зеркало из https://github.com/microsoft/SimMIM.git
355 строки
15 KiB
Python
355 строки
15 KiB
Python
# --------------------------------------------------------
|
|
# SimMIM
|
|
# Copyright (c) 2021 Microsoft
|
|
# Licensed under The MIT License [see LICENSE for details]
|
|
# Based on BEIT code bases (https://github.com/microsoft/unilm/tree/master/beit)
|
|
# Written by Yutong Lin, Zhenda Xie
|
|
# --------------------------------------------------------
|
|
|
|
import math
|
|
from functools import partial
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
|
|
|
|
|
class Mlp(nn.Module):
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
|
super().__init__()
|
|
out_features = out_features or in_features
|
|
hidden_features = hidden_features or in_features
|
|
self.fc1 = nn.Linear(in_features, hidden_features)
|
|
self.act = act_layer()
|
|
self.fc2 = nn.Linear(hidden_features, out_features)
|
|
self.drop = nn.Dropout(drop)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
x = self.act(x)
|
|
# x = self.drop(x)
|
|
# comment out this for the orignal BERT implement
|
|
x = self.fc2(x)
|
|
x = self.drop(x)
|
|
return x
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(
|
|
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
|
|
proj_drop=0., window_size=None, attn_head_dim=None):
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
if attn_head_dim is not None:
|
|
head_dim = attn_head_dim
|
|
all_head_dim = head_dim * self.num_heads
|
|
self.scale = qk_scale or head_dim ** -0.5
|
|
|
|
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
|
|
if qkv_bias:
|
|
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
|
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
|
else:
|
|
self.q_bias = None
|
|
self.v_bias = None
|
|
|
|
if window_size:
|
|
self.window_size = window_size
|
|
# cls to token & token to cls & cls to cls
|
|
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
|
self.relative_position_bias_table = nn.Parameter(
|
|
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
|
|
|
# get pair-wise relative position index for each token inside the window
|
|
coords_h = torch.arange(window_size[0])
|
|
coords_w = torch.arange(window_size[1])
|
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
|
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
|
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
|
relative_coords[:, :, 1] += window_size[1] - 1
|
|
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
|
relative_position_index = \
|
|
torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
|
|
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
|
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
|
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
|
relative_position_index[0, 0] = self.num_relative_distance - 1
|
|
|
|
self.register_buffer("relative_position_index", relative_position_index)
|
|
else:
|
|
self.window_size = None
|
|
self.relative_position_bias_table = None
|
|
self.relative_position_index = None
|
|
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
self.proj = nn.Linear(all_head_dim, dim)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
def forward(self, x, rel_pos_bias=None):
|
|
B, N, C = x.shape
|
|
qkv_bias = None
|
|
if self.q_bias is not None:
|
|
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
|
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
|
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
|
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
|
|
|
q = q * self.scale
|
|
attn = (q @ k.transpose(-2, -1))
|
|
|
|
if self.relative_position_bias_table is not None:
|
|
relative_position_bias = \
|
|
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
|
self.window_size[0] * self.window_size[1] + 1,
|
|
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
|
attn = attn + relative_position_bias.unsqueeze(0)
|
|
|
|
if rel_pos_bias is not None:
|
|
attn = attn + rel_pos_bias
|
|
|
|
attn = attn.softmax(dim=-1)
|
|
attn = self.attn_drop(attn)
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
return x
|
|
|
|
|
|
class Block(nn.Module):
|
|
|
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
|
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
|
|
window_size=None, attn_head_dim=None):
|
|
super().__init__()
|
|
self.norm1 = norm_layer(dim)
|
|
self.attn = Attention(
|
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
|
attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim)
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
self.norm2 = norm_layer(dim)
|
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
|
|
|
if init_values is not None:
|
|
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
|
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
|
else:
|
|
self.gamma_1, self.gamma_2 = None, None
|
|
|
|
def forward(self, x, rel_pos_bias=None):
|
|
if self.gamma_1 is None:
|
|
x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
|
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
|
else:
|
|
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
|
|
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
|
return x
|
|
|
|
|
|
class PatchEmbed(nn.Module):
|
|
""" Image to Patch Embedding
|
|
"""
|
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
|
|
super().__init__()
|
|
img_size = to_2tuple(img_size)
|
|
patch_size = to_2tuple(patch_size)
|
|
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
|
|
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
|
self.img_size = img_size
|
|
self.patch_size = patch_size
|
|
self.num_patches = num_patches
|
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
|
|
|
def forward(self, x, **kwargs):
|
|
B, C, H, W = x.shape
|
|
# FIXME look at relaxing size constraints
|
|
assert H == self.img_size[0] and W == self.img_size[1], \
|
|
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
|
x = self.proj(x).flatten(2).transpose(1, 2)
|
|
return x
|
|
|
|
|
|
class RelativePositionBias(nn.Module):
|
|
|
|
def __init__(self, window_size, num_heads):
|
|
super().__init__()
|
|
self.window_size = window_size
|
|
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
|
self.relative_position_bias_table = nn.Parameter(
|
|
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
|
# cls to token & token 2 cls & cls to cls
|
|
|
|
# get pair-wise relative position index for each token inside the window
|
|
coords_h = torch.arange(window_size[0])
|
|
coords_w = torch.arange(window_size[1])
|
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
|
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
|
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
|
relative_coords[:, :, 1] += window_size[1] - 1
|
|
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
|
relative_position_index = \
|
|
torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
|
|
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
|
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
|
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
|
relative_position_index[0, 0] = self.num_relative_distance - 1
|
|
|
|
self.register_buffer("relative_position_index", relative_position_index)
|
|
|
|
def forward(self):
|
|
relative_position_bias = \
|
|
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
|
self.window_size[0] * self.window_size[1] + 1,
|
|
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
|
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
|
|
|
|
|
class VisionTransformer(nn.Module):
|
|
""" Vision Transformer with support for patch or hybrid CNN input stage
|
|
"""
|
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
|
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
|
|
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None,
|
|
use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False,
|
|
use_mean_pooling=True, init_scale=0.001):
|
|
super().__init__()
|
|
self.num_classes = num_classes
|
|
self.num_features = self.embed_dim = embed_dim
|
|
self.patch_size = patch_size
|
|
self.in_chans = in_chans
|
|
|
|
self.patch_embed = PatchEmbed(
|
|
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
|
num_patches = self.patch_embed.num_patches
|
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
|
if use_abs_pos_emb:
|
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
|
else:
|
|
self.pos_embed = None
|
|
self.pos_drop = nn.Dropout(p=drop_rate)
|
|
|
|
if use_shared_rel_pos_bias:
|
|
self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
|
|
else:
|
|
self.rel_pos_bias = None
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
|
self.use_rel_pos_bias = use_rel_pos_bias
|
|
self.blocks = nn.ModuleList([
|
|
Block(
|
|
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
|
init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None)
|
|
for i in range(depth)])
|
|
self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
|
|
self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
|
|
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
if self.pos_embed is not None:
|
|
self._trunc_normal_(self.pos_embed, std=.02)
|
|
self._trunc_normal_(self.cls_token, std=.02)
|
|
if num_classes > 0:
|
|
self._trunc_normal_(self.head.weight, std=.02)
|
|
self.apply(self._init_weights)
|
|
self.fix_init_weight()
|
|
|
|
if num_classes > 0:
|
|
self.head.weight.data.mul_(init_scale)
|
|
self.head.bias.data.mul_(init_scale)
|
|
|
|
def _trunc_normal_(self, tensor, mean=0., std=1.):
|
|
trunc_normal_(tensor, mean=mean, std=std)
|
|
|
|
def fix_init_weight(self):
|
|
def rescale(param, layer_id):
|
|
param.div_(math.sqrt(2.0 * layer_id))
|
|
|
|
for layer_id, layer in enumerate(self.blocks):
|
|
rescale(layer.attn.proj.weight.data, layer_id + 1)
|
|
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
self._trunc_normal_(m.weight, std=.02)
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.LayerNorm):
|
|
nn.init.constant_(m.bias, 0)
|
|
nn.init.constant_(m.weight, 1.0)
|
|
elif isinstance(m, nn.Conv2d):
|
|
self._trunc_normal_(m.weight, std=.02)
|
|
if m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
def get_num_layers(self):
|
|
return len(self.blocks)
|
|
|
|
@torch.jit.ignore
|
|
def no_weight_decay(self):
|
|
return {'pos_embed', 'cls_token'}
|
|
|
|
def get_classifier(self):
|
|
return self.head
|
|
|
|
def reset_classifier(self, num_classes, global_pool=''):
|
|
self.num_classes = num_classes
|
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
def forward_features(self, x):
|
|
x = self.patch_embed(x)
|
|
batch_size, seq_len, _ = x.size()
|
|
|
|
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
|
x = torch.cat((cls_tokens, x), dim=1)
|
|
if self.pos_embed is not None:
|
|
x = x + self.pos_embed
|
|
x = self.pos_drop(x)
|
|
|
|
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
|
|
for blk in self.blocks:
|
|
x = blk(x, rel_pos_bias=rel_pos_bias)
|
|
|
|
x = self.norm(x)
|
|
if self.fc_norm is not None:
|
|
t = x[:, 1:, :]
|
|
return self.fc_norm(t.mean(1))
|
|
else:
|
|
return x[:, 0]
|
|
|
|
def forward(self, x):
|
|
x = self.forward_features(x)
|
|
x = self.head(x)
|
|
return x
|
|
|
|
|
|
def build_vit(config):
|
|
model = VisionTransformer(
|
|
img_size=config.DATA.IMG_SIZE,
|
|
patch_size=config.MODEL.VIT.PATCH_SIZE,
|
|
in_chans=config.MODEL.VIT.IN_CHANS,
|
|
num_classes=config.MODEL.NUM_CLASSES,
|
|
embed_dim=config.MODEL.VIT.EMBED_DIM,
|
|
depth=config.MODEL.VIT.DEPTH,
|
|
num_heads=config.MODEL.VIT.NUM_HEADS,
|
|
mlp_ratio=config.MODEL.VIT.MLP_RATIO,
|
|
qkv_bias=config.MODEL.VIT.QKV_BIAS,
|
|
drop_rate=config.MODEL.DROP_RATE,
|
|
drop_path_rate=config.MODEL.DROP_PATH_RATE,
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
init_values=config.MODEL.VIT.INIT_VALUES,
|
|
use_abs_pos_emb=config.MODEL.VIT.USE_APE,
|
|
use_rel_pos_bias=config.MODEL.VIT.USE_RPB,
|
|
use_shared_rel_pos_bias=config.MODEL.VIT.USE_SHARED_RPB,
|
|
use_mean_pooling=config.MODEL.VIT.USE_MEAN_POOLING)
|
|
|
|
return model |