Fl_none = 0x00,
_Fl_negate = 0x01,
_Fl_greedy = 0x02,
_Fl_final = 0x04,
_Fl_longest = 0x08
};
_BITMASK_OPS(_Node_flags)
enum _Node_type { // type flag for nfa nodes
_N_none,
_N_nop,
_N_bol,
_N_eol,
_N_wbound,
_N_dot,
_N_str,
_N_class,
_N_group,
_N_end_group,
_N_assert,
_N_neg_assert,
_N_end_assert,
_N_capture,
_N_end_capture,
_N_back,
_N_if,
_N_endif,
_N_rep,
_N_end_rep,
_N_begin,
_N_end
};
// STRUCT TEMPLATE _Buf
template <class _Elem>
struct _Buf { // character buffer
_Buf() : _Sz(0), _Nchrs(0), _Chrs(nullptr) {}
~_Buf() noexcept {
_CSTD free(_Chrs);
}
unsigned int _Size() const {
return _Nchrs;
}
_Elem _At(unsigned int _Idx) const {
#if _ITERATOR_DEBUG_LEVEL != 0
_STL_VERIFY(_Idx < _Nchrs, "regex buffer subscript out of range");
#endif // _ITERATOR_DEBUG_LEVEL != 0
return _Chrs[_Idx];
}
const _Elem* _Str() const {
return _Chrs;
}
void _Insert(_Elem _Ch) { // append _Ch
if (_Sz <= _Nchrs) {
_Expand(_Nchrs + _Buf_incr);
}
_Chrs[_Nchrs++] = _Ch;
}
_Elem _Del() { // remove and return last character
return _Chrs[--_Nchrs];
}
template <class _FwdIt>
void _Insert(_FwdIt _First, _FwdIt _Last) { // append multiple characters
while (_First != _Last) {
_Insert(*_First++);
}
}
private:
void _Expand(unsigned int _Len) { // expand buffer to hold _Len characters
_Elem* _Tmp = static_cast<_Elem*>(_CSTD realloc(_Chrs, _Get_size_of_n<sizeof(_Elem)>(_Len)));
if (!_Tmp) {
_Xbad_alloc();
}
_Chrs = _Tmp;
_Sz = _Len;
}
unsigned int _Sz;
unsigned int _Nchrs;
_Elem* _Chrs;
};
// STRUCT _Bitmap
struct _Bitmap { // accelerator table for small character values
_Bitmap() {
_CSTD memset(_Chrs, '\0', _Bmp_size);
}
template <class _Elem>
void _Mark(_Elem _Ch) { // mark character _Ch
static_assert(is_unsigned_v<_Elem>, "_Elem must be unsigned");
unsigned int _Wide = _Ch;
_Chrs[_Wide >> _Bmp_shift] |= (1 << (_Wide & _Bmp_mask));
}
template <class _Elem>
bool _Find(_Elem _Ch) const {
static_assert(is_unsigned_v<_Elem>, "_Elem must be unsigned");
unsigned int _Wide = _Ch;
return (_Chrs[_Wide >> _Bmp_shift] & (1 << (_Wide & _Bmp_mask))) != 0;
}
private:
unsigned char _Chrs[_Bmp_size];
};
// STRUCT TEMPLATE _Sequence
template <class _Elem>
struct _Sequence { // holds sequences of _Sz elements
explicit _Sequence(unsigned int _Len) : _Sz(_Len) {}
unsigned int _Sz;
_Buf<_Elem> _Data;
_Sequence* _Next;
};
// CLASS _Node_base
class _Node_base { // base class for all nfa nodes
public:
explicit _Node_base(_Node_type _Ty, _Node_flags _Fl = _Fl_none)
: _Kind(_Ty), _Flags(_Fl), _Next(nullptr), _Prev(nullptr) {}
_Node_type _Kind;
_Node_flags _Flags;
_Node_base* _Next;
_Node_base* _Prev;
virtual ~_Node_base() noexcept {}
};
// FUNCTION _Destroy_node
inline void _Destroy_node(_Node_base* _Nx, _Node_base* _Ne = nullptr) noexcept { // destroy sublist of nodes
while (_Nx != _Ne && _Nx) { // destroy node
_Node_base* _Tmp = _Nx;
_Nx = _Nx->_Next;
_Tmp->_Next = nullptr;
delete _Tmp;
}
}
// CLASS _Root_node
class _Root_node : public _Node_base { // root of parse tree
public:
_Root_node() : _Node_base(_N_begin), _Loops(0), _Marks(0), _Refs(0) {
static_assert(sizeof(_Refs) == sizeof(_Atomic_counter_t), "invalid _Refs size");
}
regex_constants::syntax_option_type _Fl;
unsigned int _Loops;
unsigned int _Marks;
unsigned int _Refs;
};
// CLASS _Node_end_group
class _Node_end_group : public _Node_base { // node that marks end of a group
public:
_Node_end_group(_Node_type _Ty, _Node_flags _Fl, _Node_base* _Bx) : _Node_base(_Ty, _Fl), _Back(_Bx) {}
_Node_base* _Back;
};
// CLASS _Node_assert
class _Node_assert : public _Node_base { // node that holds an ECMAScript assertion
public:
explicit _Node_assert(_Node_type _Ty, _Node_flags _Fl = _Fl_none) : _Node_base(_Ty, _Fl), _Child(nullptr) {}
~_Node_assert() noexcept {
_Destroy_node(_Child);
}
_Node_base* _Child;
};
// CLASS TEMPLATE _Node_capture
class _Node_capture : public _Node_base { // node that marks beginning of a capture group
public:
explicit _Node_capture(unsigned int _Ix) : _Node_base(_N_capture, _Fl_none), _Idx(_Ix) {}
unsigned int _Idx;
};
// CLASS _Node_back
class _Node_back : public _Node_base { // node that holds a back reference
public:
explicit _Node_back(unsigned int _Ix) : _Node_base(_N_back, _Fl_none), _Idx(_Ix) {}
unsigned int _Idx;
};
// CLASS TEMPLATE _Node_str
template <class _Elem>
class _Node_str : public _Node_base { // node that holds text
public:
explicit _Node_str(_Node_flags _Fl = _Fl_none) : _Node_base(_N_str, _Fl) {}
_Buf<_Elem> _Data;
};
// CLASS TEMPLATE _Node_class
template <class _Elem, class _RxTraits>
class _Node_class : public _Node_base { // node that holds a character class (POSIX bracket expression)
public:
explicit _Node_class(_Node_type _Ty = _N_class, _Node_flags _Fl = _Fl_none)
: _Node_base(_Ty, _Fl), _Coll(nullptr), _Small(nullptr), _Large(nullptr), _Ranges(nullptr), _Classes{},
_Equiv(nullptr) {}
~_Node_class() noexcept {
_Tidy(_Coll);
delete _Small;
delete _Large;
delete _Ranges;
_Tidy(_Equiv);
}
void _Tidy(_Sequence<_Elem>* _Head) noexcept { // clean up a list of sequences
while (_Head) { // delete the head of the list
_Sequence<_Elem>* _Temp = _Head;
_Head = _Head->_Next;
delete _Temp;
}
}
_Sequence<_Elem>* _Coll;
_Bitmap* _Small;
_Buf<_Elem>* _Large;
_Buf<_Elem>* _Ranges;
typename _RxTraits::char_class_type _Classes;
_Sequence<_Elem>* _Equiv;
};
// CLASS _Node_endif
class _Node_endif : public _Node_base { // node that marks the end of an alternative
public:
_Node_endif() : _Node_base(_N_endif, _Fl_none) {}
};
// CLASS _Node_if
class _Node_if : public _Node_base { // node that marks the beginning of an alternative
public:
explicit _Node_if(_Node_base* _End)
: _Node_base(_N_if, _Fl_none), _Endif(static_cast<_Node_endif*>(_End)), _Child(nullptr) {}
~_Node_if() noexcept {
_Node_if* _Cur = _Child;
while (_Cur) { // destroy branch
_Node_if* _Tmp = _Cur;
_Cur = _Cur->_Child;
_Tmp->_Child = nullptr;
_Destroy_node(_Tmp, _Endif);
}
}
_Node_endif* _Endif;
_Node_if* _Child;
};
// CLASS _Node_end_rep
class _Node_rep;
class _Node_end_rep : public _Node_base { // node that marks the end of a repetition
public:
_Node_end_rep() : _Node_base(_N_end_rep), _Begin_rep(nullptr) {}
_Node_rep* _Begin_rep;
_Node_end_rep& operator=(const _Node_end_rep&) = delete;
};
// CLASS _Loop_vals_t
struct _Loop_vals_t { // storage for loop administration
int _Loop_idx;
void* _Loop_iter;
};
// CLASS _Node_rep
class _Node_rep : public _Node_base { // node that marks the beginning of a repetition
public:
_Node_rep(bool _Greedy, int _Mn, int _Mx, _Node_end_rep* _End, unsigned int _Number)
: _Node_base(_N_rep, _Greedy ? _Fl_greedy : _Fl_none), _Min(_Mn), _Max(_Mx), _End_rep(_End),
_Loop_number(_Number), _Simple_loop(-1) {}
const int _Min;
const int _Max;
_Node_end_rep* _End_rep;
unsigned int _Loop_number;
int _Simple_loop; // -1 undetermined, 0 contains if/do, 1 simple
_Node_rep& operator=(const _Node_rep&) = delete;
};
// CLASS TEMPLATE _Builder
template <class _FwdIt, class _Elem, class _RxTraits>
class _Builder { // provides operations used by _Parser to build the nfa
public:
using _Difft = typename iterator_traits<_FwdIt>::difference_type;
_Builder(const _RxTraits& _Tr, regex_constants::syntax_option_type);
bool _Beg_expr() const;
void _Setlong();
// _Discard_pattern is an ABI zombie name
void _Tidy() noexcept;
_Node_base* _Getmark() const;
void _Add_nop();
void _Add_bol();
void _Add_eol();
void _Add_wbound();
void _Add_dot();
void _Add_char(_Elem _Ch);
void _Add_class();
void _Add_char_to_class(_Elem _Ch);
void _Add_range(_Elem _E0, _Elem _E1);
void _Add_named_class(_Regex_traits_base::char_class_type, bool = false);
void _Add_equiv(_FwdIt, _FwdIt, _Difft);
void _Add_coll(_FwdIt, _FwdIt, _Difft);
_Node_base* _Begin_group();
void _End_group(_Node_base* _Back);
_Node_base* _Begin_assert_group(bool);
void _End_assert_group(_Node_base*);
_Node_base* _Begin_capture_group(unsigned int _Idx);
void _Add_backreference(unsigned int _Idx);
_Node_base* _Begin_if(_Node_base* _Start);
void _Else_if(_Node_base*, _Node_base*);
void _Add_rep(int _Min, int _Max, bool _Greedy);
void _Negate();
void _Mark_final();
_Root_node* _End_pattern();
private:
_Node_base* _Link_node(_Node_base*);
static void _Insert_node(_Node_base*, _Node_base*);
_Node_base* _New_node(_Node_type _Kind);
void _Add_str_node();
bool _Beg_expr(_Node_base*) const;
void _Add_char_to_bitmap(_Elem _Ch);
void _Add_char_to_array(_Elem _Ch);
void _Add_elts(_Node_class<_Elem, _RxTraits>*, _Regex_traits_base::char_class_type, bool);
void _Char_to_elts(_FwdIt, _FwdIt, _Difft, _Sequence<_Elem>**);
_Root_node* _Root;
_Node_base* _Current;
regex_constants::syntax_option_type _Flags;
const _RxTraits& _Traits;
const int _Bmax; // Do not use; use _Get_bmax instead.
const int _Tmax; // Do not use; use _Get_tmax instead.
unsigned int _Get_bmax() const;
unsigned int _Get_tmax() const;
public:
_Builder& operator=(const _Builder&) = delete;
};
// CLASS TEMPLATE _Bt_state_t
template <class _BidIt>
class _Bt_state_t { // holds the state needed for backtracking
public:
_BidIt _Cur;
vector<bool> _Grp_valid;
};
// CLASS TEMPLATE _Tgt_state_t
template <class _BidIt>
class _Tgt_state_t : public _Bt_state_t<_BidIt> { // holds the current state of the match
public:
struct _Grp_t { // stores a pair of iterators
_BidIt _Begin;
_BidIt _End;
};
vector<_Grp_t> _Grps;
void operator=(const _Bt_state_t<_BidIt>& _Other) {
static_cast<_Bt_state_t<_BidIt>&>(*this) = _Other;
}
};
// CLASS TEMPLATE _Matcher
template <class _BidIt, class _Elem, class _RxTraits, class _It>
class _Matcher { // provides ways to match a regular expression to a text sequence
public:
_Matcher(_It _Pfirst, _It _Plast, const _RxTraits& _Tr, _Root_node* _Re, unsigned int _Nx,
regex_constants::syntax_option_type _Sf, regex_constants::match_flag_type _Mf)
: _End(_Plast), _First(_Pfirst), _Rep(_Re), _Sflags(_Sf), _Mflags(_Mf), _Matched(false),
_Ncap(static_cast<int>(_Nx)), _Longest((_Re->_Flags & _Fl_longest) && !(_Mf & regex_constants::match_any)),
_Traits(_Tr) {
_Loop_vals.resize(_Re->_Loops);
_Adl_verify_range(_Pfirst, _Plast);
}
void _Setf(regex_constants::match_flag_type _Mf) { // set specified flags
_Mflags |= _Mf;
}
void _Clearf(regex_constants::match_flag_type _Mf) { // clear specified flags
_Mflags &= ~_Mf;
}
template <class _Alloc>
bool _Match(_It _Pfirst, match_results<_BidIt, _Alloc>* _Matches, bool _Full_match) {
// try to match
_First = _Pfirst;
return _Match(_Matches, _Full_match);
}
template <class _Alloc>
bool _Match(match_results<_BidIt, _Alloc>* _Matches, bool _Full_match) {
// try to match
if (_Matches) { // clear _Matches before doing work
_Matches->_Ready = true;
_Matches->_Resize(0);
}
_Begin = _First;
_Tgt_state._Cur = _First;
_Tgt_state._Grp_valid.resize(_Get_ncap());
_Tgt_state._Grps.resize(_Get_ncap());
_Cap = static_cast<bool>(_Matches);
_Full = _Full_match;
_Max_complexity_count = _REGEX_MAX_COMPLEXITY_COUNT;
_Max_stack_count = _REGEX_MAX_STACK_COUNT;
_Matched = false;
if (!_Match_pat(_Rep)) {
return false;
}
if (_Matches) { // copy results to _Matches
_Matches->_Resize(_Get_ncap());
for (unsigned int _Idx = 0; _Idx < _Get_ncap(); ++_Idx) { // copy submatch _Idx
if (_Res._Grp_valid[_Idx]) { // copy successful match
_Matches->_At(_Idx).matched = true;
_Matches->_At(_Idx).first = _Res._Grps[_Idx]._Begin;
_Matches->_At(_Idx).second = _Res._Grps[_Idx]._End;
} else { // copy failed match
_Matches->_At(_Idx).matched = false;
_Matches->_At(_Idx).first = _End;
_Matches->_At(_Idx).second = _End;
}
}
_Matches->_Org = _Begin;
_Matches->_Pfx().first = _Begin;
_Matches->_Pfx().second = _Matches->_At(0).first;
_Matches->_Pfx().matched = _Matches->_Pfx().first != _Matches->_Pfx().second;
_Matches->_Sfx().first = _Matches->_At(0).second;
_Matches->_Sfx().second = _End;
_Matches->_Sfx().matched = _Matches->_Sfx().first != _Matches->_Sfx().second;
_Matches->_Null().first = _End;
_Matches->_Null().second = _End;
}
return true;
}
_BidIt _Skip(_BidIt, _BidIt, _Node_base* = nullptr);
private:
_Tgt_state_t<_It> _Tgt_state;
_Tgt_state_t<_It> _Res;
vector<_Loop_vals_t> _Loop_vals;
bool _Do_if(_Node_if*);
bool _Do_rep0(_Node_rep*, bool);
bool _Do_rep(_Node_rep*, bool, int);
bool _Do_class(_Node_base*);
bool _Match_pat(_Node_base*);
bool _Better_match();
bool _Is_wbound() const;
unsigned int _Get_ncap() const;
_It _Begin;
_It _End;
_It _First;
_Node_base* _Rep;
regex_constants::syntax_option_type _Sflags;
regex_constants::match_flag_type _Mflags;
bool _Matched;
bool _Cap;
int _Ncap; // Do not use. Use _Get_ncap instead.
bool _Longest;
const _RxTraits& _Traits;
bool _Full;
long _Max_complexity_count;
long _Max_stack_count;
public:
_Matcher& operator=(const _Matcher&) = delete;
};
enum _Prs_ret { // indicate class element type
_Prs_none,
_Prs_chr,
_Prs_set
};
// CLASS TEMPLATE _Parser
template <class _FwdIt, class _Elem, class _RxTraits>
class _Parser { // parse a regular expression
public:
using char_class_type = typename _RxTraits::char_class_type;
_Parser(const _RxTraits& _Tr, _FwdIt _Pfirst, _FwdIt _Plast, regex_constants::syntax_option_type _Fx);
_Root_node* _Compile();
unsigned int _Mark_count() const {
return _Grp_idx + 1;
}
private:
// lexing
void _Error(regex_constants::error_type);
bool _Is_esc() const;
void _Trans();
void _Next();
void _Expect(_Meta_type, regex_constants::error_type);
// parsing
int _Do_digits(int _Base, int _Count);
bool _DecimalDigits();
void _HexDigits(int);
bool _OctalDigits();
void _Do_ex_class(_Meta_type);
bool _CharacterClassEscape(bool);
_Prs_ret _ClassEscape(bool);
_Prs_ret _ClassAtom();
void _ClassRanges();
void _CharacterClass();
bool _IdentityEscape();
bool _IsIdentityEscape() const;
bool _Do_ffn(_Elem);
bool _Do_ffnx(_Elem);
bool _CharacterEscape();
void _AtomEscape();
void _Do_capture_group();
void _Do_noncapture_group();
void _Do_assert_group(bool);
bool _Wrapped_disjunction();
void _Quantifier();
bool _Alternative();
void _Disjunction();
_FwdIt _Pat;
_FwdIt _Begin;
_FwdIt _End;
unsigned int _Grp_idx;
int _Disj_count;
vector<bool> _Finished_grps;
_Builder<_FwdIt, _Elem, _RxTraits> _Nfa;
const _RxTraits& _Traits;
regex_constants::syntax_option_type _Flags;
int _Val;
_Elem _Char;
_Meta_type _Mchar;
unsigned int _L_flags;
};
enum _Lang_flags { // describe language properties
_L_ext_rep = 0x00000001, // + and ? repetitions
_L_alt_pipe = 0x00000002, // uses '|' for alternation
_L_alt_nl = 0x00000004, // uses '\n' for alternation (grep, egrep)
_L_nex_grp = 0x00000008, // has non-escaped capture groups
_L_nex_rep = 0x00000010, // has non-escaped repeats
_L_nc_grp = 0x00000020, // has non-capture groups (?:xxx)
_L_asrt_gen = 0x00000040, // has generalized assertions (?=xxx), (?!xxx)
_L_asrt_wrd = 0x00000080, // has word boundary assertions (\b, \B)
_L_bckr = 0x00000100, // has backreferences (ERE doesn't)
_L_lim_bckr = 0x00000200, // has limited backreferences (BRE \1-\9)
_L_ngr_rep = 0x00000400, // has non-greedy repeats
_L_esc_uni = 0x00000800, // has Unicode escape sequences
_L_esc_hex = 0x00001000, // has hexadecimal escape sequences
_L_esc_oct = 0x00002000, // has octal escape sequences
_L_esc_bsl = 0x00004000, // has escape backslash in character classes
_L_esc_ffnx = 0x00008000, // has extra file escapes (\a and \b)
_L_esc_ffn = 0x00010000, // has limited file escapes (\[fnrtv])
_L_esc_wsd = 0x00020000, // has w, s, and d character set escapes
_L_esc_ctrl = 0x00040000, // has control escape
_L_no_nl = 0x00080000, // no newline in pattern or matching text
_L_bzr_chr = 0x00100000, // \0 is a valid character constant
_L_grp_esc = 0x00200000, // \ is special character in group
_L_ident_ECMA = 0x00400000, // ECMA identity escape (not identifierpart)
_L_ident_ERE = 0x00800000, // ERE identity escape (.[\*^$, plus {+?}()
_L_ident_awk = 0x01000000, // awk identity escape ( ERE plus "/)
_L_anch_rstr = 0x02000000, // anchor restricted to beginning/end
_L_star_beg = 0x04000000, // star okay at beginning of RE/expr (BRE)
_L_empty_grp = 0x08000000, // empty group allowed (ERE prohibits "()")
_L_paren_bal = 0x10000000, // ')'/'}'/']' special only after '('/'{'/']'
_L_brk_rstr = 0x20000000, // ']' not special when first character in set
_L_mtch_long = 0x40000000, // find longest match (ERE, BRE)
};
// CLASS _Regex_base
class _Regex_base : public _Container_base { // base class for basic_regex to construct and destroy proxy
public:
#if 0 < _ITERATOR_DEBUG_LEVEL
_Regex_base() { // construct proxy
this->_Myproxy = new _Container_proxy;
this->_Myproxy->_Mycont = this;
}
~_Regex_base() noexcept {
this->_Orphan_all();
delete this->_Myproxy;
this->_Myproxy = nullptr;
}
#endif // 0 < _ITERATOR_DEBUG_LEVEL
};
// CLASS TEMPLATE basic_regex
template <class _Elem, class _RxTraits = regex_traits<_Elem>>
class basic_regex : public _Regex_base { // regular expression
public:
using value_type = _Elem;
using traits_type = _RxTraits;
using locale_type = typename _RxTraits::locale_type;
using string_type = typename _RxTraits::string_type;
using flag_type = regex_constants::syntax_option_type;
static constexpr flag_type icase = regex_constants::icase;
static constexpr flag_type nosubs = regex_constants::nosubs;
static constexpr flag_type optimize = regex_constants::optimize;
static constexpr flag_type collate = regex_constants::collate;
static constexpr flag_type ECMAScript = regex_constants::ECMAScript;
static constexpr flag_type basic = regex_constants::basic;
static constexpr flag_type extended = regex_constants::extended;
static constexpr flag_type awk = regex_constants::awk;
static constexpr flag_type grep = regex_constants::grep;
static constexpr flag_type egrep = regex_constants::egrep;
basic_regex() : _Rep(nullptr) {} // construct empty object
explicit basic_regex(_In_z_ const _Elem* _Ptr, flag_type _Flags = regex_constants::ECMAScript) : _Rep(nullptr) {
_Reset(_Ptr, _Ptr + _RxTraits::length(_Ptr), _Flags, random_access_iterator_tag{});
}
basic_regex(_In_reads_(_Count) const _Elem* _Ptr, size_t _Count, flag_type _Flags = regex_constants::ECMAScript)
: _Rep(nullptr) {
if (_Ptr) {
_Reset(_Ptr, _Ptr + _Count, _Flags, random_access_iterator_tag{});
return;
}
_Xregex_error(regex_constants::error_parse);
}
template <class _STtraits, class _STalloc>
explicit basic_regex(
const basic_string<_Elem, _STtraits, _STalloc>& _Str, flag_type _Flags = regex_constants::ECMAScript)
: _Rep(nullptr) {
_Reset(_Str.data(), _Str.data() + static_cast<ptrdiff_t>(_Str.size()), _Flags, random_access_iterator_tag{});
}
template <class _InIt>
basic_regex(_InIt _First, _InIt _Last, flag_type _Flags) : _Rep(nullptr) {
_Adl_verify_range(_First, _Last);
_Reset(_Get_unwrapped(_First), _Get_unwrapped(_Last), _Flags, _Iter_cat_t<_InIt>());
}
template <class _InIt>
basic_regex(_InIt _First, _InIt _Last) : _Rep(nullptr) {
_Adl_verify_range(_First, _Last);
_Reset(_Get_unwrapped(_First), _Get_unwrapped(_Last), regex_constants::ECMAScript, _Iter_cat_t<_InIt>());
}
basic_regex(const basic_regex& _Right)
#if _ENHANCED_REGEX_VISUALIZER
: _Rep(nullptr), _Traits(_Right._Traits), _Visualization(_Right._Visualization)
#else // _ENHANCED_REGEX_VISUALIZER
: _Rep(nullptr), _Traits(_Right._Traits)
#endif // _ENHANCED_REGEX_VISUALIZER
{ // construct copy of _Right
_Reset(_Right._Rep);
}
basic_regex(initializer_list<_Elem> _Ilist, flag_type _Flags = regex_constants::ECMAScript) : _Rep(nullptr) {
_Reset(_Ilist.begin(), _Ilist.end(), _Flags, random_access_iterator_tag{});
}
basic_regex& operator=(initializer_list<_Elem> _Ilist) { // replace with regular expression in initializer_list
return assign(_Ilist);
}
basic_regex& assign(initializer_list<_Elem> _Ilist, flag_type _Flags = regex_constants::ECMAScript) {
// replace with regular expression in initializer_list
_Reset(_Ilist.begin(), _Ilist.end(), _Flags, random_access_iterator_tag{});
return *this;
}
basic_regex(basic_regex&& _Right) noexcept : _Rep(nullptr) {
_Assign_rv(_STD move(_Right));
}
basic_regex& operator=(basic_regex&& _Right) noexcept {
_Assign_rv(_STD move(_Right));
return *this;
}
void _Assign_rv(basic_regex&& _Right) {
if (this != _STD addressof(_Right)) { // clear this and steal from _Right
_Tidy();
#if _ENHANCED_REGEX_VISUALIZER
_Visualization = _STD move(_Right._Visualization);
#endif // _ENHANCED_REGEX_VISUALIZER
_Rep = _Right._Rep;
_Right._Rep = nullptr;
}
}
basic_regex& assign(basic_regex&& _Right) noexcept {
_Assign_rv(_STD move(_Right));
return *this;
}
~basic_regex() noexcept {
_Tidy();
}
basic_regex& operator=(const basic_regex& _Right) {
return assign(_Right);
}
basic_regex& operator=(_In_z_ const _Elem* _Ptr) {
_Reset(_Ptr, _Ptr + _RxTraits::length(_Ptr), ECMAScript, random_access_iterator_tag{});
return *this;
}
template <class _STtraits, class _STalloc>
basic_regex& operator=(const basic_string<_Elem, _STtraits, _STalloc>& _Str) {
_Reset(
_Str.data(), _Str.data() + static_cast<ptrdiff_t>(_Str.size()), ECMAScript, random_access_iterator_tag{});
return *this;
}
unsigned int _Loop_count() const {
return _Rep ? _Rep->_Loops : 0;
}
_NODISCARD unsigned int mark_count() const {
return _Rep ? _Rep->_Marks - 1 : 0;
}
basic_regex& assign(const basic_regex& _Right) {
#if _ENHANCED_REGEX_VISUALIZER
_Visualization = _Right._Visualization;
#endif // _ENHANCED_REGEX_VISUALIZER
_Reset(_Right._Rep);
return *this;
}
basic_regex& assign(_In_z_ const _Elem* _Ptr, flag_type _Flags = regex_constants::ECMAScript) {
return assign(_Ptr, _RxTraits::length(_Ptr), _Flags);
}
basic_regex& assign(
_In_reads_(_Count) const _Elem* _Ptr, size_t _Count, flag_type _Flags = regex_constants::ECMAScript) {
_Reset(_Ptr, _Ptr + _Count, _Flags, random_access_iterator_tag{});
return *this;
}
template <class _STtraits, class _STalloc>
basic_regex& assign(
const basic_string<_Elem, _STtraits, _STalloc>& _Str, flag_type _Flags = regex_constants::ECMAScript) {
_Reset(_Str.data(), _Str.data() + static_cast<ptrdiff_t>(_Str.size()), _Flags, random_access_iterator_tag{});
return *this;
}
template <class _InIt>
basic_regex& assign(_InIt _First, _InIt _Last, flag_type _Flags = regex_constants::ECMAScript) {
_Adl_verify_range(_First, _Last);
_Reset(_Get_unwrapped(_First), _Get_unwrapped(_Last), _Flags, _Iter_cat_t<_InIt>());
return *this;
}
_NODISCARD flag_type flags() const {
return _Rep ? _Rep->_Fl : flag_type{};
}
locale_type imbue(locale_type _Loc) { // clear regular expression and set locale to argument
_Tidy();
return _Traits.imbue(_Loc);
}
locale_type getloc() const {
return _Traits.getloc();
}
void swap(basic_regex& _Right) noexcept /* strengthened */ {
_STD swap(_Rep, _Right._Rep);
#if _ENHANCED_REGEX_VISUALIZER
_Visualization.swap(_Right._Visualization);
#endif // _ENHANCED_REGEX_VISUALIZER
}
_Root_node* _Get() const {
return _Rep;
}
bool _Empty() const {
return _Rep == nullptr;
}
const _RxTraits& _Get_traits() const {
return _Traits;
}
private:
_Root_node* _Rep;
_RxTraits _Traits;
#if _ENHANCED_REGEX_VISUALIZER
basic_string<_Elem> _Visualization;
#endif // _ENHANCED_REGEX_VISUALIZER
void _Tidy() noexcept { // free all storage
if (_Rep && _MT_DECR(reinterpret_cast<_Atomic_counter_t&>(_Rep->_Refs)) == 0) {
_Destroy_node(_Rep);
}
_Rep = nullptr;
}
template <class _InIt>
void _Reset(_InIt _First, _InIt _Last, flag_type _Flags, input_iterator_tag) {
// build regular expression from input iterators
basic_string<_Iter_value_t<_InIt>> _Str(_First, _Last);
_Reset(_Str.data(), _Str.data() + static_cast<ptrdiff_t>(_Str.size()), _Flags, forward_iterator_tag{});
}
template <class _FwdIt>
void _Reset(_FwdIt _First, _FwdIt _Last, flag_type _Flags, forward_iterator_tag) {
// build regular expression from forward iterators
#if _ENHANCED_REGEX_VISUALIZER
_Visualization.assign(_First, _Last);
#endif // _ENHANCED_REGEX_VISUALIZER
_Parser<_FwdIt, _Elem, _RxTraits> _Prs(_Traits, _First, _Last, _Flags);
_Root_node* _Rx = _Prs._Compile();
_Reset(_Rx);
}
void _Reset(_Root_node* _Rx) { // build regular expression holding root node _Rx
if (_Rx) {
_MT_INCR(reinterpret_cast<_Atomic_counter_t&>(_Rx->_Refs));
}
_Tidy();
_Rep = _Rx;
}
};
#if _HAS_CXX17
template <class _FwdIt>
basic_regex(_FwdIt, _FwdIt, regex_constants::syntax_option_type = regex_constants::ECMAScript)
-> basic_regex<typename iterator_traits<_FwdIt>::value_type>;
#endif // _HAS_CXX17
template <class _Elem, class _RxTraits>
void swap(basic_regex<_Elem, _RxTraits>& _Left, basic_regex<_Elem, _RxTraits>& _Right) noexcept /* strengthened */ {
_Left.swap(_Right);
}
template <class _BidIt, class _Alloc>
void swap(match_results<_BidIt, _Alloc>& _Left, match_results<_BidIt, _Alloc>& _Right) noexcept(
noexcept(_Left.swap(_Right))) /* strengthened */ {
_Left.swap(_Right);
}
using regex = basic_regex<char>;
using wregex = basic_regex<wchar_t>;
using cmatch = match_results<const char*>;
using wcmatch = match_results<const wchar_t*>;
using smatch = match_results<string::const_iterator>;
using wsmatch = match_results<wstring::const_iterator>;
// FUNCTION TEMPLATE _Format_default
template <class _BidIt, class _Alloc, class _InIt, class _OutIt>
_OutIt _Format_default(const match_results<_BidIt, _Alloc>& _Match, _OutIt _Out, _InIt _First, _InIt _Last,
regex_constants::match_flag_type) { // format with ECMAScript rules
while (_First != _Last) { // process one character or escape sequence
if (*_First != '$') {
*_Out++ = *_First++;
} else if (++_First == _Last) {
*_Out++ = '$'; // preserve $ at end
} else if (*_First == '$') { // replace $$
*_Out++ = '$';
++_First;
} else if (*_First == '`') { // replace $`
_Out = _STD copy(_Match.prefix().first, _Match.prefix().second, _Out);
++_First;
} else if (*_First == '\'') { // replace $'
_Out = _STD copy(_Match.suffix().first, _Match.suffix().second, _Out);
++_First;
} else if (*_First == '&') { // replace $&
++_First;
if (_Match.size() != 0) {
_Out = _STD copy(_Match._At(0).first, _Match._At(0).second, _Out);
}
} else if ('0' <= *_First && *_First <= '9') { // replace capture group descriptors $n, $nn
auto _Num = static_cast<unsigned int>(*_First++ - '0');
const bool _Two_digits = _First != _Last && '0' <= *_First && *_First <= '9';
if (_Two_digits) { // process second digit
_Num *= 10;
_Num += static_cast<unsigned int>(*_First++ - '0');
}
if (_Num == 0) { // preserve $0, $00
*_Out++ = '$';
*_Out++ = '0';
if (_Two_digits) {
*_Out++ = '0';
}
} else if (_Num < _Match.size()) {
_Out = _STD copy(_Match._At(_Num).first, _Match._At(_Num).second, _Out);
}
} else { // replace $x
*_Out++ = '$';
*_Out++ = *_First++;
}
}
return _Out;
}
// FUNCTION TEMPLATE _Format_sed
template <class _BidIt, class _Alloc, class _InIt, class _OutIt>
_OutIt _Format_sed(const match_results<_BidIt, _Alloc>& _Match, _OutIt _Out, _InIt _First, _InIt _Last,
regex_constants::match_flag_type) { // format with sed rules
while (_First != _Last) { // process one character or escape sequence
if (*_First == '&') { // replace with full match
++_First;
if (_Match.size() != 0) {
_Out = _STD copy(_Match._At(0).first, _Match._At(0).second, _Out);
}
} else if (*_First != '\\') {
*_Out++ = *_First++;
} else if (++_First != _Last) {
if ('0' <= *_First && *_First <= '9') { // replace \n, including \0
const auto _Num = static_cast<unsigned int>(*_First++ - '0');
if (_Num < _Match.size()) {
_Out = _STD copy(_Match._At(_Num).first, _Match._At(_Num).second, _Out);
}
} else {
*_Out++ = *_First++; // replace \x, including \\, \&
}
}
}
return _Out;
}
// FUNCTION TEMPLATE _Regex_match1
template <class _BidIt, class _Alloc, class _Elem, class _RxTraits, class _It>
bool _Regex_match1(_It _First, _It _Last, match_results<_BidIt, _Alloc>* _Matches,
const basic_regex<_Elem, _RxTraits>& _Re, regex_constants::match_flag_type _Flgs,
bool _Full) { // try to match regular expression to target text
if (_Re._Empty()) {
return false;
}
_Matcher<_BidIt, _Elem, _RxTraits, _It> _Mx(
_First, _Last, _Re._Get_traits(), _Re._Get(), _Re.mark_count() + 1, _Re.flags(), _Flgs);
return _Mx._Match(_Matches, _Full);
}
// FUNCTION TEMPLATE regex_match
template <class _BidIt, class _Alloc, class _Elem, class _RxTraits>
bool regex_match(_BidIt _First, _BidIt _Last, match_results<_BidIt, _Alloc>& _Matches,
const basic_regex<_Elem, _RxTraits>& _Re, regex_constants::match_flag_type _Flgs = regex_constants::match_default) {
// try to match regular expression to target text
_Adl_verify_range(_First, _Last);
return _Regex_match1(_First, _Last, _STD addressof(_Matches), _Re, _Flgs, true);
}
template <class _BidIt, class _Elem, class _RxTraits>
_NODISCARD bool regex_match(_BidIt _First, _BidIt _Last, const basic_regex<_Elem, _RxTraits>& _Re,
regex_constants::match_flag_type _Flgs = regex_constants::match_default) {
// try to match regular expression to target text
_Adl_verify_range(_First, _Last);
return _Regex_match1(_Get_unwrapped(_First), _Get_unwrapped(_Last),
static_cast<match_results<_Unwrapped_t<const _BidIt&>>*>(nullptr), _Re, _Flgs | regex_constants::match_any,
true);
}
template <class _Elem, class _RxTraits>
_NODISCARD bool regex_match(_In_z_ const _Elem* _Str, const basic_regex<_Elem, _RxTraits>& _Re,
regex_constants::match_flag_type _Flgs = regex_constants::match_default) {
// try to match regular expression to target text
const _Elem* _Last = _Str + char_traits<_Elem>::length(_Str);
return _Regex_match1(
_Str, _Last, static_cast<match_results<const _Elem*>*>(nullptr), _Re, _Flgs | regex_constants::match_any, true);
}
template <class _Elem, class _Alloc, class _RxTraits>
bool regex_match(_In_z_ const _Elem* _Str, match_results<const _Elem*, _Alloc>& _Matches,
const basic_regex<_Elem, _RxTraits>& _Re, regex_constants::match_flag_type _Flgs = regex_constants::match_default) {
// try to match regular expression to target text
const _Elem* _Last = _Str + char_traits<_Elem>::length(_Str);
return _Regex_match1(_Str, _Last, _STD addressof(_Matches), _Re, _Flgs, true);
}
template <class _StTraits, class _StAlloc, class _Alloc, class _Elem, class _RxTraits>
bool regex_match(const basic_string<_Elem, _StTraits, _StAlloc>& _Str,
match_results<typename basic_string<_Elem, _StTraits, _StAlloc>::const_iterator, _Alloc>& _Matches,
const basic_regex<_Elem, _RxTraits>& _Re, regex_constants::match_flag_type _Flgs = regex_constants::match_default) {
// try to match regular expression to target text
return _Regex_match1(_Str.begin(), _Str.end(), _STD addressof(_Matches), _Re, _Flgs, true);
}
template <class _StTraits, class _StAlloc, class _Alloc, class _Elem, class _RxTraits>
bool regex_match(const basic_string<_Elem, _StTraits, _StAlloc>&&,
match_results<typename basic_string<_Elem, _StTraits, _StAlloc>::const_iterator, _Alloc>&,
const basic_regex<_Elem, _RxTraits>&, regex_constants::match_flag_type = regex_constants::match_default) = delete;
template <class _StTraits, class _StAlloc, class _Elem, class _RxTraits>
_NODISCARD bool regex_match(const basic_string<_Elem, _StTraits, _StAlloc>& _Str,
const basic_regex<_Elem, _RxTraits>& _Re, regex_constants::match_flag_type _Flgs = regex_constants::match_default) {
// try to match regular expression to target text
return _Regex_match1(_Str.data(), _Str.data() + _Str.size(), static_cast<match_results<const _Elem*>*>(nullptr),
_Re, _Flgs | regex_constants::match_any, true);
}
// FUNCTION TEMPLATE _Regex_search2
template <class _BidIt, class _Alloc, class _Elem, class _RxTraits, class _It>
bool _Regex_search2(_It _First, _It _Last, match_results<_BidIt, _Alloc>* _Matches,
const basic_regex<_Elem, _RxTraits>& _Re, regex_constants::match_flag_type _Flgs, _It _Org) {
// search for regular expression match in target text
if (_Re._Empty()) {
return false;
}
bool _Found = false;
const _It _Begin = _First;
if ((_Flgs & regex_constants::_Skip_zero_length) && _First != _Last) {
++_First;
}
_Matcher<_BidIt, _Elem, _RxTraits, _It> _Mx(
_First, _Last, _Re._Get_traits(), _Re._Get(), _Re.mark_count() + 1, _Re.flags(), _Flgs);
if (_Mx._Match(_Matches, false)) {
_Found = true;
} else if (_First != _Last && !(_Flgs & regex_constants::match_continuous)) { // try more on suffixes
_Mx._Setf(regex_constants::match_prev_avail);
_Mx._Clearf(regex_constants::_Match_not_null);
while ((_First = _Mx._Skip(++_First, _Last)) != _Last) {
if (_Mx._Match(_First, _Matches, false)) { // found match starting at _First
_Found = true;
break;
}
}
if (!_Found && _Mx._Match(_Last, _Matches, false)) {
_Found = true;
}
}
if (_Found && _Matches) { // update _Matches
_Matches->_Org = _Org;
_Matches->_Pfx().first = _Begin;
_Matches->_Pfx().matched = _Matches->_Pfx().first != _Matches->_Pfx().second;
}
return _Found;
}
// FUNCTION TEMPLATE regex_search
template <class _BidIt, class _Alloc, class _Elem, class _RxTraits>
bool regex_search(_BidIt _First, _BidIt _Last, match_results<_BidIt, _Alloc>& _Matches,
const basic_regex<_Elem, _RxTraits>& _Re, regex_constants::match_flag_type _Flgs = regex_constants::match_default) {
// search for regular expression match in target text
_Adl_verify_range(_First, _Last);
return _Regex_search2(_First, _Last, _STD addressof(_Matches), _Re, _Flgs, _First);
}
template <class _BidIt, class _Elem, class _RxTraits>
_NODISCARD bool regex_search(_BidIt _First, _BidIt _Last, const basic_regex<_Elem, _RxTraits>& _Re,
regex_constants::match_flag_type _Flgs = regex_constants::match_default) {
// search for regular expression match in target text
_Adl_verify_range(_First, _Last);
return _Regex_search2(_Get_unwrapped(_First), _Get_unwrapped(_Last),
static_cast<match_results<_Unwrapped_t<const _BidIt&>>*>(nullptr), _Re, _Flgs | regex_constants::match_any,
_Get_unwrapped(_First));
}
template <class _Elem, class _RxTraits>
_NODISCARD bool regex_search(_In_z_ const _Elem* _Str, const basic_regex<_Elem, _RxTraits>& _Re,
regex_constants::match_flag_type _Flgs = regex_constants::match_default) {
// search for regular expression match in target text
const _Elem* _Last = _Str + char_traits<_Elem>::length(_Str);
return _Regex_search2(
_Str, _Last, static_cast<match_results<const _Elem*>*>(nullptr), _Re, _Flgs | regex_constants::match_any, _Str);
}
template <class _Elem, class _Alloc, class _RxTraits>
bool regex_search(_In_z_ const _Elem* _Str, match_results<const _Elem*, _Alloc>& _Matches,
const basic_regex<_Elem, _RxTraits>& _Re, regex_constants::match_flag_type _Flgs = regex_constants::match_default) {
// search for regular expression match in target text
const _Elem* _Last = _Str + char_traits<_Elem>::length(_Str);
return _Regex_search2(_Str, _Last, _STD addressof(_Matches), _Re, _Flgs, _Str);
}
template <class _StTraits, class _StAlloc, class _Alloc, class _Elem, class _RxTraits>
bool regex_search(const basic_string<_Elem, _StTraits, _StAlloc>& _Str,
match_results<typename basic_string<_Elem, _StTraits, _StAlloc>::const_iterator, _Alloc>& _Matches,
const basic_regex<_Elem, _RxTraits>& _Re, regex_constants::match_flag_type _Flgs = regex_constants::match_default) {
// search for regular expression match in target text
return _Regex_search2(_Str.begin(), _Str.end(), _STD addressof(_Matches), _Re, _Flgs, _Str.begin());
}
template <class _StTraits, class _StAlloc, class _Alloc, class _Elem, class _RxTraits>
bool regex_search(const basic_string<_Elem, _StTraits, _StAlloc>&&,
match_results<typename basic_string<_Elem, _StTraits, _StAlloc>::const_iterator, _Alloc>&,
const basic_regex<_Elem, _RxTraits>&, regex_constants::match_flag_type = regex_constants::match_default) = delete;
template <class _StTraits, class _StAlloc, class _Elem, class _RxTraits>
_NODISCARD bool regex_search(const basic_string<_Elem, _StTraits, _StAlloc>& _Str,
const basic_regex<_Elem, _RxTraits>& _Re, regex_constants::match_flag_type _Flgs = regex_constants::match_default) {
// search for regular expression match in target text
using _Iter = typename basic_string<_Elem, _StTraits, _StAlloc>::const_pointer;
_Iter _First = _Str.c_str();
_Iter _Last = _First + _Str.size();
return _Regex_search2(
_First, _Last, static_cast<match_results<_Iter>*>(nullptr), _Re, _Flgs | regex_constants::match_any, _First);
}
// FUNCTION TEMPLATE regex_replace
template <class _OutIt, class _BidIt, class _RxTraits, class _Elem, class _Traits, class _Alloc>
_OutIt _Regex_replace1(_OutIt _Result, _BidIt _First, _BidIt _Last, const basic_regex<_Elem, _RxTraits>& _Re,
const basic_string<_Elem, _Traits, _Alloc>& _Fmt, regex_constants::match_flag_type _Flgs) {
// search and replace
match_results<_BidIt> _Matches;
_BidIt _Pos = _First;
regex_constants::match_flag_type _Flags = _Flgs;
regex_constants::match_flag_type _Not_null{};
while (
_Regex_search2(_Pos, _Last, _STD addressof(_Matches), _Re, _Flags | _Not_null, _Pos)) { // replace at each match
if (!(_Flgs & regex_constants::format_no_copy)) {
_Result = _STD copy(_Matches.prefix().first, _Matches.prefix().second, _Result);
}
_Result = _Matches._Format1(_Result, _Fmt.data(), _Fmt.data() + _Fmt.size(), _Flags);
_Pos = _Matches[0].second;
if (_Pos == _Last || (_Flgs & regex_constants::format_first_only)) {
break;
}
if (_Matches[0].first == _Matches[0].second) {
_Not_null = regex_constants::_Match_not_null;
} else { // non-null match, recognize earlier text
_Not_null = regex_constants::match_flag_type{};
_Flags |= regex_constants::match_prev_avail;
}
}
return _Flgs & regex_constants::format_no_copy ? _Result : _Copy_unchecked(_Pos, _Last, _Result);
}
template <class _OutIt, class _BidIt, class _RxTraits, class _Elem, class _Traits, class _Alloc>
_OutIt regex_replace(_OutIt _Result, _BidIt _First, _BidIt _Last, const basic_regex<_Elem, _RxTraits>& _Re,
const basic_string<_Elem, _Traits, _Alloc>& _Fmt,
regex_constants::match_flag_type _Flgs = regex_constants::match_default) {
// search and replace, iterator result, string format
_Adl_verify_range(_First, _Last);
_Seek_wrapped(_Result, _Regex_replace1(_Get_unwrapped_unverified(_Result), _Get_unwrapped(_First),
_Get_unwrapped(_Last), _Re, _Fmt, _Flgs));
return _Result;
}
template <class _OutIt, class _BidIt, class _RxTraits, class _Elem>
_OutIt regex_replace(_OutIt _Result, _BidIt _First, _BidIt _Last, const basic_regex<_Elem, _RxTraits>& _Re,
const _Elem* _Ptr, regex_constants::match_flag_type _Flgs = regex_constants::match_default) {
// search and replace, iterator result, NTBS format
const basic_string<_Elem> _Fmt(_Ptr);
return _STD regex_replace(_Result, _First, _Last, _Re, _Fmt, _Flgs);
}
template <class _RxTraits, class _Elem, class _Traits1, class _Alloc1, class _Traits2, class _Alloc2>
_NODISCARD basic_string<_Elem, _Traits1, _Alloc1> regex_replace(const basic_string<_Elem, _Traits1, _Alloc1>& _Str,
const basic_regex<_Elem, _RxTraits>& _Re, const basic_string<_Elem, _Traits2, _Alloc2>& _Fmt,
regex_constants::match_flag_type _Flgs = regex_constants::match_default) {
// search and replace, string result, string target, string format
basic_string<_Elem, _Traits1, _Alloc1> _Res;
_STD regex_replace(_STD back_inserter(_Res), _Str.begin(), _Str.end(), _Re, _Fmt, _Flgs);
return _Res;
}
template <class _RxTraits, class _Elem, class _Traits1, class _Alloc1>
_NODISCARD basic_string<_Elem, _Traits1, _Alloc1> regex_replace(const basic_string<_Elem, _Traits1, _Alloc1>& _Str,
const basic_regex<_Elem, _RxTraits>& _Re, const _Elem* _Ptr,
regex_constants::match_flag_type _Flgs = regex_constants::match_default) {
// search and replace, string result, string target, NTBS format
basic_string<_Elem, _Traits1, _Alloc1> _Res;
const basic_string<_Elem> _Fmt(_Ptr);
_STD regex_replace(_STD back_inserter(_Res), _Str.begin(), _Str.end(), _Re, _Fmt, _Flgs);
return _Res;
}
template <class _RxTraits, class _Elem, class _Traits2, class _Alloc2>
_NODISCARD basic_string<_Elem> regex_replace(const _Elem* _Pstr, const basic_regex<_Elem, _RxTraits>& _Re,
const basic_string<_Elem, _Traits2, _Alloc2>& _Fmt,
regex_constants::match_flag_type _Flgs = regex_constants::match_default) {
// search and replace, string result, NTBS target, string format
basic_string<_Elem> _Res;
const basic_string<_Elem> _Str(_Pstr);
_STD regex_replace(_STD back_inserter(_Res), _Str.begin(), _Str.end(), _Re, _Fmt, _Flgs);
return _Res;
}
template <class _RxTraits, class _Elem>
_NODISCARD basic_string<_Elem> regex_replace(const _Elem* _Pstr, const basic_regex<_Elem, _RxTraits>& _Re,
const _Elem* _Ptr, regex_constants::match_flag_type _Flgs = regex_constants::match_default) {
// search and replace, string result, NTBS target, NTBS format
basic_string<_Elem> _Res;
const basic_string<_Elem> _Str(_Pstr);
const basic_string<_Elem> _Fmt(_Ptr);
_STD regex_replace(_STD back_inserter(_Res), _Str.begin(), _Str.end(), _Re, _Fmt, _Flgs);
return _Res;
}
// CLASS TEMPLATE regex_iterator
template <class _BidIt, class _Elem = _Iter_value_t<_BidIt>, class _RxTraits = regex_traits<_Elem>>
class regex_iterator : public _Iterator_base {
public:
using regex_type = basic_regex<_Elem, _RxTraits>;
using value_type = match_results<_BidIt>;
using difference_type = ptrdiff_t;
using pointer = const value_type*;
using reference = const value_type&;
using iterator_category = forward_iterator_tag;
regex_iterator() : _MyRe(nullptr) {} // construct end of sequence iterator
regex_iterator(_BidIt _First, _BidIt _Last, const regex_type& _Re,
regex_constants::match_flag_type _Fl = regex_constants::match_default)
: _Begin(_First), _End(_Last), _MyRe(_STD addressof(_Re)), _Flags(_Fl) {
_Adl_verify_range(_Begin, _End);
if (!_Regex_search2(_Begin, _End, _STD addressof(_MyVal), *_MyRe, _Flags, _Begin)) {
_MyRe = nullptr;
} else {
this->_Adopt(_MyRe);
}
}
regex_iterator(
_BidIt, _BidIt, const regex_type&&, regex_constants::match_flag_type = regex_constants::match_default) = delete;
_NODISCARD bool operator==(const regex_iterator& _Right) const {
if (_MyRe != _Right._MyRe) {
return false;
} else if (!_MyRe) {
return true;
}
return _Begin == _Right._Begin && _End == _Right._End && _Flags == _Right._Flags
&& _MyVal._At(0) == _Right._MyVal._At(0);
}
_NODISCARD bool operator!=(const regex_iterator& _Right) const {
return !(*this == _Right);
}
_NODISCARD const value_type& operator*() const {
#if _ITERATOR_DEBUG_LEVEL != 0
_STL_VERIFY(_MyRe, "regex_iterator not dereferenceable");
#endif // _ITERATOR_DEBUG_LEVEL != 0
return _MyVal;
}
_NODISCARD const value_type* operator->() const {
#if _ITERATOR_DEBUG_LEVEL != 0
_STL_VERIFY(_MyRe, "regex_iterator not dereferenceable");
#endif // _ITERATOR_DEBUG_LEVEL != 0
return _STD addressof(_MyVal);
}
regex_iterator& operator++() {
#if _ITERATOR_DEBUG_LEVEL != 0
_STL_VERIFY(_MyRe, "regex_iterator not incrementable");
#endif // _ITERATOR_DEBUG_LEVEL != 0
_BidIt _Start = _MyVal._At(0).second;
#if _ITERATOR_DEBUG_LEVEL != 0
_STL_VERIFY(this->_Getcont(), "regex_iterator orphaned");
#endif // _ITERATOR_DEBUG_LEVEL != 0
bool _Skip_empty_match = false;
if (_MyVal._At(0).first == _MyVal._At(0).second) { // handle zero-length match
if (_Start == _End) { // store end-of-sequence iterator
_MyRe = nullptr;
#if _ITERATOR_DEBUG_LEVEL == 2
this->_Orphan_me();
#endif // _ITERATOR_DEBUG_LEVEL
return *this;
}
// _Adl_verify_range(_Start, _End) checked in constructor
if (_Regex_search2(_Start, _End, _STD addressof(_MyVal), *_MyRe,
_Flags | regex_constants::match_not_null | regex_constants::match_continuous, _Begin)) {
return *this;
}
_Skip_empty_match = true;
}
_Flags = _Flags | regex_constants::match_prev_avail;
auto _Tmp_flags = _Flags;
if (_Skip_empty_match) {
_Tmp_flags |= regex_constants::_Skip_zero_length;
}
// _Adl_verify_range(_Start, _End) checked in constructor
if (!_Regex_search2(_Start, _End, _STD addressof(_MyVal), *_MyRe, _Tmp_flags, _Begin)) {
// mark at end of sequence
_MyRe = nullptr;
}
return *this;
}
regex_iterator operator++(int) {
regex_iterator _Tmp = *this;
++*this;
return _Tmp;
}
bool _Atend() const { // test for end iterator
return !_MyRe;
}
private:
_BidIt _Begin; // input sequence
_BidIt _End; // input sequence
const regex_type* _MyRe; // pointer to basic_regex object
regex_constants::match_flag_type _Flags;
match_results<_BidIt> _MyVal; // lookahead value (if _MyRe not null)
};
using cregex_iterator = regex_iterator<const char*>;
using wcregex_iterator = regex_iterator<const wchar_t*>;
using sregex_iterator = regex_iterator<string::const_iterator>;
using wsregex_iterator = regex_iterator<wstring::const_iterator>;
// CLASS TEMPLATE regex_token_iterator
template <class _BidIt, class _Elem = _Iter_value_t<_BidIt>, class _RxTraits = regex_traits<_Elem>>
class regex_token_iterator {
public:
using _Position = regex_iterator<_BidIt, _Elem, _RxTraits>;
using regex_type = basic_regex<_Elem, _RxTraits>;
using value_type = sub_match<_BidIt>;
using difference_type = ptrdiff_t;
using pointer = const value_type*;
using reference = const value_type&;
using iterator_category = forward_iterator_tag;
regex_token_iterator() : _Res(nullptr) {} // construct end of sequence iterator
regex_token_iterator(_BidIt _First, _BidIt _Last, const regex_type& _Re, int _Sub = 0,
regex_constants::match_flag_type _Fl = regex_constants::match_default)
: _Pos(_First, _Last, _Re, _Fl), _Cur(0), _Subs(&_Sub, &_Sub + 1) {
_Init(_First, _Last);
}
regex_token_iterator(_BidIt _First, _BidIt _Last, const regex_type& _Re, const vector<int>& _Subx,
regex_constants::match_flag_type _Fl = regex_constants::match_default)
: _Pos(_First, _Last, _Re, _Fl), _Cur(0), _Subs(_Subx.begin(), _Subx.end()) {
if (_Subs.empty()) {
_Res = nullptr; // treat empty vector as end of sequence
} else {
_Init(_First, _Last);
}
}
template <size_t _Nx>
regex_token_iterator(_BidIt _First, _BidIt _Last, const regex_type& _Re, const int (&_Subx)[_Nx],
regex_constants::match_flag_type _Fl = regex_constants::match_default)
: _Pos(_First, _Last, _Re, _Fl), _Cur(0), _Subs(_Subx, _Subx + _Nx) {
_Init(_First, _Last);
}
regex_token_iterator(_BidIt _First, _BidIt _Last, const regex_type& _Re, initializer_list<int> _Ilist,
regex_constants::match_flag_type _Fl = regex_constants::match_default)
: _Pos(_First, _Last, _Re, _Fl), _Cur(0), _Subs(_Ilist.begin(), _Ilist.end()) {
_Init(_First, _Last);
}
regex_token_iterator(_BidIt, _BidIt, const regex_type&&, int = 0,
regex_constants::match_flag_type = regex_constants::match_default) = delete;
regex_token_iterator(_BidIt, _BidIt, const regex_type&&, const vector<int>&,
regex_constants::match_flag_type = regex_constants::match_default) = delete;
template <size_t _Nx>
regex_token_iterator(_BidIt, _BidIt, const regex_type&&, const int (&)[_Nx],
regex_constants::match_flag_type = regex_constants::match_default) = delete;
regex_token_iterator(_BidIt, _BidIt, const regex_type&&, initializer_list<int>,
regex_constants::match_flag_type = regex_constants::match_default) = delete;
regex_token_iterator(const regex_token_iterator& _Right)
: _Pos(_Right._Pos), _Suffix(_Right._Suffix), _Cur(_Right._Cur), _Subs(_Right._Subs) {
// construct copy of _Right
if (!_Right._Res) {
_Res = nullptr;
} else if (_Right._Res == _STD addressof(_Right._Suffix)) {
_Res = _STD addressof(_Suffix);
} else {
_Res = _Current();
}
}
regex_token_iterator& operator=(const regex_token_iterator& _Right) {
if (this != _STD addressof(_Right)) { // copy from _Right
_Pos = _Right._Pos;
_Cur = _Right._Cur;
_Suffix = _Right._Suffix;
_Subs = _Right._Subs;
if (!_Right._Res) {
_Res = nullptr;
} else if (_Right._Res == _STD addressof(_Right._Suffix)) {
_Res = _STD addressof(_Suffix);
} else {
_Res = _Current();
}
}
return *this;
}
_NODISCARD bool operator==(const regex_token_iterator& _Right) const {
if (!_Res || !_Right._Res) {
return _Res == _Right._Res;
}
return *_Res == *_Right._Res && _Pos == _Right._Pos && _Subs == _Right._Subs;
}
_NODISCARD bool operator!=(const regex_token_iterator& _Right) const {
return !(*this == _Right);
}
_NODISCARD const value_type& operator*() const {
#if _ITERATOR_DEBUG_LEVEL != 0
_STL_VERIFY(_Res, "regex_token_iterator not dereferenceable");
#endif // _ITERATOR_DEBUG_LEVEL != 0
_Analysis_assume_(_Res);
return *_Res;
}
_NODISCARD const value_type* operator->() const {
#if _ITERATOR_DEBUG_LEVEL != 0
_STL_VERIFY(_Res, "regex_token_iterator not dereferenceable");
#endif // _ITERATOR_DEBUG_LEVEL != 0
return _Res;
}
regex_token_iterator& operator++() {
#if _ITERATOR_DEBUG_LEVEL != 0
_STL_VERIFY(_Res, "regex_token_iterator not incrementable");
#endif // _ITERATOR_DEBUG_LEVEL != 0
if (_Res == _STD addressof(_Suffix)) {
_Res = nullptr;
} else if (++_Cur < _Subs.size()) {
_Res = _Current();
} else { // advance to next full match
_Cur = 0;
_Position _Prev(_Pos);
++_Pos;
if (!_Pos._Atend()) {
_Res = _Current();
} else if (_Has_suffix() && _Prev->suffix().length() != 0) { // mark suffix
_Suffix.matched = true;
_Suffix.first = _Prev->suffix().first;
_Suffix.second = _Prev->suffix().second;
_Res = _STD addressof(_Suffix);
} else {
_Res = nullptr;
}
}
return *this;
}
regex_token_iterator operator++(int) {
regex_token_iterator _Tmp = *this;
++*this;
return _Tmp;
}
private:
_Position _Pos;
const value_type* _Res;
value_type _Suffix;
size_t _Cur;
vector<int> _Subs;
bool _Has_suffix() const { // check for suffix specifier
return _STD find(_Subs.begin(), _Subs.end(), -1) != _Subs.end();
}
void _Init(_BidIt _First, _BidIt _Last) { // initialize
_Adl_verify_range(_First, _Last);
if (!_Pos._Atend()) {
_Res = _Current();
} else if (_Has_suffix()) { // mark suffix (no match)
_Suffix.matched = true;
_Suffix.first = _First;
_Suffix.second = _Last;
_Res = _STD addressof(_Suffix);
} else {
_Res = nullptr;
}
}
const value_type* _Current() const {
return &(_Subs[_Cur] == -1 ? _Pos->prefix() : (*_Pos)[static_cast<size_t>(_Subs[_Cur])]);
}
};
using cregex_token_iterator = regex_token_iterator<const char*>;
using wcregex_token_iterator = regex_token_iterator<const wchar_t*>;
using sregex_token_iterator = regex_token_iterator<string::const_iterator>;
using wsregex_token_iterator = regex_token_iterator<wstring::const_iterator>;
// IMPLEMENTATION OF _Builder
template <class _FwdIt, class _Elem, class _RxTraits>
_Builder<_FwdIt, _Elem, _RxTraits>::_Builder(const _RxTraits& _Tr, regex_constants::syntax_option_type _Fx)
: _Root(new _Root_node), _Current(_Root), _Flags(_Fx), _Traits(_Tr),
_Bmax(static_cast<int>(_Fx & regex_constants::collate ? 0U : _Bmp_max)),
_Tmax(static_cast<int>(_Fx & regex_constants::collate ? 0U : _ARRAY_THRESHOLD)) {}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Builder<_FwdIt, _Elem, _RxTraits>::_Setlong() { // set flag
_Root->_Flags |= _Fl_longest;
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Builder<_FwdIt, _Elem, _RxTraits>::_Negate() { // set flag
_Current->_Flags ^= _Fl_negate;
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Builder<_FwdIt, _Elem, _RxTraits>::_Mark_final() { // set flag
_Current->_Flags |= _Fl_final;
}
template <class _FwdIt, class _Elem, class _RxTraits>
_Node_base* _Builder<_FwdIt, _Elem, _RxTraits>::_Getmark() const {
return _Current;
}
template <class _FwdIt, class _Elem, class _RxTraits>
bool _Builder<_FwdIt, _Elem, _RxTraits>::_Beg_expr(_Node_base* _Nx) const {
// test for beginning of expression or subexpression
return _Nx->_Kind == _N_begin || _Nx->_Kind == _N_group || _Nx->_Kind == _N_capture;
}
template <class _FwdIt, class _Elem, class _RxTraits>
bool _Builder<_FwdIt, _Elem, _RxTraits>::_Beg_expr() const { // test for beginning of expression or subexpression
return _Beg_expr(_Current) || (_Current->_Kind == _N_bol && _Beg_expr(_Current->_Prev));
}
template <class _FwdIt, class _Elem, class _RxTraits>
_Node_base* _Builder<_FwdIt, _Elem, _RxTraits>::_Link_node(_Node_base* _Nx) { // insert _Nx at current location
_Nx->_Prev = _Current;
if (_Current->_Next) { // set back pointer
_Nx->_Next = _Current->_Next;
_Current->_Next->_Prev = _Nx;
}
_Current->_Next = _Nx;
_Current = _Nx;
return _Nx;
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Builder<_FwdIt, _Elem, _RxTraits>::_Insert_node(_Node_base* _Insert_before, _Node_base* _To_insert) {
// insert _To_insert into the graph before the node _Insert_before
_Insert_before->_Prev->_Next = _To_insert;
_To_insert->_Prev = _Insert_before->_Prev;
_Insert_before->_Prev = _To_insert;
_To_insert->_Next = _Insert_before;
}
template <class _FwdIt, class _Elem, class _RxTraits>
_Node_base* _Builder<_FwdIt, _Elem, _RxTraits>::_New_node(_Node_type _Kind) { // allocate and link simple node
return _Link_node(new _Node_base(_Kind));
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Builder<_FwdIt, _Elem, _RxTraits>::_Add_nop() { // add nop node
_New_node(_N_nop);
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Builder<_FwdIt, _Elem, _RxTraits>::_Add_bol() { // add bol node
_New_node(_N_bol);
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Builder<_FwdIt, _Elem, _RxTraits>::_Add_eol() { // add eol node
_New_node(_N_eol);
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Builder<_FwdIt, _Elem, _RxTraits>::_Add_wbound() { // add wbound node
_New_node(_N_wbound);
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Builder<_FwdIt, _Elem, _RxTraits>::_Add_dot() { // add dot node
_New_node(_N_dot);
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Builder<_FwdIt, _Elem, _RxTraits>::_Add_str_node() { // add string node
_Link_node(new _Node_str<_Elem>);
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Builder<_FwdIt, _Elem, _RxTraits>::_Add_char(_Elem _Ch) { // append character
if (_Current->_Kind != _N_str || (_Current->_Flags & _Fl_final)) {
_Add_str_node();
}
if (_Flags & regex_constants::icase) {
_Ch = _Traits.translate_nocase(_Ch);
} else if (_Flags & regex_constants::collate) {
_Ch = _Traits.translate(_Ch);
}
_Node_str<_Elem>* _Node = static_cast<_Node_str<_Elem>*>(_Current);
_Node->_Data._Insert(_Ch);
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Builder<_FwdIt, _Elem, _RxTraits>::_Add_class() { // add bracket expression node
_Link_node(new _Node_class<_Elem, _RxTraits>);
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Builder<_FwdIt, _Elem, _RxTraits>::_Add_char_to_bitmap(_Elem _Ch) { // add character to accelerator table
if (_Flags & regex_constants::icase) {
_Ch = _Traits.translate_nocase(_Ch);
}
_Node_class<_Elem, _RxTraits>* _Node = static_cast<_Node_class<_Elem, _RxTraits>*>(_Current);
if (!_Node->_Small) {
_Node->_Small = new _Bitmap;
}
_Node->_Small->_Mark(static_cast<typename _RxTraits::_Uelem>(_Ch));
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Builder<_FwdIt, _Elem, _RxTraits>::_Add_char_to_array(_Elem _Ch) { // append character to character array
if (_Flags & regex_constants::icase) {
_Ch = _Traits.translate_nocase(_Ch);
}
_Node_class<_Elem, _RxTraits>* _Node = static_cast<_Node_class<_Elem, _RxTraits>*>(_Current);
if (!_Node->_Large) {
_Node->_Large = new _Buf<_Elem>;
}
_Node->_Large->_Insert(_Ch);
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Builder<_FwdIt, _Elem, _RxTraits>::_Add_char_to_class(_Elem _Ch) { // add character to bracket expression
if (static_cast<typename _RxTraits::_Uelem>(_Ch) < _Bmp_max) {
_Add_char_to_bitmap(_Ch);
} else {
_Add_char_to_array(_Ch);
}
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Builder<_FwdIt, _Elem, _RxTraits>::_Add_range(_Elem _E0x, _Elem _E1x) {
// add character range to set
unsigned int _E0;
unsigned int _E1;
if (_Flags & regex_constants::icase) { // change to lowercase range
_E0 = static_cast<unsigned int>(_Traits.translate_nocase(_E0x));
_E1 = static_cast<unsigned int>(_Traits.translate_nocase(_E1x));
} else {
_E0 = static_cast<typename _RxTraits::_Uelem>(_E0x);
_E1 = static_cast<typename _RxTraits::_Uelem>(_E1x);
}
_Node_class<_Elem, _RxTraits>* _Node = static_cast<_Node_class<_Elem, _RxTraits>*>(_Current);
for (; _E0 <= _E1 && _E1 < _Get_bmax(); ++_E0) { // set a bit
if (!_Node->_Small) {
_Node->_Small = new _Bitmap;
}
_Node->_Small->_Mark(_E0);
}
if (_E1 >= _E0) {
if (_E1 - _E0 < _Get_tmax()) {
for (; _E0 <= _E1; ++_E0) {
_Add_char_to_array(static_cast<_Elem>(_E0));
}
} else { // store remaining range as pair
if (!_Node->_Ranges) {
_Node->_Ranges = new _Buf<_Elem>;
}
_Node->_Ranges->_Insert(static_cast<_Elem>(_E0));
_Node->_Ranges->_Insert(static_cast<_Elem>(_E1));
}
}
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Builder<_FwdIt, _Elem, _RxTraits>::_Add_elts(
_Node_class<_Elem, _RxTraits>* _Node, _Regex_traits_base::char_class_type _Cl, bool _Negate) {
// add characters in named class to set
for (unsigned int _Ch = 0; _Ch < _Bmp_max; ++_Ch) { // add elements or their inverse
bool _Matches = _Traits.isctype(static_cast<_Elem>(_Ch), _Cl);
if (_Matches != _Negate) { // add contents of named class to accelerator table
if (!_Node->_Small) {
_Node->_Small = new _Bitmap;
}
_Node->_Small->_Mark(_Ch);
}
}
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Builder<_FwdIt, _Elem, _RxTraits>::_Add_named_class(typename _Regex_traits_base::char_class_type _Cl,
bool _Negate) { // add contents of named class to bracket expression
_Node_class<_Elem, _RxTraits>* _Node = static_cast<_Node_class<_Elem, _RxTraits>*>(_Current);
_Add_elts(_Node, _Cl, _Negate);
if (_Bmp_max < static_cast<unsigned int>((numeric_limits<_Elem>::max)())) {
_Node->_Classes = static_cast<_Regex_traits_base::char_class_type>(_Node->_Classes | _Cl);
}
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Builder<_FwdIt, _Elem, _RxTraits>::_Char_to_elts(_FwdIt _First, _FwdIt _Last, _Difft _Diff,
_Sequence<_Elem>** _Cur) { // add collation element to element sequence
while (*_Cur && static_cast<unsigned int>(_Diff) < (*_Cur)->_Sz) {
_Cur = &(*_Cur)->_Next;
}
if (!(*_Cur) || static_cast<unsigned int>(_Diff) != (*_Cur)->_Sz) {
// add new sequence holding elements of the same length
_Sequence<_Elem>* _Node = *_Cur;
*_Cur = new _Sequence<_Elem>(static_cast<unsigned int>(_Diff));
(*_Cur)->_Next = _Node;
}
(*_Cur)->_Data._Insert(_First, _Last);
}
template <class _FwdIt, class _Elem, class _RxTraits>
unsigned int _Builder<_FwdIt, _Elem, _RxTraits>::_Get_bmax() const {
return static_cast<unsigned int>(_Bmax);
}
template <class _FwdIt, class _Elem, class _RxTraits>
unsigned int _Builder<_FwdIt, _Elem, _RxTraits>::_Get_tmax() const {
return static_cast<unsigned int>(_Tmax);
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Builder<_FwdIt, _Elem, _RxTraits>::_Add_equiv(_FwdIt _First, _FwdIt _Last, _Difft _Diff) {
// add elements of equivalence class to bracket expression
_Node_class<_Elem, _RxTraits>* _Node = static_cast<_Node_class<_Elem, _RxTraits>*>(_Current);
typename _RxTraits::string_type _Str = _Traits.transform_primary(_First, _Last);
for (unsigned int _Ch = 0; _Ch < _Bmp_max; ++_Ch) { // add elements
_Elem _Ex = static_cast<_Elem>(_Ch);
if (_Traits.transform_primary(_STD addressof(_Ex), _STD addressof(_Ex) + 1)
== _Str) { // insert equivalent character into bitmap
if (!_Node->_Small) {
_Node->_Small = new _Bitmap;
}
_Node->_Small->_Mark(_Ch);
}
}
if (_Bmp_max < static_cast<unsigned int>((numeric_limits<_Elem>::max)())) { // map range
_Sequence<_Elem>** _Cur = _STD addressof(_Node->_Equiv);
_Char_to_elts(_First, _Last, _Diff, _Cur);
}
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Builder<_FwdIt, _Elem, _RxTraits>::_Add_coll(_FwdIt _First, _FwdIt _Last, _Difft _Diff) {
// add collation element to bracket expression
_Node_class<_Elem, _RxTraits>* _Node = static_cast<_Node_class<_Elem, _RxTraits>*>(_Current);
_Sequence<_Elem>** _Cur = _STD addressof(_Node->_Coll);
_Char_to_elts(_First, _Last, _Diff, _Cur);
}
template <class _FwdIt, class _Elem, class _RxTraits>
_Node_base* _Builder<_FwdIt, _Elem, _RxTraits>::_Begin_group() { // add group node
return _New_node(_N_group);
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Builder<_FwdIt, _Elem, _RxTraits>::_End_group(_Node_base* _Back) { // add end of group node
_Node_type _Elt;
if (_Back->_Kind == _N_group) {
_Elt = _N_end_group;
} else if (_Back->_Kind == _N_assert || _Back->_Kind == _N_neg_assert) {
_Elt = _N_end_assert;
} else {
_Elt = _N_end_capture;
}
_Link_node(new _Node_end_group(_Elt, _Fl_none, _Back));
}
template <class _FwdIt, class _Elem, class _RxTraits>
_Node_base* _Builder<_FwdIt, _Elem, _RxTraits>::_Begin_assert_group(const bool _Neg) { // add assert node
auto _Node1_unique = _STD make_unique<_Node_assert>(_Neg ? _N_neg_assert : _N_assert);
_Node_base* _Node2 = new _Node_base(_N_nop);
_Node_assert* _Node1 = _Node1_unique.release();
_Link_node(_Node1);
_Node1->_Child = _Node2;
_Node2->_Prev = _Node1;
_Current = _Node2;
return _Node1;
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Builder<_FwdIt, _Elem, _RxTraits>::_End_assert_group(_Node_base* _Nx) { // add end of assert node
_End_group(_Nx);
_Current = _Nx;
}
template <class _FwdIt, class _Elem, class _RxTraits>
_Node_base* _Builder<_FwdIt, _Elem, _RxTraits>::_Begin_capture_group(unsigned int _Idx) { // add capture group node
return _Link_node(new _Node_capture(_Idx));
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Builder<_FwdIt, _Elem, _RxTraits>::_Add_backreference(unsigned int _Idx) { // add back reference node
_Link_node(new _Node_back(_Idx));
}
template <class _FwdIt, class _Elem, class _RxTraits>
_Node_base* _Builder<_FwdIt, _Elem, _RxTraits>::_Begin_if(_Node_base* _Start) { // add if node
// append endif node
_Node_base* _Res = new _Node_endif;
_Link_node(_Res);
// insert if_node
_Node_if* _Node1 = new _Node_if(_Res);
_Node_base* _Pos = _Start->_Next;
_Insert_node(_Pos, _Node1);
return _Res;
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Builder<_FwdIt, _Elem, _RxTraits>::_Else_if(_Node_base* _Start, _Node_base* _End) { // add else node
_Node_if* _Parent = static_cast<_Node_if*>(_Start->_Next);
_Node_base* _First = _End->_Next;
_End->_Next = nullptr;
_Node_base* _Last = _Current;
_Current = _End;
_End->_Next = nullptr;
_Last->_Next = _End;
while (_Parent->_Child) {
_Parent = _Parent->_Child;
}
_Parent->_Child = new _Node_if(_End);
_Parent->_Child->_Next = _First;
_First->_Prev = _Parent->_Child;
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Builder<_FwdIt, _Elem, _RxTraits>::_Add_rep(int _Min, int _Max, bool _Greedy) { // add repeat node
if (_Current->_Kind == _N_str
&& static_cast<_Node_str<_Elem>*>(_Current)->_Data._Size() != 1) { // move final character to new string node
_Node_str<_Elem>* _Node = static_cast<_Node_str<_Elem>*>(_Current);
_Add_char(_Node->_Data._Del());
}
_Node_base* _Pos = _Current;
if (_Pos->_Kind == _N_end_group || _Pos->_Kind == _N_end_capture) {
_Pos = static_cast<_Node_end_group*>(_Pos)->_Back;
}
if (_Min == 0 && _Max == 1) { // rewrite zero-or-one quantifiers as alternations to make the
// "simple loop" optimization more likely to engage
_Node_endif* _End = new _Node_endif;
_Node_if* _If_expr = new _Node_if(_End);
_Node_if* _If_empty_str = new _Node_if(_End);
_Node_base* _Gbegin = new _Node_base(_N_group);
_Node_end_group* _Gend = new _Node_end_group(_N_end_group, _Fl_none, _Gbegin);
_If_empty_str->_Next = _Gbegin;
_Gbegin->_Prev = _If_empty_str;
_Gbegin->_Next = _Gend;
_Gend->_Prev = _Gbegin;
_Gend->_Next = _End;
_If_expr->_Child = _If_empty_str;
_Link_node(_End);
_Insert_node(_Pos, _If_expr);
if (!_Greedy) {
_Swap_adl(_If_expr->_Next->_Prev, _If_empty_str->_Next->_Prev);
_Swap_adl(_If_expr->_Next, _If_empty_str->_Next);
}
} else {
_Node_end_rep* _Node0 = new _Node_end_rep();
_Node_rep* _Nx = new _Node_rep(_Greedy, _Min, _Max, _Node0, _Root->_Loops++);
_Node0->_Begin_rep = _Nx;
_Link_node(_Node0);
_Insert_node(_Pos, _Nx);
}
}
template <class _FwdIt, class _Elem, class _RxTraits>
_Root_node* _Builder<_FwdIt, _Elem, _RxTraits>::_End_pattern() { // wrap up
_New_node(_N_end);
return _Root;
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Builder<_FwdIt, _Elem, _RxTraits>::_Tidy() noexcept { // free memory
_Destroy_node(_Root);
_Root = nullptr;
}
// IMPLEMENTATION OF _Matcher
template <class _BidIt, class _Elem, class _RxTraits, class _It>
bool _Matcher<_BidIt, _Elem, _RxTraits, _It>::_Do_if(_Node_if* _Node) { // apply if node
_Tgt_state_t<_It> _St = _Tgt_state;
// look for the first match
for (; _Node; _Node = _Node->_Child) { // process one branch of if
_Tgt_state = _St; // rewind to where the alternation starts in input
if (_Match_pat(_Node->_Next)) { // try to match this branch
break;
}
}
// if none of the if branches matched, fail to match
if (!_Node) {
return false;
}
// if we aren't looking for the longest match, that's it
if (!_Longest) {
return true;
}
// see if there is a longer match
_Tgt_state_t<_It> _Final = _Tgt_state;
auto _Final_len = _STD distance(_St._Cur, _Tgt_state._Cur);
for (;;) { // process one branch of if
_Node = _Node->_Child;
if (!_Node) {
break;
}
_Tgt_state = _St;
if (_Match_pat(_Node->_Next)) { // record match if it is longer
const auto _Len = _STD distance(_St._Cur, _Tgt_state._Cur);
if (_Final_len < _Len) { // memorize longest so far
_Final = _Tgt_state;
_Final_len = _Len;
}
}
}
// set the input end to the longest match
_Tgt_state = _Final;
return true;
}
template <class _BidIt, class _Elem, class _RxTraits, class _It>
bool _Matcher<_BidIt, _Elem, _RxTraits, _It>::_Do_rep0(
_Node_rep* _Node, bool _Greedy) { // apply repetition to loop with no nested if/do
int _Ix = 0;
_Tgt_state_t<_It> _St = _Tgt_state;
for (; _Ix < _Node->_Min; ++_Ix) { // do minimum number of reps
_It _Cur = _Tgt_state._Cur;
if (!_Match_pat(_Node->_Next)) { // didn't match minimum number of reps, fail
_Tgt_state = _St;
return false;
} else if (_Cur == _Tgt_state._Cur) {
_Ix = _Node->_Min - 1; // skip matches that don't change state
}
}
_Tgt_state_t<_It> _Final = _Tgt_state;
bool _Matched0 = false;
_It _Saved_pos = _Tgt_state._Cur;
if (_Match_pat(_Node->_End_rep->_Next)) {
if (!_Greedy) {
return true; // go with current match
}
// record an acceptable match and continue
_Final = _Tgt_state;
_Matched0 = true;
}
while (_Node->_Max == -1 || _Ix++ < _Node->_Max) { // try another rep/tail match
_Tgt_state._Cur = _Saved_pos;
_Tgt_state._Grp_valid = _St._Grp_valid;
if (!_Match_pat(_Node->_Next)) {
break; // rep match failed, quit loop
}
_It _Mid = _Tgt_state._Cur;
if (_Match_pat(_Node->_End_rep->_Next)) {
if (!_Greedy) {
return true; // go with current match
}
// record match and continue
_Final = _Tgt_state;
_Matched0 = true;
}
if (_Saved_pos == _Mid) {
break; // rep match ate no additional elements, quit loop
}
_Saved_pos = _Mid;
}
_Tgt_state = _Matched0 ? _Final : _St;
return _Matched0;
}
template <class _BidIt, class _Elem, class _RxTraits, class _It>
bool _Matcher<_BidIt, _Elem, _RxTraits, _It>::_Do_rep(_Node_rep* _Node, bool _Greedy, int _Init_idx) {
// apply repetition
if (_Node->_Simple_loop == 1) {
return _Do_rep0(_Node, _Greedy);
}
bool _Matched0 = false;
_Tgt_state_t<_It> _St = _Tgt_state;
_Loop_vals_t* _Psav = &_Loop_vals[_Node->_Loop_number];
int _Loop_idx_sav = _Psav->_Loop_idx;
_It* _Loop_iter_sav = static_cast<_It*>(_Psav->_Loop_iter);
_It _Cur_iter = _Tgt_state._Cur;
bool _Progress = _Init_idx == 0 || *_Loop_iter_sav != _Cur_iter;
if (0 <= _Node->_Max && _Node->_Max <= _Init_idx) {
_Matched0 = _Match_pat(_Node->_End_rep->_Next); // reps done, try tail
} else if (_Init_idx < _Node->_Min) { // try a required rep
if (!_Progress) {
_Matched0 = _Match_pat(_Node->_End_rep->_Next); // empty, try tail
} else { // try another required match
_Psav->_Loop_idx = _Init_idx + 1;
_Psav->_Loop_iter = _STD addressof(_Cur_iter);
_Matched0 = _Match_pat(_Node->_Next);
}
} else if (!_Greedy) { // not greedy, favor minimum number of reps
_Matched0 = _Match_pat(_Node->_End_rep->_Next);
if (!_Matched0 && _Progress) { // tail failed, try another rep
_Tgt_state = _St;
_Psav->_Loop_idx = _Init_idx + 1;
_Psav->_Loop_iter = _STD addressof(_Cur_iter);
_Matched0 = _Match_pat(_Node->_Next);
}
} else { // greedy, favor maximum number of reps
if (_Progress) { // try another rep
_Psav->_Loop_idx = _Init_idx + 1;
_Psav->_Loop_iter = _STD addressof(_Cur_iter);
_Matched0 = _Match_pat(_Node->_Next);
}
if ((_Progress || 1 >= _Init_idx) && !_Matched0) { // rep failed, try tail
_Psav->_Loop_idx = _Loop_idx_sav;
_Psav->_Loop_iter = _Loop_iter_sav;
_Tgt_state = _St;
_Matched0 = _Match_pat(_Node->_End_rep->_Next);
}
}
if (!_Matched0) {
_Tgt_state = _St;
}
_Psav->_Loop_idx = _Loop_idx_sav;
_Psav->_Loop_iter = _Loop_iter_sav;
return _Matched0;
}
template <class _BidIt1, class _BidIt2, class _Pr>
_BidIt1 _Cmp_chrange(_BidIt1 _Begin1, _BidIt1 _End1, _BidIt2 _Begin2, _BidIt2 _End2, _Pr _Pred) {
// compare character ranges
_BidIt1 _Res = _Begin1;
while (_Begin1 != _End1 && _Begin2 != _End2) {
if (!_Pred(*_Begin1++, *_Begin2++)) {
return _Res;
}
}
return _Begin2 == _End2 ? _Begin1 : _Res;
}
template <class _BidIt1, class _BidIt2, class _RxTraits>
_BidIt1 _Compare(_BidIt1 _Begin1, _BidIt1 _End1, _BidIt2 _Begin2, _BidIt2 _End2, const _RxTraits& _Traits,
regex_constants::syntax_option_type _Sflags) { // compare character ranges
_BidIt1 _Res = _End1;
if (_Sflags & regex_constants::icase) {
_Res = _Cmp_chrange(_Begin1, _End1, _Begin2, _End2, _Cmp_icase<_RxTraits>(_Traits));
} else if (_Sflags & regex_constants::collate) {
_Res = _Cmp_chrange(_Begin1, _End1, _Begin2, _End2, _Cmp_collate<_RxTraits>(_Traits));
} else {
_Res = _Cmp_chrange(_Begin1, _End1, _Begin2, _End2, _Cmp_cs<_RxTraits>());
}
return _Res;
}
template <class _Elem>
bool _Lookup_range(unsigned int _Ch, const _Buf<_Elem>* _Bufptr) { // check whether _Ch is in _Buf
using _Uelem = make_unsigned_t<_Elem>;
for (unsigned int _Ix = 0; _Ix < _Bufptr->_Size(); _Ix += 2) { // check current position
if (static_cast<_Uelem>(_Bufptr->_At(_Ix)) <= _Ch && _Ch <= static_cast<_Uelem>(_Bufptr->_At(_Ix + 1))) {
return true;
}
}
return false;
}
template <class _Elem, class _RxTraits>
bool _Lookup_equiv(typename _RxTraits::_Uelem _Ch, const _Sequence<_Elem>* _Eq, const _RxTraits& _Traits) {
// check whether _Ch is in _Eq
typename _RxTraits::string_type _Str0;
typename _RxTraits::string_type _Str1;
_Str1.push_back(static_cast<_Elem>(_Ch));
_Str1 = _Traits.transform_primary(_Str1.begin(), _Str1.end());
while (_Eq) { // look for sequence of elements that are the right size
for (unsigned int _Ix = 0; _Ix < _Eq->_Data._Size(); _Ix += _Eq->_Sz) { // look for _Ch
_Str0.assign(_Eq->_Data._Str() + _Ix, _Eq->_Sz);
_Str0 = _Traits.transform_primary(_Str0.begin(), _Str0.end());
if (_Str0 == _Str1) {
return true;
}
}
_Eq = _Eq->_Next;
}
return false;
}
template <class _BidIt, class _Elem>
_BidIt _Lookup_coll(_BidIt _First, _BidIt _Last, const _Sequence<_Elem>* _Eq) {
// look for collation element [_First, _Last) in _Eq
while (_Eq) { // look for sequence of elements that are the right size
for (unsigned int _Ix = 0; _Ix < _Eq->_Data._Size(); _Ix += _Eq->_Sz) { // look for character range
_BidIt _Res = _First;
for (size_t _Jx = 0; _Jx < _Eq->_Sz; ++_Jx) { // check current character
if (*_Res++ != *(_Eq->_Data._Str() + _Ix + _Jx)) {
break;
}
}
if (_Res == _Last) {
return _Last;
}
}
_Eq = _Eq->_Next;
}
return _First;
}
template <class _BidIt, class _Elem, class _RxTraits, class _It>
bool _Matcher<_BidIt, _Elem, _RxTraits, _It>::_Do_class(_Node_base* _Nx) { // apply bracket expression
bool _Found;
auto _Ch = static_cast<typename _RxTraits::_Uelem>(*_Tgt_state._Cur);
if (_Sflags & regex_constants::icase) {
_Ch = static_cast<typename _RxTraits::_Uelem>(_Traits.translate_nocase(static_cast<_Elem>(_Ch)));
}
_It _Res0 = _Tgt_state._Cur;
++_Res0;
_It _Resx;
_Node_class<_Elem, _RxTraits>* _Node = static_cast<_Node_class<_Elem, _RxTraits>*>(_Nx);
if (_Node->_Coll
&& (_Resx = _Lookup_coll(_Tgt_state._Cur, _End, _Node->_Coll))
!= _Tgt_state._Cur) { // check for collation element
_Res0 = _Resx;
_Found = true;
} else if (_Node->_Ranges
&& (_Lookup_range(static_cast<typename _RxTraits::_Uelem>(
_Sflags & regex_constants::collate ? _Traits.translate(static_cast<_Elem>(_Ch))
: static_cast<_Elem>(_Ch)),
_Node->_Ranges))) {
_Found = true;
} else if (_Ch < _Bmp_max) {
_Found = _Node->_Small && _Node->_Small->_Find(_Ch);
} else if (_Node->_Large
&& _STD find(_Node->_Large->_Str(), _Node->_Large->_Str() + _Node->_Large->_Size(), _Ch)
!= _Node->_Large->_Str() + _Node->_Large->_Size()) {
_Found = true;
} else if (_Node->_Classes != 0 && _Traits.isctype(static_cast<_Elem>(_Ch), _Node->_Classes)) {
_Found = true;
} else if (_Node->_Equiv && _Lookup_equiv(_Ch, _Node->_Equiv, _Traits)) {
_Found = true;
} else {
_Found = false;
}
const bool _Negated = (_Node->_Flags & _Fl_negate) != 0;
if (_Found == _Negated) {
return false;
} else { // record result
_Tgt_state._Cur = _Res0;
return true;
}
}
template <class _BidIt, class _Elem, class _RxTraits, class _It>
bool _Matcher<_BidIt, _Elem, _RxTraits, _It>::_Better_match() { // check for better match under UNIX rules
for (unsigned int _Ix = 0; _Ix < _Get_ncap(); ++_Ix) { // check each capture group
if (_Res._Grp_valid[_Ix] && _Tgt_state._Grp_valid[_Ix]) {
if (_Res._Grps[_Ix]._Begin != _Tgt_state._Grps[_Ix]._Begin) {
return _STD distance(_Begin, _Res._Grps[_Ix]._Begin)
< _STD distance(_Begin, _Tgt_state._Grps[_Ix]._Begin);
}
if (_Res._Grps[_Ix]._End != _Tgt_state._Grps[_Ix]._End) {
return _STD distance(_Begin, _Res._Grps[_Ix]._End) < _STD distance(_Begin, _Tgt_state._Grps[_Ix]._End);
}
}
}
return false;
}
template <class _BidIt, class _Elem, class _RxTraits, class _It>
bool _Matcher<_BidIt, _Elem, _RxTraits, _It>::_Is_wbound() const {
if ((_Mflags & regex_constants::match_prev_avail)
|| _Tgt_state._Cur != _Begin) { // if --_Cur is valid, check for preceding word character
if (_Tgt_state._Cur == _End) {
return (_Mflags & regex_constants::match_not_eow) == 0 && _Is_word(*_Prev_iter(_Tgt_state._Cur));
} else {
return _Is_word(*_Prev_iter(_Tgt_state._Cur)) != _Is_word(*_Tgt_state._Cur);
}
} else { // --_Cur is not valid
if (_Tgt_state._Cur == _End) {
return (_Mflags & (regex_constants::match_not_bow | regex_constants::match_not_eow)) == 0;
} else {
return (_Mflags & regex_constants::match_not_bow) == 0 && _Is_word(*_Tgt_state._Cur);
}
}
}
template <class _BidIt, class _Elem, class _RxTraits, class _It>
unsigned int _Matcher<_BidIt, _Elem, _RxTraits, _It>::_Get_ncap() const {
return static_cast<unsigned int>(_Ncap);
}
template <class _BidIt, class _Elem, class _RxTraits, class _It>
bool _Matcher<_BidIt, _Elem, _RxTraits, _It>::_Match_pat(_Node_base* _Nx) { // check for match
if (0 < _Max_stack_count && --_Max_stack_count <= 0) {
_Xregex_error(regex_constants::error_stack);
}
if (0 < _Max_complexity_count && --_Max_complexity_count <= 0) {
_Xregex_error(regex_constants::error_complexity);
}
bool _Failed = false;
while (_Nx) { // match current node
switch (_Nx->_Kind) { // handle current node's type
case _N_nop:
break;
case _N_bol:
if ((_Mflags & regex_constants::match_prev_avail)
|| _Tgt_state._Cur != _Begin) { // if --_Cur is valid, check for preceding newline
_Failed = *_Prev_iter(_Tgt_state._Cur) != _Meta_nl;
} else {
_Failed = (_Mflags & regex_constants::match_not_bol) != 0;
}
break;
case _N_eol:
if (_Tgt_state._Cur == _End) {
_Failed = (_Mflags & regex_constants::match_not_eol) != 0;
} else {
_Failed = *_Tgt_state._Cur != _Meta_nl;
}
break;
case _N_wbound:
_Failed = _Is_wbound() == ((_Nx->_Flags & _Fl_negate) != 0);
break;
case _N_dot:
if (_Tgt_state._Cur == _End || *_Tgt_state._Cur == _Meta_nl || *_Tgt_state._Cur == _Meta_cr) {
_Failed = true;
} else {
++_Tgt_state._Cur;
}
break;
case _N_str: { // check for string match
_Node_str<_Elem>* _Node = static_cast<_Node_str<_Elem>*>(_Nx);
_It _Res0;
if ((_Res0 = _Compare(_Tgt_state._Cur, _End, _Node->_Data._Str(),
_Node->_Data._Str() + _Node->_Data._Size(), _Traits, _Sflags))
!= _Tgt_state._Cur) {
_Tgt_state._Cur = _Res0;
} else {
_Failed = true;
}
break;
}
case _N_class: { // check for bracket expression match
_Failed = _Tgt_state._Cur == _End || !_Do_class(_Nx);
break;
}
case _N_group:
break;
case _N_end_group:
break;
case _N_neg_assert:
case _N_assert: { // check assert
_It _Ch = _Tgt_state._Cur;
bool _Neg = _Nx->_Kind == _N_neg_assert;
_Bt_state_t<_It> _St = _Tgt_state;
if (_Match_pat(static_cast<_Node_assert*>(_Nx)->_Child) == _Neg) {
// restore initial state and indicate failure
_Tgt_state = _St;
_Failed = true;
} else {
_Tgt_state._Cur = _Ch;
}
break;
}
case _N_end_assert:
_Nx = nullptr;
break;
case _N_capture: { // record current position
_Node_capture* _Node = static_cast<_Node_capture*>(_Nx);
_Tgt_state._Grps[_Node->_Idx]._Begin = _Tgt_state._Cur;
for (size_t _Idx = _Tgt_state._Grp_valid.size(); _Node->_Idx < _Idx;) {
_Tgt_state._Grp_valid[--_Idx] = false;
}
break;
}
case _N_end_capture: { // record successful capture
_Node_end_group* _Node = static_cast<_Node_end_group*>(_Nx);
_Node_capture* _Node0 = static_cast<_Node_capture*>(_Node->_Back);
if (_Cap || _Node0->_Idx != 0) { // update capture data
_Tgt_state._Grp_valid[_Node0->_Idx] = true;
_Tgt_state._Grps[_Node0->_Idx]._End = _Tgt_state._Cur;
}
break;
}
case _N_back: { // check back reference
_Node_back* _Node = static_cast<_Node_back*>(_Nx);
if (_Tgt_state._Grp_valid[_Node->_Idx]) { // check for match
_It _Res0 = _Tgt_state._Cur;
_It _Bx = _Tgt_state._Grps[_Node->_Idx]._Begin;
_It _Ex = _Tgt_state._Grps[_Node->_Idx]._End;
if (_Bx != _Ex // _Bx == _Ex for zero-length match
&& (_Res0 = _Compare(_Tgt_state._Cur, _End, _Bx, _Ex, _Traits, _Sflags)) == _Tgt_state._Cur) {
_Failed = true;
} else {
_Tgt_state._Cur = _Res0;
}
}
break;
}
case _N_if:
if (!_Do_if(static_cast<_Node_if*>(_Nx))) {
_Failed = true;
}
_Nx = nullptr;
break;
case _N_endif:
break;
case _N_rep:
if (!_Do_rep(static_cast<_Node_rep*>(_Nx), (_Nx->_Flags & _Fl_greedy) != 0, 0)) {
_Failed = true;
}
_Nx = nullptr;
break;
case _N_end_rep: {
_Node_rep* _Nr = static_cast<_Node_end_rep*>(_Nx)->_Begin_rep;
_Loop_vals_t* _Psav = &_Loop_vals[_Nr->_Loop_number];
if (_Nr->_Simple_loop == 0 && !_Do_rep(_Nr, (_Nr->_Flags & _Fl_greedy) != 0, _Psav->_Loop_idx)) {
_Failed = true; // recurse only if loop contains if/do
}
_Nx = nullptr;
break;
}
case _N_begin:
break;
case _N_end:
if (((_Mflags & (regex_constants::match_not_null | regex_constants::_Match_not_null))
&& _Begin == _Tgt_state._Cur)
|| (_Full && _Tgt_state._Cur != _End)) {
_Failed = true;
} else if (!_Matched || _Better_match()) { // record successful match
_Res = _Tgt_state;
_Matched = true;
}
_Nx = nullptr;
break;
case _N_none:
default:
_Xregex_error(regex_constants::error_parse);
}
if (_Failed) {
_Nx = nullptr;
} else if (_Nx) {
_Nx = _Nx->_Next;
}
}
if (0 < _Max_stack_count) {
++_Max_stack_count;
}
return !_Failed;
}
template <class _BidIt, class _Elem, class _RxTraits, class _It>
_BidIt _Matcher<_BidIt, _Elem, _RxTraits, _It>::_Skip(_BidIt _First_arg, _BidIt _Last, _Node_base* _Node_arg) {
// skip until possible match
// assumes --_First_arg is valid
_Node_base* _Nx = _Node_arg ? _Node_arg : _Rep;
while (_First_arg != _Last && _Nx) { // check current node
switch (_Nx->_Kind) { // handle current node's type
case _N_nop:
break;
case _N_bol: { // check for embedded newline
// return iterator to character just after the newline; for input like "\nabc"
// matching "^abc", _First_arg could be pointing at 'a', so we need to check
// --_First_arg for '\n'
if (*_Prev_iter(_First_arg) != _Meta_nl) {
_First_arg = _STD find(_First_arg, _Last, _Meta_nl);
if (_First_arg != _Last) {
++_First_arg;
}
}
return _First_arg;
}
case _N_eol:
return _STD find(_First_arg, _Last, _Meta_nl);
case _N_str: { // check for string match
_Node_str<_Elem>* _Node = static_cast<_Node_str<_Elem>*>(_Nx);
for (; _First_arg != _Last; ++_First_arg) { // look for starting match
_BidIt _Next = _First_arg;
if (_Compare(_First_arg, ++_Next, _Node->_Data._Str(), _Node->_Data._Str() + 1, _Traits, _Sflags)
!= _First_arg) {
break;
}
}
return _First_arg;
}
case _N_class: { // check for string match
for (; _First_arg != _Last; ++_First_arg) { // look for starting match
bool _Found;
auto _Ch = static_cast<typename _RxTraits::_Uelem>(*_First_arg);
_Node_class<_Elem, _RxTraits>* _Node = static_cast<_Node_class<_Elem, _RxTraits>*>(_Nx);
_It _Next = _First_arg;
++_Next;
if (_Node->_Coll && _Lookup_coll(_First_arg, _Next, _Node->_Coll) != _First_arg) {
_Found = true;
} else if (_Node->_Ranges
&& (_Lookup_range(
static_cast<typename _RxTraits::_Uelem>(_Sflags & regex_constants::collate
? _Traits.translate(static_cast<_Elem>(_Ch))
: static_cast<_Elem>(_Ch)),
_Node->_Ranges))) {
_Found = true;
} else if (_Ch < _Bmp_max) {
_Found = _Node->_Small && _Node->_Small->_Find(_Ch);
} else if (_Node->_Large
&& _STD find(_Node->_Large->_Str(), _Node->_Large->_Str() + _Node->_Large->_Size(), _Ch)
!= _Node->_Large->_Str() + _Node->_Large->_Size()) {
_Found = true;
} else if (_Node->_Classes && _Traits.isctype(static_cast<_Elem>(_Ch), _Node->_Classes)) {
_Found = true;
} else if (_Node->_Equiv && _Lookup_equiv(_Ch, _Node->_Equiv, _Traits)) {
_Found = true;
} else {
_Found = false;
}
const bool _Negated = (_Node->_Flags & _Fl_negate) != 0;
if (_Found != _Negated) {
return _First_arg;
}
}
}
return _First_arg;
case _N_group:
break;
case _N_end_group:
break;
case _N_end_assert:
_Nx = nullptr;
break;
case _N_capture:
break;
case _N_end_capture:
break;
case _N_if: { // check for soonest string match
_Node_if* _Node = static_cast<_Node_if*>(_Nx);
for (; _First_arg != _Last && _Node; _Node = _Node->_Child) {
_Last = _Skip(_First_arg, _Last, _Node->_Next);
}
return _Last;
}
case _N_begin:
break;
case _N_end:
_Nx = nullptr;
break;
case _N_none:
case _N_wbound:
case _N_dot:
case _N_assert:
case _N_neg_assert:
case _N_back:
case _N_endif:
case _N_rep:
case _N_end_rep:
default:
return _First_arg;
}
if (_Nx) {
_Nx = _Nx->_Next;
}
}
return _First_arg;
}
// IMPLEMENTATION OF _Parser
template <class _FwdIt, class _Elem, class _RxTraits>
void _Parser<_FwdIt, _Elem, _RxTraits>::_Error(regex_constants::error_type _Code) { // handle error
_Xregex_error(_Code);
}
template <class _FwdIt, class _Elem, class _RxTraits>
bool _Parser<_FwdIt, _Elem, _RxTraits>::_Is_esc() const { // assumes _Pat != _End
_FwdIt _Ch0 = _Pat;
return ++_Ch0 != _End
&& ((!(_L_flags & _L_nex_grp) && (*_Ch0 == _Meta_lpar || *_Ch0 == _Meta_rpar))
|| (!(_L_flags & _L_nex_rep) && (*_Ch0 == _Meta_lbr || *_Ch0 == _Meta_rbr)));
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Parser<_FwdIt, _Elem, _RxTraits>::_Trans() { // map character to meta-character
static constexpr char _Meta_map[] = {_Meta_lpar, _Meta_rpar, _Meta_dlr, _Meta_caret, _Meta_dot, _Meta_star,
_Meta_plus, _Meta_query, _Meta_lsq, _Meta_rsq, _Meta_bar, _Meta_esc, _Meta_dash, _Meta_lbr, _Meta_rbr,
_Meta_comma, _Meta_colon, _Meta_equal, _Meta_exc, _Meta_nl, _Meta_cr, _Meta_bsp, 0}; // array of meta chars
if (_Pat == _End) {
_Mchar = _Meta_eos;
_Char = static_cast<_Elem>(_Meta_eos);
} else { // map current character
_Char = *_Pat;
_Mchar = _CSTD strchr(_Meta_map, _Char) ? static_cast<_Meta_type>(_Char) : _Meta_chr;
}
switch (_Char) { // handle special cases
case _Meta_esc:
if (_Is_esc()) { // replace escape sequence
_FwdIt _Ch0 = _Pat;
_Mchar = static_cast<_Meta_type>(_Char = *++_Ch0);
}
break;
case _Meta_nl:
if ((_L_flags & _L_alt_nl) && _Disj_count == 0) {
_Mchar = _Meta_bar;
}
break;
case _Meta_lpar:
case _Meta_rpar:
if (!(_L_flags & _L_nex_grp)) {
_Mchar = _Meta_chr;
}
break;
case _Meta_lbr:
case _Meta_rbr:
if (!(_L_flags & _L_nex_rep)) {
_Mchar = _Meta_chr;
}
break;
case _Meta_star:
if ((_L_flags & _L_star_beg) && _Nfa._Beg_expr()) {
_Mchar = _Meta_chr;
}
break;
case _Meta_caret:
if ((_L_flags & _L_anch_rstr) && !_Nfa._Beg_expr()) {
_Mchar = _Meta_chr;
}
break;
case _Meta_dlr: { // check if $ is special
_FwdIt _Ch0 = _Pat;
if ((_L_flags & _L_anch_rstr) && ++_Ch0 != _End && *_Ch0 != _Meta_nl) {
_Mchar = _Meta_chr;
}
break;
}
case _Meta_plus:
case _Meta_query:
if (!(_L_flags & _L_ext_rep)) {
_Mchar = _Meta_chr;
}
break;
case _Meta_bar:
if (!(_L_flags & _L_alt_pipe)) {
_Mchar = _Meta_chr;
}
break;
}
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Parser<_FwdIt, _Elem, _RxTraits>::_Next() { // advance to next input character
if (_Pat != _End) { // advance
if (*_Pat == _Meta_esc && _Is_esc()) {
++_Pat;
}
++_Pat;
}
_Trans();
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Parser<_FwdIt, _Elem, _RxTraits>::_Expect(_Meta_type _St, regex_constants::error_type _Code) {
// check whether current meta-character is _St
if (_Mchar != _St) {
_Error(_Code);
}
_Next();
}
template <class _FwdIt, class _Elem, class _RxTraits>
int _Parser<_FwdIt, _Elem, _RxTraits>::_Do_digits(int _Base, int _Count) { // translate digits to numeric value
int _Chv;
_Val = 0;
while (_Count != 0 && (_Chv = _Traits.value(_Char, _Base)) != -1) { // append next digit
--_Count;
_Val *= _Base;
_Val += _Chv;
_Next();
}
return _Count;
}
template <class _FwdIt, class _Elem, class _RxTraits>
bool _Parser<_FwdIt, _Elem, _RxTraits>::_DecimalDigits() { // check for decimal value
return _Do_digits(10, INT_MAX) != INT_MAX;
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Parser<_FwdIt, _Elem, _RxTraits>::_HexDigits(int _Count) { // check for _Count hex digits
if (_Do_digits(16, _Count) != 0) {
_Error(regex_constants::error_escape);
}
}
template <class _FwdIt, class _Elem, class _RxTraits>
bool _Parser<_FwdIt, _Elem, _RxTraits>::_OctalDigits() { // check for up to 3 octal digits
return _Do_digits(8, 3) != 3;
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Parser<_FwdIt, _Elem, _RxTraits>::_Do_ex_class(
_Meta_type _End_arg) { // handle delimited expressions within bracket expression
regex_constants::error_type _Errtype =
(_End_arg == _Meta_colon ? regex_constants::error_ctype
: _End_arg == _Meta_equal ? regex_constants::error_collate
: _End_arg == _Meta_dot ? regex_constants::error_collate
: regex_constants::error_syntax);
_FwdIt _Beg = _Pat;
_Iter_diff_t<_FwdIt> _Diff = 0;
while (_Mchar != _Meta_colon && _Mchar != _Meta_equal && _Mchar != _Meta_dot && _Mchar != _Meta_eos) {
// advance to end delimiter
_Next();
++_Diff;
}
if (_Mchar != _End_arg) {
_Error(_Errtype);
} else if (_End_arg == _Meta_colon) { // handle named character class
typename _RxTraits::char_class_type _Cls =
_Traits.lookup_classname(_Beg, _Pat, (_Flags & regex_constants::icase) != 0);
if (!_Cls) {
_Error(regex_constants::error_ctype);
}
_Nfa._Add_named_class(_Cls);
} else if (_End_arg == _Meta_equal) { // process =
if (_Beg == _Pat) {
_Error(regex_constants::error_collate);
} else {
_Nfa._Add_equiv(_Beg, _Pat, _Diff);
}
} else if (_End_arg == _Meta_dot) { // process .
if (_Beg == _Pat) {
_Error(regex_constants::error_collate);
} else {
_Nfa._Add_coll(_Beg, _Pat, _Diff);
}
}
_Next();
_Expect(_Meta_rsq, _Errtype);
}
template <class _FwdIt, class _Elem, class _RxTraits>
bool _Parser<_FwdIt, _Elem, _RxTraits>::_CharacterClassEscape(bool _Addit) { // check for character class escape
typename _RxTraits::char_class_type _Cls;
_FwdIt _Ch0 = _Pat;
if (_Ch0 == _End || (_Cls = _Traits.lookup_classname(_Pat, ++_Ch0, (_Flags & regex_constants::icase) != 0)) == 0) {
return false;
}
if (_Addit) {
_Nfa._Add_class();
}
_Nfa._Add_named_class(_Cls, _Traits.isctype(_Char, _RxTraits::_Ch_upper));
_Next();
return true;
}
template <class _FwdIt, class _Elem, class _RxTraits>
_Prs_ret _Parser<_FwdIt, _Elem, _RxTraits>::_ClassEscape(bool _Addit) { // check for class escape
if ((_L_flags & _L_esc_bsl) && _Char == _Esc_bsl) { // handle escape backslash if allowed
_Val = _Esc_bsl;
_Next();
return _Prs_chr;
} else if ((_L_flags & _L_esc_wsd) && _CharacterClassEscape(_Addit)) {
return _Prs_set;
} else if (_DecimalDigits()) { // check for invalid value
if (_Val != 0) {
_Error(regex_constants::error_escape);
}
return _Prs_chr;
}
return _CharacterEscape() ? _Prs_chr : _Prs_none;
}
template <class _FwdIt, class _Elem, class _RxTraits>
_Prs_ret _Parser<_FwdIt, _Elem, _RxTraits>::_ClassAtom() { // check for class atom
if (_Mchar == _Meta_esc) { // check for valid escape sequence
_Next();
if (_L_flags & _L_grp_esc) {
return _ClassEscape(false);
} else if ((_L_flags & _L_esc_ffn && _Do_ffn(_Char))
|| (_L_flags & _L_esc_ffnx && _Do_ffnx(_Char))) { // advance to next character
_Next();
return _Prs_chr;
}
_Val = _Meta_esc;
return _Prs_chr;
} else if (_Mchar == _Meta_lsq) { // check for valid delimited expression
_Next();
if (_Mchar == _Meta_colon || _Mchar == _Meta_equal || _Mchar == _Meta_dot) { // handle delimited expression
_Meta_type _St = _Mchar;
_Next();
_Do_ex_class(_St);
return _Prs_set;
} else { // handle ordinary [
_Val = _Meta_lsq;
return _Prs_chr;
}
} else if (_Mchar == _Meta_rsq || _Mchar == _Meta_eos) {
return _Prs_none;
} else { // handle ordinary character
_Val = _Char;
_Next();
return _Prs_chr;
}
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Parser<_FwdIt, _Elem, _RxTraits>::_ClassRanges() { // check for valid class ranges
_Prs_ret _Ret;
for (;;) { // process characters through end of bracket expression
if ((_Ret = _ClassAtom()) == _Prs_none) {
return;
}
if (_Ret != _Prs_set) {
if (_Val == 0 && !(_L_flags & _L_bzr_chr)) {
_Error(regex_constants::error_escape);
}
if (_Mchar == _Meta_dash) { // check for valid range
_Next();
_Elem _Chr1 = static_cast<_Elem>(_Val);
if ((_Ret = _ClassAtom()) == _Prs_none) { // treat - as ordinary character
_Nfa._Add_char_to_class(static_cast<_Elem>(_Val));
_Nfa._Add_char_to_class(_Meta_dash);
return;
}
if (_Ret == _Prs_set) {
_Error(regex_constants::error_range); // set follows dash
}
if (_Flags & regex_constants::collate) { // translate ends of range
_Val = _Traits.translate(static_cast<_Elem>(_Val));
_Chr1 = _Traits.translate(_Chr1);
}
if (static_cast<typename _RxTraits::_Uelem>(_Val) < static_cast<typename _RxTraits::_Uelem>(_Chr1)) {
_Error(regex_constants::error_range);
}
_Nfa._Add_range(_Chr1, static_cast<_Elem>(_Val));
} else {
_Nfa._Add_char_to_class(static_cast<_Elem>(_Val));
}
}
}
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Parser<_FwdIt, _Elem, _RxTraits>::_CharacterClass() { // add bracket expression
_Nfa._Add_class();
if (_Mchar == _Meta_caret) { // negate bracket expression
_Nfa._Negate();
_Next();
}
if ((_L_flags & _L_brk_rstr) && _Mchar == _Meta_rsq) { // insert initial ] when not special
_Nfa._Add_char_to_class(_Meta_rsq);
_Next();
}
_ClassRanges();
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Parser<_FwdIt, _Elem, _RxTraits>::_Do_capture_group() { // add capture group
// if (_MAX_GRP <= ++_Grp_idx)
// _Error(regex_constants::error_complexity);
_Node_base* _Pos1 = _Nfa._Begin_capture_group(++_Grp_idx);
_Disjunction();
_Nfa._End_group(_Pos1);
_Finished_grps.resize(_Grp_idx + 1);
_Finished_grps[static_cast<_Node_capture*>(_Pos1)->_Idx] = true;
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Parser<_FwdIt, _Elem, _RxTraits>::_Do_noncapture_group() { // add non-capture group
_Node_base* _Pos1 = _Nfa._Begin_group();
_Disjunction();
_Nfa._End_group(_Pos1);
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Parser<_FwdIt, _Elem, _RxTraits>::_Do_assert_group(bool _Neg) { // add assert group
_Node_base* _Pos1 = _Nfa._Begin_assert_group(_Neg);
_Disjunction();
_Nfa._End_assert_group(_Pos1);
}
template <class _FwdIt, class _Elem, class _RxTraits>
bool _Parser<_FwdIt, _Elem, _RxTraits>::_Wrapped_disjunction() { // add disjunction inside group
++_Disj_count;
if (!(_L_flags & _L_empty_grp) && _Mchar == _Meta_rpar) {
_Error(regex_constants::error_paren);
} else if ((_L_flags & _L_nc_grp) && _Mchar == _Meta_query) { // check for valid ECMAScript (?x ... ) group
_Next();
_Meta_type _Ch = _Mchar;
_Next();
if (_Ch == _Meta_colon) {
_Do_noncapture_group();
} else if (_Ch == _Meta_exc) { // process assert group, negating
_Do_assert_group(true);
--_Disj_count;
return false;
} else if (_Ch == _Meta_equal) { // process assert group
_Do_assert_group(false);
--_Disj_count;
return false;
} else {
_Error(regex_constants::error_syntax);
}
} else if (_Flags & regex_constants::nosubs) {
_Do_noncapture_group();
} else {
_Do_capture_group();
}
--_Disj_count;
return true;
}
template <class _FwdIt, class _Elem, class _RxTraits>
bool _Parser<_FwdIt, _Elem, _RxTraits>::_IsIdentityEscape() const { // check for valid identity escape
if (_L_flags & _L_ident_ECMA) {
// ECMAScript identity escape characters
switch (_Char) {
case 'c': // ASCII control character
case 'd': // digit
case 'D':
case 's': // whitespace
case 'S':
case 'w': // word character
case 'W':
return false;
default:
return true;
}
}
switch (_Char) {
case _Meta_dot:
case _Meta_lsq:
case _Meta_esc:
case _Meta_star:
case _Meta_bar:
case _Meta_caret:
case _Meta_dlr:
// BRE, ERE, awk identity escape characters
return true;
case _Meta_lpar:
case _Meta_rpar:
case _Meta_plus:
case _Meta_query:
case _Meta_lbr:
case _Meta_rbr:
// additional ERE identity escape characters
return (_L_flags & _L_ident_ERE) != 0;
case '"':
case '/':
// additional awk identity escape characters
return (_L_flags & _L_ident_awk) != 0;
default:
return false;
}
}
template <class _FwdIt, class _Elem, class _RxTraits>
bool _Parser<_FwdIt, _Elem, _RxTraits>::_IdentityEscape() { // check whether an escape is valid, and process it if so
if (_IsIdentityEscape()) {
_Val = _Char;
_Next();
return true;
} else {
return false;
}
}
template <class _FwdIt, class _Elem, class _RxTraits>
bool _Parser<_FwdIt, _Elem, _RxTraits>::_Do_ffn(_Elem _Ch) { // check for limited file format escape characters
if (_Ch == _Esc_ctrl_f) {
_Val = '\f';
} else if (_Ch == _Esc_ctrl_n) {
_Val = '\n';
} else if (_Ch == _Esc_ctrl_r) {
_Val = '\r';
} else if (_Ch == _Esc_ctrl_t) {
_Val = '\t';
} else if (_Ch == _Esc_ctrl_v) {
_Val = '\v';
} else {
return false;
}
return true;
}
template <class _FwdIt, class _Elem, class _RxTraits>
bool _Parser<_FwdIt, _Elem, _RxTraits>::_Do_ffnx(_Elem _Ch) { // check for the remaining file format escape characters
if (_Ch == _Esc_ctrl_a) {
_Val = '\a';
} else if (_Ch == _Esc_ctrl_b) {
_Val = '\b';
} else {
return false;
}
return true;
}
template <class _FwdIt, class _Elem, class _RxTraits>
bool _Parser<_FwdIt, _Elem, _RxTraits>::_CharacterEscape() { // check for valid character escape
if (_Mchar == _Meta_eos) {
_Error(regex_constants::error_escape);
}
if ((_L_flags & _L_esc_ffn && _Do_ffn(_Char)) || (_L_flags & _L_esc_ffnx && _Do_ffnx(_Char))) {
_Next();
} else if (_Char == _Esc_ctrl && (_L_flags & _L_esc_ctrl)) { // handle control escape sequence
_Next();
if (!_Traits.isctype(_Char, _RxTraits::_Ch_alpha)) {
_Error(regex_constants::error_escape);
}
_Val = static_cast<char>(_Char % 32);
_Next();
} else if (_Char == _Esc_hex && (_L_flags & _L_esc_hex)) { // handle hexadecimal escape sequence
_Next();
_HexDigits(2);
} else if (_Char == _Esc_uni && (_L_flags & _L_esc_uni)) { // handle Unicode escape sequence
_Next();
_HexDigits(4);
} else if ((_L_flags & _L_esc_oct) && _OctalDigits()) { // handle octal escape sequence
if (_Val == 0) {
_Error(regex_constants::error_escape);
}
} else {
return _IdentityEscape();
}
if ((numeric_limits<typename _RxTraits::_Uelem>::max)() < static_cast<unsigned int>(_Val)) {
_Error(regex_constants::error_escape);
}
_Val = static_cast<_Elem>(_Val);
return true;
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Parser<_FwdIt, _Elem, _RxTraits>::_AtomEscape() { // check for valid atom escape
if ((_L_flags & _L_bckr) && _DecimalDigits()) { // check for valid back reference
if (_Val == 0) { // handle \0
if (!(_L_flags & _L_bzr_chr)) {
_Error(regex_constants::error_escape);
} else {
_Nfa._Add_char(static_cast<_Elem>(_Val));
}
} else if (((_L_flags & _L_lim_bckr) && _BRE_MAX_GRP < static_cast<size_t>(_Val))
|| _Grp_idx < static_cast<size_t>(_Val) || _Finished_grps.size() <= static_cast<size_t>(_Val)
|| !_Finished_grps[static_cast<size_t>(_Val)]) {
_Error(regex_constants::error_backref);
} else {
_Nfa._Add_backreference(static_cast<size_t>(_Val));
}
} else if (_CharacterEscape()) {
_Nfa._Add_char(static_cast<_Elem>(_Val));
} else if (!(_L_flags & _L_esc_wsd) || !_CharacterClassEscape(true)) {
_Error(regex_constants::error_escape);
}
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Parser<_FwdIt, _Elem, _RxTraits>::_Quantifier() { // check for quantifier following atom
int _Min = 0;
int _Max = -1;
if (_Mchar != _Meta_star) {
if (_Mchar == _Meta_plus) {
_Min = 1;
} else if (_Mchar == _Meta_query) {
_Max = 1;
} else if (_Mchar == _Meta_lbr) { // check for valid bracketed value
_Next();
if (!_DecimalDigits()) {
_Error(regex_constants::error_badbrace);
}
_Min = _Val;
if (_Mchar != _Meta_comma) {
_Max = _Min;
} else { // check for decimal constant following comma
_Next();
if (_Mchar != _Meta_rbr) {
if (!_DecimalDigits()) {
_Error(regex_constants::error_badbrace);
}
_Max = _Val;
}
}
if (_Mchar != _Meta_rbr || (_Max != -1 && _Max < _Min)) {
_Error(regex_constants::error_badbrace);
}
} else {
return;
}
}
_Nfa._Mark_final();
_Next();
const bool _Greedy = !(_L_flags & _L_ngr_rep) || _Mchar != _Meta_query;
if (!_Greedy) { // add non-greedy repeat node
_Next();
}
_Nfa._Add_rep(_Min, _Max, _Greedy);
}
template <class _FwdIt, class _Elem, class _RxTraits>
bool _Parser<_FwdIt, _Elem, _RxTraits>::_Alternative() { // check for valid alternative
bool _Found = false;
for (;;) { // concatenate valid elements
bool _Quant = true;
if (_Mchar == _Meta_eos || _Mchar == _Meta_bar || (_Mchar == _Meta_rpar && _Disj_count != 0)) {
return _Found;
} else if (_Mchar == _Meta_rpar && !(_L_flags & _L_paren_bal)) {
_Error(regex_constants::error_paren);
} else if (_Mchar == _Meta_dot) { // add dot node
_Nfa._Add_dot();
_Next();
} else if (_Mchar == _Meta_esc) { // check for valid escape sequence
_Next();
if ((_L_flags & _L_asrt_wrd) && _Char == _Esc_word) { // add word assert
_Nfa._Add_wbound();
_Next();
_Quant = false;
} else if ((_L_flags & _L_asrt_wrd) && _Char == _Esc_not_word) { // add not-word assert
_Nfa._Add_wbound();
_Nfa._Negate();
_Next();
_Quant = false;
} else {
_AtomEscape();
}
} else if (_Mchar == _Meta_lsq) { // add bracket expression
_Next();
_CharacterClass();
_Expect(_Meta_rsq, regex_constants::error_brack);
} else if (_Mchar == _Meta_lpar) { // check for valid group
_Next();
_Quant = _Wrapped_disjunction();
_Expect(_Meta_rpar, regex_constants::error_paren);
} else if (_Mchar == _Meta_caret) { // add bol node
_Nfa._Add_bol();
_Next();
_Quant = false;
} else if (_Mchar == _Meta_dlr) { // add eol node
_Nfa._Add_eol();
_Next();
_Quant = false;
} else if (_Mchar == _Meta_star || _Mchar == _Meta_plus || _Mchar == _Meta_query || _Mchar == _Meta_lbr) {
_Error(regex_constants::error_badrepeat);
} else if (_Mchar == _Meta_rbr && !(_L_flags & _L_paren_bal)) {
_Error(regex_constants::error_brace);
} else if (_Mchar == _Meta_rsq && !(_L_flags & _L_paren_bal)) {
_Error(regex_constants::error_brack);
} else { // add character
_Nfa._Add_char(_Char);
_Next();
}
if (_Quant) {
_Quantifier();
}
_Found = true;
}
}
template <class _FwdIt, class _Elem, class _RxTraits>
void _Parser<_FwdIt, _Elem, _RxTraits>::_Disjunction() { // check for valid disjunction
_Node_base* _Pos1 = _Nfa._Getmark();
if (!_Alternative()) {
if (_Mchar != _Meta_bar) {
return; // zero-length alternative not followed by '|'
}
// zero-length leading alternative
_Node_base* _Pos3 = _Nfa._Begin_group();
_Nfa._End_group(_Pos3);
}
_Node_base* _Pos2 = _Nfa._Begin_if(_Pos1);
while (_Mchar == _Meta_bar) { // append terms as long as we keep finding | characters
_Next();
if (!_Alternative()) { // zero-length trailing alternative
_Node_base* _Pos3 = _Nfa._Begin_group();
_Nfa._End_group(_Pos3);
}
_Nfa._Else_if(_Pos1, _Pos2);
}
}
inline void _Calculate_loop_simplicity(_Node_base* _Nx, _Node_base* _Ne, _Node_rep* _Outer_rep) {
// walks regex NFA, calculates values of _Node_rep::_Simple_loop
for (; _Nx != _Ne && _Nx; _Nx = _Nx->_Next) {
switch (_Nx->_Kind) {
case _N_if:
// _Node_if inside a _Node_rep makes the rep not simple
if (_Outer_rep) {
_Outer_rep->_Simple_loop = 0;
}
// visit each branch of the if
for (_Node_if* _Branch = static_cast<_Node_if*>(_Nx)->_Child; _Branch; _Branch = _Branch->_Child) {
_Calculate_loop_simplicity(_Branch->_Next, _Branch->_Endif, _Outer_rep);
}
break;
case _N_assert:
case _N_neg_assert:
// visit the assertion body
// note _Outer_rep being reset: the assertion regex is completely independent
_Calculate_loop_simplicity(static_cast<_Node_assert*>(_Nx)->_Child, nullptr, nullptr);
break;
case _N_rep:
// _Node_rep inside another _Node_rep makes both not simple
if (_Outer_rep) {
_Outer_rep->_Simple_loop = 0;
static_cast<_Node_rep*>(_Nx)->_Simple_loop = 0;
} else {
_Outer_rep = static_cast<_Node_rep*>(_Nx);
}
break;
case _N_end_rep:
if (_Outer_rep == static_cast<_Node_end_rep*>(_Nx)->_Begin_rep) {
// if the _Node_rep is still undetermined when we reach its end, it is simple
#pragma warning(push)
#pragma warning(disable : 6011) // Dereferencing NULL pointer
if (_Outer_rep->_Simple_loop == -1) {
_Outer_rep->_Simple_loop = 1;
}
#pragma warning(pop)
_Outer_rep = nullptr;
}
break;
case _N_none:
case _N_nop:
case _N_bol:
case _N_eol:
case _N_wbound:
case _N_dot:
case _N_str:
case _N_class:
case _N_group:
case _N_end_group:
case _N_end_assert:
case _N_capture:
case _N_end_capture:
case _N_back:
case _N_endif:
case _N_begin:
case _N_end:
default:
break;
}
}
}
template <class _FwdIt, class _Elem, class _RxTraits>
_Root_node* _Parser<_FwdIt, _Elem, _RxTraits>::_Compile() { // compile regular expression
_Root_node* _Res = nullptr;
_Tidy_guard<decltype(_Nfa)> _Guard{_STD addressof(_Nfa)};
_Node_base* _Pos1 = _Nfa._Begin_capture_group(0);
_Disjunction();
if (_Pat != _End) {
_Error(regex_constants::error_syntax);
}
_Nfa._End_group(_Pos1);
_Res = _Nfa._End_pattern();
_Res->_Fl = _Flags;
_Res->_Marks = _Mark_count();
_Calculate_loop_simplicity(_Res, nullptr, nullptr);
_Guard._Target = nullptr;
return _Res;
}
template <class _FwdIt, class _Elem, class _RxTraits>
_Parser<_FwdIt, _Elem, _RxTraits>::_Parser(
const _RxTraits& _Tr, _FwdIt _Pfirst, _FwdIt _Plast, regex_constants::syntax_option_type _Fx)
: _Pat(_Pfirst), _Begin(_Pfirst), _End(_Plast), _Grp_idx(0), _Disj_count(0), _Finished_grps(0), _Nfa(_Tr, _Fx),
_Traits(_Tr), _Flags(_Fx) {
// PARSER LANGUAGE FLAGS
constexpr unsigned int _ECMA_flags = _L_ext_rep | _L_alt_pipe | _L_nex_grp | _L_nex_rep | _L_nc_grp | _L_asrt_gen
| _L_asrt_wrd | _L_bckr | _L_ngr_rep | _L_esc_uni | _L_esc_hex | _L_esc_bsl
| _L_esc_ffn | _L_esc_wsd | _L_esc_ctrl | _L_bzr_chr | _L_grp_esc
| _L_ident_ECMA | _L_empty_grp;
constexpr unsigned int _Basic_flags =
_L_bckr | _L_lim_bckr | _L_anch_rstr | _L_star_beg | _L_empty_grp | _L_brk_rstr | _L_mtch_long;
constexpr unsigned int _Grep_flags = _Basic_flags | _L_alt_nl | _L_no_nl;
constexpr unsigned int _Extended_flags =
_L_ext_rep | _L_alt_pipe | _L_nex_grp | _L_nex_rep | _L_ident_ERE | _L_paren_bal | _L_brk_rstr | _L_mtch_long;
constexpr unsigned int _Awk_flags = _Extended_flags | _L_esc_oct | _L_esc_ffn | _L_esc_ffnx | _L_ident_awk;
constexpr unsigned int _Egrep_flags = _Extended_flags | _L_alt_nl | _L_no_nl;
using namespace regex_constants;
const syntax_option_type _Masked = _Flags & _Gmask;
if (_Masked == ECMAScript || _Masked == 0) {
_L_flags = _ECMA_flags;
} else if (_Masked == basic) {
_L_flags = _Basic_flags;
} else if (_Masked == extended) {
_L_flags = _Extended_flags;
} else if (_Masked == awk) {
_L_flags = _Awk_flags;
} else if (_Masked == grep) {
_L_flags = _Grep_flags;
} else if (_Masked == egrep) {
_L_flags = _Egrep_flags;
} else {
_L_flags = 0;
}
if (_L_flags & _L_mtch_long) {
_Nfa._Setlong();
}
_Trans();
}
#if _HAS_TR1_NAMESPACE
namespace _DEPRECATE_TR1_NAMESPACE tr1 {
using _STD basic_regex;
using _STD cmatch;
using _STD cregex_iterator;
using _STD cregex_token_iterator;
using _STD csub_match;
using _STD match_results;
using _STD regex;
using _STD regex_error;
using _STD regex_iterator;
using _STD regex_match;
using _STD regex_replace;
using _STD regex_search;
using _STD regex_token_iterator;
using _STD regex_traits;
using _STD smatch;
using _STD sregex_iterator;
using _STD sregex_token_iterator;
using _STD ssub_match;
using _STD sub_match;
using _STD swap;
using _STD wcmatch;
using _STD wcregex_iterator;
using _STD wcregex_token_iterator;
using _STD wcsub_match;
using _STD wregex;
using _STD wsmatch;
using _STD wsregex_iterator;
using _STD wsregex_token_iterator;
using _STD wssub_match;
namespace regex_constants {
using namespace _STD regex_constants;
}
} // namespace tr1
#endif // _HAS_TR1_NAMESPACE
#if _HAS_CXX17
namespace pmr {
template <class _BidIt>
using match_results = _STD match_results<_BidIt, polymorphic_allocator<sub_match<_BidIt>>>;
using cmatch = match_results<const char*>;
using wcmatch = match_results<const wchar_t*>;
using smatch = match_results<string::const_iterator>;
using wsmatch = match_results<wstring::const_iterator>;
} // namespace pmr
#endif // _HAS_CXX17
_STD_END
#pragma pop_macro("new")
_STL_RESTORE_CLANG_WARNINGS
#pragma warning(pop)
#pragma pack(pop)
#endif // _STL_COMPILER_PREPROCESSOR
#endif // _REGEX_