This commit is contained in:
Brian Quistorff 2018-10-05 10:10:52 -07:00
Родитель 6701aa7c2c
Коммит 6e9d313ccb
6 изменённых файлов: 72 добавлений и 73 удалений

Просмотреть файл

@ -1,4 +1,3 @@
from RidgeSC.fit_fold import fold_v_matrix, fold_score from RidgeSC.fit_fold import fold_v_matrix, fold_score
from RidgeSC.fit_loo import loo_v_matrix, loo_score, loo_weights from RidgeSC.fit_loo import loo_v_matrix, loo_score, loo_weights
from RidgeSC.fit_ct import ct_v_matrix, ct_score from RidgeSC.fit_ct import ct_v_matrix, ct_score
@ -409,19 +408,19 @@ def repeatfunc(func, times=None, *args):
return itertools.starmap(func, itertools.repeat(args)) return itertools.starmap(func, itertools.repeat(args))
return itertools.starmap(func, itertools.repeat(args, times)) return itertools.starmap(func, itertools.repeat(args, times))
def _gen_placebo_stats_from_diffs(N, effect_vec, std_effect_vec, joint_effect, joint_std_effect, def _gen_placebo_stats_from_diffs(N1, effect_vec, std_effect_vec, joint_effect, joint_std_effect,
control_effect_vecs, control_std_effect_vecs, control_joint_effects, control_joint_std_effects, control_effect_vecs, control_std_effect_vecs, control_joint_effects, control_joint_std_effects,
max_n_pl = 1000000, ret_pl = False, ret_CI=False, level=0.95): max_n_pl = 1000000, ret_pl = False, ret_CI=False, level=0.95):
#ret_p1s=False #ret_p1s=False
keep_pl = ret_pl or ret_CI keep_pl = ret_pl or ret_CI
C = control_effect_vecs.shape[0] N0 = control_effect_vecs.shape[0]
T1 = len(effect_vec) T1 = len(effect_vec)
n_pl = _ncr(C, N) n_pl = _ncr(N0, N1)
if (max_n_pl > 0 & n_pl > max_n_pl): #randomize if (max_n_pl > 0 & n_pl > max_n_pl): #randomize
comb_iter = itertools.combinations(range(C), N) comb_iter = itertools.combinations(range(N0), N1)
comb_len = max_n_pl comb_len = max_n_pl
else: else:
comb_iter = repeatfunc(random_combination, n_pl, range(C), N) comb_iter = repeatfunc(random_combination, n_pl, range(N0), N1)
comb_len = n_pl comb_len = n_pl
placebo_effect_vecs = None placebo_effect_vecs = None
if keep_pl: if keep_pl:
@ -483,13 +482,13 @@ def _gen_placebo_stats_from_diffs(N, effect_vec, std_effect_vec, joint_effect, j
def estimate_effects(X, Y_pre, Y_post, treated_units, max_n_pl = 1000000, ret_pl = False, ret_CI=False, level=0.95, **kwargs): def estimate_effects(X, Y_pre, Y_post, treated_units, max_n_pl = 1000000, ret_pl = False, ret_CI=False, level=0.95, **kwargs):
#TODO: Cleanup returning placebo distribution (incl pre?) #TODO: Cleanup returning placebo distribution (incl pre?)
N = len(treated_units) N1 = len(treated_units)
X_and_Y_pre = np.hstack( ( X, Y_pre,) ) X_and_Y_pre = np.hstack( ( X, Y_pre,) )
C_N = X_and_Y_pre.shape[0] N = X_and_Y_pre.shape[0]
#C = C_N - N #N0 = N - N1
#T1 = Y_post.shape[1] #T1 = Y_post.shape[1]
control_units = list(set(range(C_N)) - set(treated_units)) control_units = list(set(range(N)) - set(treated_units))
all_units = list(range(C_N)) all_units = list(range(N))
Y_post_c = Y_post[control_units, :] Y_post_c = Y_post[control_units, :]
Y_post_tr = Y_post[treated_units, :] Y_post_tr = Y_post[treated_units, :]
X_and_Y_pre_c = X_and_Y_pre[control_units, :] X_and_Y_pre_c = X_and_Y_pre[control_units, :]
@ -537,7 +536,7 @@ def estimate_effects(X, Y_pre, Y_post, treated_units, max_n_pl = 1000000, ret_pl
joint_effect = np.mean(joint_effects) joint_effect = np.mean(joint_effects)
joint_std_effect = np.mean(joint_effects / pre_tr_rmspes) joint_std_effect = np.mean(joint_effects / pre_tr_rmspes)
return _gen_placebo_stats_from_diffs(N, effect_vec, std_effect_vec, joint_effect, joint_std_effect, return _gen_placebo_stats_from_diffs(N1, effect_vec, std_effect_vec, joint_effect, joint_std_effect,
control_effect_vecs, control_std_effect_vecs, control_joint_effects, control_joint_std_effects, control_effect_vecs, control_std_effect_vecs, control_joint_effects, control_joint_std_effects,
max_n_pl, ret_pl, ret_CI, level) max_n_pl, ret_pl, ret_CI, level)

Просмотреть файл

@ -72,7 +72,7 @@ def ct_v_matrix(X,
raise TypeError( "L2_PEN_W is not a number") raise TypeError( "L2_PEN_W is not a number")
# CONSTANTS # CONSTANTS
C, N, K = len(control_units), len(treated_units), X.shape[1] N0, N1, K = len(control_units), len(treated_units), X.shape[1]
if start is None: if start is None:
start = zeros(K) # formerly: .1 * ones(K) start = zeros(K) # formerly: .1 * ones(K)
Y_treated = Y[treated_units,:] Y_treated = Y[treated_units,:]
@ -106,7 +106,7 @@ def ct_v_matrix(X,
weights, A, _, AinvB = _weights(dv) weights, A, _, AinvB = _weights(dv)
Ey = (Y_treated - weights.T.dot(Y_control)).getA() Ey = (Y_treated - weights.T.dot(Y_control)).getA()
dGamma0_dV_term2 = zeros(K) dGamma0_dV_term2 = zeros(K)
dPI_dV = zeros((C, N)) dPI_dV = zeros((N0, N1))
#Ai = A.I #Ai = A.I
for k in range(K): for k in range(K):
if verbose: # for large sample sizes, linalg.solve is a huge bottle neck, if verbose: # for large sample sizes, linalg.solve is a huge bottle neck,
@ -121,12 +121,12 @@ def ct_v_matrix(X,
L2_PEN_W_mat = 2 * L2_PEN_W * diag(ones(X_control.shape[0])) L2_PEN_W_mat = 2 * L2_PEN_W * diag(ones(X_control.shape[0]))
def _weights(V): def _weights(V):
weights = zeros((C, N)) weights = zeros((N0, N1))
A = X_control.dot(2*V).dot(X_control.T) + L2_PEN_W_mat # 5 A = X_control.dot(2*V).dot(X_control.T) + L2_PEN_W_mat # 5
B = X_treated.dot(2*V).dot(X_control.T).T # 6 B = X_treated.dot(2*V).dot(X_control.T).T # 6
b = linalg.solve(A,B) b = linalg.solve(A,B)
if intercept: if intercept:
weights = b + 1/C weights = b + 1/N0
else: else:
weights = b weights = b
return weights, A, B,b return weights, A, B,b
@ -154,7 +154,7 @@ def ct_v_matrix(X,
# _do_gradient_check() # _do_gradient_check()
if intercept: if intercept:
# not above, b/c Y_treated was already offset at the start # not above, b/c Y_treated was already offset at the start
weights += 1/C weights += 1/N0
return weights, v_mat, ts_score, ts_loss, L2_PEN_W, opt return weights, v_mat, ts_score, ts_loss, L2_PEN_W, opt
def ct_weights(X, V, L2_PEN_W, treated_units = None, control_units = None, intercept = True): def ct_weights(X, V, L2_PEN_W, treated_units = None, control_units = None, intercept = True):
@ -166,7 +166,7 @@ def ct_weights(X, V, L2_PEN_W, treated_units = None, control_units = None, inter
if control_units is None: if control_units is None:
control_units = list(set(range(X.shape[0])) - set(treated_units)) control_units = list(set(range(X.shape[0])) - set(treated_units))
C = len(control_units) N0 = len(control_units)
X_treated = X[treated_units,:] X_treated = X[treated_units,:]
X_control = X[control_units,:] X_control = X[control_units,:]
@ -175,7 +175,7 @@ def ct_weights(X, V, L2_PEN_W, treated_units = None, control_units = None, inter
weights = linalg.solve(A,B) weights = linalg.solve(A,B)
if intercept: if intercept:
weights += 1/C weights += 1/N0
return weights.T return weights.T
def ct_score(Y, X, V, L2_PEN_W, LAMBDA = 0, treated_units = None, control_units = None,**kwargs): def ct_score(Y, X, V, L2_PEN_W, LAMBDA = 0, treated_units = None, control_units = None,**kwargs):

Просмотреть файл

@ -105,11 +105,11 @@ def fold_v_matrix(X,
(i, len(treated_units),len(split[0]), len(split[1]), )) (i, len(treated_units),len(split[0]), len(split[1]), ))
# CONSTANTS # CONSTANTS
C, N, K = len(control_units), len(treated_units), X.shape[1] N0, N1, K = len(control_units), len(treated_units), X.shape[1]
if start is None: if start is None:
start = zeros(K) # formerly: .1 * ones(K) start = zeros(K) # formerly: .1 * ones(K)
assert N > 0, "No control units" assert N1 > 0, "No control units"
assert C > 0, "No treated units" assert N0 > 0, "No treated units"
assert K > 0, "variables to fit (X.shape[1] == 0)" assert K > 0, "variables to fit (X.shape[1] == 0)"
# CREATE THE INDEX THAT INDICATES THE ELIGIBLE CONTROLS FOR EACH TREATED UNIT # CREATE THE INDEX THAT INDICATES THE ELIGIBLE CONTROLS FOR EACH TREATED UNIT
@ -131,9 +131,9 @@ def fold_v_matrix(X,
Y_control = Y[control_units,:] Y_control = Y[control_units,:]
# INITIALIZE PARTIAL DERIVATIVES # INITIALIZE PARTIAL DERIVATIVES
dA_dV_ki = [ [None,] *N for i in range(K)] dA_dV_ki = [ [None,] *N1 for i in range(K)]
dB_dV_ki = [ [None,] *N for i in range(K)] dB_dV_ki = [ [None,] *N1 for i in range(K)]
b_i = [None,] *N b_i = [None,] *N1
for i, k in itertools.product(range(len(splits)), range(K)): # TREATED unit i, moment k for i, k in itertools.product(range(len(splits)), range(K)): # TREATED unit i, moment k
_, test = splits[i] _, test = splits[i]
Xc = X[in_controls[i], : ] Xc = X[in_controls[i], : ]
@ -160,7 +160,7 @@ def fold_v_matrix(X,
weights, A, _ = _weights(dv) weights, A, _ = _weights(dv)
Ey = (Y_treated - weights.T.dot(Y_control)).getA() Ey = (Y_treated - weights.T.dot(Y_control)).getA()
dGamma0_dV_term2 = zeros(K) dGamma0_dV_term2 = zeros(K)
dPI_dV = zeros((C, N)) dPI_dV = zeros((N0, N1))
for k in range(K): for k in range(K):
if verbose: # for large sample sizes, linalg.solve is a huge bottle neck, if verbose: # for large sample sizes, linalg.solve is a huge bottle neck,
print("Calculating gradient, for moment %s of %s" % (k ,K,)) print("Calculating gradient, for moment %s of %s" % (k ,K,))
@ -176,7 +176,7 @@ def fold_v_matrix(X,
return LAMBDA - 2 * dGamma0_dV_term2 return LAMBDA - 2 * dGamma0_dV_term2
def _weights(V): def _weights(V):
weights = zeros((C, N)) weights = zeros((N0, N1))
A = X.dot(V + V.T).dot(X.T) + 2 * L2_PEN_W * diag(ones(X.shape[0])) # 5 A = X.dot(V + V.T).dot(X.T) + 2 * L2_PEN_W * diag(ones(X.shape[0])) # 5
B = X.dot(V + V.T).dot(X.T).T # 6 B = X.dot(V + V.T).dot(X.T).T # 6
for i, (_,test) in enumerate(splits): for i, (_,test) in enumerate(splits):
@ -235,7 +235,7 @@ def fold_weights(X,
control_units = list(set(range(X.shape[0])) - set(treated_units)) control_units = list(set(range(X.shape[0])) - set(treated_units))
control_units = np.array(control_units) control_units = np.array(control_units)
treated_units = np.array(treated_units) treated_units = np.array(treated_units)
[C, N] = [len(control_units), len(treated_units)] [N0, N1] = [len(control_units), len(treated_units)]
splits = grad_splits # for readability... splits = grad_splits # for readability...
try: try:
@ -249,7 +249,7 @@ def fold_weights(X,
in_controls = [list(set(control_units) - set(treated_units[test])) for _,test in splits] in_controls = [list(set(control_units) - set(treated_units[test])) for _,test in splits]
in_controls2 = [np.ix_(i,i) for i in in_controls] # this is a much faster alternative to A[:,index][index,:] in_controls2 = [np.ix_(i,i) for i in in_controls] # this is a much faster alternative to A[:,index][index,:]
# index of the controls relative to the rows of the outgoing C x N matrix of weights # index of the controls relative to the rows of the outgoing N0 x N1 matrix of weights
ctrl_rng = np.arange(len(control_units)) ctrl_rng = np.arange(len(control_units))
out_controls = [ctrl_rng[np.logical_not(np.isin(control_units, treated_units[test]))] for _,test in splits] out_controls = [ctrl_rng[np.logical_not(np.isin(control_units, treated_units[test]))] for _,test in splits]
# this is non-trivial when there control units are also being predicted: # this is non-trivial when there control units are also being predicted:
@ -258,7 +258,7 @@ def fold_weights(X,
# constants for indexing # constants for indexing
# X_control = X[control_units,:] # X_control = X[control_units,:]
# X_treat = X[treated_units,:] # X_treat = X[treated_units,:]
weights = zeros((C, N)) weights = zeros((N0, N1))
A = X.dot(V + V.T).dot(X.T) + 2 * L2_PEN_W * diag(ones(X.shape[0])) # 5 A = X.dot(V + V.T).dot(X.T) + 2 * L2_PEN_W * diag(ones(X.shape[0])) # 5
B = X.dot(V + V.T).dot(X.T).T # 6 B = X.dot(V + V.T).dot(X.T).T # 6

Просмотреть файл

@ -7,19 +7,19 @@ import warnings
from RidgeSC.optimizers.cd_line_search import cdl_search from RidgeSC.optimizers.cd_line_search import cdl_search
warnings.filterwarnings('ignore') warnings.filterwarnings('ignore')
def complete_treated_control_list(C_N, treated_units = None, control_units = None): def complete_treated_control_list(N, treated_units = None, control_units = None):
if treated_units is None: if treated_units is None:
if control_units is None: if control_units is None:
# both not provided, include all samples as both treat and control unit. # both not provided, include all samples as both treat and control unit.
control_units = list(range(C_N)) control_units = list(range(N))
treated_units = control_units treated_units = control_units
else: else:
# Set the treated units to the not-control units # Set the treated units to the not-control units
treated_units = list(set(range(C_N)) - set(control_units)) treated_units = list(set(range(N)) - set(control_units))
else: else:
if control_units is None: if control_units is None:
# Set the control units to the not-treated units # Set the control units to the not-treated units
control_units = list(set(range(C_N)) - set(treated_units)) control_units = list(set(range(N)) - set(treated_units))
return(treated_units, control_units) return(treated_units, control_units)
def loo_v_matrix(X, def loo_v_matrix(X,
@ -90,11 +90,11 @@ def loo_v_matrix(X,
assert not non_neg_weights, "Bounds not implemented" assert not non_neg_weights, "Bounds not implemented"
# CONSTANTS # CONSTANTS
C, N, K = len(control_units), len(treated_units), X.shape[1] N0, N1, K = len(control_units), len(treated_units), X.shape[1]
if start is None: if start is None:
start = zeros(K) # formerly: .1 * ones(K) start = zeros(K) # formerly: .1 * ones(K)
assert N > 0, "No control units" assert N1 > 0, "No control units"
assert C > 0, "No treated units" assert N0 > 0, "No treated units"
assert K > 0, "variables to fit (X.shape[1] == 0)" assert K > 0, "variables to fit (X.shape[1] == 0)"
# CREATE THE INDEX THAT INDICATES THE ELIGIBLE CONTROLS FOR EACH TREATED UNIT # CREATE THE INDEX THAT INDICATES THE ELIGIBLE CONTROLS FOR EACH TREATED UNIT
@ -117,10 +117,10 @@ def loo_v_matrix(X,
# only used by step-down method: X_control = X[control_units,:] # only used by step-down method: X_control = X[control_units,:]
# INITIALIZE PARTIAL DERIVATIVES # INITIALIZE PARTIAL DERIVATIVES
dA_dV_ki = [ [None,] *N for i in range(K)] dA_dV_ki = [ [None,] *N1 for i in range(K)]
dB_dV_ki = [ [None,] *N for i in range(K)] dB_dV_ki = [ [None,] *N1 for i in range(K)]
b_i = [None,] *N b_i = [None,] *N1
for i, k in itertools.product(range(N), range(K)): # TREATED unit i, moment k for i, k in itertools.product(range(N1), range(K)): # TREATED unit i, moment k
Xc = X[in_controls[i], : ] Xc = X[in_controls[i], : ]
Xt = X[treated_units[i], : ] Xt = X[treated_units[i], : ]
dA_dV_ki [k][i] = Xc[:, k ].dot(Xc[:, k ].T) + Xc[:, k ].dot(Xc[:, k ].T) # 8 dA_dV_ki [k][i] = Xc[:, k ].dot(Xc[:, k ].T) + Xc[:, k ].dot(Xc[:, k ].T) # 8
@ -148,7 +148,7 @@ def loo_v_matrix(X,
weights, A, _ = _weights(dv) weights, A, _ = _weights(dv)
Ey = (Y_treated - weights.T.dot(Y_control)).getA() Ey = (Y_treated - weights.T.dot(Y_control)).getA()
dGamma0_dV_term2 = zeros(K) dGamma0_dV_term2 = zeros(K)
dPI_dV = zeros((C, N)) dPI_dV = zeros((N0, N1))
# if solve_method == "step-down": Ai_cache = all_subinverses(A) # if solve_method == "step-down": Ai_cache = all_subinverses(A)
for k in range(K): for k in range(K):
if verbose: # for large sample sizes, linalg.solve is a huge bottle neck, if verbose: # for large sample sizes, linalg.solve is a huge bottle neck,
@ -171,7 +171,7 @@ def loo_v_matrix(X,
return LAMBDA - 2 * dGamma0_dV_term2 return LAMBDA - 2 * dGamma0_dV_term2
def _weights(V): def _weights(V):
weights = zeros((C, N)) weights = zeros((N0, N1))
if solve_method == "step-down": if solve_method == "step-down":
raise NotImplementedError("The solve_method 'step-down' is currently not implemented") raise NotImplementedError("The solve_method 'step-down' is currently not implemented")
# A = X_control.dot(V + V.T).dot(X_control.T) + 2 * L2_PEN_W * diag(ones(X_control.shape[0])) # 5 # A = X_control.dot(V + V.T).dot(X_control.T) + 2 * L2_PEN_W * diag(ones(X_control.shape[0])) # 5
@ -227,14 +227,14 @@ def loo_weights(X, V, L2_PEN_W, treated_units = None, control_units = None, inte
treated_units, control_units = complete_treated_control_list(X.shape[0], treated_units, control_units) treated_units, control_units = complete_treated_control_list(X.shape[0], treated_units, control_units)
control_units = np.array(control_units) control_units = np.array(control_units)
treated_units = np.array(treated_units) treated_units = np.array(treated_units)
[C, N] = [len(control_units), len(treated_units)] [N0, N1] = [len(control_units), len(treated_units)]
# index with positions of the controls relative to the incoming data # index with positions of the controls relative to the incoming data
in_controls = [list(set(control_units) - set([trt_unit])) for trt_unit in treated_units] in_controls = [list(set(control_units) - set([trt_unit])) for trt_unit in treated_units]
in_controls2 = [np.ix_(i,i) for i in in_controls] # this is a much faster alternative to A[:,index][index,:] in_controls2 = [np.ix_(i,i) for i in in_controls] # this is a much faster alternative to A[:,index][index,:]
# index of the controls relative to the rows of the outgoing C x N matrix of weights # index of the controls relative to the rows of the outgoing N0 x N1 matrix of weights
ctrl_rng = np.arange(len(control_units)) ctrl_rng = np.arange(len(control_units))
out_controls = [ctrl_rng[control_units != trt_unit] for trt_unit in treated_units] out_controls = [ctrl_rng[control_units != trt_unit] for trt_unit in treated_units]
# this is non-trivial when there control units are also being predicted: # this is non-trivial when there control units are also being predicted:
@ -243,7 +243,7 @@ def loo_weights(X, V, L2_PEN_W, treated_units = None, control_units = None, inte
# constants for indexing # constants for indexing
# > only used by the step-down method (currently not implemented) X_control = X[control_units,:] # > only used by the step-down method (currently not implemented) X_control = X[control_units,:]
# > only used by the step-down method (currently not implemented) X_treat = X[treated_units,:] # > only used by the step-down method (currently not implemented) X_treat = X[treated_units,:]
weights = zeros((C, N)) weights = zeros((N0, N1))
if solve_method == "step-down": if solve_method == "step-down":
raise NotImplementedError("The solve_method 'step-down' is currently not implemented") raise NotImplementedError("The solve_method 'step-down' is currently not implemented")

Просмотреть файл

@ -3,14 +3,14 @@ import numpy as np
import random import random
import RidgeSC as SC import RidgeSC as SC
def ge_dgp(C,N,T0,T1,K,S,R,groups,group_scale,beta_scale,confounders_scale,model= "full"): def ge_dgp(N0,N1,T0,T1,K,S,R,groups,group_scale,beta_scale,confounders_scale,model= "full"):
""" """
From example-code.py From example-code.py
""" """
# COVARIATE EFFECTS # COVARIATE EFFECTS
X_control = np.matrix(np.random.normal(0,1,((C)*groups, K+S+R))) X_control = np.matrix(np.random.normal(0,1,((N0)*groups, K+S+R)))
X_treated = np.matrix(np.random.normal(0,1,((N)*groups, K+S+R))) X_treated = np.matrix(np.random.normal(0,1,((N1)*groups, K+S+R)))
# CAUSAL # CAUSAL
b_cause = np.random.exponential(1,K) b_cause = np.random.exponential(1,K)
@ -26,19 +26,19 @@ def ge_dgp(C,N,T0,T1,K,S,R,groups,group_scale,beta_scale,confounders_scale,model
# GROUP EFFECTS (hidden) # GROUP EFFECTS (hidden)
Y_pre_group_effects = np.random.normal(0,group_scale,(groups,T0)) Y_pre_group_effects = np.random.normal(0,group_scale,(groups,T0))
Y_pre_ge_control = Y_pre_group_effects[np.repeat(np.arange(groups),C)] Y_pre_ge_control = Y_pre_group_effects[np.repeat(np.arange(groups),N0)]
Y_pre_ge_treated = Y_pre_group_effects[np.repeat(np.arange(groups),N)] Y_pre_ge_treated = Y_pre_group_effects[np.repeat(np.arange(groups),N1)]
Y_post_group_effects = np.random.normal(0,group_scale,(groups,T1)) Y_post_group_effects = np.random.normal(0,group_scale,(groups,T1))
Y_post_ge_control = Y_post_group_effects[np.repeat(np.arange(groups),C)] Y_post_ge_control = Y_post_group_effects[np.repeat(np.arange(groups),N0)]
Y_post_ge_treated = Y_post_group_effects[np.repeat(np.arange(groups),N)] Y_post_ge_treated = Y_post_group_effects[np.repeat(np.arange(groups),N1)]
# RANDOM ERRORS # RANDOM ERRORS
Y_pre_err_control = np.matrix(np.random.random( ( C*groups, T0, ) )) Y_pre_err_control = np.matrix(np.random.random( ( N0*groups, T0, ) ))
Y_pre_err_treated = np.matrix(np.random.random( ( N*groups, T0, ) )) Y_pre_err_treated = np.matrix(np.random.random( ( N1*groups, T0, ) ))
Y_post_err_control = np.matrix(np.random.random( ( C*groups, T1, ) )) Y_post_err_control = np.matrix(np.random.random( ( N0*groups, T1, ) ))
Y_post_err_treated = np.matrix(np.random.random( ( N*groups, T1, ) )) Y_post_err_treated = np.matrix(np.random.random( ( N1*groups, T1, ) ))
# THE DATA GENERATING PROCESS # THE DATA GENERATING PROCESS
@ -78,11 +78,11 @@ def ge_dgp(C,N,T0,T1,K,S,R,groups,group_scale,beta_scale,confounders_scale,model
return X_control, X_treated, Y_pre_control, Y_pre_treated, Y_post_control, Y_post_treated return X_control, X_treated, Y_pre_control, Y_pre_treated, Y_post_control, Y_post_treated
def factor_dgp(C,N,T0,T1,K,R,F): def factor_dgp(N0,N1,T0,T1,K,R,F):
# COVARIATE EFFECTS # COVARIATE EFFECTS
X_control = np.matrix(np.random.normal(0,1,((C), K+R))) X_control = np.matrix(np.random.normal(0,1,((N0), K+R)))
X_treated = np.matrix(np.random.normal(0,1,((N), K+R))) X_treated = np.matrix(np.random.normal(0,1,((N1), K+R)))
b_cause = np.random.exponential(1,K) b_cause = np.random.exponential(1,K)
b_cause *= b_cause.max() b_cause *= b_cause.max()
@ -90,8 +90,8 @@ def factor_dgp(C,N,T0,T1,K,R,F):
beta = np.matrix(np.concatenate( ( b_cause , np.zeros(R)) ) ).T beta = np.matrix(np.concatenate( ( b_cause , np.zeros(R)) ) ).T
# FACTORS # FACTORS
Loadings_control = np.matrix(np.random.normal(0,1,((C), F))) Loadings_control = np.matrix(np.random.normal(0,1,((N0), F)))
Loadings_treated = np.matrix(np.random.normal(0,1,((N), F))) Loadings_treated = np.matrix(np.random.normal(0,1,((N1), F)))
Factors_pre = np.matrix(np.random.normal(0,1,((F), T0))) Factors_pre = np.matrix(np.random.normal(0,1,((F), T0)))
Factors_post = np.matrix(np.random.normal(0,1,((F), T1))) Factors_post = np.matrix(np.random.normal(0,1,((F), T1)))
@ -99,10 +99,10 @@ def factor_dgp(C,N,T0,T1,K,R,F):
# RANDOM ERRORS # RANDOM ERRORS
Y_pre_err_control = np.matrix(np.random.random( ( C, T0, ) )) Y_pre_err_control = np.matrix(np.random.random( ( N0, T0, ) ))
Y_pre_err_treated = np.matrix(np.random.random( ( N, T0, ) )) Y_pre_err_treated = np.matrix(np.random.random( ( N1, T0, ) ))
Y_post_err_control = np.matrix(np.random.random( ( C, T1, ) )) Y_post_err_control = np.matrix(np.random.random( ( N0, T1, ) ))
Y_post_err_treated = np.matrix(np.random.random( ( N, T1, ) )) Y_post_err_treated = np.matrix(np.random.random( ( N1, T1, ) ))
# OUTCOMES # OUTCOMES
Y_pre_control = X_control.dot(beta) + Loadings_control.dot(Factors_pre) + Y_pre_err_control Y_pre_control = X_control.dot(beta) + Loadings_control.dot(Factors_pre) + Y_pre_err_control
@ -116,10 +116,10 @@ def factor_dgp(C,N,T0,T1,K,R,F):
class TestDGPs(unittest.TestCase): class TestDGPs(unittest.TestCase):
def testFactorDGP(self): def testFactorDGP(self):
N, C = 1,100 N1, N0 = 1,100
T0,T1 = 20, 10 T0,T1 = 20, 10
K, R, F = 5, 5, 5 K, R, F = 5, 5, 5
X_control, X_treated, Y_pre_control, Y_pre_treated, Y_post_control, Y_post_treated = factor_dgp(C,N,T0,T1,K,R,F) X_control, X_treated, Y_pre_control, Y_pre_treated, Y_post_control, Y_post_treated = factor_dgp(N0,N1,T0,T1,K,R,F)
Y_post = np.vstack( (Y_post_treated,Y_post_control, ) ) Y_post = np.vstack( (Y_post_treated,Y_post_control, ) )
X = np.vstack( (X_treated, X_control, ) ) X = np.vstack( (X_treated, X_control, ) )

Просмотреть файл

@ -16,7 +16,7 @@ import numpy as np
import random import random
# def setup(C,N,T,K,g,gs,bs ): # controls (C), treated units (N) , time periods (T), Predictors (K), groups (g), g-scale, b-scale # def setup(N0,N1,T,K,g,gs,bs ): # controls (N0), treated units (N1) , time periods (T), Predictors (K), groups (g), g-scale, b-scale
if __name__ == "__main__": if __name__ == "__main__":
@ -32,7 +32,7 @@ if __name__ == "__main__":
np.random.seed(10101) np.random.seed(10101)
# Controls (per group), Treated (per group), pre-intervention Time points, post intervention time-periods # Controls (per group), Treated (per group), pre-intervention Time points, post intervention time-periods
C,N,T0,T1 = 5,5,4,4 N0,N1,T0,T1 = 5,5,4,4
# Causal Covariates, Confounders , Random Covariates # Causal Covariates, Confounders , Random Covariates
K,S,R = 7,4,5 K,S,R = 7,4,5
# Number of Groups, Scale of the Group Effect, (groups make the time series correlated for reasons other than the observed covariates...) # Number of Groups, Scale of the Group Effect, (groups make the time series correlated for reasons other than the observed covariates...)
@ -41,7 +41,7 @@ if __name__ == "__main__":
beta_scale,confounders_scale = 4,1 beta_scale,confounders_scale = 4,1
X_control, X_treated, Y_pre_control, Y_pre_treated, \ X_control, X_treated, Y_pre_control, Y_pre_treated, \
Y_post_control, Y_post_treated = ge_dgp(C,N,T0,T1,K,S,R,groups,group_scale,beta_scale,confounders_scale,model= "full") Y_post_control, Y_post_treated = ge_dgp(N0,N1,T0,T1,K,S,R,groups,group_scale,beta_scale,confounders_scale,model= "full")
# JOIN THE TREAT AND CONTROL DATA # JOIN THE TREAT AND CONTROL DATA
X = np.vstack( (X_control, X_treated,) ) X = np.vstack( (X_control, X_treated,) )
@ -53,8 +53,8 @@ if __name__ == "__main__":
X_and_Y_pre_control = np.hstack( ( X_control, Y_pre_control,) ) X_and_Y_pre_control = np.hstack( ( X_control, Y_pre_control,) )
# IDENTIFIERS FOR TREAT AND CONTROL UNITS # IDENTIFIERS FOR TREAT AND CONTROL UNITS
# control_units = np.arange( C * groups ) # control_units = np.arange( N0 * groups )
# treated_units = np.arange( N * groups ) + C # treated_units = np.arange( N1 * groups ) + N0
# ------------------------------------------------------------ # ------------------------------------------------------------
# ------------------------------------------------------------ # ------------------------------------------------------------