# -------------------------------------------------------- # SimMIM # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ze Liu # Modified by Zhenda Xie # -------------------------------------------------------- from collections import Counter from bisect import bisect_right import torch from timm.scheduler.cosine_lr import CosineLRScheduler from timm.scheduler.step_lr import StepLRScheduler from timm.scheduler.scheduler import Scheduler def build_scheduler(config, optimizer, n_iter_per_epoch): num_steps = int(config.TRAIN.EPOCHS * n_iter_per_epoch) warmup_steps = int(config.TRAIN.WARMUP_EPOCHS * n_iter_per_epoch) decay_steps = int(config.TRAIN.LR_SCHEDULER.DECAY_EPOCHS * n_iter_per_epoch) multi_steps = [i * n_iter_per_epoch for i in config.TRAIN.LR_SCHEDULER.MULTISTEPS] lr_scheduler = None if config.TRAIN.LR_SCHEDULER.NAME == 'cosine': lr_scheduler = CosineLRScheduler( optimizer, t_initial=num_steps, t_mul=1., lr_min=config.TRAIN.MIN_LR, warmup_lr_init=config.TRAIN.WARMUP_LR, warmup_t=warmup_steps, cycle_limit=1, t_in_epochs=False, ) elif config.TRAIN.LR_SCHEDULER.NAME == 'linear': lr_scheduler = LinearLRScheduler( optimizer, t_initial=num_steps, lr_min_rate=0.01, warmup_lr_init=config.TRAIN.WARMUP_LR, warmup_t=warmup_steps, t_in_epochs=False, ) elif config.TRAIN.LR_SCHEDULER.NAME == 'step': lr_scheduler = StepLRScheduler( optimizer, decay_t=decay_steps, decay_rate=config.TRAIN.LR_SCHEDULER.DECAY_RATE, warmup_lr_init=config.TRAIN.WARMUP_LR, warmup_t=warmup_steps, t_in_epochs=False, ) elif config.TRAIN.LR_SCHEDULER.NAME == 'multistep': lr_scheduler = MultiStepLRScheduler( optimizer, milestones=multi_steps, gamma=config.TRAIN.LR_SCHEDULER.GAMMA, warmup_lr_init=config.TRAIN.WARMUP_LR, warmup_t=warmup_steps, t_in_epochs=False, ) return lr_scheduler class LinearLRScheduler(Scheduler): def __init__(self, optimizer: torch.optim.Optimizer, t_initial: int, lr_min_rate: float, warmup_t=0, warmup_lr_init=0., t_in_epochs=True, noise_range_t=None, noise_pct=0.67, noise_std=1.0, noise_seed=42, initialize=True, ) -> None: super().__init__( optimizer, param_group_field="lr", noise_range_t=noise_range_t, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed, initialize=initialize) self.t_initial = t_initial self.lr_min_rate = lr_min_rate self.warmup_t = warmup_t self.warmup_lr_init = warmup_lr_init self.t_in_epochs = t_in_epochs if self.warmup_t: self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values] super().update_groups(self.warmup_lr_init) else: self.warmup_steps = [1 for _ in self.base_values] def _get_lr(self, t): if t < self.warmup_t: lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] else: t = t - self.warmup_t total_t = self.t_initial - self.warmup_t lrs = [v - ((v - v * self.lr_min_rate) * (t / total_t)) for v in self.base_values] return lrs def get_epoch_values(self, epoch: int): if self.t_in_epochs: return self._get_lr(epoch) else: return None def get_update_values(self, num_updates: int): if not self.t_in_epochs: return self._get_lr(num_updates) else: return None class MultiStepLRScheduler(Scheduler): def __init__(self, optimizer: torch.optim.Optimizer, milestones, gamma=0.1, warmup_t=0, warmup_lr_init=0, t_in_epochs=True) -> None: super().__init__(optimizer, param_group_field="lr") self.milestones = milestones self.gamma = gamma self.warmup_t = warmup_t self.warmup_lr_init = warmup_lr_init self.t_in_epochs = t_in_epochs if self.warmup_t: self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values] super().update_groups(self.warmup_lr_init) else: self.warmup_steps = [1 for _ in self.base_values] assert self.warmup_t <= min(self.milestones) def _get_lr(self, t): if t < self.warmup_t: lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] else: lrs = [v * (self.gamma ** bisect_right(self.milestones, t)) for v in self.base_values] return lrs def get_epoch_values(self, epoch: int): if self.t_in_epochs: return self._get_lr(epoch) else: return None def get_update_values(self, num_updates: int): if not self.t_in_epochs: return self._get_lr(num_updates) else: return None