initial commit
This commit is contained in:
Родитель
be426e7bb6
Коммит
95b9ad35a6
|
@ -0,0 +1,21 @@
|
|||
name: Rust
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ master ]
|
||||
pull_request:
|
||||
branches: [ master ]
|
||||
|
||||
jobs:
|
||||
build:
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Install
|
||||
run: rustup default nightly
|
||||
- name: Build
|
||||
run: cargo build --verbose
|
||||
- name: Run tests
|
||||
run: cargo test --verbose
|
|
@ -0,0 +1,12 @@
|
|||
# Generated by Cargo
|
||||
# will have compiled files and executables
|
||||
/target/
|
||||
|
||||
# Remove Cargo.lock from gitignore if creating an executable, leave it for libraries
|
||||
# More information here https://doc.rust-lang.org/cargo/guide/cargo-toml-vs-cargo-lock.html
|
||||
Cargo.lock
|
||||
|
||||
# These are backup files generated by rustfmt
|
||||
**/*.rs.bk
|
||||
|
||||
*.txt
|
|
@ -0,0 +1,12 @@
|
|||
This project welcomes contributions and suggestions. Most contributions require you to
|
||||
agree to a Contributor License Agreement (CLA) declaring that you have the right to,
|
||||
and actually do, grant us the rights to use your contribution. For details, visit
|
||||
https://cla.microsoft.com.
|
||||
|
||||
When you submit a pull request, a CLA-bot will automatically determine whether you need
|
||||
to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the
|
||||
instructions provided by the bot. You will only need to do this once across all repositories using our CLA.
|
||||
|
||||
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
|
||||
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/)
|
||||
or contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
|
|
@ -0,0 +1,64 @@
|
|||
[package]
|
||||
name = "spartan"
|
||||
version = "0.1.0"
|
||||
authors = ["Srinath Setty <srinath@microsoft.com>"]
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
curve25519-dalek = { version = "2", features = ["serde"]}
|
||||
merlin = "2.0.0"
|
||||
rand = "0.7.3"
|
||||
digest = "0.8.1"
|
||||
sha3 = "0.8.2"
|
||||
byteorder = "1.3.4"
|
||||
rayon = "1.3.0"
|
||||
serde = { version = "1.0.106", features = ["derive"] }
|
||||
bincode = "1.2.1"
|
||||
subtle = { version = "^2.2.2", default-features = false }
|
||||
rand_core = { version = "0.5", default-features = false }
|
||||
zeroize = { version = "1", default-features = false }
|
||||
itertools = "0.9.0"
|
||||
colored = "1.9.3"
|
||||
flate2 = "1.0.14"
|
||||
|
||||
[dev-dependencies]
|
||||
criterion = "0.3.1"
|
||||
|
||||
[lib]
|
||||
name = "libspartan"
|
||||
path = "src/lib.rs"
|
||||
|
||||
[[bin]]
|
||||
name = "profiler"
|
||||
path = "src/profiler.rs"
|
||||
|
||||
[[bench]]
|
||||
name = "commitments"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "dotproduct"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "polycommit"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "r1csproof"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "spartan"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "sumcheck"
|
||||
harness = false
|
||||
|
||||
[features]
|
||||
simd_backend = ["curve25519-dalek/simd_backend"]
|
||||
rayon_par = []
|
||||
profile = []
|
||||
|
||||
default = ["simd_backend"]
|
|
@ -0,0 +1,121 @@
|
|||
This repository includes the following third-party open-source code.
|
||||
|
||||
* The code in scalar_25519.rs is derived from [bls12-381](https://github.com/zkcrypto/bls12_381).
|
||||
Specifically, from [src/bls12_381/scalar.rs](https://github.com/zkcrypto/bls12_381/blob/master/src/scalar.rs) and [src/bls12_381/util.rs](https://github.com/zkcrypto/bls12_381/blob/master/src/util.rs), which has the following copyright and license.
|
||||
|
||||
Permission is hereby granted, free of charge, to any
|
||||
person obtaining a copy of this software and associated
|
||||
documentation files (the "Software"), to deal in the
|
||||
Software without restriction, including without
|
||||
limitation the rights to use, copy, modify, merge,
|
||||
publish, distribute, sublicense, and/or sell copies of
|
||||
the Software, and to permit persons to whom the Software
|
||||
is furnished to do so, subject to the following
|
||||
conditions:
|
||||
|
||||
The above copyright notice and this permission notice
|
||||
shall be included in all copies or substantial portions
|
||||
of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
|
||||
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
|
||||
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
|
||||
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
|
||||
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
||||
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
|
||||
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
DEALINGS IN THE SOFTWARE.
|
||||
|
||||
|
||||
* The invert and batch_invert methods in src/scalar_25519.rs is from [curve25519-dalek](https://github.com/dalek-cryptography/curve25519-dalek), which has the following copyright and license.
|
||||
|
||||
Copyright (c) 2016-2019 Isis Agora Lovecruft, Henry de Valence. All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
1. Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
2. Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
3. Neither the name of the copyright holder nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
||||
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
||||
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
|
||||
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
========================================================================
|
||||
|
||||
Portions of curve25519-dalek were originally derived from Adam Langley's
|
||||
Go ed25519 implementation, found at <https://github.com/agl/ed25519/>,
|
||||
under the following licence:
|
||||
|
||||
========================================================================
|
||||
|
||||
Copyright (c) 2012 The Go Authors. All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
* Neither the name of Google Inc. nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
||||
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
||||
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
||||
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
|
||||
* The bullet.rs is derived from [bulletproofs](https://github.com/dalek-cryptography/bulletproofs/), which has the following license:
|
||||
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2018 Chain, Inc.
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
49
README.md
49
README.md
|
@ -1,14 +1,35 @@
|
|||
|
||||
# Contributing
|
||||
|
||||
This project welcomes contributions and suggestions. Most contributions require you to agree to a
|
||||
Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
|
||||
the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.
|
||||
|
||||
When you submit a pull request, a CLA bot will automatically determine whether you need to provide
|
||||
a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions
|
||||
provided by the bot. You will only need to do this once across all repos using our CLA.
|
||||
|
||||
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
|
||||
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
|
||||
contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
|
||||
# Spartan: High-speed zkSNARKs without trusted setup
|
||||
|
||||
![Rust](https://github.com/microsoft/Spartan/workflows/Rust/badge.svg)
|
||||
|
||||
Spartan is a research project to design high-speed zero-knowledge proof systems, a cryptographic protocol that enables a prover to prove a mathematical statement (e.g., that a given program was executed correctly) without revealing anything besides the validity of the statement.
|
||||
|
||||
The current repository includes a library that implements
|
||||
a zero-knowledge succinct non-interactive arguments of knowledge (zkSNARKs), a type of zero-knowledge proof system with short proofs and verification times. Unlike many other zkSNARKs, Spartan does not require a trusted setup and its security relies on the hardness of computing discrete logarithms (a well-studied assumption). The scheme is described in our [paper](https://eprint.iacr.org/2019/550).
|
||||
|
||||
## Building libspartan
|
||||
cargo build
|
||||
# On a machine that supports avx2 or ifma instructions:
|
||||
export RUSTFLAGS="-C target_cpu=native"
|
||||
cargo build --features "simd_backend" --release
|
||||
|
||||
## Performance
|
||||
cargo build
|
||||
# On a machine that supports avx2 or ifma instructions:
|
||||
export RUSTFLAGS="-C target_cpu=native"
|
||||
cargo build --features "simd_backend,profile" --release
|
||||
./target/release/profiler
|
||||
|
||||
cargo bench
|
||||
# On a machine that supports avx2 or ifma instructions:
|
||||
export RUSTFLAGS="-C target_cpu=native"
|
||||
cargo bench --features "simd_backend"
|
||||
|
||||
|
||||
## LICENSE
|
||||
|
||||
See [LICENSE](./LICENSE)
|
||||
|
||||
## Contributing
|
||||
|
||||
See [CONTRIBUTING](./CONTRIBUTING.md)
|
||||
|
|
|
@ -0,0 +1,48 @@
|
|||
extern crate byteorder;
|
||||
extern crate core;
|
||||
extern crate criterion;
|
||||
extern crate curve25519_dalek;
|
||||
extern crate digest;
|
||||
extern crate libspartan;
|
||||
extern crate merlin;
|
||||
extern crate rand;
|
||||
extern crate sha3;
|
||||
|
||||
use libspartan::commitments::{Commitments, MultiCommitGens};
|
||||
use libspartan::math::Math;
|
||||
use libspartan::scalar::Scalar;
|
||||
use rand::rngs::OsRng;
|
||||
|
||||
use criterion::*;
|
||||
|
||||
fn commitment_benchmark(c: &mut Criterion) {
|
||||
let mut rng = OsRng;
|
||||
for &s in [20].iter() {
|
||||
let plot_config = PlotConfiguration::default().summary_scale(AxisScale::Logarithmic);
|
||||
let mut group = c.benchmark_group("commitment_bools");
|
||||
group.plot_config(plot_config);
|
||||
|
||||
let n = (s as usize).pow2();
|
||||
let gens = MultiCommitGens::new(n, b"test-m");
|
||||
let blind = Scalar::random(&mut rng);
|
||||
let vec: Vec<bool> = vec![true; n];
|
||||
let name = format!("commitment_bools_{}", n);
|
||||
group.bench_function(&name, move |b| {
|
||||
b.iter(|| vec.commit(black_box(&blind), black_box(&gens)));
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
}
|
||||
|
||||
fn set_duration() -> Criterion {
|
||||
Criterion::default().sample_size(10)
|
||||
// .measurement_time(Duration::new(0, 50000000))
|
||||
}
|
||||
|
||||
criterion_group! {
|
||||
name = benches_commitment;
|
||||
config = set_duration();
|
||||
targets = commitment_benchmark
|
||||
}
|
||||
|
||||
criterion_main!(benches_commitment);
|
|
@ -0,0 +1,86 @@
|
|||
extern crate byteorder;
|
||||
extern crate core;
|
||||
extern crate criterion;
|
||||
extern crate curve25519_dalek;
|
||||
extern crate digest;
|
||||
extern crate libspartan;
|
||||
extern crate merlin;
|
||||
extern crate rand;
|
||||
extern crate sha3;
|
||||
|
||||
use libspartan::math::Math;
|
||||
use libspartan::nizk::DotProductProof;
|
||||
use libspartan::scalar::Scalar;
|
||||
use libspartan::scalar::ScalarBytes;
|
||||
use rand::rngs::OsRng;
|
||||
|
||||
use criterion::*;
|
||||
|
||||
fn dotproduct_benchmark_dalek(c: &mut Criterion) {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
|
||||
for &s in [20].iter() {
|
||||
let plot_config = PlotConfiguration::default().summary_scale(AxisScale::Logarithmic);
|
||||
let mut group = c.benchmark_group("dotproduct_benchmark_dalek");
|
||||
group.plot_config(plot_config);
|
||||
|
||||
let n = (s as usize).pow2();
|
||||
let vec_a = (0..n)
|
||||
.map(|_i| ScalarBytes::random(&mut csprng))
|
||||
.collect::<Vec<ScalarBytes>>();
|
||||
let vec_b = (0..n)
|
||||
.map(|_i| ScalarBytes::random(&mut csprng))
|
||||
.collect::<Vec<ScalarBytes>>();
|
||||
|
||||
let name = format!("dotproduct_dalek_{}", n);
|
||||
group.bench_function(&name, move |b| {
|
||||
b.iter(|| compute_dotproduct(black_box(&vec_a), black_box(&vec_b)));
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
}
|
||||
|
||||
fn compute_dotproduct(a: &Vec<ScalarBytes>, b: &Vec<ScalarBytes>) -> ScalarBytes {
|
||||
let mut res = ScalarBytes::zero();
|
||||
for i in 0..a.len() {
|
||||
res = &res + &a[i] * &b[i];
|
||||
}
|
||||
res
|
||||
}
|
||||
|
||||
fn dotproduct_benchmark_opt(c: &mut Criterion) {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
|
||||
for &s in [20].iter() {
|
||||
let plot_config = PlotConfiguration::default().summary_scale(AxisScale::Logarithmic);
|
||||
let mut group = c.benchmark_group("dotproduct_benchmark_opt");
|
||||
group.plot_config(plot_config);
|
||||
|
||||
let n = (s as usize).pow2();
|
||||
let vec_a = (0..n)
|
||||
.map(|_i| Scalar::random(&mut csprng))
|
||||
.collect::<Vec<Scalar>>();
|
||||
let vec_b = (0..n)
|
||||
.map(|_i| Scalar::random(&mut csprng))
|
||||
.collect::<Vec<Scalar>>();
|
||||
|
||||
let name = format!("dotproduct_opt_{}", n);
|
||||
group.bench_function(&name, move |b| {
|
||||
b.iter(|| DotProductProof::compute_dotproduct(black_box(&vec_a), black_box(&vec_b)));
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
}
|
||||
|
||||
fn set_duration() -> Criterion {
|
||||
Criterion::default().sample_size(10)
|
||||
// .measurement_time(Duration::new(0, 50000000))
|
||||
}
|
||||
|
||||
criterion_group! {
|
||||
name = benches_dotproduct;
|
||||
config = set_duration();
|
||||
targets = dotproduct_benchmark_dalek, dotproduct_benchmark_opt
|
||||
}
|
||||
|
||||
criterion_main!(benches_dotproduct);
|
|
@ -0,0 +1,200 @@
|
|||
extern crate byteorder;
|
||||
extern crate core;
|
||||
extern crate criterion;
|
||||
extern crate digest;
|
||||
extern crate libspartan;
|
||||
extern crate merlin;
|
||||
extern crate rand;
|
||||
extern crate sha3;
|
||||
|
||||
use criterion::*;
|
||||
use libspartan::dense_mlpoly::{DensePolynomial, PolyCommitmentGens, PolyEvalProof};
|
||||
use libspartan::math::Math;
|
||||
use libspartan::scalar::Scalar;
|
||||
use libspartan::transcript::ProofTranscript;
|
||||
use merlin::Transcript;
|
||||
use rand::rngs::OsRng;
|
||||
|
||||
fn commit_benchmark(c: &mut Criterion) {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
|
||||
for &s in [4, 8, 12, 14, 16, 20].iter() {
|
||||
let plot_config = PlotConfiguration::default().summary_scale(AxisScale::Logarithmic);
|
||||
let mut group = c.benchmark_group("commit_benchmark");
|
||||
group.plot_config(plot_config);
|
||||
|
||||
let n = (s as usize).pow2();
|
||||
let m = n.square_root();
|
||||
let z = (0..n)
|
||||
.map(|_i| Scalar::random(&mut csprng))
|
||||
.collect::<Vec<Scalar>>();
|
||||
assert_eq!(m * m, z.len()); // check if Z's size if a perfect square
|
||||
|
||||
let poly = DensePolynomial::new(z);
|
||||
let gens = PolyCommitmentGens::new(s, b"test-m");
|
||||
let name = format!("polycommit_commit_{}", n);
|
||||
group.bench_function(&name, move |b| {
|
||||
b.iter(|| poly.commit(black_box(false), black_box(&gens), black_box(None)));
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
}
|
||||
|
||||
fn eval_benchmark(c: &mut Criterion) {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
|
||||
for &s in [4, 8, 12, 14, 16, 20].iter() {
|
||||
let plot_config = PlotConfiguration::default().summary_scale(AxisScale::Logarithmic);
|
||||
let mut group = c.benchmark_group("eval_benchmark");
|
||||
group.plot_config(plot_config);
|
||||
|
||||
let n = (s as usize).pow2();
|
||||
let m = n.square_root();
|
||||
let mut z: Vec<Scalar> = Vec::new();
|
||||
for _ in 0..n {
|
||||
z.push(Scalar::random(&mut csprng));
|
||||
}
|
||||
assert_eq!(m * m, z.len()); // check if Z's size if a perfect square
|
||||
|
||||
let poly = DensePolynomial::new(z);
|
||||
|
||||
let mut r: Vec<Scalar> = Vec::new();
|
||||
for _ in 0..s {
|
||||
r.push(Scalar::random(&mut csprng));
|
||||
}
|
||||
|
||||
let name = format!("polycommit_eval_{}", n);
|
||||
group.bench_function(&name, move |b| {
|
||||
b.iter(|| poly.evaluate(black_box(&r)));
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
}
|
||||
|
||||
fn evalproof_benchmark(c: &mut Criterion) {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
|
||||
for &s in [4, 8, 12, 14, 16, 20].iter() {
|
||||
let plot_config = PlotConfiguration::default().summary_scale(AxisScale::Logarithmic);
|
||||
let mut group = c.benchmark_group("evalproof_benchmark");
|
||||
group.plot_config(plot_config);
|
||||
|
||||
let n = (s as usize).pow2();
|
||||
let m = n.square_root();
|
||||
let mut z: Vec<Scalar> = Vec::new();
|
||||
for _ in 0..n {
|
||||
z.push(Scalar::random(&mut csprng));
|
||||
}
|
||||
assert_eq!(m * m, z.len()); // check if Z's size if a perfect square
|
||||
|
||||
let poly = DensePolynomial::new(z);
|
||||
|
||||
let gens = PolyCommitmentGens::new(s, b"test-m");
|
||||
|
||||
let mut r: Vec<Scalar> = Vec::new();
|
||||
for _ in 0..s {
|
||||
r.push(Scalar::random(&mut csprng));
|
||||
}
|
||||
|
||||
let eval = poly.evaluate(&r);
|
||||
|
||||
let name = format!("polycommit_evalproof_{}", n);
|
||||
group.bench_function(&name, move |b| {
|
||||
b.iter(|| {
|
||||
let mut random_tape = {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
let mut tape = Transcript::new(b"proof");
|
||||
tape.append_scalar(b"init_randomness", &Scalar::random(&mut csprng));
|
||||
tape
|
||||
};
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
PolyEvalProof::prove(
|
||||
black_box(&poly),
|
||||
black_box(None),
|
||||
black_box(&r),
|
||||
black_box(&eval),
|
||||
black_box(None),
|
||||
black_box(&gens),
|
||||
black_box(&mut prover_transcript),
|
||||
black_box(&mut random_tape),
|
||||
)
|
||||
});
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
}
|
||||
|
||||
fn evalproofverify_benchmark(c: &mut Criterion) {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
|
||||
for &s in [4, 8, 12, 14, 16, 20].iter() {
|
||||
let plot_config = PlotConfiguration::default().summary_scale(AxisScale::Logarithmic);
|
||||
let mut group = c.benchmark_group("evalproofverify_benchmark");
|
||||
group.plot_config(plot_config);
|
||||
|
||||
let n = s.pow2();
|
||||
let m = n.square_root();
|
||||
let mut z: Vec<Scalar> = Vec::new();
|
||||
for _ in 0..n {
|
||||
z.push(Scalar::random(&mut csprng));
|
||||
}
|
||||
assert_eq!(m * m, z.len()); // check if Z's size if a perfect square
|
||||
|
||||
let poly = DensePolynomial::new(z);
|
||||
let gens = PolyCommitmentGens::new(s, b"test-m");
|
||||
|
||||
let mut r: Vec<Scalar> = Vec::new();
|
||||
for _ in 0..s {
|
||||
r.push(Scalar::random(&mut csprng));
|
||||
}
|
||||
|
||||
let (poly_commitment, blinds) = poly.commit(false, &gens, None);
|
||||
let eval = poly.evaluate(&r);
|
||||
|
||||
let mut random_tape = {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
let mut tape = Transcript::new(b"proof");
|
||||
tape.append_scalar(b"init_randomness", &Scalar::random(&mut csprng));
|
||||
tape
|
||||
};
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
let (proof, c_zr) = PolyEvalProof::prove(
|
||||
black_box(&poly),
|
||||
black_box(Some(&blinds)),
|
||||
black_box(&r),
|
||||
black_box(&eval),
|
||||
black_box(None),
|
||||
black_box(&gens),
|
||||
black_box(&mut prover_transcript),
|
||||
black_box(&mut random_tape),
|
||||
);
|
||||
let name = format!("polycommit_evalproofverify_{}", n);
|
||||
group.bench_function(&name, move |b| {
|
||||
b.iter(|| {
|
||||
let mut verifier_transcript = Transcript::new(b"example");
|
||||
|
||||
proof.verify(
|
||||
black_box(&gens),
|
||||
black_box(&mut verifier_transcript),
|
||||
black_box(&r),
|
||||
black_box(&c_zr),
|
||||
black_box(&poly_commitment),
|
||||
)
|
||||
});
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
}
|
||||
|
||||
fn set_duration() -> Criterion {
|
||||
Criterion::default().sample_size(10)
|
||||
// .measurement_time(Duration::new(0, 50000000))
|
||||
}
|
||||
|
||||
criterion_group! {
|
||||
name = benches_polycommit;
|
||||
config = set_duration();
|
||||
targets = commit_benchmark, eval_benchmark, evalproof_benchmark, evalproofverify_benchmark
|
||||
}
|
||||
|
||||
criterion_main!(benches_polycommit);
|
|
@ -0,0 +1,123 @@
|
|||
extern crate byteorder;
|
||||
extern crate core;
|
||||
extern crate criterion;
|
||||
extern crate digest;
|
||||
extern crate libspartan;
|
||||
extern crate merlin;
|
||||
extern crate rand;
|
||||
extern crate sha3;
|
||||
|
||||
use libspartan::dense_mlpoly::EqPolynomial;
|
||||
use libspartan::math::Math;
|
||||
use libspartan::r1csinstance::R1CSInstance;
|
||||
use libspartan::r1csproof::{R1CSGens, R1CSProof};
|
||||
use libspartan::scalar::Scalar;
|
||||
use libspartan::transcript::ProofTranscript;
|
||||
use merlin::Transcript;
|
||||
use rand::rngs::OsRng;
|
||||
|
||||
use criterion::*;
|
||||
|
||||
fn prove_benchmark(c: &mut Criterion) {
|
||||
for &s in [10, 12, 16].iter() {
|
||||
let plot_config = PlotConfiguration::default().summary_scale(AxisScale::Logarithmic);
|
||||
let mut group = c.benchmark_group("r1cs_prove_benchmark");
|
||||
group.plot_config(plot_config);
|
||||
|
||||
let num_vars = s.pow2();
|
||||
let num_cons = num_vars;
|
||||
let num_inputs = 10;
|
||||
let (inst, vars, input) = R1CSInstance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
|
||||
let n = inst.get_num_vars();
|
||||
|
||||
let gens = R1CSGens::new(num_cons, num_vars, b"test-m");
|
||||
|
||||
let name = format!("r1cs_prove_{}", n);
|
||||
group.bench_function(&name, move |b| {
|
||||
b.iter(|| {
|
||||
let mut random_tape = {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
let mut tape = Transcript::new(b"proof");
|
||||
tape.append_scalar(b"init_randomness", &Scalar::random(&mut csprng));
|
||||
tape
|
||||
};
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
R1CSProof::prove(
|
||||
black_box(&inst),
|
||||
black_box(vars.clone()),
|
||||
black_box(&input),
|
||||
black_box(&gens),
|
||||
black_box(&mut prover_transcript),
|
||||
black_box(&mut random_tape),
|
||||
)
|
||||
});
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
}
|
||||
|
||||
fn verify_benchmark(c: &mut Criterion) {
|
||||
for &s in [10, 12, 16, 20].iter() {
|
||||
let plot_config = PlotConfiguration::default().summary_scale(AxisScale::Logarithmic);
|
||||
let mut group = c.benchmark_group("r1cs_verify_benchmark");
|
||||
group.plot_config(plot_config);
|
||||
|
||||
let num_vars = s.pow2();
|
||||
let num_cons = num_vars;
|
||||
let num_inputs = 10;
|
||||
let (inst, vars, input) = R1CSInstance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
|
||||
let n = inst.get_num_vars();
|
||||
let gens = R1CSGens::new(num_cons, num_vars, b"test-m");
|
||||
|
||||
let mut random_tape = {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
let mut tape = Transcript::new(b"proof");
|
||||
tape.append_scalar(b"init_randomness", &Scalar::random(&mut csprng));
|
||||
tape
|
||||
};
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
let (proof, rx, ry) = R1CSProof::prove(
|
||||
&inst,
|
||||
vars,
|
||||
&input,
|
||||
&gens,
|
||||
&mut prover_transcript,
|
||||
&mut random_tape,
|
||||
);
|
||||
|
||||
let eval_table_rx = EqPolynomial::new(rx.clone()).evals();
|
||||
let eval_table_ry = EqPolynomial::new(ry.clone()).evals();
|
||||
let inst_evals = inst.evaluate_with_tables(&eval_table_rx, &eval_table_ry);
|
||||
|
||||
let name = format!("r1cs_verify_{}", n);
|
||||
group.bench_function(&name, move |b| {
|
||||
b.iter(|| {
|
||||
let mut verifier_transcript = Transcript::new(b"example");
|
||||
assert!(proof
|
||||
.verify(
|
||||
black_box(num_vars),
|
||||
black_box(num_cons),
|
||||
black_box(&input),
|
||||
black_box(&inst_evals),
|
||||
black_box(&mut verifier_transcript),
|
||||
black_box(&gens)
|
||||
)
|
||||
.is_ok());
|
||||
});
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
}
|
||||
|
||||
fn set_duration() -> Criterion {
|
||||
Criterion::default().sample_size(10)
|
||||
// .measurement_time(Duration::new(0, 50000000))
|
||||
}
|
||||
|
||||
criterion_group! {
|
||||
name = benches_r1cs;
|
||||
config = set_duration();
|
||||
targets = prove_benchmark, verify_benchmark
|
||||
}
|
||||
|
||||
criterion_main!(benches_r1cs);
|
|
@ -0,0 +1,138 @@
|
|||
extern crate byteorder;
|
||||
extern crate core;
|
||||
extern crate criterion;
|
||||
extern crate digest;
|
||||
extern crate libspartan;
|
||||
extern crate merlin;
|
||||
extern crate rand;
|
||||
extern crate sha3;
|
||||
|
||||
use libspartan::math::Math;
|
||||
use libspartan::r1csinstance::{R1CSCommitmentGens, R1CSInstance};
|
||||
use libspartan::r1csproof::R1CSGens;
|
||||
use libspartan::spartan::{SpartanGens, SpartanProof};
|
||||
use merlin::Transcript;
|
||||
|
||||
use criterion::*;
|
||||
|
||||
fn encode_benchmark(c: &mut Criterion) {
|
||||
for &s in [10, 12, 16].iter() {
|
||||
let plot_config = PlotConfiguration::default().summary_scale(AxisScale::Logarithmic);
|
||||
let mut group = c.benchmark_group("spartan_encode_benchmark");
|
||||
group.plot_config(plot_config);
|
||||
|
||||
let num_vars = s.pow2();
|
||||
let num_cons = num_vars;
|
||||
let num_inputs = 10;
|
||||
let (inst, _vars, _input) =
|
||||
R1CSInstance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
|
||||
let n = inst.get_num_vars();
|
||||
let m = n.square_root();
|
||||
assert_eq!(n, m * m);
|
||||
let r1cs_size = inst.size();
|
||||
let gens_r1cs = R1CSCommitmentGens::new(&r1cs_size, b"gens_r1cs");
|
||||
|
||||
let name = format!("spartan_encode_{}", n);
|
||||
group.bench_function(&name, move |b| {
|
||||
b.iter(|| {
|
||||
SpartanProof::encode(black_box(&inst), black_box(&gens_r1cs));
|
||||
});
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
}
|
||||
|
||||
fn prove_benchmark(c: &mut Criterion) {
|
||||
for &s in [10, 12, 16].iter() {
|
||||
let plot_config = PlotConfiguration::default().summary_scale(AxisScale::Logarithmic);
|
||||
let mut group = c.benchmark_group("spartan_prove_benchmark");
|
||||
group.plot_config(plot_config);
|
||||
|
||||
let num_vars = s.pow2();
|
||||
let num_cons = num_vars;
|
||||
let num_inputs = 10;
|
||||
|
||||
let (inst, vars, input) = R1CSInstance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
|
||||
let n = inst.get_num_vars();
|
||||
|
||||
let r1cs_size = inst.size();
|
||||
let gens_r1cs_eval = R1CSCommitmentGens::new(&r1cs_size, b"gens_r1cs_eval");
|
||||
let gens_r1cs_sat = R1CSGens::new(num_cons, num_vars, b"gens_r1cs_sat");
|
||||
|
||||
// produce a proof of satisfiability
|
||||
let (_comm, decomm) = SpartanProof::encode(&inst, &gens_r1cs_eval);
|
||||
let gens = SpartanGens::new(gens_r1cs_sat, gens_r1cs_eval);
|
||||
|
||||
let name = format!("spartan_prove_{}", n);
|
||||
group.bench_function(&name, move |b| {
|
||||
b.iter(|| {
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
SpartanProof::prove(
|
||||
black_box(&inst),
|
||||
black_box(&decomm),
|
||||
black_box(vars.clone()),
|
||||
black_box(&input),
|
||||
black_box(&gens),
|
||||
black_box(&mut prover_transcript),
|
||||
);
|
||||
});
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
}
|
||||
|
||||
fn verify_benchmark(c: &mut Criterion) {
|
||||
for &s in [10, 12, 16].iter() {
|
||||
let plot_config = PlotConfiguration::default().summary_scale(AxisScale::Logarithmic);
|
||||
let mut group = c.benchmark_group("spartan_verify_benchmark");
|
||||
group.plot_config(plot_config);
|
||||
|
||||
let num_vars = s.pow2();
|
||||
let num_cons = num_vars;
|
||||
let num_inputs = 10;
|
||||
let (inst, vars, input) = R1CSInstance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
|
||||
let n = inst.get_num_vars();
|
||||
|
||||
let r1cs_size = inst.size();
|
||||
let gens_r1cs_eval = R1CSCommitmentGens::new(&r1cs_size, b"gens_r1cs_eval");
|
||||
|
||||
// create a commitment to R1CSInstance
|
||||
let (comm, decomm) = SpartanProof::encode(&inst, &gens_r1cs_eval);
|
||||
|
||||
let gens_r1cs_sat = R1CSGens::new(num_cons, num_vars, b"gens_r1cs_sat");
|
||||
let gens = SpartanGens::new(gens_r1cs_sat, gens_r1cs_eval);
|
||||
|
||||
// produce a proof of satisfiability
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
let proof = SpartanProof::prove(&inst, &decomm, vars, &input, &gens, &mut prover_transcript);
|
||||
|
||||
let name = format!("spartan_verify_{}", n);
|
||||
group.bench_function(&name, move |b| {
|
||||
b.iter(|| {
|
||||
let mut verifier_transcript = Transcript::new(b"example");
|
||||
assert!(proof
|
||||
.verify(
|
||||
black_box(&comm),
|
||||
black_box(&input),
|
||||
black_box(&mut verifier_transcript),
|
||||
black_box(&gens)
|
||||
)
|
||||
.is_ok());
|
||||
});
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
}
|
||||
|
||||
fn set_duration() -> Criterion {
|
||||
Criterion::default().sample_size(10)
|
||||
// .measurement_time(Duration::new(0, 50000000))
|
||||
}
|
||||
|
||||
criterion_group! {
|
||||
name = benches_spartan;
|
||||
config = set_duration();
|
||||
targets = encode_benchmark, prove_benchmark, verify_benchmark
|
||||
}
|
||||
|
||||
criterion_main!(benches_spartan);
|
|
@ -0,0 +1,162 @@
|
|||
#![allow(non_snake_case)]
|
||||
|
||||
extern crate byteorder;
|
||||
extern crate core;
|
||||
extern crate criterion;
|
||||
extern crate digest;
|
||||
extern crate libspartan;
|
||||
extern crate merlin;
|
||||
extern crate rand;
|
||||
extern crate sha3;
|
||||
|
||||
use libspartan::commitments::Commitments;
|
||||
use libspartan::commitments::MultiCommitGens;
|
||||
use libspartan::dense_mlpoly::DensePolynomial;
|
||||
use libspartan::math::Math;
|
||||
use libspartan::nizk::DotProductProof;
|
||||
use libspartan::scalar::Scalar;
|
||||
use libspartan::sumcheck::ZKSumcheckInstanceProof;
|
||||
use libspartan::transcript::ProofTranscript;
|
||||
use merlin::Transcript;
|
||||
use rand::rngs::OsRng;
|
||||
|
||||
use criterion::*;
|
||||
|
||||
fn prove_benchmark(c: &mut Criterion) {
|
||||
for &s in [10, 12, 16, 20].iter() {
|
||||
let plot_config = PlotConfiguration::default().summary_scale(AxisScale::Logarithmic);
|
||||
let mut group = c.benchmark_group("zksumcheck_prove_benchmark");
|
||||
group.plot_config(plot_config);
|
||||
|
||||
// produce tables
|
||||
let gens_n = MultiCommitGens::new(3, b"test-m");
|
||||
let gens_1 = MultiCommitGens::new(1, b"test-1");
|
||||
let num_rounds = s;
|
||||
let n = s.pow2();
|
||||
|
||||
let mut csprng: OsRng = OsRng;
|
||||
|
||||
let vec_A = (0..n)
|
||||
.map(|_i| Scalar::random(&mut csprng))
|
||||
.collect::<Vec<Scalar>>();
|
||||
let vec_B = (0..n)
|
||||
.map(|_i| Scalar::random(&mut csprng))
|
||||
.collect::<Vec<Scalar>>();
|
||||
let claim = DotProductProof::compute_dotproduct(&vec_A, &vec_B);
|
||||
let mut poly_A = DensePolynomial::new(vec_A);
|
||||
let mut poly_B = DensePolynomial::new(vec_B);
|
||||
|
||||
let blind_claim = Scalar::random(&mut csprng);
|
||||
let comb_func =
|
||||
|poly_A_comp: &Scalar, poly_B_comp: &Scalar| -> Scalar { poly_A_comp * poly_B_comp };
|
||||
|
||||
let name = format!("zksumcheck_prove_{}", n);
|
||||
group.bench_function(&name, move |b| {
|
||||
b.iter(|| {
|
||||
let mut random_tape = {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
let mut tape = Transcript::new(b"proof");
|
||||
tape.append_scalar(b"init_randomness", &Scalar::random(&mut csprng));
|
||||
tape
|
||||
};
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
ZKSumcheckInstanceProof::prove_quad(
|
||||
black_box(&claim),
|
||||
black_box(&blind_claim),
|
||||
black_box(num_rounds),
|
||||
black_box(&mut poly_A),
|
||||
black_box(&mut poly_B),
|
||||
black_box(comb_func),
|
||||
black_box(&gens_1),
|
||||
black_box(&gens_n),
|
||||
black_box(&mut prover_transcript),
|
||||
black_box(&mut random_tape),
|
||||
)
|
||||
});
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
}
|
||||
|
||||
fn verify_benchmark(c: &mut Criterion) {
|
||||
for &s in [10, 12, 16, 20].iter() {
|
||||
let plot_config = PlotConfiguration::default().summary_scale(AxisScale::Logarithmic);
|
||||
let mut group = c.benchmark_group("zksumcheck_verify_benchmark");
|
||||
group.plot_config(plot_config);
|
||||
|
||||
// produce tables
|
||||
let gens_n = MultiCommitGens::new(3, b"test-m");
|
||||
let gens_1 = MultiCommitGens::new(1, b"test-1");
|
||||
let num_rounds = s;
|
||||
let n = s.pow2();
|
||||
|
||||
let mut csprng: OsRng = OsRng;
|
||||
|
||||
let vec_A = (0..n)
|
||||
.map(|_i| Scalar::random(&mut csprng))
|
||||
.collect::<Vec<Scalar>>();
|
||||
let vec_B = (0..n)
|
||||
.map(|_i| Scalar::random(&mut csprng))
|
||||
.collect::<Vec<Scalar>>();
|
||||
let claim = DotProductProof::compute_dotproduct(&vec_A, &vec_B);
|
||||
let mut poly_A = DensePolynomial::new(vec_A);
|
||||
let mut poly_B = DensePolynomial::new(vec_B);
|
||||
let blind_claim = Scalar::random(&mut csprng);
|
||||
let comb_func =
|
||||
|poly_A_comp: &Scalar, poly_B_comp: &Scalar| -> Scalar { poly_A_comp * poly_B_comp };
|
||||
|
||||
let mut random_tape = {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
let mut tape = Transcript::new(b"proof");
|
||||
tape.append_scalar(b"init_randomness", &Scalar::random(&mut csprng));
|
||||
tape
|
||||
};
|
||||
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
let (proof, _r, _v, _blind_post_claim) = ZKSumcheckInstanceProof::prove_quad(
|
||||
&claim,
|
||||
&blind_claim,
|
||||
num_rounds,
|
||||
&mut poly_A,
|
||||
&mut poly_B,
|
||||
comb_func,
|
||||
&gens_1,
|
||||
&gens_n,
|
||||
&mut prover_transcript,
|
||||
&mut random_tape,
|
||||
);
|
||||
|
||||
let name = format!("zksumcheck_verify_{}", n);
|
||||
let degree_bound = 2;
|
||||
let comm_claim = claim.commit(&blind_claim, &gens_1).compress();
|
||||
group.bench_function(&name, move |b| {
|
||||
b.iter(|| {
|
||||
let mut verifier_transcript = Transcript::new(b"example");
|
||||
assert!(proof
|
||||
.verify(
|
||||
black_box(&comm_claim),
|
||||
black_box(num_rounds),
|
||||
black_box(degree_bound),
|
||||
black_box(&gens_1),
|
||||
black_box(&gens_n),
|
||||
black_box(&mut verifier_transcript)
|
||||
)
|
||||
.is_ok())
|
||||
});
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
}
|
||||
|
||||
fn set_duration() -> Criterion {
|
||||
Criterion::default().sample_size(10)
|
||||
// .measurement_time(Duration::new(0, 50000000))
|
||||
}
|
||||
|
||||
criterion_group! {
|
||||
name = benches_r1cs;
|
||||
config = set_duration();
|
||||
targets = verify_benchmark, prove_benchmark
|
||||
}
|
||||
|
||||
criterion_main!(benches_r1cs);
|
|
@ -0,0 +1,5 @@
|
|||
edition = "2018"
|
||||
tab_spaces = 2
|
||||
newline_style = "Unix"
|
||||
report_fixme = "Always"
|
||||
use_try_shorthand = true
|
|
@ -0,0 +1,247 @@
|
|||
#![allow(non_snake_case)]
|
||||
|
||||
use super::errors::ProofVerifyError;
|
||||
use super::group::{CompressedGroup, GroupElement, VartimeMultiscalarMul};
|
||||
use super::math::Math;
|
||||
use super::scalar::Scalar;
|
||||
use super::transcript::ProofTranscript;
|
||||
use merlin::Transcript;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use std::iter;
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct BulletReductionProof {
|
||||
L_vec: Vec<CompressedGroup>,
|
||||
R_vec: Vec<CompressedGroup>,
|
||||
}
|
||||
|
||||
impl BulletReductionProof {
|
||||
/// Create an inner-product proof.
|
||||
///
|
||||
/// The proof is created with respect to the bases \\(G\\).
|
||||
///
|
||||
/// The `transcript` is passed in as a parameter so that the
|
||||
/// challenges depend on the *entire* transcript (including parent
|
||||
/// protocols).
|
||||
///
|
||||
/// The lengths of the vectors must all be the same, and must all be
|
||||
/// either 0 or a power of 2.
|
||||
pub fn prove(
|
||||
transcript: &mut Transcript,
|
||||
Q: &GroupElement,
|
||||
G_vec: &Vec<GroupElement>,
|
||||
H: &GroupElement,
|
||||
a_vec: &Vec<Scalar>,
|
||||
b_vec: &Vec<Scalar>,
|
||||
blind: &Scalar,
|
||||
blinds_vec: &Vec<(Scalar, Scalar)>,
|
||||
) -> (
|
||||
BulletReductionProof,
|
||||
GroupElement,
|
||||
Scalar,
|
||||
Scalar,
|
||||
GroupElement,
|
||||
Scalar,
|
||||
) {
|
||||
// Create slices G, H, a, b backed by their respective
|
||||
// vectors. This lets us reslice as we compress the lengths
|
||||
// of the vectors in the main loop below.
|
||||
let mut G = &mut G_vec.clone()[..];
|
||||
let mut a = &mut a_vec.clone()[..];
|
||||
let mut b = &mut b_vec.clone()[..];
|
||||
|
||||
// All of the input vectors must have a length that is a power of two.
|
||||
let mut n = G.len();
|
||||
assert!(n.is_power_of_two());
|
||||
let lg_n = n.log2();
|
||||
|
||||
let G_factors: Vec<Scalar> = iter::repeat(Scalar::one()).take(n).collect();
|
||||
|
||||
// All of the input vectors must have the same length.
|
||||
assert_eq!(G.len(), n);
|
||||
assert_eq!(a.len(), n);
|
||||
assert_eq!(b.len(), n);
|
||||
assert_eq!(G_factors.len(), n);
|
||||
assert_eq!(blinds_vec.len(), 2 * lg_n);
|
||||
|
||||
//transcript.innerproduct_domain_sep(n as u64);
|
||||
|
||||
let mut L_vec = Vec::with_capacity(lg_n);
|
||||
let mut R_vec = Vec::with_capacity(lg_n);
|
||||
let mut blinds_iter = blinds_vec.iter();
|
||||
let mut blind_fin = *blind;
|
||||
|
||||
while n != 1 {
|
||||
n = n / 2;
|
||||
let (a_L, a_R) = a.split_at_mut(n);
|
||||
let (b_L, b_R) = b.split_at_mut(n);
|
||||
let (G_L, G_R) = G.split_at_mut(n);
|
||||
|
||||
let c_L = inner_product(&a_L, &b_R);
|
||||
let c_R = inner_product(&a_R, &b_L);
|
||||
|
||||
let (blind_L, blind_R) = blinds_iter.next().unwrap();
|
||||
|
||||
let L = GroupElement::vartime_multiscalar_mul(
|
||||
a_L
|
||||
.iter()
|
||||
.chain(iter::once(&c_L))
|
||||
.chain(iter::once(blind_L)),
|
||||
G_R.iter().chain(iter::once(Q)).chain(iter::once(H)),
|
||||
);
|
||||
|
||||
let R = GroupElement::vartime_multiscalar_mul(
|
||||
a_R
|
||||
.iter()
|
||||
.chain(iter::once(&c_R))
|
||||
.chain(iter::once(blind_R)),
|
||||
G_L.iter().chain(iter::once(Q)).chain(iter::once(H)),
|
||||
);
|
||||
|
||||
transcript.append_point(b"L", &L.compress());
|
||||
transcript.append_point(b"R", &R.compress());
|
||||
|
||||
let u = transcript.challenge_scalar(b"u");
|
||||
let u_inv = u.invert().unwrap();
|
||||
|
||||
for i in 0..n {
|
||||
a_L[i] = a_L[i] * u + u_inv * a_R[i];
|
||||
b_L[i] = b_L[i] * u_inv + u * b_R[i];
|
||||
G_L[i] = GroupElement::vartime_multiscalar_mul(&[u_inv, u], &[G_L[i], G_R[i]]);
|
||||
}
|
||||
|
||||
blind_fin = blind_fin + blind_L * &u * &u + blind_R * &u_inv * &u_inv;
|
||||
|
||||
L_vec.push(L.compress());
|
||||
R_vec.push(R.compress());
|
||||
|
||||
a = a_L;
|
||||
b = b_L;
|
||||
G = G_L;
|
||||
}
|
||||
|
||||
let Gamma_hat =
|
||||
GroupElement::vartime_multiscalar_mul(&[a[0], a[0] * b[0], blind_fin], &[G[0], *Q, *H]);
|
||||
|
||||
(
|
||||
BulletReductionProof {
|
||||
L_vec: L_vec,
|
||||
R_vec: R_vec,
|
||||
},
|
||||
Gamma_hat,
|
||||
a[0],
|
||||
b[0],
|
||||
G[0],
|
||||
blind_fin,
|
||||
)
|
||||
}
|
||||
|
||||
/// Computes three vectors of verification scalars \\([u\_{i}^{2}]\\), \\([u\_{i}^{-2}]\\) and \\([s\_{i}]\\) for combined multiscalar multiplication
|
||||
/// in a parent protocol. See [inner product protocol notes](index.html#verification-equation) for details.
|
||||
/// The verifier must provide the input length \\(n\\) explicitly to avoid unbounded allocation within the inner product proof.
|
||||
fn verification_scalars(
|
||||
&self,
|
||||
n: usize,
|
||||
transcript: &mut Transcript,
|
||||
) -> Result<(Vec<Scalar>, Vec<Scalar>, Vec<Scalar>), ProofVerifyError> {
|
||||
let lg_n = self.L_vec.len();
|
||||
if lg_n >= 32 {
|
||||
// 4 billion multiplications should be enough for anyone
|
||||
// and this check prevents overflow in 1<<lg_n below.
|
||||
return Err(ProofVerifyError);
|
||||
}
|
||||
if n != (1 << lg_n) {
|
||||
return Err(ProofVerifyError);
|
||||
}
|
||||
|
||||
// 1. Recompute x_k,...,x_1 based on the proof transcript
|
||||
let mut challenges = Vec::with_capacity(lg_n);
|
||||
for (L, R) in self.L_vec.iter().zip(self.R_vec.iter()) {
|
||||
transcript.append_point(b"L", L);
|
||||
transcript.append_point(b"R", R);
|
||||
challenges.push(transcript.challenge_scalar(b"u"));
|
||||
}
|
||||
|
||||
// 2. Compute 1/(u_k...u_1) and 1/u_k, ..., 1/u_1
|
||||
let mut challenges_inv = challenges.clone();
|
||||
let allinv = Scalar::batch_invert(&mut challenges_inv);
|
||||
|
||||
// 3. Compute u_i^2 and (1/u_i)^2
|
||||
for i in 0..lg_n {
|
||||
challenges[i] = challenges[i] * challenges[i];
|
||||
challenges_inv[i] = challenges_inv[i] * challenges_inv[i];
|
||||
}
|
||||
let challenges_sq = challenges;
|
||||
let challenges_inv_sq = challenges_inv;
|
||||
|
||||
// 4. Compute s values inductively.
|
||||
let mut s = Vec::with_capacity(n);
|
||||
s.push(allinv);
|
||||
for i in 1..n {
|
||||
let lg_i = (32 - 1 - (i as u32).leading_zeros()) as usize;
|
||||
let k = 1 << lg_i;
|
||||
// The challenges are stored in "creation order" as [u_k,...,u_1],
|
||||
// so u_{lg(i)+1} = is indexed by (lg_n-1) - lg_i
|
||||
let u_lg_i_sq = challenges_sq[(lg_n - 1) - lg_i];
|
||||
s.push(s[i - k] * u_lg_i_sq);
|
||||
}
|
||||
|
||||
Ok((challenges_sq, challenges_inv_sq, s))
|
||||
}
|
||||
|
||||
/// This method is for testing that proof generation work,
|
||||
/// but for efficiency the actual protocols would use `verification_scalars`
|
||||
/// method to combine inner product verification with other checks
|
||||
/// in a single multiscalar multiplication.
|
||||
pub fn verify(
|
||||
&self,
|
||||
n: usize,
|
||||
a: &Vec<Scalar>,
|
||||
transcript: &mut Transcript,
|
||||
Gamma: &GroupElement,
|
||||
G: &[GroupElement],
|
||||
) -> Result<(GroupElement, GroupElement, Scalar), ProofVerifyError> {
|
||||
let (u_sq, u_inv_sq, s) = self.verification_scalars(n, transcript)?;
|
||||
|
||||
let Ls = self
|
||||
.L_vec
|
||||
.iter()
|
||||
.map(|p| p.decompress().ok_or(ProofVerifyError))
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
|
||||
let Rs = self
|
||||
.R_vec
|
||||
.iter()
|
||||
.map(|p| p.decompress().ok_or(ProofVerifyError))
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
|
||||
let G_hat = GroupElement::vartime_multiscalar_mul(s.iter(), G.iter());
|
||||
let a_hat = inner_product(a, &s);
|
||||
|
||||
let Gamma_hat = GroupElement::vartime_multiscalar_mul(
|
||||
u_sq
|
||||
.iter()
|
||||
.chain(u_inv_sq.iter())
|
||||
.chain(iter::once(&Scalar::one())),
|
||||
Ls.iter().chain(Rs.iter()).chain(iter::once(Gamma)),
|
||||
);
|
||||
|
||||
Ok((G_hat, Gamma_hat, a_hat))
|
||||
}
|
||||
}
|
||||
|
||||
/// Computes an inner product of two vectors
|
||||
/// \\[
|
||||
/// {\langle {\mathbf{a}}, {\mathbf{b}} \rangle} = \sum\_{i=0}^{n-1} a\_i \cdot b\_i.
|
||||
/// \\]
|
||||
/// Panics if the lengths of \\(\mathbf{a}\\) and \\(\mathbf{b}\\) are not equal.
|
||||
pub fn inner_product(a: &[Scalar], b: &[Scalar]) -> Scalar {
|
||||
let mut out = Scalar::zero();
|
||||
if a.len() != b.len() {
|
||||
panic!("inner_product(a,b): lengths of vectors do not match");
|
||||
}
|
||||
for i in 0..a.len() {
|
||||
out += a[i] * b[i];
|
||||
}
|
||||
out
|
||||
}
|
|
@ -0,0 +1,109 @@
|
|||
use super::group::{GroupElement, VartimeMultiscalarMul, GROUP_BASEPOINT_COMPRESSED};
|
||||
use super::scalar::Scalar;
|
||||
use digest::{ExtendableOutput, Input, XofReader};
|
||||
use sha3::Shake256;
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct MultiCommitGens {
|
||||
pub n: usize,
|
||||
pub G: Vec<GroupElement>,
|
||||
pub h: GroupElement,
|
||||
}
|
||||
|
||||
impl MultiCommitGens {
|
||||
pub fn new(n: usize, label: &[u8]) -> Self {
|
||||
let mut shake = Shake256::default();
|
||||
shake.input(label);
|
||||
shake.input(GROUP_BASEPOINT_COMPRESSED.as_bytes());
|
||||
|
||||
let mut reader = shake.xof_result();
|
||||
let mut gens: Vec<GroupElement> = Vec::new();
|
||||
let mut uniform_bytes = [0u8; 64];
|
||||
for _ in 0..n + 1 {
|
||||
reader.read(&mut uniform_bytes);
|
||||
gens.push(GroupElement::from_uniform_bytes(&uniform_bytes));
|
||||
}
|
||||
|
||||
MultiCommitGens {
|
||||
n,
|
||||
G: gens[0..n].to_vec(),
|
||||
h: gens[n],
|
||||
}
|
||||
}
|
||||
|
||||
pub fn clone(&self) -> MultiCommitGens {
|
||||
MultiCommitGens {
|
||||
n: self.n,
|
||||
h: self.h,
|
||||
G: self.G.clone(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn split_at_mut(&mut self, mid: usize) -> (MultiCommitGens, MultiCommitGens) {
|
||||
let (G1, G2) = self.G.split_at_mut(mid);
|
||||
|
||||
(
|
||||
MultiCommitGens {
|
||||
n: G1.len(),
|
||||
G: G1.to_vec(),
|
||||
h: self.h,
|
||||
},
|
||||
MultiCommitGens {
|
||||
n: G2.len(),
|
||||
G: G2.to_vec(),
|
||||
h: self.h,
|
||||
},
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Commitments {
|
||||
fn commit(&self, blind: &Scalar, gens_n: &MultiCommitGens) -> GroupElement;
|
||||
}
|
||||
|
||||
impl Commitments for Scalar {
|
||||
fn commit(&self, blind: &Scalar, gens_n: &MultiCommitGens) -> GroupElement {
|
||||
assert!(gens_n.n == 1);
|
||||
GroupElement::vartime_multiscalar_mul(&[*self, *blind], &[gens_n.G[0], gens_n.h])
|
||||
}
|
||||
}
|
||||
|
||||
impl Commitments for Vec<Scalar> {
|
||||
fn commit(&self, blind: &Scalar, gens_n: &MultiCommitGens) -> GroupElement {
|
||||
assert!(gens_n.n == self.len());
|
||||
GroupElement::vartime_multiscalar_mul(self, &gens_n.G) + blind * &gens_n.h
|
||||
}
|
||||
}
|
||||
|
||||
impl Commitments for [Scalar] {
|
||||
fn commit(&self, blind: &Scalar, gens_n: &MultiCommitGens) -> GroupElement {
|
||||
assert_eq!(gens_n.n, self.len());
|
||||
GroupElement::vartime_multiscalar_mul(self, &gens_n.G) + blind * &gens_n.h
|
||||
}
|
||||
}
|
||||
|
||||
impl Commitments for Vec<bool> {
|
||||
fn commit(&self, blind: &Scalar, gens_n: &MultiCommitGens) -> GroupElement {
|
||||
assert!(gens_n.n == self.len());
|
||||
let mut comm = blind * &gens_n.h;
|
||||
for i in 0..self.len() {
|
||||
if self[i] {
|
||||
comm = comm + gens_n.G[i];
|
||||
}
|
||||
}
|
||||
comm
|
||||
}
|
||||
}
|
||||
|
||||
impl Commitments for [bool] {
|
||||
fn commit(&self, blind: &Scalar, gens_n: &MultiCommitGens) -> GroupElement {
|
||||
assert!(gens_n.n == self.len());
|
||||
let mut comm = blind * &gens_n.h;
|
||||
for i in 0..self.len() {
|
||||
if self[i] {
|
||||
comm = comm + gens_n.G[i];
|
||||
}
|
||||
}
|
||||
comm
|
||||
}
|
||||
}
|
|
@ -0,0 +1,740 @@
|
|||
use super::commitments::{Commitments, MultiCommitGens};
|
||||
use super::errors::ProofVerifyError;
|
||||
use super::group::{CompressedGroup, GroupElement, VartimeMultiscalarMul};
|
||||
use super::math::Math;
|
||||
use super::nizk::{DotProductProofGens, DotProductProofLog};
|
||||
use super::scalar::Scalar;
|
||||
use super::transcript::{AppendToTranscript, ProofTranscript};
|
||||
use core::ops::Index;
|
||||
use merlin::Transcript;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
#[cfg(feature = "rayon_par")]
|
||||
use rayon::prelude::*;
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct DensePolynomial {
|
||||
num_vars: usize, //the number of variables in the multilinear polynomial
|
||||
len: usize,
|
||||
Z: Vec<Scalar>, // a vector that holds the evaluations of the polynomial in all the 2^num_vars Boolean inputs
|
||||
}
|
||||
|
||||
pub struct PolyCommitmentGens {
|
||||
pub gens: DotProductProofGens,
|
||||
}
|
||||
|
||||
impl PolyCommitmentGens {
|
||||
// the number of variables in the multilinear polynomial
|
||||
pub fn new(num_vars: usize, label: &'static [u8]) -> PolyCommitmentGens {
|
||||
let (_left, right) = EqPolynomial::compute_factored_lens(num_vars);
|
||||
let gens = DotProductProofGens::new(right.pow2(), label);
|
||||
PolyCommitmentGens { gens }
|
||||
}
|
||||
}
|
||||
|
||||
pub struct PolyCommitmentBlinds {
|
||||
blinds: Vec<Scalar>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct PolyCommitment {
|
||||
C: Vec<CompressedGroup>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct ConstPolyCommitment {
|
||||
C: CompressedGroup,
|
||||
}
|
||||
|
||||
impl PolyCommitment {
|
||||
pub fn combine(&self, comm: &PolyCommitment, s: &Scalar) -> PolyCommitment {
|
||||
assert_eq!(comm.C.len(), self.C.len());
|
||||
let C = (0..self.C.len())
|
||||
.map(|i| (self.C[i].decompress().unwrap() + s * comm.C[i].decompress().unwrap()).compress())
|
||||
.collect::<Vec<CompressedGroup>>();
|
||||
PolyCommitment { C }
|
||||
}
|
||||
|
||||
pub fn combine_const(&self, comm: &ConstPolyCommitment) -> PolyCommitment {
|
||||
let C = (0..self.C.len())
|
||||
.map(|i| (self.C[i].decompress().unwrap() + comm.C.decompress().unwrap()).compress())
|
||||
.collect::<Vec<CompressedGroup>>();
|
||||
PolyCommitment { C }
|
||||
}
|
||||
}
|
||||
|
||||
pub struct EqPolynomial {
|
||||
r: Vec<Scalar>,
|
||||
}
|
||||
|
||||
impl EqPolynomial {
|
||||
pub fn new(r: Vec<Scalar>) -> Self {
|
||||
EqPolynomial { r }
|
||||
}
|
||||
|
||||
pub fn evaluate(&self, rx: &Vec<Scalar>) -> Scalar {
|
||||
assert_eq!(self.r.len(), rx.len());
|
||||
(0..rx.len())
|
||||
.map(|i| self.r[i] * rx[i] + (Scalar::one() - self.r[i]) * (Scalar::one() - rx[i]))
|
||||
.product()
|
||||
}
|
||||
|
||||
pub fn evals(&self) -> Vec<Scalar> {
|
||||
let ell = self.r.len();
|
||||
|
||||
let mut evals: Vec<Scalar> = vec![Scalar::one(); ell.pow2()];
|
||||
let mut size = 1;
|
||||
for j in 0..ell {
|
||||
// in each iteration, we double the size of chis
|
||||
size = size * 2;
|
||||
for i in (0..size).rev().step_by(2) {
|
||||
// copy each element from the prior iteration twice
|
||||
let scalar = evals[i / 2];
|
||||
// evals[i - 1] = scalar * (Scalar::one() - tau[j]);
|
||||
// evals[i] = scalar * tau[j];
|
||||
evals[i] = scalar * self.r[j];
|
||||
evals[i - 1] = scalar - evals[i];
|
||||
}
|
||||
}
|
||||
evals
|
||||
}
|
||||
|
||||
pub fn compute_factored_lens(ell: usize) -> (usize, usize) {
|
||||
(ell / 2, ell - ell / 2)
|
||||
}
|
||||
|
||||
pub fn compute_factored_evals(&self) -> (Vec<Scalar>, Vec<Scalar>) {
|
||||
let ell = self.r.len();
|
||||
let (left_num_vars, _right_num_vars) = EqPolynomial::compute_factored_lens(ell);
|
||||
|
||||
let L = EqPolynomial::new(self.r[0..left_num_vars].to_vec()).evals();
|
||||
let R = EqPolynomial::new(self.r[left_num_vars..ell].to_vec()).evals();
|
||||
|
||||
(L, R)
|
||||
}
|
||||
}
|
||||
|
||||
pub struct ConstPolynomial {
|
||||
num_vars: usize,
|
||||
c: Scalar,
|
||||
}
|
||||
|
||||
impl ConstPolynomial {
|
||||
pub fn new(num_vars: usize, c: Scalar) -> Self {
|
||||
ConstPolynomial { num_vars, c }
|
||||
}
|
||||
|
||||
pub fn evaluate(&self, rx: &Vec<Scalar>) -> Scalar {
|
||||
assert_eq!(self.num_vars, rx.len());
|
||||
self.c
|
||||
}
|
||||
|
||||
pub fn get_num_vars(&self) -> usize {
|
||||
self.num_vars
|
||||
}
|
||||
|
||||
/// produces a binding commitment
|
||||
pub fn commit(&self, gens: &PolyCommitmentGens) -> PolyCommitment {
|
||||
let ell = self.get_num_vars();
|
||||
|
||||
let (left_num_vars, right_num_vars) = EqPolynomial::compute_factored_lens(ell);
|
||||
let L_size = left_num_vars.pow2();
|
||||
let R_size = right_num_vars.pow2();
|
||||
assert_eq!(L_size * R_size, ell.pow2());
|
||||
|
||||
let vec = vec![self.c; R_size];
|
||||
|
||||
let c = vec.commit(&Scalar::zero(), &gens.gens.gens_n).compress();
|
||||
PolyCommitment { C: vec![c; L_size] }
|
||||
}
|
||||
}
|
||||
|
||||
pub struct IdentityPolynomial {
|
||||
size_point: usize,
|
||||
}
|
||||
|
||||
impl IdentityPolynomial {
|
||||
pub fn new(size_point: usize) -> Self {
|
||||
IdentityPolynomial { size_point }
|
||||
}
|
||||
|
||||
pub fn evaluate(&self, r: &Vec<Scalar>) -> Scalar {
|
||||
let len = r.len();
|
||||
assert_eq!(len, self.size_point);
|
||||
(0..len)
|
||||
.map(|i| Scalar::from((len - i - 1).pow2() as u64) * r[i])
|
||||
.sum()
|
||||
}
|
||||
}
|
||||
|
||||
impl DensePolynomial {
|
||||
pub fn new(Z: Vec<Scalar>) -> Self {
|
||||
let len = Z.len();
|
||||
let num_vars = len.log2();
|
||||
DensePolynomial { num_vars, Z, len }
|
||||
}
|
||||
|
||||
pub fn get_num_vars(&self) -> usize {
|
||||
self.num_vars
|
||||
}
|
||||
|
||||
pub fn len(&self) -> usize {
|
||||
self.len
|
||||
}
|
||||
|
||||
pub fn clone(&self) -> DensePolynomial {
|
||||
DensePolynomial::new(self.Z[0..self.len].to_vec())
|
||||
}
|
||||
|
||||
pub fn split(&self, idx: usize) -> (DensePolynomial, DensePolynomial) {
|
||||
assert!(idx < self.len());
|
||||
(
|
||||
DensePolynomial::new(self.Z[0..idx].to_vec()),
|
||||
DensePolynomial::new(self.Z[idx..2 * idx].to_vec()),
|
||||
)
|
||||
}
|
||||
|
||||
#[cfg(feature = "rayon_par")]
|
||||
fn commit_inner(&self, blinds: &Vec<Scalar>, gens: &MultiCommitGens) -> PolyCommitment {
|
||||
let L_size = blinds.len();
|
||||
let R_size = self.Z.len() / L_size;
|
||||
assert_eq!(L_size * R_size, self.Z.len());
|
||||
let C = (0..L_size)
|
||||
.collect::<Vec<usize>>()
|
||||
.par_iter()
|
||||
.map(|&i| {
|
||||
self.Z[R_size * i..R_size * (i + 1)]
|
||||
.commit(&blinds[i], gens)
|
||||
.compress()
|
||||
})
|
||||
.collect();
|
||||
PolyCommitment { C }
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "rayon_par"))]
|
||||
fn commit_inner(&self, blinds: &Vec<Scalar>, gens: &MultiCommitGens) -> PolyCommitment {
|
||||
let L_size = blinds.len();
|
||||
let R_size = self.Z.len() / L_size;
|
||||
assert_eq!(L_size * R_size, self.Z.len());
|
||||
let C = (0..L_size)
|
||||
.map(|i| {
|
||||
self.Z[R_size * i..R_size * (i + 1)]
|
||||
.commit(&blinds[i], gens)
|
||||
.compress()
|
||||
})
|
||||
.collect();
|
||||
PolyCommitment { C }
|
||||
}
|
||||
|
||||
pub fn commit(
|
||||
&self,
|
||||
hiding: bool,
|
||||
gens: &PolyCommitmentGens,
|
||||
random_tape: Option<&mut Transcript>,
|
||||
) -> (PolyCommitment, PolyCommitmentBlinds) {
|
||||
let n = self.Z.len();
|
||||
let ell = self.get_num_vars();
|
||||
assert_eq!(n, ell.pow2());
|
||||
|
||||
let (left_num_vars, right_num_vars) = EqPolynomial::compute_factored_lens(ell);
|
||||
let L_size = left_num_vars.pow2();
|
||||
let R_size = right_num_vars.pow2();
|
||||
assert_eq!(L_size * R_size, n);
|
||||
|
||||
let blinds = match hiding {
|
||||
true => PolyCommitmentBlinds {
|
||||
blinds: random_tape
|
||||
.unwrap()
|
||||
.challenge_vector(b"poly_blinds", L_size),
|
||||
},
|
||||
false => PolyCommitmentBlinds {
|
||||
blinds: vec![Scalar::zero(); L_size],
|
||||
},
|
||||
};
|
||||
|
||||
(self.commit_inner(&blinds.blinds, &gens.gens.gens_n), blinds)
|
||||
}
|
||||
|
||||
pub fn bound(&self, L: &Vec<Scalar>) -> Vec<Scalar> {
|
||||
let (left_num_vars, right_num_vars) = EqPolynomial::compute_factored_lens(self.get_num_vars());
|
||||
let L_size = left_num_vars.pow2();
|
||||
let R_size = right_num_vars.pow2();
|
||||
(0..R_size)
|
||||
.map(|i| (0..L_size).map(|j| &L[j] * &self.Z[j * R_size + i]).sum())
|
||||
.collect::<Vec<Scalar>>()
|
||||
}
|
||||
|
||||
pub fn bound_poly_var_top(&mut self, r: &Scalar) {
|
||||
let n = self.len() / 2;
|
||||
for i in 0..n {
|
||||
self.Z[i] = &self.Z[i] + r * (&self.Z[i + n] - &self.Z[i]);
|
||||
}
|
||||
self.num_vars = self.num_vars - 1;
|
||||
self.len = n;
|
||||
}
|
||||
|
||||
pub fn bound_poly_var_bot(&mut self, r: &Scalar) {
|
||||
let n = self.len() / 2;
|
||||
for i in 0..n {
|
||||
self.Z[i] = &self.Z[2 * i] + r * (&self.Z[2 * i + 1] - &self.Z[2 * i]);
|
||||
}
|
||||
self.num_vars = self.num_vars - 1;
|
||||
self.len = n;
|
||||
}
|
||||
|
||||
pub fn dotproduct(&self, other: &DensePolynomial) -> Scalar {
|
||||
assert_eq!(self.len(), other.len());
|
||||
let mut res = Scalar::zero();
|
||||
for i in 0..self.len() {
|
||||
res = &res + &self.Z[i] * &other[i];
|
||||
}
|
||||
res
|
||||
}
|
||||
|
||||
// returns Z(r) in O(n) time
|
||||
pub fn evaluate(&self, r: &Vec<Scalar>) -> Scalar {
|
||||
// r must have a value for each variable
|
||||
assert_eq!(r.len(), self.get_num_vars());
|
||||
let chis = EqPolynomial::new(r.to_vec()).evals();
|
||||
assert_eq!(chis.len(), self.Z.len());
|
||||
DotProductProofLog::compute_dotproduct(&self.Z, &chis)
|
||||
}
|
||||
|
||||
fn vec(&self) -> &Vec<Scalar> {
|
||||
&self.Z
|
||||
}
|
||||
|
||||
pub fn extend(&mut self, other: &DensePolynomial) {
|
||||
// TODO: allow extension even when some vars are bound
|
||||
assert_eq!(self.Z.len(), self.len);
|
||||
let other_vec = other.vec();
|
||||
assert_eq!(other_vec.len(), self.len);
|
||||
self.Z.extend(other_vec);
|
||||
self.num_vars = self.num_vars + 1;
|
||||
self.len = 2 * self.len;
|
||||
assert_eq!(self.Z.len(), self.len);
|
||||
}
|
||||
|
||||
pub fn merge<'a, I>(polys: I) -> DensePolynomial
|
||||
where
|
||||
I: IntoIterator<Item = &'a DensePolynomial>,
|
||||
{
|
||||
//assert!(polys.len() > 0);
|
||||
//let num_vars = polys[0].num_vars();
|
||||
let mut Z: Vec<Scalar> = Vec::new();
|
||||
for poly in polys.into_iter() {
|
||||
//assert_eq!(poly.get_num_vars(), num_vars); // ensure each polynomial has the same number of variables
|
||||
//assert_eq!(poly.len, poly.vec().len()); // ensure no variable is already bound
|
||||
Z.extend(poly.vec());
|
||||
}
|
||||
|
||||
// pad the polynomial with zero polynomial at the end
|
||||
Z.resize(Z.len().next_power_of_two(), Scalar::zero());
|
||||
|
||||
DensePolynomial::new(Z)
|
||||
}
|
||||
|
||||
pub fn from_usize(Z: &Vec<usize>) -> Self {
|
||||
DensePolynomial::new(
|
||||
(0..Z.len())
|
||||
.map(|i| Scalar::from(Z[i] as u64))
|
||||
.collect::<Vec<Scalar>>(),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl Index<usize> for DensePolynomial {
|
||||
type Output = Scalar;
|
||||
|
||||
#[inline(always)]
|
||||
fn index(&self, _index: usize) -> &Scalar {
|
||||
&(self.Z[_index])
|
||||
}
|
||||
}
|
||||
|
||||
impl AppendToTranscript for PolyCommitment {
|
||||
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript) {
|
||||
transcript.append_message(label, b"poly_commitment_begin");
|
||||
for i in 0..self.C.len() {
|
||||
transcript.append_point(b"poly_commitment_share", &self.C[i]);
|
||||
}
|
||||
transcript.append_message(label, b"poly_commitment_end");
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct PolyEvalProof {
|
||||
proof: DotProductProofLog,
|
||||
}
|
||||
|
||||
impl PolyEvalProof {
|
||||
fn protocol_name() -> &'static [u8] {
|
||||
b"polynomial evaluation proof"
|
||||
}
|
||||
|
||||
pub fn prove(
|
||||
poly: &DensePolynomial,
|
||||
blinds_opt: Option<&PolyCommitmentBlinds>,
|
||||
r: &Vec<Scalar>, // point at which the polynomial is evaluated
|
||||
Zr: &Scalar, // evaluation of \widetilde{Z}(r)
|
||||
blind_Zr_opt: Option<&Scalar>, // specifies a blind for Zr
|
||||
gens: &PolyCommitmentGens,
|
||||
transcript: &mut Transcript,
|
||||
random_tape: &mut Transcript,
|
||||
) -> (PolyEvalProof, CompressedGroup) {
|
||||
transcript.append_protocol_name(PolyEvalProof::protocol_name());
|
||||
|
||||
// assert vectors are of the right size
|
||||
assert_eq!(poly.get_num_vars(), r.len());
|
||||
|
||||
let (left_num_vars, right_num_vars) = EqPolynomial::compute_factored_lens(r.len());
|
||||
let L_size = left_num_vars.pow2();
|
||||
let R_size = right_num_vars.pow2();
|
||||
|
||||
let default_blinds = PolyCommitmentBlinds {
|
||||
blinds: vec![Scalar::zero(); L_size],
|
||||
};
|
||||
let blinds = match blinds_opt {
|
||||
Some(p) => p,
|
||||
None => &default_blinds,
|
||||
};
|
||||
|
||||
assert_eq!(blinds.blinds.len(), L_size);
|
||||
|
||||
let zero = Scalar::zero();
|
||||
let blind_Zr = match blind_Zr_opt {
|
||||
Some(p) => p,
|
||||
None => &zero,
|
||||
};
|
||||
|
||||
// compute the L and R vectors
|
||||
let eq = EqPolynomial::new(r.to_vec());
|
||||
let (L, R) = eq.compute_factored_evals();
|
||||
assert_eq!(L.len(), L_size);
|
||||
assert_eq!(R.len(), R_size);
|
||||
|
||||
// compute the vector underneath L*Z and the L*blinds
|
||||
// compute vector-matrix product between L and Z viewed as a matrix
|
||||
let LZ = poly.bound(&L);
|
||||
let LZ_blind: Scalar = (0..L.len()).map(|i| blinds.blinds[i] * L[i]).sum();
|
||||
|
||||
// a dot product proof of size R_size
|
||||
let (proof, _C_LR, C_Zr_prime) = DotProductProofLog::prove(
|
||||
&gens.gens,
|
||||
transcript,
|
||||
random_tape,
|
||||
&LZ,
|
||||
&LZ_blind,
|
||||
&R,
|
||||
&Zr,
|
||||
blind_Zr,
|
||||
);
|
||||
|
||||
(PolyEvalProof { proof }, C_Zr_prime)
|
||||
}
|
||||
|
||||
pub fn verify(
|
||||
&self,
|
||||
gens: &PolyCommitmentGens,
|
||||
transcript: &mut Transcript,
|
||||
r: &Vec<Scalar>, // point at which the polynomial is evaluated
|
||||
C_Zr: &CompressedGroup, // commitment to \widetilde{Z}(r)
|
||||
comm: &PolyCommitment,
|
||||
) -> Result<(), ProofVerifyError> {
|
||||
transcript.append_protocol_name(PolyEvalProof::protocol_name());
|
||||
|
||||
// compute L and R
|
||||
let eq = EqPolynomial::new(r.to_vec());
|
||||
let (L, R) = eq.compute_factored_evals();
|
||||
|
||||
// compute a weighted sum of commitments and L
|
||||
let C_decompressed = comm.C.iter().map(|pt| pt.decompress().unwrap());
|
||||
|
||||
let C_LZ = GroupElement::vartime_multiscalar_mul(&L, C_decompressed).compress();
|
||||
|
||||
self
|
||||
.proof
|
||||
.verify(R.len(), &gens.gens, transcript, &R, &C_LZ, C_Zr)
|
||||
}
|
||||
|
||||
pub fn verify_batched(
|
||||
&self,
|
||||
gens: &PolyCommitmentGens,
|
||||
transcript: &mut Transcript,
|
||||
r: &Vec<Scalar>, // point at which the polynomial is evaluated
|
||||
C_Zr: &CompressedGroup, // commitment to \widetilde{Z}(r)
|
||||
comm: &[&PolyCommitment],
|
||||
coeff: &[&Scalar],
|
||||
) -> Result<(), ProofVerifyError> {
|
||||
transcript.append_protocol_name(PolyEvalProof::protocol_name());
|
||||
|
||||
// compute L and R
|
||||
let eq = EqPolynomial::new(r.to_vec());
|
||||
let (L, R) = eq.compute_factored_evals();
|
||||
|
||||
// compute a weighted sum of commitments and L
|
||||
let C_decompressed: Vec<Vec<GroupElement>> = (0..comm.len())
|
||||
.map(|i| {
|
||||
comm[i]
|
||||
.C
|
||||
.iter()
|
||||
.map(|pt| pt.decompress().unwrap())
|
||||
.collect()
|
||||
})
|
||||
.collect();
|
||||
|
||||
let C_LZ: Vec<GroupElement> = (0..comm.len())
|
||||
.map(|i| GroupElement::vartime_multiscalar_mul(&L, &C_decompressed[i]))
|
||||
.collect();
|
||||
|
||||
let C_LZ_combined: GroupElement = (0..C_LZ.len()).map(|i| C_LZ[i] * coeff[i]).sum();
|
||||
|
||||
self.proof.verify(
|
||||
R.len(),
|
||||
&gens.gens,
|
||||
transcript,
|
||||
&R,
|
||||
&C_LZ_combined.compress(),
|
||||
C_Zr,
|
||||
)
|
||||
}
|
||||
|
||||
pub fn verify_plain(
|
||||
&self,
|
||||
gens: &PolyCommitmentGens,
|
||||
transcript: &mut Transcript,
|
||||
r: &Vec<Scalar>, // point at which the polynomial is evaluated
|
||||
Zr: &Scalar, // evaluation \widetilde{Z}(r)
|
||||
comm: &PolyCommitment,
|
||||
) -> Result<(), ProofVerifyError> {
|
||||
// compute a commitment to Zr with a blind of zero
|
||||
let C_Zr = Zr.commit(&Scalar::zero(), &gens.gens.gens_1).compress();
|
||||
|
||||
self.verify(gens, transcript, r, &C_Zr, comm)
|
||||
}
|
||||
|
||||
pub fn verify_plain_batched(
|
||||
&self,
|
||||
gens: &PolyCommitmentGens,
|
||||
transcript: &mut Transcript,
|
||||
r: &Vec<Scalar>, // point at which the polynomial is evaluated
|
||||
Zr: &Scalar, // evaluation \widetilde{Z}(r)
|
||||
comm: &[&PolyCommitment],
|
||||
coeff: &[&Scalar],
|
||||
) -> Result<(), ProofVerifyError> {
|
||||
// compute a commitment to Zr with a blind of zero
|
||||
let C_Zr = Zr.commit(&Scalar::zero(), &gens.gens.gens_1).compress();
|
||||
|
||||
assert_eq!(comm.len(), coeff.len());
|
||||
|
||||
self.verify_batched(gens, transcript, r, &C_Zr, comm, coeff)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::super::scalar::ScalarFromPrimitives;
|
||||
use super::*;
|
||||
use rand::rngs::OsRng;
|
||||
|
||||
fn evaluate_with_LR(Z: &Vec<Scalar>, r: &Vec<Scalar>) -> Scalar {
|
||||
let eq = EqPolynomial::new(r.to_vec());
|
||||
let (L, R) = eq.compute_factored_evals();
|
||||
|
||||
let ell = r.len();
|
||||
// ensure ell is even
|
||||
assert!(ell % 2 == 0);
|
||||
// compute n = 2^\ell
|
||||
let n = ell.pow2();
|
||||
// compute m = sqrt(n) = 2^{\ell/2}
|
||||
let m = n.square_root();
|
||||
|
||||
// compute vector-matrix product between L and Z viewed as a matrix
|
||||
let LZ = (0..m)
|
||||
.map(|i| (0..m).map(|j| L[j] * Z[j * m + i]).sum())
|
||||
.collect::<Vec<Scalar>>();
|
||||
|
||||
// compute dot product between LZ and R
|
||||
DotProductProofLog::compute_dotproduct(&LZ, &R)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn check_polynomial_evaluation() {
|
||||
let mut Z: Vec<Scalar> = Vec::new(); // Z = [1, 2, 1, 4]
|
||||
Z.push(Scalar::one());
|
||||
Z.push((2 as usize).to_scalar());
|
||||
Z.push((1 as usize).to_scalar());
|
||||
Z.push((4 as usize).to_scalar());
|
||||
// r = [4,3]
|
||||
let mut r: Vec<Scalar> = Vec::new();
|
||||
r.push((4 as usize).to_scalar());
|
||||
r.push((3 as usize).to_scalar());
|
||||
|
||||
let eval_with_LR = evaluate_with_LR(&Z, &r);
|
||||
let poly = DensePolynomial::new(Z);
|
||||
|
||||
let eval = poly.evaluate(&r);
|
||||
assert_eq!(eval, (28 as usize).to_scalar());
|
||||
assert_eq!(eval_with_LR, eval);
|
||||
}
|
||||
|
||||
pub fn compute_factored_chis_at_r(r: &Vec<Scalar>) -> (Vec<Scalar>, Vec<Scalar>) {
|
||||
let mut L: Vec<Scalar> = Vec::new();
|
||||
let mut R: Vec<Scalar> = Vec::new();
|
||||
|
||||
let ell = r.len();
|
||||
assert!(ell % 2 == 0); // ensure ell is even
|
||||
let n = ell.pow2();
|
||||
let m = n.square_root();
|
||||
|
||||
// compute row vector L
|
||||
for i in 0..m {
|
||||
let mut chi_i = Scalar::one();
|
||||
for j in 0..ell / 2 {
|
||||
let bit_j = ((m * i) & (1 << (r.len() - j - 1))) > 0;
|
||||
if bit_j {
|
||||
chi_i *= r[j];
|
||||
} else {
|
||||
chi_i *= Scalar::one() - r[j];
|
||||
}
|
||||
}
|
||||
L.push(chi_i);
|
||||
}
|
||||
|
||||
// compute column vector R
|
||||
for i in 0..m {
|
||||
let mut chi_i = Scalar::one();
|
||||
for j in ell / 2..ell {
|
||||
let bit_j = (i & (1 << (r.len() - j - 1))) > 0;
|
||||
if bit_j {
|
||||
chi_i *= r[j];
|
||||
} else {
|
||||
chi_i *= Scalar::one() - r[j];
|
||||
}
|
||||
}
|
||||
R.push(chi_i);
|
||||
}
|
||||
(L, R)
|
||||
}
|
||||
|
||||
pub fn compute_chis_at_r(r: &Vec<Scalar>) -> Vec<Scalar> {
|
||||
let ell = r.len();
|
||||
let n = ell.pow2();
|
||||
let mut chis: Vec<Scalar> = Vec::new();
|
||||
for i in 0..n {
|
||||
let mut chi_i = Scalar::one();
|
||||
for j in 0..r.len() {
|
||||
let bit_j = (i & (1 << (r.len() - j - 1))) > 0;
|
||||
if bit_j {
|
||||
chi_i *= r[j];
|
||||
} else {
|
||||
chi_i *= Scalar::one() - r[j];
|
||||
}
|
||||
}
|
||||
chis.push(chi_i);
|
||||
}
|
||||
chis
|
||||
}
|
||||
|
||||
pub fn compute_outerproduct(L: Vec<Scalar>, R: Vec<Scalar>) -> Vec<Scalar> {
|
||||
assert_eq!(L.len(), R.len());
|
||||
|
||||
let mut O: Vec<Scalar> = Vec::new();
|
||||
let m = L.len();
|
||||
for i in 0..m {
|
||||
for j in 0..m {
|
||||
O.push(L[i] * R[j]);
|
||||
}
|
||||
}
|
||||
O
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn check_memoized_chis() {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
|
||||
let s = 10;
|
||||
let mut r: Vec<Scalar> = Vec::new();
|
||||
for _i in 0..s {
|
||||
r.push(Scalar::random(&mut csprng));
|
||||
}
|
||||
let chis = tests::compute_chis_at_r(&r);
|
||||
let chis_m = EqPolynomial::new(r).evals();
|
||||
assert_eq!(chis, chis_m);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn check_factored_chis() {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
|
||||
let s = 10;
|
||||
let mut r: Vec<Scalar> = Vec::new();
|
||||
for _i in 0..s {
|
||||
r.push(Scalar::random(&mut csprng));
|
||||
}
|
||||
let chis = EqPolynomial::new(r.clone()).evals();
|
||||
let (L, R) = EqPolynomial::new(r).compute_factored_evals();
|
||||
let O = compute_outerproduct(L, R);
|
||||
assert_eq!(chis, O);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn check_memoized_factored_chis() {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
|
||||
let s = 10;
|
||||
let mut r: Vec<Scalar> = Vec::new();
|
||||
for _i in 0..s {
|
||||
r.push(Scalar::random(&mut csprng));
|
||||
}
|
||||
let (L, R) = tests::compute_factored_chis_at_r(&r);
|
||||
let eq = EqPolynomial::new(r);
|
||||
let (L2, R2) = eq.compute_factored_evals();
|
||||
assert_eq!(L, L2);
|
||||
assert_eq!(R, R2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn check_polynomial_commit() {
|
||||
let mut Z: Vec<Scalar> = Vec::new(); // Z = [1, 2, 1, 4]
|
||||
Z.push((1 as usize).to_scalar());
|
||||
Z.push((2 as usize).to_scalar());
|
||||
Z.push((1 as usize).to_scalar());
|
||||
Z.push((4 as usize).to_scalar());
|
||||
|
||||
let poly = DensePolynomial::new(Z);
|
||||
|
||||
// r = [4,3]
|
||||
let mut r: Vec<Scalar> = Vec::new();
|
||||
r.push((4 as usize).to_scalar());
|
||||
r.push((3 as usize).to_scalar());
|
||||
let eval = poly.evaluate(&r);
|
||||
assert_eq!(eval, (28 as usize).to_scalar());
|
||||
|
||||
let gens = PolyCommitmentGens::new(poly.get_num_vars(), b"test-two");
|
||||
let (poly_commitment, blinds) = poly.commit(false, &gens, None);
|
||||
|
||||
let mut random_tape = {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
let mut tape = Transcript::new(b"proof");
|
||||
tape.append_scalar(b"init_randomness", &Scalar::random(&mut csprng));
|
||||
tape
|
||||
};
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
let (proof, C_Zr) = PolyEvalProof::prove(
|
||||
&poly,
|
||||
Some(&blinds),
|
||||
&r,
|
||||
&eval,
|
||||
None,
|
||||
&gens,
|
||||
&mut prover_transcript,
|
||||
&mut random_tape,
|
||||
);
|
||||
|
||||
let mut verifier_transcript = Transcript::new(b"example");
|
||||
assert!(proof
|
||||
.verify(&gens, &mut verifier_transcript, &r, &C_Zr, &poly_commitment)
|
||||
.is_ok());
|
||||
}
|
||||
}
|
|
@ -0,0 +1,15 @@
|
|||
use std::fmt;
|
||||
|
||||
pub struct ProofVerifyError;
|
||||
|
||||
impl fmt::Display for ProofVerifyError {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
write!(f, "Proof verification failed")
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Debug for ProofVerifyError {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
write!(f, "{{ file: {}, line: {} }}", file!(), line!())
|
||||
}
|
||||
}
|
|
@ -0,0 +1,101 @@
|
|||
use super::scalar::{Scalar, ScalarBytes, ScalarBytesFromScalar};
|
||||
use core::borrow::Borrow;
|
||||
use core::ops::{Mul, MulAssign};
|
||||
|
||||
pub type GroupElement = curve25519_dalek::ristretto::RistrettoPoint;
|
||||
pub type CompressedGroup = curve25519_dalek::ristretto::CompressedRistretto;
|
||||
pub const GROUP_BASEPOINT_COMPRESSED: CompressedGroup =
|
||||
curve25519_dalek::constants::RISTRETTO_BASEPOINT_COMPRESSED;
|
||||
|
||||
impl<'b> MulAssign<&'b Scalar> for GroupElement {
|
||||
fn mul_assign(&mut self, scalar: &'b Scalar) {
|
||||
let result = (self as &GroupElement) * Scalar::decompress_scalar(scalar);
|
||||
*self = result;
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, 'b> Mul<&'b Scalar> for &'a GroupElement {
|
||||
type Output = GroupElement;
|
||||
fn mul(self, scalar: &'b Scalar) -> GroupElement {
|
||||
self * Scalar::decompress_scalar(scalar)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, 'b> Mul<&'b GroupElement> for &'a Scalar {
|
||||
type Output = GroupElement;
|
||||
|
||||
fn mul(self, point: &'b GroupElement) -> GroupElement {
|
||||
Scalar::decompress_scalar(self) * point
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! define_mul_variants {
|
||||
(LHS = $lhs:ty, RHS = $rhs:ty, Output = $out:ty) => {
|
||||
impl<'b> Mul<&'b $rhs> for $lhs {
|
||||
type Output = $out;
|
||||
fn mul(self, rhs: &'b $rhs) -> $out {
|
||||
&self * rhs
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Mul<$rhs> for &'a $lhs {
|
||||
type Output = $out;
|
||||
fn mul(self, rhs: $rhs) -> $out {
|
||||
self * &rhs
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul<$rhs> for $lhs {
|
||||
type Output = $out;
|
||||
fn mul(self, rhs: $rhs) -> $out {
|
||||
&self * &rhs
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
macro_rules! define_mul_assign_variants {
|
||||
(LHS = $lhs:ty, RHS = $rhs:ty) => {
|
||||
impl MulAssign<$rhs> for $lhs {
|
||||
fn mul_assign(&mut self, rhs: $rhs) {
|
||||
*self *= &rhs;
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
define_mul_assign_variants!(LHS = GroupElement, RHS = Scalar);
|
||||
define_mul_variants!(LHS = GroupElement, RHS = Scalar, Output = GroupElement);
|
||||
define_mul_variants!(LHS = Scalar, RHS = GroupElement, Output = GroupElement);
|
||||
|
||||
pub trait VartimeMultiscalarMul {
|
||||
type Scalar;
|
||||
fn vartime_multiscalar_mul<I, J>(scalars: I, points: J) -> Self
|
||||
where
|
||||
I: IntoIterator,
|
||||
I::Item: Borrow<Self::Scalar>,
|
||||
J: IntoIterator,
|
||||
J::Item: Borrow<Self>,
|
||||
Self: Clone;
|
||||
}
|
||||
|
||||
impl VartimeMultiscalarMul for GroupElement {
|
||||
type Scalar = super::scalar::Scalar;
|
||||
fn vartime_multiscalar_mul<I, J>(scalars: I, points: J) -> Self
|
||||
where
|
||||
I: IntoIterator,
|
||||
I::Item: Borrow<Self::Scalar>,
|
||||
J: IntoIterator,
|
||||
J::Item: Borrow<Self>,
|
||||
Self: Clone,
|
||||
{
|
||||
use curve25519_dalek::traits::VartimeMultiscalarMul;
|
||||
<Self as VartimeMultiscalarMul>::vartime_multiscalar_mul(
|
||||
scalars
|
||||
.into_iter()
|
||||
.map(|s| Scalar::decompress_scalar(s.borrow()))
|
||||
.collect::<Vec<ScalarBytes>>(),
|
||||
points,
|
||||
)
|
||||
}
|
||||
}
|
|
@ -0,0 +1,31 @@
|
|||
#![allow(non_snake_case)]
|
||||
#![feature(test)]
|
||||
|
||||
extern crate byteorder;
|
||||
extern crate core;
|
||||
extern crate curve25519_dalek;
|
||||
extern crate digest;
|
||||
extern crate merlin;
|
||||
extern crate rand;
|
||||
extern crate rayon;
|
||||
extern crate sha3;
|
||||
extern crate test;
|
||||
|
||||
mod bullet;
|
||||
pub mod commitments;
|
||||
pub mod dense_mlpoly;
|
||||
mod errors;
|
||||
mod group;
|
||||
pub mod math;
|
||||
pub mod nizk;
|
||||
mod product_tree;
|
||||
pub mod r1csinstance;
|
||||
pub mod r1csproof;
|
||||
pub mod scalar;
|
||||
mod scalar_25519;
|
||||
pub mod sparse_mlpoly;
|
||||
pub mod spartan;
|
||||
pub mod sumcheck;
|
||||
pub mod timer;
|
||||
pub mod transcript;
|
||||
mod unipoly;
|
|
@ -0,0 +1,31 @@
|
|||
pub trait Math {
|
||||
fn square_root(self) -> usize;
|
||||
fn pow2(self) -> usize;
|
||||
fn log2(self) -> usize;
|
||||
fn get_bits(self, num_bits: usize) -> Vec<bool>;
|
||||
}
|
||||
|
||||
impl Math for usize {
|
||||
#[inline]
|
||||
fn square_root(self) -> usize {
|
||||
(self as f64).sqrt() as usize
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn pow2(self) -> usize {
|
||||
let base: usize = 2;
|
||||
base.pow(self as u32)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn log2(self) -> usize {
|
||||
(self as f64).log2() as usize
|
||||
}
|
||||
|
||||
/// Returns the num_bits from n in a canonical order
|
||||
fn get_bits(self, num_bits: usize) -> Vec<bool> {
|
||||
(0..num_bits)
|
||||
.map(|shift_amount| ((self & (1 << (num_bits - shift_amount - 1))) > 0))
|
||||
.collect::<Vec<bool>>()
|
||||
}
|
||||
}
|
|
@ -0,0 +1,750 @@
|
|||
use super::bullet::BulletReductionProof;
|
||||
use super::commitments::{Commitments, MultiCommitGens};
|
||||
use super::errors::ProofVerifyError;
|
||||
use super::group::CompressedGroup;
|
||||
use super::math::Math;
|
||||
use super::scalar::Scalar;
|
||||
use super::transcript::{AppendToTranscript, ProofTranscript};
|
||||
use merlin::Transcript;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug)]
|
||||
pub struct KnowledgeProof {
|
||||
alpha: CompressedGroup,
|
||||
z1: Scalar,
|
||||
z2: Scalar,
|
||||
}
|
||||
|
||||
impl KnowledgeProof {
|
||||
fn protocol_name() -> &'static [u8] {
|
||||
b"knowledge proof"
|
||||
}
|
||||
|
||||
pub fn prove(
|
||||
gens_n: &MultiCommitGens,
|
||||
transcript: &mut Transcript,
|
||||
random_tape: &mut Transcript,
|
||||
x: &Scalar,
|
||||
r: &Scalar,
|
||||
) -> (KnowledgeProof, CompressedGroup) {
|
||||
transcript.append_protocol_name(KnowledgeProof::protocol_name());
|
||||
|
||||
// produce two random Scalars
|
||||
let t1 = random_tape.challenge_scalar(b"t1");
|
||||
let t2 = random_tape.challenge_scalar(b"t2");
|
||||
|
||||
let C = x.commit(&r, gens_n).compress();
|
||||
C.append_to_transcript(b"C", transcript);
|
||||
|
||||
let alpha = t1.commit(&t2, gens_n).compress();
|
||||
alpha.append_to_transcript(b"alpha", transcript);
|
||||
|
||||
let c = transcript.challenge_scalar(b"c");
|
||||
|
||||
let z1 = x * &c + &t1;
|
||||
let z2 = r * &c + &t2;
|
||||
|
||||
(KnowledgeProof { alpha, z1, z2 }, C)
|
||||
}
|
||||
|
||||
pub fn verify(
|
||||
&self,
|
||||
gens_n: &MultiCommitGens,
|
||||
transcript: &mut Transcript,
|
||||
C: &CompressedGroup,
|
||||
) -> Result<(), ProofVerifyError> {
|
||||
transcript.append_protocol_name(KnowledgeProof::protocol_name());
|
||||
C.append_to_transcript(b"C", transcript);
|
||||
self.alpha.append_to_transcript(b"alpha", transcript);
|
||||
|
||||
let c = transcript.challenge_scalar(b"c");
|
||||
|
||||
let lhs = self.z1.commit(&self.z2, gens_n).compress();
|
||||
let rhs = (&c * C.decompress().expect("Could not decompress C")
|
||||
+ self
|
||||
.alpha
|
||||
.decompress()
|
||||
.expect("Could not decompress self.alpha"))
|
||||
.compress();
|
||||
|
||||
if lhs == rhs {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(ProofVerifyError)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug)]
|
||||
pub struct EqualityProof {
|
||||
alpha: CompressedGroup,
|
||||
z: Scalar,
|
||||
}
|
||||
|
||||
impl EqualityProof {
|
||||
fn protocol_name() -> &'static [u8] {
|
||||
b"equality proof"
|
||||
}
|
||||
|
||||
pub fn prove(
|
||||
gens_n: &MultiCommitGens,
|
||||
transcript: &mut Transcript,
|
||||
random_tape: &mut Transcript,
|
||||
v1: &Scalar,
|
||||
s1: &Scalar,
|
||||
v2: &Scalar,
|
||||
s2: &Scalar,
|
||||
) -> (EqualityProof, CompressedGroup, CompressedGroup) {
|
||||
transcript.append_protocol_name(EqualityProof::protocol_name());
|
||||
|
||||
// produce a random Scalar
|
||||
let r = random_tape.challenge_scalar(b"r");
|
||||
|
||||
let C1 = v1.commit(&s1, gens_n).compress();
|
||||
C1.append_to_transcript(b"C1", transcript);
|
||||
|
||||
let C2 = v2.commit(&s2, gens_n).compress();
|
||||
C2.append_to_transcript(b"C2", transcript);
|
||||
|
||||
let alpha = (&r * gens_n.h).compress();
|
||||
alpha.append_to_transcript(b"alpha", transcript);
|
||||
|
||||
let c = transcript.challenge_scalar(b"c");
|
||||
|
||||
let z = &c * (s1 - s2) + &r;
|
||||
|
||||
(EqualityProof { alpha, z }, C1, C2)
|
||||
}
|
||||
|
||||
pub fn verify(
|
||||
&self,
|
||||
gens_n: &MultiCommitGens,
|
||||
transcript: &mut Transcript,
|
||||
C1: &CompressedGroup,
|
||||
C2: &CompressedGroup,
|
||||
) -> Result<(), ProofVerifyError> {
|
||||
transcript.append_protocol_name(EqualityProof::protocol_name());
|
||||
C1.append_to_transcript(b"C1", transcript);
|
||||
C2.append_to_transcript(b"C2", transcript);
|
||||
self.alpha.append_to_transcript(b"alpha", transcript);
|
||||
|
||||
let c = transcript.challenge_scalar(b"c");
|
||||
let rhs = {
|
||||
let C = &C1.decompress().unwrap() - &C2.decompress().unwrap();
|
||||
(&c * C + &self.alpha.decompress().unwrap()).compress()
|
||||
};
|
||||
|
||||
let lhs = (&self.z * gens_n.h).compress();
|
||||
|
||||
if lhs == rhs {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(ProofVerifyError)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug)]
|
||||
pub struct ProductProof {
|
||||
alpha: CompressedGroup,
|
||||
beta: CompressedGroup,
|
||||
delta: CompressedGroup,
|
||||
z: [Scalar; 5],
|
||||
}
|
||||
|
||||
impl ProductProof {
|
||||
fn protocol_name() -> &'static [u8] {
|
||||
b"product proof"
|
||||
}
|
||||
|
||||
pub fn prove(
|
||||
gens_n: &MultiCommitGens,
|
||||
transcript: &mut Transcript,
|
||||
random_tape: &mut Transcript,
|
||||
x: &Scalar,
|
||||
rX: &Scalar,
|
||||
y: &Scalar,
|
||||
rY: &Scalar,
|
||||
z: &Scalar,
|
||||
rZ: &Scalar,
|
||||
) -> (
|
||||
ProductProof,
|
||||
CompressedGroup,
|
||||
CompressedGroup,
|
||||
CompressedGroup,
|
||||
) {
|
||||
transcript.append_protocol_name(ProductProof::protocol_name());
|
||||
|
||||
// produce five random Scalar
|
||||
let b1 = random_tape.challenge_scalar(b"b1");
|
||||
let b2 = random_tape.challenge_scalar(b"b2");
|
||||
let b3 = random_tape.challenge_scalar(b"b3");
|
||||
let b4 = random_tape.challenge_scalar(b"b4");
|
||||
let b5 = random_tape.challenge_scalar(b"b5");
|
||||
|
||||
let X = x.commit(&rX, gens_n).compress();
|
||||
X.append_to_transcript(b"X", transcript);
|
||||
|
||||
let Y = y.commit(&rY, gens_n).compress();
|
||||
Y.append_to_transcript(b"Y", transcript);
|
||||
|
||||
let Z = z.commit(&rZ, gens_n).compress();
|
||||
Z.append_to_transcript(b"Z", transcript);
|
||||
|
||||
let alpha = b1.commit(&b2, gens_n).compress();
|
||||
alpha.append_to_transcript(b"alpha", transcript);
|
||||
|
||||
let beta = b3.commit(&b4, gens_n).compress();
|
||||
beta.append_to_transcript(b"beta", transcript);
|
||||
|
||||
let delta = {
|
||||
let gens_X = &MultiCommitGens {
|
||||
n: 1,
|
||||
G: vec![X.decompress().unwrap()],
|
||||
h: gens_n.h,
|
||||
};
|
||||
b3.commit(&b5, gens_X).compress()
|
||||
};
|
||||
delta.append_to_transcript(b"delta", transcript);
|
||||
|
||||
let c = transcript.challenge_scalar(b"c");
|
||||
|
||||
let z1 = &b1 + &c * x;
|
||||
let z2 = &b2 + &c * rX;
|
||||
let z3 = &b3 + &c * y;
|
||||
let z4 = &b4 + &c * rY;
|
||||
let z5 = &b5 + &c * (rZ - rX * y);
|
||||
let z = [z1, z2, z3, z4, z5];
|
||||
|
||||
(
|
||||
ProductProof {
|
||||
alpha,
|
||||
beta,
|
||||
delta,
|
||||
z,
|
||||
},
|
||||
X,
|
||||
Y,
|
||||
Z,
|
||||
)
|
||||
}
|
||||
|
||||
fn check_equality(
|
||||
P: &CompressedGroup,
|
||||
X: &CompressedGroup,
|
||||
c: &Scalar,
|
||||
gens_n: &MultiCommitGens,
|
||||
z1: &Scalar,
|
||||
z2: &Scalar,
|
||||
) -> bool {
|
||||
let lhs = (P.decompress().unwrap() + c * X.decompress().unwrap()).compress();
|
||||
let rhs = z1.commit(&z2, gens_n).compress();
|
||||
|
||||
if lhs == rhs {
|
||||
true
|
||||
} else {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
pub fn verify(
|
||||
&self,
|
||||
gens_n: &MultiCommitGens,
|
||||
transcript: &mut Transcript,
|
||||
X: &CompressedGroup,
|
||||
Y: &CompressedGroup,
|
||||
Z: &CompressedGroup,
|
||||
) -> Result<(), ProofVerifyError> {
|
||||
transcript.append_protocol_name(ProductProof::protocol_name());
|
||||
|
||||
X.append_to_transcript(b"X", transcript);
|
||||
Y.append_to_transcript(b"Y", transcript);
|
||||
Z.append_to_transcript(b"Z", transcript);
|
||||
self.alpha.append_to_transcript(b"alpha", transcript);
|
||||
self.beta.append_to_transcript(b"beta", transcript);
|
||||
self.delta.append_to_transcript(b"delta", transcript);
|
||||
|
||||
let z1 = self.z[0];
|
||||
let z2 = self.z[1];
|
||||
let z3 = self.z[2];
|
||||
let z4 = self.z[3];
|
||||
let z5 = self.z[4];
|
||||
|
||||
let c = transcript.challenge_scalar(b"c");
|
||||
|
||||
if ProductProof::check_equality(&self.alpha, &X, &c, &gens_n, &z1, &z2)
|
||||
&& ProductProof::check_equality(&self.beta, &Y, &c, &gens_n, &z3, &z4)
|
||||
&& ProductProof::check_equality(
|
||||
&self.delta,
|
||||
&Z,
|
||||
&c,
|
||||
&MultiCommitGens {
|
||||
n: 1,
|
||||
G: vec![X.decompress().unwrap()],
|
||||
h: gens_n.h,
|
||||
},
|
||||
&z3,
|
||||
&z5,
|
||||
)
|
||||
{
|
||||
Ok(())
|
||||
} else {
|
||||
Err(ProofVerifyError)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct DotProductProof {
|
||||
delta: CompressedGroup,
|
||||
beta: CompressedGroup,
|
||||
z: Vec<Scalar>,
|
||||
z_delta: Scalar,
|
||||
z_beta: Scalar,
|
||||
}
|
||||
|
||||
impl DotProductProof {
|
||||
fn protocol_name() -> &'static [u8] {
|
||||
b"dot product proof"
|
||||
}
|
||||
|
||||
pub fn compute_dotproduct(a: &Vec<Scalar>, b: &Vec<Scalar>) -> Scalar {
|
||||
assert_eq!(a.len(), b.len());
|
||||
(0..a.len()).map(|i| &a[i] * &b[i]).sum()
|
||||
}
|
||||
|
||||
pub fn prove(
|
||||
gens_1: &MultiCommitGens,
|
||||
gens_n: &MultiCommitGens,
|
||||
transcript: &mut Transcript,
|
||||
random_tape: &mut Transcript,
|
||||
x: &Vec<Scalar>,
|
||||
r_x: &Scalar,
|
||||
a: &Vec<Scalar>,
|
||||
y: &Scalar,
|
||||
r_y: &Scalar,
|
||||
) -> (DotProductProof, CompressedGroup, CompressedGroup) {
|
||||
transcript.append_protocol_name(DotProductProof::protocol_name());
|
||||
|
||||
let n = x.len();
|
||||
assert_eq!(x.len(), a.len());
|
||||
assert_eq!(gens_n.n, a.len());
|
||||
assert_eq!(gens_1.n, 1);
|
||||
|
||||
// produce randomness for the proofs
|
||||
let d = random_tape.challenge_vector(b"d", n);
|
||||
let r_delta = random_tape.challenge_scalar(b"r_delta");
|
||||
let r_beta = random_tape.challenge_scalar(b"r_beta");
|
||||
|
||||
let Cx = x.commit(&r_x, gens_n).compress();
|
||||
Cx.append_to_transcript(b"Cx", transcript);
|
||||
|
||||
let Cy = y.commit(&r_y, gens_1).compress();
|
||||
Cy.append_to_transcript(b"Cy", transcript);
|
||||
|
||||
let delta = d.commit(&r_delta, gens_n).compress();
|
||||
delta.append_to_transcript(b"delta", transcript);
|
||||
|
||||
let dotproduct_a_d = DotProductProof::compute_dotproduct(&a, &d);
|
||||
|
||||
let beta = dotproduct_a_d.commit(&r_beta, gens_1).compress();
|
||||
beta.append_to_transcript(b"beta", transcript);
|
||||
|
||||
let c = transcript.challenge_scalar(b"c");
|
||||
|
||||
let z = (0..d.len())
|
||||
.map(|i| c * x[i] + d[i])
|
||||
.collect::<Vec<Scalar>>();
|
||||
|
||||
let z_delta = c * r_x + r_delta;
|
||||
let z_beta = c * r_y + r_beta;
|
||||
|
||||
(
|
||||
DotProductProof {
|
||||
delta,
|
||||
beta,
|
||||
z,
|
||||
z_delta,
|
||||
z_beta,
|
||||
},
|
||||
Cx,
|
||||
Cy,
|
||||
)
|
||||
}
|
||||
|
||||
pub fn verify(
|
||||
&self,
|
||||
gens_1: &MultiCommitGens,
|
||||
gens_n: &MultiCommitGens,
|
||||
transcript: &mut Transcript,
|
||||
a: &Vec<Scalar>,
|
||||
Cx: &CompressedGroup,
|
||||
Cy: &CompressedGroup,
|
||||
) -> Result<(), ProofVerifyError> {
|
||||
assert_eq!(gens_n.n, a.len());
|
||||
assert_eq!(gens_1.n, 1);
|
||||
|
||||
transcript.append_protocol_name(DotProductProof::protocol_name());
|
||||
Cx.append_to_transcript(b"Cx", transcript);
|
||||
Cy.append_to_transcript(b"Cy", transcript);
|
||||
self.delta.append_to_transcript(b"delta", transcript);
|
||||
self.beta.append_to_transcript(b"beta", transcript);
|
||||
|
||||
let c = transcript.challenge_scalar(b"c");
|
||||
|
||||
let mut result = &c * Cx.decompress().unwrap() + self.delta.decompress().unwrap()
|
||||
== self.z.commit(&self.z_delta, gens_n);
|
||||
|
||||
let dotproduct_z_a = DotProductProof::compute_dotproduct(&self.z, &a);
|
||||
result &= &c * Cy.decompress().unwrap() + self.beta.decompress().unwrap()
|
||||
== dotproduct_z_a.commit(&self.z_beta, gens_1);
|
||||
|
||||
if result {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(ProofVerifyError)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct DotProductProofGens {
|
||||
n: usize,
|
||||
pub gens_n: MultiCommitGens,
|
||||
pub gens_1: MultiCommitGens,
|
||||
}
|
||||
|
||||
impl DotProductProofGens {
|
||||
pub fn new(n: usize, label: &[u8]) -> Self {
|
||||
let (gens_n, gens_1) = MultiCommitGens::new(n + 1, label).split_at_mut(n);
|
||||
DotProductProofGens { n, gens_n, gens_1 }
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct DotProductProofLog {
|
||||
bullet_reduction_proof: BulletReductionProof,
|
||||
delta: CompressedGroup,
|
||||
beta: CompressedGroup,
|
||||
z1: Scalar,
|
||||
z2: Scalar,
|
||||
}
|
||||
|
||||
impl DotProductProofLog {
|
||||
fn protocol_name() -> &'static [u8] {
|
||||
b"dot product proof (log)"
|
||||
}
|
||||
|
||||
pub fn compute_dotproduct(a: &Vec<Scalar>, b: &Vec<Scalar>) -> Scalar {
|
||||
assert_eq!(a.len(), b.len());
|
||||
(0..a.len()).map(|i| &a[i] * &b[i]).sum()
|
||||
}
|
||||
|
||||
pub fn prove(
|
||||
gens: &DotProductProofGens,
|
||||
transcript: &mut Transcript,
|
||||
random_tape: &mut Transcript,
|
||||
x: &Vec<Scalar>,
|
||||
r_x: &Scalar,
|
||||
a: &Vec<Scalar>,
|
||||
y: &Scalar,
|
||||
r_y: &Scalar,
|
||||
) -> (DotProductProofLog, CompressedGroup, CompressedGroup) {
|
||||
transcript.append_protocol_name(DotProductProofLog::protocol_name());
|
||||
|
||||
let n = x.len();
|
||||
assert_eq!(x.len(), a.len());
|
||||
assert_eq!(gens.n, n);
|
||||
|
||||
// produce randomness for generating a proof
|
||||
let d = random_tape.challenge_scalar(b"d");
|
||||
let r_delta = random_tape.challenge_scalar(b"r_delta");
|
||||
let r_beta = random_tape.challenge_scalar(b"r_delta");
|
||||
let blinds_vec = {
|
||||
let v1 = random_tape.challenge_vector(b"blinds_vec_1", 2 * n.log2());
|
||||
let v2 = random_tape.challenge_vector(b"blinds_vec_2", 2 * n.log2());
|
||||
(0..v1.len())
|
||||
.map(|i| (v1[i], v2[i]))
|
||||
.collect::<Vec<(Scalar, Scalar)>>()
|
||||
};
|
||||
|
||||
let Cx = x.commit(&r_x, &gens.gens_n).compress();
|
||||
Cx.append_to_transcript(b"Cx", transcript);
|
||||
|
||||
let Cy = y.commit(&r_y, &gens.gens_1).compress();
|
||||
Cy.append_to_transcript(b"Cy", transcript);
|
||||
|
||||
let r_Gamma = r_x + r_y;
|
||||
let (bullet_reduction_proof, _Gamma_hat, x_hat, a_hat, g_hat, rhat_Gamma) =
|
||||
BulletReductionProof::prove(
|
||||
transcript,
|
||||
&gens.gens_1.G[0],
|
||||
&gens.gens_n.G,
|
||||
&gens.gens_n.h,
|
||||
x,
|
||||
a,
|
||||
&r_Gamma,
|
||||
&blinds_vec,
|
||||
);
|
||||
let y_hat = x_hat * a_hat;
|
||||
|
||||
let delta = {
|
||||
let gens_hat = MultiCommitGens {
|
||||
n: 1,
|
||||
G: vec![g_hat],
|
||||
h: gens.gens_1.h,
|
||||
};
|
||||
d.commit(&r_delta, &gens_hat).compress()
|
||||
};
|
||||
delta.append_to_transcript(b"delta", transcript);
|
||||
|
||||
let beta = d.commit(&r_beta, &gens.gens_1).compress();
|
||||
beta.append_to_transcript(b"beta", transcript);
|
||||
|
||||
let c = transcript.challenge_scalar(b"c");
|
||||
|
||||
let z1 = d + c * y_hat;
|
||||
let z2 = a_hat * (c * rhat_Gamma + r_beta) + r_delta;
|
||||
|
||||
(
|
||||
DotProductProofLog {
|
||||
bullet_reduction_proof,
|
||||
delta,
|
||||
beta,
|
||||
z1,
|
||||
z2,
|
||||
},
|
||||
Cx,
|
||||
Cy,
|
||||
)
|
||||
}
|
||||
|
||||
pub fn verify(
|
||||
&self,
|
||||
n: usize,
|
||||
gens: &DotProductProofGens,
|
||||
transcript: &mut Transcript,
|
||||
a: &Vec<Scalar>,
|
||||
Cx: &CompressedGroup,
|
||||
Cy: &CompressedGroup,
|
||||
) -> Result<(), ProofVerifyError> {
|
||||
assert_eq!(gens.n, n);
|
||||
assert_eq!(a.len(), n);
|
||||
|
||||
transcript.append_protocol_name(DotProductProofLog::protocol_name());
|
||||
Cx.append_to_transcript(b"Cx", transcript);
|
||||
Cy.append_to_transcript(b"Cy", transcript);
|
||||
|
||||
let Gamma = Cx.decompress().unwrap() + Cy.decompress().unwrap();
|
||||
|
||||
let (g_hat, Gamma_hat, a_hat) = self
|
||||
.bullet_reduction_proof
|
||||
.verify(n, a, transcript, &Gamma, &gens.gens_n.G)
|
||||
.unwrap();
|
||||
|
||||
self.delta.append_to_transcript(b"delta", transcript);
|
||||
self.beta.append_to_transcript(b"beta", transcript);
|
||||
|
||||
let c = transcript.challenge_scalar(b"c");
|
||||
|
||||
let c_s = &c;
|
||||
let beta_s = self.beta.decompress().unwrap();
|
||||
let a_hat_s = &a_hat;
|
||||
let delta_s = self.delta.decompress().unwrap();
|
||||
let z1_s = &self.z1;
|
||||
let z2_s = &self.z2;
|
||||
|
||||
let lhs = ((Gamma_hat * c_s + beta_s) * a_hat_s + delta_s).compress();
|
||||
let rhs = ((g_hat + &gens.gens_1.G[0] * a_hat_s) * z1_s + gens.gens_1.h * z2_s).compress();
|
||||
|
||||
assert_eq!(lhs, rhs);
|
||||
|
||||
if lhs == rhs {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(ProofVerifyError)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use rand::rngs::OsRng;
|
||||
#[test]
|
||||
fn check_knowledgeproof() {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
|
||||
let gens_1 = MultiCommitGens::new(1, b"test-knowledgeproof");
|
||||
|
||||
let x = Scalar::random(&mut csprng);
|
||||
let r = Scalar::random(&mut csprng);
|
||||
|
||||
let mut random_tape = {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
let mut tape = Transcript::new(b"proof");
|
||||
tape.append_scalar(b"init_randomness", &Scalar::random(&mut csprng));
|
||||
tape
|
||||
};
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
let (proof, committed_value) =
|
||||
KnowledgeProof::prove(&gens_1, &mut prover_transcript, &mut random_tape, &x, &r);
|
||||
|
||||
let mut verifier_transcript = Transcript::new(b"example");
|
||||
assert!(proof
|
||||
.verify(&gens_1, &mut verifier_transcript, &committed_value)
|
||||
.is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn check_equalityproof() {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
|
||||
let gens_1 = MultiCommitGens::new(1, b"test-equalityproof");
|
||||
let v1 = Scalar::random(&mut csprng);
|
||||
let v2 = v1;
|
||||
let s1 = Scalar::random(&mut csprng);
|
||||
let s2 = Scalar::random(&mut csprng);
|
||||
|
||||
let mut random_tape = {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
let mut tape = Transcript::new(b"proof");
|
||||
tape.append_scalar(b"init_randomness", &Scalar::random(&mut csprng));
|
||||
tape
|
||||
};
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
let (proof, C1, C2) = EqualityProof::prove(
|
||||
&gens_1,
|
||||
&mut prover_transcript,
|
||||
&mut random_tape,
|
||||
&v1,
|
||||
&s1,
|
||||
&v2,
|
||||
&s2,
|
||||
);
|
||||
|
||||
let mut verifier_transcript = Transcript::new(b"example");
|
||||
assert!(proof
|
||||
.verify(&gens_1, &mut verifier_transcript, &C1, &C2)
|
||||
.is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn check_productproof() {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
|
||||
let gens_1 = MultiCommitGens::new(1, b"test-productproof");
|
||||
let x = Scalar::random(&mut csprng);
|
||||
let rX = Scalar::random(&mut csprng);
|
||||
let y = Scalar::random(&mut csprng);
|
||||
let rY = Scalar::random(&mut csprng);
|
||||
let z = x * y;
|
||||
let rZ = Scalar::random(&mut csprng);
|
||||
|
||||
let mut random_tape = {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
let mut tape = Transcript::new(b"proof");
|
||||
tape.append_scalar(b"init_randomness", &Scalar::random(&mut csprng));
|
||||
tape
|
||||
};
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
let (proof, X, Y, Z) = ProductProof::prove(
|
||||
&gens_1,
|
||||
&mut prover_transcript,
|
||||
&mut random_tape,
|
||||
&x,
|
||||
&rX,
|
||||
&y,
|
||||
&rY,
|
||||
&z,
|
||||
&rZ,
|
||||
);
|
||||
|
||||
let mut verifier_transcript = Transcript::new(b"example");
|
||||
assert!(proof
|
||||
.verify(&gens_1, &mut verifier_transcript, &X, &Y, &Z)
|
||||
.is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn check_dotproductproof() {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
|
||||
let n = 1024;
|
||||
|
||||
let gens_1 = MultiCommitGens::new(1, b"test-two");
|
||||
let gens_1024 = MultiCommitGens::new(n, b"test-1024");
|
||||
|
||||
let mut x: Vec<Scalar> = Vec::new();
|
||||
let mut a: Vec<Scalar> = Vec::new();
|
||||
for _ in 0..n {
|
||||
x.push(Scalar::random(&mut csprng));
|
||||
a.push(Scalar::random(&mut csprng));
|
||||
}
|
||||
let y = DotProductProofLog::compute_dotproduct(&x, &a);
|
||||
let r_x = Scalar::random(&mut csprng);
|
||||
let r_y = Scalar::random(&mut csprng);
|
||||
|
||||
let mut random_tape = {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
let mut tape = Transcript::new(b"proof");
|
||||
tape.append_scalar(b"init_randomness", &Scalar::random(&mut csprng));
|
||||
tape
|
||||
};
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
let (proof, Cx, Cy) = DotProductProof::prove(
|
||||
&gens_1,
|
||||
&gens_1024,
|
||||
&mut prover_transcript,
|
||||
&mut random_tape,
|
||||
&x,
|
||||
&r_x,
|
||||
&a,
|
||||
&y,
|
||||
&r_y,
|
||||
);
|
||||
|
||||
let mut verifier_transcript = Transcript::new(b"example");
|
||||
assert!(proof
|
||||
.verify(&gens_1, &gens_1024, &mut verifier_transcript, &a, &Cx, &Cy)
|
||||
.is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn check_dotproductproof_log() {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
|
||||
let n = 1024;
|
||||
|
||||
let gens = DotProductProofGens::new(n, b"test-1024");
|
||||
|
||||
let x: Vec<Scalar> = (0..n).map(|_i| Scalar::random(&mut csprng)).collect();
|
||||
let a: Vec<Scalar> = (0..n).map(|_i| Scalar::random(&mut csprng)).collect();
|
||||
let y = DotProductProof::compute_dotproduct(&x, &a);
|
||||
|
||||
let r_x = Scalar::random(&mut csprng);
|
||||
let r_y = Scalar::random(&mut csprng);
|
||||
|
||||
let mut random_tape = {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
let mut tape = Transcript::new(b"proof");
|
||||
tape.append_scalar(b"init_randomness", &Scalar::random(&mut csprng));
|
||||
tape
|
||||
};
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
let (proof, Cx, Cy) = DotProductProofLog::prove(
|
||||
&gens,
|
||||
&mut prover_transcript,
|
||||
&mut random_tape,
|
||||
&x,
|
||||
&r_x,
|
||||
&a,
|
||||
&y,
|
||||
&r_y,
|
||||
);
|
||||
|
||||
let mut verifier_transcript = Transcript::new(b"example");
|
||||
assert!(proof
|
||||
.verify(n, &gens, &mut verifier_transcript, &a, &Cx, &Cy)
|
||||
.is_ok());
|
||||
}
|
||||
}
|
|
@ -0,0 +1,489 @@
|
|||
#[allow(dead_code)]
|
||||
use super::dense_mlpoly::DensePolynomial;
|
||||
use super::dense_mlpoly::EqPolynomial;
|
||||
use super::math::Math;
|
||||
use super::scalar::Scalar;
|
||||
use super::sumcheck::SumcheckInstanceProof;
|
||||
use super::transcript::ProofTranscript;
|
||||
use merlin::Transcript;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct ProductCircuit {
|
||||
left_vec: Vec<DensePolynomial>,
|
||||
right_vec: Vec<DensePolynomial>,
|
||||
}
|
||||
|
||||
impl ProductCircuit {
|
||||
fn compute_layer(
|
||||
inp_left: &DensePolynomial,
|
||||
inp_right: &DensePolynomial,
|
||||
) -> (DensePolynomial, DensePolynomial) {
|
||||
let len = inp_left.len() + inp_right.len();
|
||||
let outp_left = (0..len / 4)
|
||||
.map(|i| &inp_left[i] * &inp_right[i])
|
||||
.collect::<Vec<Scalar>>();
|
||||
let outp_right = (len / 4..len / 2)
|
||||
.map(|i| &inp_left[i] * &inp_right[i])
|
||||
.collect::<Vec<Scalar>>();
|
||||
|
||||
(
|
||||
DensePolynomial::new(outp_left),
|
||||
DensePolynomial::new(outp_right),
|
||||
)
|
||||
}
|
||||
|
||||
pub fn new(poly: &DensePolynomial) -> Self {
|
||||
let mut left_vec: Vec<DensePolynomial> = Vec::new();
|
||||
let mut right_vec: Vec<DensePolynomial> = Vec::new();
|
||||
|
||||
let num_layers = poly.len().log2();
|
||||
let (outp_left, outp_right) = poly.split(poly.len() / 2);
|
||||
|
||||
left_vec.push(outp_left);
|
||||
right_vec.push(outp_right);
|
||||
|
||||
for i in 0..num_layers - 1 {
|
||||
let (outp_left, outp_right) = ProductCircuit::compute_layer(&left_vec[i], &right_vec[i]);
|
||||
left_vec.push(outp_left);
|
||||
right_vec.push(outp_right);
|
||||
}
|
||||
|
||||
ProductCircuit {
|
||||
left_vec,
|
||||
right_vec,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn evaluate(&self) -> Scalar {
|
||||
let len = self.left_vec.len();
|
||||
assert_eq!(self.left_vec[len - 1].get_num_vars(), 0);
|
||||
assert_eq!(self.right_vec[len - 1].get_num_vars(), 0);
|
||||
self.left_vec[len - 1][0] * self.right_vec[len - 1][0]
|
||||
}
|
||||
}
|
||||
|
||||
pub struct DotProductCircuit {
|
||||
left: DensePolynomial,
|
||||
right: DensePolynomial,
|
||||
weight: DensePolynomial,
|
||||
}
|
||||
|
||||
impl DotProductCircuit {
|
||||
pub fn new(left: DensePolynomial, right: DensePolynomial, weight: DensePolynomial) -> Self {
|
||||
assert_eq!(left.len(), right.len());
|
||||
assert_eq!(left.len(), weight.len());
|
||||
DotProductCircuit {
|
||||
left,
|
||||
right,
|
||||
weight,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn evaluate(&self) -> Scalar {
|
||||
(0..self.left.len())
|
||||
.map(|i| &self.left[i] * &self.right[i] * &self.weight[i])
|
||||
.sum()
|
||||
}
|
||||
|
||||
pub fn split(&mut self) -> (DotProductCircuit, DotProductCircuit) {
|
||||
let idx = self.left.len() / 2;
|
||||
assert_eq!(idx * 2, self.left.len());
|
||||
let (l1, l2) = self.left.split(idx);
|
||||
let (r1, r2) = self.right.split(idx);
|
||||
let (w1, w2) = self.weight.split(idx);
|
||||
(
|
||||
DotProductCircuit {
|
||||
left: l1,
|
||||
right: r1,
|
||||
weight: w1,
|
||||
},
|
||||
DotProductCircuit {
|
||||
left: l2,
|
||||
right: r2,
|
||||
weight: w2,
|
||||
},
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct LayerProof {
|
||||
pub proof: SumcheckInstanceProof,
|
||||
pub claims: Vec<Scalar>,
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
impl LayerProof {
|
||||
pub fn verify(
|
||||
&self,
|
||||
claim: Scalar,
|
||||
num_rounds: usize,
|
||||
degree_bound: usize,
|
||||
transcript: &mut Transcript,
|
||||
) -> (Scalar, Vec<Scalar>) {
|
||||
self
|
||||
.proof
|
||||
.verify(claim, num_rounds, degree_bound, transcript)
|
||||
.unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct LayerProofBatched {
|
||||
pub proof: SumcheckInstanceProof,
|
||||
pub claims_prod_left: Vec<Scalar>,
|
||||
pub claims_prod_right: Vec<Scalar>,
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
impl LayerProofBatched {
|
||||
pub fn verify(
|
||||
&self,
|
||||
claim: Scalar,
|
||||
num_rounds: usize,
|
||||
degree_bound: usize,
|
||||
transcript: &mut Transcript,
|
||||
) -> (Scalar, Vec<Scalar>) {
|
||||
self
|
||||
.proof
|
||||
.verify(claim, num_rounds, degree_bound, transcript)
|
||||
.unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct ProductCircuitEvalProof {
|
||||
proof: Vec<LayerProof>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct ProductCircuitEvalProofBatched {
|
||||
proof: Vec<LayerProofBatched>,
|
||||
claims_dotp: (Vec<Scalar>, Vec<Scalar>, Vec<Scalar>),
|
||||
}
|
||||
|
||||
impl ProductCircuitEvalProof {
|
||||
#![allow(dead_code)]
|
||||
pub fn prove(
|
||||
circuit: &mut ProductCircuit,
|
||||
transcript: &mut Transcript,
|
||||
) -> (Self, Scalar, Vec<Scalar>) {
|
||||
let mut proof: Vec<LayerProof> = Vec::new();
|
||||
let num_layers = circuit.left_vec.len();
|
||||
|
||||
let mut claim = circuit.evaluate();
|
||||
let mut rand = Vec::new();
|
||||
for layer_id in (0..num_layers).rev() {
|
||||
let len = circuit.left_vec[layer_id].len() + circuit.right_vec[layer_id].len();
|
||||
|
||||
let mut poly_C = DensePolynomial::new(EqPolynomial::new(rand.clone()).evals());
|
||||
assert_eq!(poly_C.len(), len / 2);
|
||||
|
||||
let num_rounds_prod = poly_C.len().log2();
|
||||
let comb_func_prod = |poly_A_comp: &Scalar,
|
||||
poly_B_comp: &Scalar,
|
||||
poly_C_comp: &Scalar|
|
||||
-> Scalar { poly_A_comp * poly_B_comp * poly_C_comp };
|
||||
let (proof_prod, rand_prod, claims_prod) = SumcheckInstanceProof::prove_cubic(
|
||||
&claim,
|
||||
num_rounds_prod,
|
||||
&mut circuit.left_vec[layer_id],
|
||||
&mut circuit.right_vec[layer_id],
|
||||
&mut poly_C,
|
||||
comb_func_prod,
|
||||
transcript,
|
||||
);
|
||||
|
||||
transcript.append_scalar(b"claim_prod_left", &claims_prod[0]);
|
||||
transcript.append_scalar(b"claim_prod_right", &claims_prod[1]);
|
||||
|
||||
// produce a random challenge
|
||||
let r_layer = transcript.challenge_scalar(b"challenge_r_layer");
|
||||
claim = &claims_prod[0] + &r_layer * (&claims_prod[1] - &claims_prod[0]);
|
||||
|
||||
let mut ext = vec![r_layer];
|
||||
ext.extend(rand_prod);
|
||||
rand = ext;
|
||||
|
||||
proof.push(LayerProof {
|
||||
proof: proof_prod,
|
||||
claims: claims_prod[0..claims_prod.len() - 1].to_vec(),
|
||||
});
|
||||
}
|
||||
|
||||
(ProductCircuitEvalProof { proof }, claim, rand)
|
||||
}
|
||||
|
||||
pub fn verify(
|
||||
&self,
|
||||
eval: Scalar,
|
||||
len: usize,
|
||||
transcript: &mut Transcript,
|
||||
) -> (Scalar, Vec<Scalar>) {
|
||||
let num_layers = len.log2();
|
||||
let mut claim = eval;
|
||||
let mut rand: Vec<Scalar> = Vec::new();
|
||||
let mut num_rounds = 0;
|
||||
assert_eq!(self.proof.len(), num_layers);
|
||||
for i in 0..num_layers {
|
||||
let (claim_last, rand_prod) = self.proof[i].verify(claim, num_rounds, 3, transcript);
|
||||
|
||||
let claims_prod = &self.proof[i].claims;
|
||||
transcript.append_scalar(b"claim_prod_left", &claims_prod[0]);
|
||||
transcript.append_scalar(b"claim_prod_right", &claims_prod[1]);
|
||||
|
||||
assert_eq!(rand.len(), rand_prod.len());
|
||||
let eq: Scalar = (0..rand.len())
|
||||
.map(|i| {
|
||||
rand[i] * rand_prod[i] + (Scalar::one() - rand[i]) * (Scalar::one() - rand_prod[i])
|
||||
})
|
||||
.product();
|
||||
assert_eq!(claims_prod[0] * claims_prod[1] * eq, claim_last);
|
||||
|
||||
// produce a random challenge
|
||||
let r_layer = transcript.challenge_scalar(b"challenge_r_layer");
|
||||
claim = (Scalar::one() - r_layer) * claims_prod[0] + r_layer * claims_prod[1];
|
||||
num_rounds = num_rounds + 1;
|
||||
let mut ext = vec![r_layer];
|
||||
ext.extend(rand_prod);
|
||||
rand = ext;
|
||||
}
|
||||
|
||||
(claim, rand)
|
||||
}
|
||||
}
|
||||
|
||||
impl ProductCircuitEvalProofBatched {
|
||||
pub fn prove(
|
||||
prod_circuit_vec: &mut Vec<&mut ProductCircuit>,
|
||||
dotp_circuit_vec: &mut Vec<&mut DotProductCircuit>,
|
||||
transcript: &mut Transcript,
|
||||
) -> (Self, Vec<Scalar>) {
|
||||
assert!(prod_circuit_vec.len() > 0);
|
||||
|
||||
let mut claims_dotp_final = (Vec::new(), Vec::new(), Vec::new());
|
||||
|
||||
let mut proof_layers: Vec<LayerProofBatched> = Vec::new();
|
||||
let num_layers = prod_circuit_vec[0].left_vec.len();
|
||||
let mut claims_to_verify = (0..prod_circuit_vec.len())
|
||||
.map(|i| prod_circuit_vec[i].evaluate())
|
||||
.collect::<Vec<Scalar>>();
|
||||
let mut rand = Vec::new();
|
||||
for layer_id in (0..num_layers).rev() {
|
||||
// prepare paralell instance that share poly_C first
|
||||
let len = prod_circuit_vec[0].left_vec[layer_id].len()
|
||||
+ prod_circuit_vec[0].right_vec[layer_id].len();
|
||||
|
||||
let mut poly_C_par = DensePolynomial::new(EqPolynomial::new(rand.clone()).evals());
|
||||
assert_eq!(poly_C_par.len(), len / 2);
|
||||
|
||||
let num_rounds_prod = poly_C_par.len().log2();
|
||||
let comb_func_prod = |poly_A_comp: &Scalar,
|
||||
poly_B_comp: &Scalar,
|
||||
poly_C_comp: &Scalar|
|
||||
-> Scalar { poly_A_comp * poly_B_comp * poly_C_comp };
|
||||
|
||||
let mut poly_A_batched_par: Vec<&mut DensePolynomial> = Vec::new();
|
||||
let mut poly_B_batched_par: Vec<&mut DensePolynomial> = Vec::new();
|
||||
for prod_circuit in prod_circuit_vec.iter_mut() {
|
||||
poly_A_batched_par.push(&mut prod_circuit.left_vec[layer_id]);
|
||||
poly_B_batched_par.push(&mut prod_circuit.right_vec[layer_id])
|
||||
}
|
||||
let poly_vec_par = (
|
||||
&mut poly_A_batched_par,
|
||||
&mut poly_B_batched_par,
|
||||
&mut poly_C_par,
|
||||
);
|
||||
|
||||
// prepare sequential instances that don't share poly_C
|
||||
let mut poly_A_batched_seq: Vec<&mut DensePolynomial> = Vec::new();
|
||||
let mut poly_B_batched_seq: Vec<&mut DensePolynomial> = Vec::new();
|
||||
let mut poly_C_batched_seq: Vec<&mut DensePolynomial> = Vec::new();
|
||||
if layer_id == 0 && dotp_circuit_vec.len() > 0 {
|
||||
// add additional claims
|
||||
for i in 0..dotp_circuit_vec.len() {
|
||||
claims_to_verify.push(dotp_circuit_vec[i].evaluate());
|
||||
assert_eq!(len / 2, dotp_circuit_vec[i].left.len());
|
||||
assert_eq!(len / 2, dotp_circuit_vec[i].right.len());
|
||||
assert_eq!(len / 2, dotp_circuit_vec[i].weight.len());
|
||||
}
|
||||
|
||||
for dotp_circuit in dotp_circuit_vec.iter_mut() {
|
||||
poly_A_batched_seq.push(&mut dotp_circuit.left);
|
||||
poly_B_batched_seq.push(&mut dotp_circuit.right);
|
||||
poly_C_batched_seq.push(&mut dotp_circuit.weight);
|
||||
}
|
||||
}
|
||||
let poly_vec_seq = (
|
||||
&mut poly_A_batched_seq,
|
||||
&mut poly_B_batched_seq,
|
||||
&mut poly_C_batched_seq,
|
||||
);
|
||||
|
||||
// produce a fresh set of coeffs and a joint claim
|
||||
let coeff_vec =
|
||||
transcript.challenge_vector(b"rand_coeffs_next_layer", claims_to_verify.len());
|
||||
let claim = (0..claims_to_verify.len())
|
||||
.map(|i| claims_to_verify[i] * coeff_vec[i])
|
||||
.sum();
|
||||
|
||||
let (proof, rand_prod, claims_prod, claims_dotp) = SumcheckInstanceProof::prove_cubic_batched(
|
||||
&claim,
|
||||
num_rounds_prod,
|
||||
poly_vec_par,
|
||||
poly_vec_seq,
|
||||
&coeff_vec,
|
||||
comb_func_prod,
|
||||
transcript,
|
||||
);
|
||||
|
||||
let (claims_prod_left, claims_prod_right, _claims_eq) = claims_prod;
|
||||
for i in 0..prod_circuit_vec.len() {
|
||||
transcript.append_scalar(b"claim_prod_left", &claims_prod_left[i]);
|
||||
transcript.append_scalar(b"claim_prod_right", &claims_prod_right[i]);
|
||||
}
|
||||
|
||||
if layer_id == 0 && dotp_circuit_vec.len() > 0 {
|
||||
let (claims_dotp_left, claims_dotp_right, claims_dotp_weight) = claims_dotp;
|
||||
for i in 0..dotp_circuit_vec.len() {
|
||||
transcript.append_scalar(b"claim_dotp_left", &claims_dotp_left[i]);
|
||||
transcript.append_scalar(b"claim_dotp_right", &claims_dotp_right[i]);
|
||||
transcript.append_scalar(b"claim_dotp_weight", &claims_dotp_weight[i]);
|
||||
}
|
||||
claims_dotp_final = (claims_dotp_left, claims_dotp_right, claims_dotp_weight);
|
||||
}
|
||||
|
||||
// produce a random challenge to condense two claims into a single claim
|
||||
let r_layer = transcript.challenge_scalar(b"challenge_r_layer");
|
||||
|
||||
claims_to_verify = (0..prod_circuit_vec.len())
|
||||
.map(|i| &claims_prod_left[i] + &r_layer * (&claims_prod_right[i] - &claims_prod_left[i]))
|
||||
.collect::<Vec<Scalar>>();
|
||||
|
||||
let mut ext = vec![r_layer];
|
||||
ext.extend(rand_prod);
|
||||
rand = ext;
|
||||
|
||||
proof_layers.push(LayerProofBatched {
|
||||
proof,
|
||||
claims_prod_left,
|
||||
claims_prod_right,
|
||||
});
|
||||
}
|
||||
|
||||
(
|
||||
ProductCircuitEvalProofBatched {
|
||||
proof: proof_layers,
|
||||
claims_dotp: claims_dotp_final,
|
||||
},
|
||||
rand,
|
||||
)
|
||||
}
|
||||
|
||||
pub fn verify(
|
||||
&self,
|
||||
claims_prod_vec: &Vec<Scalar>,
|
||||
claims_dotp_vec: &Vec<Scalar>,
|
||||
len: usize,
|
||||
transcript: &mut Transcript,
|
||||
) -> (Vec<Scalar>, Vec<Scalar>, Vec<Scalar>) {
|
||||
let num_layers = len.log2();
|
||||
let mut rand: Vec<Scalar> = Vec::new();
|
||||
let mut num_rounds = 0;
|
||||
assert_eq!(self.proof.len(), num_layers);
|
||||
|
||||
let mut claims_to_verify = claims_prod_vec.clone();
|
||||
let mut claims_to_verify_dotp: Vec<Scalar> = Vec::new();
|
||||
for i in 0..num_layers {
|
||||
if i == num_layers - 1 {
|
||||
claims_to_verify.extend(claims_dotp_vec);
|
||||
}
|
||||
|
||||
// produce random coefficients, one for each instance
|
||||
let coeff_vec =
|
||||
transcript.challenge_vector(b"rand_coeffs_next_layer", claims_to_verify.len());
|
||||
|
||||
// produce a joint claim
|
||||
let claim = (0..claims_to_verify.len())
|
||||
.map(|i| claims_to_verify[i] * coeff_vec[i])
|
||||
.sum();
|
||||
|
||||
let (claim_last, rand_prod) = self.proof[i].verify(claim, num_rounds, 3, transcript);
|
||||
|
||||
let claims_prod_left = &self.proof[i].claims_prod_left;
|
||||
let claims_prod_right = &self.proof[i].claims_prod_right;
|
||||
assert_eq!(claims_prod_left.len(), claims_prod_vec.len());
|
||||
assert_eq!(claims_prod_right.len(), claims_prod_vec.len());
|
||||
|
||||
for i in 0..claims_prod_vec.len() {
|
||||
transcript.append_scalar(b"claim_prod_left", &claims_prod_left[i]);
|
||||
transcript.append_scalar(b"claim_prod_right", &claims_prod_right[i]);
|
||||
}
|
||||
|
||||
assert_eq!(rand.len(), rand_prod.len());
|
||||
let eq: Scalar = (0..rand.len())
|
||||
.map(|i| {
|
||||
rand[i] * rand_prod[i] + (Scalar::one() - rand[i]) * (Scalar::one() - rand_prod[i])
|
||||
})
|
||||
.product();
|
||||
let mut claim_expected: Scalar = (0..claims_prod_vec.len())
|
||||
.map(|i| coeff_vec[i] * (claims_prod_left[i] * claims_prod_right[i] * eq))
|
||||
.sum();
|
||||
|
||||
// add claims from the dotp instances
|
||||
if i == num_layers - 1 {
|
||||
let num_prod_instances = claims_prod_vec.len();
|
||||
let (claims_dotp_left, claims_dotp_right, claims_dotp_weight) = &self.claims_dotp;
|
||||
for i in 0..claims_dotp_left.len() {
|
||||
transcript.append_scalar(b"claim_dotp_left", &claims_dotp_left[i]);
|
||||
transcript.append_scalar(b"claim_dotp_right", &claims_dotp_right[i]);
|
||||
transcript.append_scalar(b"claim_dotp_weight", &claims_dotp_weight[i]);
|
||||
|
||||
claim_expected = &claim_expected
|
||||
+ &coeff_vec[i + num_prod_instances]
|
||||
* &claims_dotp_left[i]
|
||||
* &claims_dotp_right[i]
|
||||
* &claims_dotp_weight[i];
|
||||
}
|
||||
}
|
||||
|
||||
assert_eq!(claim_expected, claim_last);
|
||||
|
||||
// produce a random challenge
|
||||
let r_layer = transcript.challenge_scalar(b"challenge_r_layer");
|
||||
|
||||
claims_to_verify = (0..claims_prod_left.len())
|
||||
.map(|i| &claims_prod_left[i] + &r_layer * (&claims_prod_right[i] - &claims_prod_left[i]))
|
||||
.collect::<Vec<Scalar>>();
|
||||
|
||||
// add claims to verify for dotp circuit
|
||||
if i == num_layers - 1 {
|
||||
let (claims_dotp_left, claims_dotp_right, claims_dotp_weight) = &self.claims_dotp;
|
||||
|
||||
for i in 0..claims_dotp_vec.len() / 2 {
|
||||
// combine left claims
|
||||
let claim_left = &claims_dotp_left[2 * i]
|
||||
+ &r_layer * (&claims_dotp_left[2 * i + 1] - &claims_dotp_left[2 * i]);
|
||||
|
||||
let claim_right = &claims_dotp_right[2 * i]
|
||||
+ &r_layer * (&claims_dotp_right[2 * i + 1] - &claims_dotp_right[2 * i]);
|
||||
|
||||
let claim_weight = &claims_dotp_weight[2 * i]
|
||||
+ &r_layer * (&claims_dotp_weight[2 * i + 1] - &claims_dotp_weight[2 * i]);
|
||||
claims_to_verify_dotp.push(claim_left);
|
||||
claims_to_verify_dotp.push(claim_right);
|
||||
claims_to_verify_dotp.push(claim_weight);
|
||||
}
|
||||
}
|
||||
|
||||
num_rounds = num_rounds + 1;
|
||||
let mut ext = vec![r_layer];
|
||||
ext.extend(rand_prod);
|
||||
rand = ext;
|
||||
}
|
||||
(claims_to_verify, claims_to_verify_dotp, rand)
|
||||
}
|
||||
}
|
|
@ -0,0 +1,55 @@
|
|||
#![allow(non_snake_case)]
|
||||
extern crate flate2;
|
||||
extern crate libspartan;
|
||||
extern crate merlin;
|
||||
extern crate rand;
|
||||
|
||||
use flate2::{write::ZlibEncoder, Compression};
|
||||
use libspartan::math::Math;
|
||||
use libspartan::r1csinstance::{R1CSCommitmentGens, R1CSInstance};
|
||||
use libspartan::r1csproof::R1CSGens;
|
||||
use libspartan::spartan::{SpartanGens, SpartanProof};
|
||||
use libspartan::timer::Timer;
|
||||
use merlin::Transcript;
|
||||
|
||||
pub fn main() {
|
||||
for &s in [12, 16, 20].iter() {
|
||||
let num_vars = (s as usize).pow2();
|
||||
let num_cons = num_vars;
|
||||
let num_inputs = 10;
|
||||
let (inst, vars, input) = R1CSInstance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
|
||||
|
||||
let r1cs_size = inst.size();
|
||||
let gens_r1cs_eval = R1CSCommitmentGens::new(&r1cs_size, b"gens_r1cs_eval");
|
||||
|
||||
Timer::print(&format!("number_of_constraints {}", num_cons));
|
||||
// create a commitment to R1CSInstance
|
||||
let timer_encode = Timer::new("SpartanProof::encode");
|
||||
let (comm, decomm) = SpartanProof::encode(&inst, &gens_r1cs_eval);
|
||||
timer_encode.stop();
|
||||
|
||||
let gens_r1cs_sat = R1CSGens::new(num_cons, num_vars, b"gens_r1cs_sat");
|
||||
let gens = SpartanGens::new(gens_r1cs_sat, gens_r1cs_eval);
|
||||
|
||||
// produce a proof of satisfiability
|
||||
let timer_prove = Timer::new("SpartanProof::prove");
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
let proof = SpartanProof::prove(&inst, &decomm, vars, &input, &gens, &mut prover_transcript);
|
||||
timer_prove.stop();
|
||||
|
||||
let mut encoder = ZlibEncoder::new(Vec::new(), Compression::default());
|
||||
bincode::serialize_into(&mut encoder, &proof).unwrap();
|
||||
let proof_encoded = encoder.finish().unwrap();
|
||||
let msg_proof_len = format!("proof_compressed_len {:?}", proof_encoded.len());
|
||||
Timer::print(&msg_proof_len);
|
||||
|
||||
let timer_verify = Timer::new("SpartanProof::verify");
|
||||
let mut verifier_transcript = Transcript::new(b"example");
|
||||
assert!(proof
|
||||
.verify(&comm, &input, &mut verifier_transcript, &gens)
|
||||
.is_ok());
|
||||
timer_verify.stop();
|
||||
|
||||
println!();
|
||||
}
|
||||
}
|
|
@ -0,0 +1,346 @@
|
|||
use super::dense_mlpoly::DensePolynomial;
|
||||
use super::errors::ProofVerifyError;
|
||||
use super::math::Math;
|
||||
use super::scalar::Scalar;
|
||||
use super::sparse_mlpoly::{
|
||||
MultiSparseMatPolynomialAsDense, SparseMatEntry, SparseMatPolyCommitment,
|
||||
SparseMatPolyCommitmentGens, SparseMatPolyEvalProof, SparseMatPolynomial,
|
||||
SparseMatPolynomialSize,
|
||||
};
|
||||
use super::timer::Timer;
|
||||
use super::transcript::{AppendToTranscript, ProofTranscript};
|
||||
use merlin::Transcript;
|
||||
use rand::rngs::OsRng;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct R1CSInstance {
|
||||
num_cons: usize,
|
||||
num_vars: usize,
|
||||
num_inputs: usize,
|
||||
A: SparseMatPolynomial,
|
||||
B: SparseMatPolynomial,
|
||||
C: SparseMatPolynomial,
|
||||
}
|
||||
|
||||
pub struct R1CSInstanceSize {
|
||||
size_A: SparseMatPolynomialSize,
|
||||
size_B: SparseMatPolynomialSize,
|
||||
size_C: SparseMatPolynomialSize,
|
||||
}
|
||||
|
||||
pub struct R1CSCommitmentGens {
|
||||
gens: SparseMatPolyCommitmentGens,
|
||||
}
|
||||
|
||||
impl R1CSCommitmentGens {
|
||||
pub fn new(size: &R1CSInstanceSize, label: &'static [u8]) -> R1CSCommitmentGens {
|
||||
assert_eq!(size.size_A, size.size_B);
|
||||
assert_eq!(size.size_A, size.size_C);
|
||||
let gens = SparseMatPolyCommitmentGens::new(&size.size_A, 3, label);
|
||||
R1CSCommitmentGens { gens }
|
||||
}
|
||||
}
|
||||
|
||||
pub struct R1CSCommitment {
|
||||
num_cons: usize,
|
||||
num_vars: usize,
|
||||
num_inputs: usize,
|
||||
comm: SparseMatPolyCommitment,
|
||||
}
|
||||
|
||||
pub struct R1CSDecommitment {
|
||||
dense: MultiSparseMatPolynomialAsDense,
|
||||
}
|
||||
|
||||
impl R1CSCommitment {
|
||||
pub fn get_num_cons(&self) -> usize {
|
||||
self.num_cons
|
||||
}
|
||||
|
||||
pub fn get_num_vars(&self) -> usize {
|
||||
self.num_vars
|
||||
}
|
||||
|
||||
pub fn get_num_inputs(&self) -> usize {
|
||||
self.num_inputs
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug)]
|
||||
pub struct R1CSInstanceEvals {
|
||||
eval_A_r: Scalar,
|
||||
eval_B_r: Scalar,
|
||||
eval_C_r: Scalar,
|
||||
}
|
||||
|
||||
impl R1CSInstanceEvals {
|
||||
pub fn get_evaluations(&self) -> (Scalar, Scalar, Scalar) {
|
||||
(self.eval_A_r, self.eval_B_r, self.eval_C_r)
|
||||
}
|
||||
}
|
||||
|
||||
impl AppendToTranscript for R1CSInstanceEvals {
|
||||
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript) {
|
||||
transcript.append_message(label, b"R1CSInstanceEvals_begin");
|
||||
transcript.append_scalar(b"Ar_eval", &self.eval_A_r);
|
||||
transcript.append_scalar(b"Br_eval", &self.eval_B_r);
|
||||
transcript.append_scalar(b"Cr_eval", &self.eval_C_r);
|
||||
transcript.append_message(label, b"R1CSInstanceEvals_end");
|
||||
}
|
||||
}
|
||||
|
||||
impl R1CSInstance {
|
||||
pub fn new(
|
||||
num_cons: usize,
|
||||
num_vars: usize,
|
||||
num_inputs: usize,
|
||||
A: SparseMatPolynomial,
|
||||
B: SparseMatPolynomial,
|
||||
C: SparseMatPolynomial,
|
||||
) -> Self {
|
||||
R1CSInstance {
|
||||
num_cons,
|
||||
num_vars,
|
||||
num_inputs,
|
||||
A,
|
||||
B,
|
||||
C,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get_num_vars(&self) -> usize {
|
||||
self.num_vars
|
||||
}
|
||||
|
||||
pub fn get_num_cons(&self) -> usize {
|
||||
self.num_cons
|
||||
}
|
||||
|
||||
pub fn size(&self) -> R1CSInstanceSize {
|
||||
R1CSInstanceSize {
|
||||
size_A: self.A.size(),
|
||||
size_B: self.B.size(),
|
||||
size_C: self.C.size(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn produce_synthetic_r1cs(
|
||||
num_cons: usize,
|
||||
num_vars: usize,
|
||||
num_inputs: usize,
|
||||
) -> (R1CSInstance, Vec<Scalar>, Vec<Scalar>) {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
|
||||
// assert num_cons and num_vars are power of 2
|
||||
assert_eq!(num_cons.log2().pow2(), num_cons);
|
||||
assert_eq!(num_vars.log2().pow2(), num_vars);
|
||||
|
||||
// num_inputs + 1 <= num_vars
|
||||
assert!(num_inputs + 1 <= num_vars);
|
||||
|
||||
// z is organized as [vars,1,io]
|
||||
let size_z = num_vars + num_inputs + 1;
|
||||
|
||||
// produce a random satisfying assignment
|
||||
let Z = {
|
||||
let mut Z: Vec<Scalar> = (0..size_z)
|
||||
.map(|_i| Scalar::random(&mut csprng))
|
||||
.collect::<Vec<Scalar>>();
|
||||
Z[num_vars] = Scalar::one(); // set the constant term to 1
|
||||
Z
|
||||
};
|
||||
|
||||
// three sparse matrices
|
||||
let mut A: Vec<SparseMatEntry> = Vec::new();
|
||||
let mut B: Vec<SparseMatEntry> = Vec::new();
|
||||
let mut C: Vec<SparseMatEntry> = Vec::new();
|
||||
let one = Scalar::one();
|
||||
for i in 0..num_cons {
|
||||
let A_idx = i % size_z;
|
||||
let B_idx = (i + 2) % size_z;
|
||||
A.push(SparseMatEntry::new(i, A_idx, one));
|
||||
B.push(SparseMatEntry::new(i, B_idx, one));
|
||||
let AB_val = Z[A_idx] * Z[B_idx];
|
||||
|
||||
let C_idx = (i + 3) % size_z;
|
||||
let C_val = Z[C_idx];
|
||||
|
||||
if C_val == Scalar::zero() {
|
||||
C.push(SparseMatEntry::new(i, num_vars, AB_val));
|
||||
} else {
|
||||
C.push(SparseMatEntry::new(
|
||||
i,
|
||||
C_idx,
|
||||
AB_val * C_val.invert().unwrap(),
|
||||
));
|
||||
}
|
||||
}
|
||||
|
||||
let num_poly_vars_x = num_cons.log2();
|
||||
let num_poly_vars_y = (2 * num_vars).log2();
|
||||
let poly_A = SparseMatPolynomial::new(num_poly_vars_x, num_poly_vars_y, A);
|
||||
let poly_B = SparseMatPolynomial::new(num_poly_vars_x, num_poly_vars_y, B);
|
||||
let poly_C = SparseMatPolynomial::new(num_poly_vars_x, num_poly_vars_y, C);
|
||||
|
||||
let inst = R1CSInstance::new(num_cons, num_vars, num_inputs, poly_A, poly_B, poly_C);
|
||||
|
||||
assert_eq!(
|
||||
inst.is_sat(&Z[0..num_vars].to_vec(), &Z[num_vars + 1..].to_vec()),
|
||||
true,
|
||||
);
|
||||
|
||||
(inst, Z[0..num_vars].to_vec(), Z[num_vars + 1..].to_vec())
|
||||
}
|
||||
|
||||
pub fn is_sat(&self, vars: &Vec<Scalar>, input: &Vec<Scalar>) -> bool {
|
||||
assert_eq!(vars.len(), self.num_vars);
|
||||
assert_eq!(input.len(), self.num_inputs);
|
||||
|
||||
let z = {
|
||||
let mut z = vars.clone();
|
||||
z.extend(&vec![Scalar::one()]);
|
||||
z.extend(input);
|
||||
z
|
||||
};
|
||||
|
||||
// verify if Az * Bz - Cz = [0...]
|
||||
let Az = self
|
||||
.A
|
||||
.multiply_vec(self.num_cons, self.num_vars + self.num_inputs + 1, &z);
|
||||
let Bz = self
|
||||
.B
|
||||
.multiply_vec(self.num_cons, self.num_vars + self.num_inputs + 1, &z);
|
||||
let Cz = self
|
||||
.C
|
||||
.multiply_vec(self.num_cons, self.num_vars + self.num_inputs + 1, &z);
|
||||
|
||||
assert_eq!(Az.len(), self.num_cons);
|
||||
assert_eq!(Bz.len(), self.num_cons);
|
||||
assert_eq!(Cz.len(), self.num_cons);
|
||||
let res: usize = (0..self.num_cons)
|
||||
.map(|i| if Az[i] * Bz[i] == Cz[i] { 0 } else { 1 })
|
||||
.sum();
|
||||
if res > 0 {
|
||||
false
|
||||
} else {
|
||||
true
|
||||
}
|
||||
}
|
||||
|
||||
pub fn multiply_vec(
|
||||
&self,
|
||||
num_rows: usize,
|
||||
num_cols: usize,
|
||||
z: &Vec<Scalar>,
|
||||
) -> (DensePolynomial, DensePolynomial, DensePolynomial) {
|
||||
assert_eq!(num_rows, self.num_cons);
|
||||
assert_eq!(z.len(), num_cols);
|
||||
assert!(num_cols > self.num_vars);
|
||||
(
|
||||
DensePolynomial::new(self.A.multiply_vec(num_rows, num_cols, z)),
|
||||
DensePolynomial::new(self.B.multiply_vec(num_rows, num_cols, z)),
|
||||
DensePolynomial::new(self.C.multiply_vec(num_rows, num_cols, z)),
|
||||
)
|
||||
}
|
||||
|
||||
pub fn compute_eval_table_sparse(
|
||||
&self,
|
||||
num_rows: usize,
|
||||
num_cols: usize,
|
||||
evals: &Vec<Scalar>,
|
||||
) -> (Vec<Scalar>, Vec<Scalar>, Vec<Scalar>) {
|
||||
assert_eq!(num_rows, self.num_cons);
|
||||
assert!(num_cols > self.num_vars);
|
||||
|
||||
let evals_A = self.A.compute_eval_table_sparse(&evals, num_rows, num_cols);
|
||||
let evals_B = self.B.compute_eval_table_sparse(&evals, num_rows, num_cols);
|
||||
let evals_C = self.C.compute_eval_table_sparse(&evals, num_rows, num_cols);
|
||||
|
||||
(evals_A, evals_B, evals_C)
|
||||
}
|
||||
|
||||
pub fn evaluate_with_tables(
|
||||
&self,
|
||||
evals_rx: &Vec<Scalar>,
|
||||
evals_ry: &Vec<Scalar>,
|
||||
) -> R1CSInstanceEvals {
|
||||
R1CSInstanceEvals {
|
||||
eval_A_r: self.A.evaluate_with_tables(evals_rx, evals_ry),
|
||||
eval_B_r: self.B.evaluate_with_tables(evals_rx, evals_ry),
|
||||
eval_C_r: self.C.evaluate_with_tables(evals_rx, evals_ry),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn commit(&self, gens: &R1CSCommitmentGens) -> (R1CSCommitment, R1CSDecommitment) {
|
||||
assert_eq!(self.A.get_num_nz_entries(), self.B.get_num_nz_entries());
|
||||
assert_eq!(self.A.get_num_nz_entries(), self.C.get_num_nz_entries());
|
||||
let (comm, dense) =
|
||||
SparseMatPolynomial::multi_commit(&vec![&self.A, &self.B, &self.C], &gens.gens);
|
||||
let r1cs_comm = R1CSCommitment {
|
||||
num_cons: self.num_cons,
|
||||
num_vars: self.num_vars,
|
||||
num_inputs: self.num_inputs,
|
||||
comm,
|
||||
};
|
||||
|
||||
let r1cs_decomm = R1CSDecommitment { dense };
|
||||
|
||||
(r1cs_comm, r1cs_decomm)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct R1CSEvalProof {
|
||||
proof: SparseMatPolyEvalProof,
|
||||
}
|
||||
|
||||
impl R1CSEvalProof {
|
||||
pub fn prove(
|
||||
decomm: &R1CSDecommitment,
|
||||
rx: &Vec<Scalar>, // point at which the polynomial is evaluated
|
||||
ry: &Vec<Scalar>,
|
||||
evals: &R1CSInstanceEvals,
|
||||
gens: &R1CSCommitmentGens,
|
||||
transcript: &mut Transcript,
|
||||
random_tape: &mut Transcript,
|
||||
) -> R1CSEvalProof {
|
||||
let timer = Timer::new("R1CSEvalProof::prove");
|
||||
let proof = SparseMatPolyEvalProof::prove(
|
||||
&decomm.dense,
|
||||
rx,
|
||||
ry,
|
||||
&vec![evals.eval_A_r, evals.eval_B_r, evals.eval_C_r],
|
||||
&gens.gens,
|
||||
transcript,
|
||||
random_tape,
|
||||
);
|
||||
timer.stop();
|
||||
|
||||
R1CSEvalProof { proof }
|
||||
}
|
||||
|
||||
pub fn verify(
|
||||
&self,
|
||||
comm: &R1CSCommitment,
|
||||
rx: &Vec<Scalar>, // point at which the R1CS matrix polynomials are evaluated
|
||||
ry: &Vec<Scalar>,
|
||||
eval: &R1CSInstanceEvals,
|
||||
gens: &R1CSCommitmentGens,
|
||||
transcript: &mut Transcript,
|
||||
) -> Result<(), ProofVerifyError> {
|
||||
assert!(self
|
||||
.proof
|
||||
.verify(
|
||||
&comm.comm,
|
||||
rx,
|
||||
ry,
|
||||
&vec![eval.eval_A_r, eval.eval_B_r, eval.eval_C_r],
|
||||
&gens.gens,
|
||||
transcript
|
||||
)
|
||||
.is_ok());
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
|
@ -0,0 +1,632 @@
|
|||
use super::commitments::{Commitments, MultiCommitGens};
|
||||
use super::dense_mlpoly::{
|
||||
DensePolynomial, EqPolynomial, PolyCommitment, PolyCommitmentGens, PolyEvalProof,
|
||||
};
|
||||
use super::errors::ProofVerifyError;
|
||||
use super::group::{CompressedGroup, GroupElement, VartimeMultiscalarMul};
|
||||
use super::math::Math;
|
||||
use super::nizk::{EqualityProof, KnowledgeProof, ProductProof};
|
||||
use super::r1csinstance::{R1CSInstance, R1CSInstanceEvals};
|
||||
use super::scalar::Scalar;
|
||||
use super::sparse_mlpoly::{SparsePolyEntry, SparsePolynomial};
|
||||
use super::sumcheck::ZKSumcheckInstanceProof;
|
||||
use super::timer::Timer;
|
||||
use super::transcript::{AppendToTranscript, ProofTranscript};
|
||||
use merlin::Transcript;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use std::iter;
|
||||
|
||||
#[cfg(test)]
|
||||
use super::sparse_mlpoly::{SparseMatEntry, SparseMatPolynomial};
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug)]
|
||||
pub struct R1CSProof {
|
||||
comm_vars: PolyCommitment,
|
||||
sc_proof_phase1: ZKSumcheckInstanceProof,
|
||||
claims_phase2: (
|
||||
CompressedGroup,
|
||||
CompressedGroup,
|
||||
CompressedGroup,
|
||||
CompressedGroup,
|
||||
),
|
||||
pok_claims_phase2: (KnowledgeProof, ProductProof),
|
||||
proof_eq_sc_phase1: EqualityProof,
|
||||
sc_proof_phase2: ZKSumcheckInstanceProof,
|
||||
comm_vars_at_ry: CompressedGroup,
|
||||
proof_eval_vars_at_ry: PolyEvalProof,
|
||||
proof_eq_sc_phase2: EqualityProof,
|
||||
}
|
||||
|
||||
pub struct R1CSSumcheckGens {
|
||||
gens_1: MultiCommitGens,
|
||||
gens_3: MultiCommitGens,
|
||||
gens_4: MultiCommitGens,
|
||||
}
|
||||
|
||||
// TODO: fix passing gens_1_ref
|
||||
impl R1CSSumcheckGens {
|
||||
pub fn new(label: &'static [u8], gens_1_ref: &MultiCommitGens) -> Self {
|
||||
let gens_1 = gens_1_ref.clone();
|
||||
let gens_3 = MultiCommitGens::new(3, label);
|
||||
let gens_4 = MultiCommitGens::new(4, label);
|
||||
|
||||
R1CSSumcheckGens {
|
||||
gens_1,
|
||||
gens_3,
|
||||
gens_4,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct R1CSGens {
|
||||
gens_sc: R1CSSumcheckGens,
|
||||
gens_pc: PolyCommitmentGens,
|
||||
}
|
||||
|
||||
impl R1CSGens {
|
||||
pub fn new(_num_cons: usize, num_vars: usize, label: &'static [u8]) -> Self {
|
||||
let num_poly_vars = num_vars.log2();
|
||||
let gens_pc = PolyCommitmentGens::new(num_poly_vars, label);
|
||||
let gens_sc = R1CSSumcheckGens::new(label, &gens_pc.gens.gens_1);
|
||||
R1CSGens { gens_sc, gens_pc }
|
||||
}
|
||||
}
|
||||
|
||||
impl R1CSProof {
|
||||
fn prove_phase_one(
|
||||
num_rounds: usize,
|
||||
evals_tau: &mut DensePolynomial,
|
||||
evals_Az: &mut DensePolynomial,
|
||||
evals_Bz: &mut DensePolynomial,
|
||||
evals_Cz: &mut DensePolynomial,
|
||||
gens: &R1CSSumcheckGens,
|
||||
transcript: &mut Transcript,
|
||||
random_tape: &mut Transcript,
|
||||
) -> (ZKSumcheckInstanceProof, Vec<Scalar>, Vec<Scalar>, Scalar) {
|
||||
let comb_func = |poly_A_comp: &Scalar,
|
||||
poly_B_comp: &Scalar,
|
||||
poly_C_comp: &Scalar,
|
||||
poly_D_comp: &Scalar|
|
||||
-> Scalar { poly_A_comp * (poly_B_comp * poly_C_comp - poly_D_comp) };
|
||||
|
||||
let (sc_proof_phase_one, r, claims, blind_claim_postsc) =
|
||||
ZKSumcheckInstanceProof::prove_cubic_with_additive_term(
|
||||
&Scalar::zero(), // claim is zero
|
||||
&Scalar::zero(), // blind for claim is also zero
|
||||
num_rounds,
|
||||
evals_tau,
|
||||
evals_Az,
|
||||
evals_Bz,
|
||||
evals_Cz,
|
||||
comb_func,
|
||||
&gens.gens_1,
|
||||
&gens.gens_4,
|
||||
transcript,
|
||||
random_tape,
|
||||
);
|
||||
|
||||
(sc_proof_phase_one, r, claims, blind_claim_postsc)
|
||||
}
|
||||
|
||||
fn prove_phase_two(
|
||||
num_rounds: usize,
|
||||
claim: &Scalar,
|
||||
blind_claim: &Scalar,
|
||||
evals_z: &mut DensePolynomial,
|
||||
evals_ABC: &mut DensePolynomial,
|
||||
gens: &R1CSSumcheckGens,
|
||||
transcript: &mut Transcript,
|
||||
random_tape: &mut Transcript,
|
||||
) -> (ZKSumcheckInstanceProof, Vec<Scalar>, Vec<Scalar>, Scalar) {
|
||||
let comb_func =
|
||||
|poly_A_comp: &Scalar, poly_B_comp: &Scalar| -> Scalar { poly_A_comp * poly_B_comp };
|
||||
let (sc_proof_phase_two, r, claims, blind_claim_postsc) = ZKSumcheckInstanceProof::prove_quad(
|
||||
claim,
|
||||
blind_claim,
|
||||
num_rounds,
|
||||
evals_z,
|
||||
evals_ABC,
|
||||
comb_func,
|
||||
&gens.gens_1,
|
||||
&gens.gens_3,
|
||||
transcript,
|
||||
random_tape,
|
||||
);
|
||||
|
||||
(sc_proof_phase_two, r, claims, blind_claim_postsc)
|
||||
}
|
||||
|
||||
fn protocol_name() -> &'static [u8] {
|
||||
b"R1CS proof"
|
||||
}
|
||||
|
||||
pub fn prove(
|
||||
inst: &R1CSInstance,
|
||||
vars: Vec<Scalar>,
|
||||
input: &Vec<Scalar>,
|
||||
gens: &R1CSGens,
|
||||
transcript: &mut Transcript,
|
||||
random_tape: &mut Transcript,
|
||||
) -> (R1CSProof, Vec<Scalar>, Vec<Scalar>) {
|
||||
let timer_prove = Timer::new("R1CSProof::prove");
|
||||
transcript.append_protocol_name(R1CSProof::protocol_name());
|
||||
|
||||
// we currently require the number of |inputs| + 1 to be at most number of vars
|
||||
assert!(input.len() + 1 <= vars.len());
|
||||
|
||||
let timer_commit = Timer::new("polycommit");
|
||||
let (poly_vars, comm_vars, blinds_vars) = {
|
||||
// create a multilinear polynomial using the supplied assignment for variables
|
||||
let poly_vars = DensePolynomial::new(vars.clone());
|
||||
|
||||
// produce a commitment to the satisfying assignment
|
||||
let (comm_vars, blinds_vars) = poly_vars.commit(true, &gens.gens_pc, Some(random_tape));
|
||||
|
||||
// add the commitment to the prover's transcript
|
||||
comm_vars.append_to_transcript(b"poly_commitment", transcript);
|
||||
(poly_vars, comm_vars, blinds_vars)
|
||||
};
|
||||
timer_commit.stop();
|
||||
|
||||
let timer_sc_proof_phase1 = Timer::new("prove_sc_phase_one");
|
||||
|
||||
// append input to variables to create a single vector z
|
||||
let z = {
|
||||
let num_inputs = input.len();
|
||||
let num_vars = vars.len();
|
||||
let mut z = vars;
|
||||
z.extend(&vec![Scalar::one()]); // add constant term in z
|
||||
z.extend(input);
|
||||
z.extend(&vec![Scalar::zero(); num_vars - num_inputs - 1]); // we will pad with zeros
|
||||
z
|
||||
};
|
||||
|
||||
// derive the verifier's challenge tau
|
||||
let (num_rounds_x, num_rounds_y) = (inst.get_num_cons().log2(), z.len().log2());
|
||||
let tau = transcript.challenge_vector(b"challenge_tau", num_rounds_x);
|
||||
// compute the initial evaluation table for R(\tau, x)
|
||||
let mut poly_tau = DensePolynomial::new(EqPolynomial::new(tau.clone()).evals());
|
||||
let (mut poly_Az, mut poly_Bz, mut poly_Cz) =
|
||||
inst.multiply_vec(inst.get_num_cons(), z.len(), &z);
|
||||
|
||||
let (sc_proof_phase1, rx, _claims_phase1, blind_claim_postsc1) = R1CSProof::prove_phase_one(
|
||||
num_rounds_x,
|
||||
&mut poly_tau,
|
||||
&mut poly_Az,
|
||||
&mut poly_Bz,
|
||||
&mut poly_Cz,
|
||||
&gens.gens_sc,
|
||||
transcript,
|
||||
random_tape,
|
||||
);
|
||||
assert_eq!(poly_tau.len(), 1);
|
||||
assert_eq!(poly_Az.len(), 1);
|
||||
assert_eq!(poly_Bz.len(), 1);
|
||||
assert_eq!(poly_Cz.len(), 1);
|
||||
timer_sc_proof_phase1.stop();
|
||||
|
||||
let (tau_claim, Az_claim, Bz_claim, Cz_claim) =
|
||||
(&poly_tau[0], &poly_Az[0], &poly_Bz[0], &poly_Cz[0]);
|
||||
let (Az_blind, Bz_blind, Cz_blind, prod_Az_Bz_blind) = (
|
||||
random_tape.challenge_scalar(b"Az_blind"),
|
||||
random_tape.challenge_scalar(b"Bz_blind"),
|
||||
random_tape.challenge_scalar(b"Cz_blind"),
|
||||
random_tape.challenge_scalar(b"prod_Az_Bz_blind"),
|
||||
);
|
||||
|
||||
let (pok_Cz_claim, comm_Cz_claim) = {
|
||||
KnowledgeProof::prove(
|
||||
&gens.gens_sc.gens_1,
|
||||
transcript,
|
||||
random_tape,
|
||||
&Cz_claim,
|
||||
&Cz_blind,
|
||||
)
|
||||
};
|
||||
|
||||
let (proof_prod, comm_Az_claim, comm_Bz_claim, comm_prod_Az_Bz_claims) = {
|
||||
let prod = Az_claim * Bz_claim;
|
||||
ProductProof::prove(
|
||||
&gens.gens_sc.gens_1,
|
||||
transcript,
|
||||
random_tape,
|
||||
&Az_claim,
|
||||
&Az_blind,
|
||||
&Bz_claim,
|
||||
&Bz_blind,
|
||||
&prod,
|
||||
&prod_Az_Bz_blind,
|
||||
)
|
||||
};
|
||||
|
||||
comm_Az_claim.append_to_transcript(b"comm_Az_claim", transcript);
|
||||
comm_Bz_claim.append_to_transcript(b"comm_Bz_claim", transcript);
|
||||
comm_Cz_claim.append_to_transcript(b"comm_Cz_claim", transcript);
|
||||
comm_prod_Az_Bz_claims.append_to_transcript(b"comm_prod_Az_Bz_claims", transcript);
|
||||
|
||||
// prove the final step of sum-check #1
|
||||
let taus_bound_rx = tau_claim;
|
||||
let blind_expected_claim_postsc1 = taus_bound_rx * (&prod_Az_Bz_blind - &Cz_blind);
|
||||
let claim_post_phase1 = (Az_claim * Bz_claim - Cz_claim) * taus_bound_rx;
|
||||
let (proof_eq_sc_phase1, _C1, _C2) = EqualityProof::prove(
|
||||
&gens.gens_sc.gens_1,
|
||||
transcript,
|
||||
random_tape,
|
||||
&claim_post_phase1,
|
||||
&blind_expected_claim_postsc1,
|
||||
&claim_post_phase1,
|
||||
&blind_claim_postsc1,
|
||||
);
|
||||
|
||||
let timer_sc_proof_phase2 = Timer::new("prove_sc_phase_two");
|
||||
// combine the three claims into a single claim
|
||||
let r_A = transcript.challenge_scalar(b"challenege_Az");
|
||||
let r_B = transcript.challenge_scalar(b"challenege_Bz");
|
||||
let r_C = transcript.challenge_scalar(b"challenege_Cz");
|
||||
let claim_phase2 = &r_A * Az_claim + &r_B * Bz_claim + &r_C * Cz_claim;
|
||||
let blind_claim_phase2 = &r_A * Az_blind + &r_B * Bz_blind + &r_C * Cz_blind;
|
||||
|
||||
let evals_ABC = {
|
||||
// compute the initial evaluation table for R(\tau, x)
|
||||
let evals_rx = EqPolynomial::new(rx.clone()).evals();
|
||||
let (evals_A, evals_B, evals_C) =
|
||||
inst.compute_eval_table_sparse(inst.get_num_cons(), z.len(), &evals_rx);
|
||||
|
||||
assert_eq!(evals_A.len(), evals_B.len());
|
||||
assert_eq!(evals_A.len(), evals_C.len());
|
||||
(0..evals_A.len())
|
||||
.map(|i| &r_A * &evals_A[i] + &r_B * &evals_B[i] + &r_C * &evals_C[i])
|
||||
.collect::<Vec<Scalar>>()
|
||||
};
|
||||
|
||||
// another instance of the sum-check protocol
|
||||
let (sc_proof_phase2, ry, claims_phase2, blind_claim_postsc2) = R1CSProof::prove_phase_two(
|
||||
num_rounds_y,
|
||||
&claim_phase2,
|
||||
&blind_claim_phase2,
|
||||
&mut DensePolynomial::new(z),
|
||||
&mut DensePolynomial::new(evals_ABC),
|
||||
&gens.gens_sc,
|
||||
transcript,
|
||||
random_tape,
|
||||
);
|
||||
timer_sc_proof_phase2.stop();
|
||||
|
||||
let timer_polyeval = Timer::new("polyeval");
|
||||
let eval_vars_at_ry = poly_vars.evaluate(&ry[1..].to_vec());
|
||||
let blind_eval = random_tape.challenge_scalar(b"blind_eval");
|
||||
let (proof_eval_vars_at_ry, comm_vars_at_ry) = PolyEvalProof::prove(
|
||||
&poly_vars,
|
||||
Some(&blinds_vars),
|
||||
&ry[1..].to_vec(),
|
||||
&eval_vars_at_ry,
|
||||
Some(&blind_eval),
|
||||
&gens.gens_pc,
|
||||
transcript,
|
||||
random_tape,
|
||||
);
|
||||
timer_polyeval.stop();
|
||||
|
||||
// prove the final step of sum-check #2
|
||||
let blind_eval_Z_at_ry = (Scalar::one() - &ry[0]) * blind_eval;
|
||||
let blind_expected_claim_postsc2 = &claims_phase2[1] * &blind_eval_Z_at_ry;
|
||||
let claim_post_phase2 = &claims_phase2[0] * &claims_phase2[1];
|
||||
let (proof_eq_sc_phase2, _C1, _C2) = EqualityProof::prove(
|
||||
&gens.gens_pc.gens.gens_1,
|
||||
transcript,
|
||||
random_tape,
|
||||
&claim_post_phase2,
|
||||
&blind_expected_claim_postsc2,
|
||||
&claim_post_phase2,
|
||||
&blind_claim_postsc2,
|
||||
);
|
||||
|
||||
timer_prove.stop();
|
||||
|
||||
(
|
||||
R1CSProof {
|
||||
comm_vars,
|
||||
sc_proof_phase1,
|
||||
claims_phase2: (
|
||||
comm_Az_claim,
|
||||
comm_Bz_claim,
|
||||
comm_Cz_claim,
|
||||
comm_prod_Az_Bz_claims,
|
||||
),
|
||||
pok_claims_phase2: (pok_Cz_claim, proof_prod),
|
||||
proof_eq_sc_phase1,
|
||||
sc_proof_phase2,
|
||||
comm_vars_at_ry,
|
||||
proof_eval_vars_at_ry,
|
||||
proof_eq_sc_phase2,
|
||||
},
|
||||
rx,
|
||||
ry,
|
||||
)
|
||||
}
|
||||
|
||||
pub fn verify(
|
||||
&self,
|
||||
num_vars: usize,
|
||||
num_cons: usize,
|
||||
input: &Vec<Scalar>,
|
||||
evals: &R1CSInstanceEvals,
|
||||
transcript: &mut Transcript,
|
||||
gens: &R1CSGens,
|
||||
) -> Result<(Vec<Scalar>, Vec<Scalar>), ProofVerifyError> {
|
||||
transcript.append_protocol_name(R1CSProof::protocol_name());
|
||||
|
||||
let n = num_vars;
|
||||
// add the commitment to the verifier's transcript
|
||||
self
|
||||
.comm_vars
|
||||
.append_to_transcript(b"poly_commitment", transcript);
|
||||
|
||||
let (num_rounds_x, num_rounds_y) = (num_cons.log2(), (2 * num_vars).log2());
|
||||
|
||||
// derive the verifier's challenge tau
|
||||
let tau = transcript.challenge_vector(b"challenge_tau", num_rounds_x);
|
||||
|
||||
// verify the first sum-check instance
|
||||
let claim_phase1 = Scalar::zero()
|
||||
.commit(&Scalar::zero(), &gens.gens_sc.gens_1)
|
||||
.compress();
|
||||
let (comm_claim_post_phase1, rx) = self
|
||||
.sc_proof_phase1
|
||||
.verify(
|
||||
&claim_phase1,
|
||||
num_rounds_x,
|
||||
3,
|
||||
&gens.gens_sc.gens_1,
|
||||
&gens.gens_sc.gens_4,
|
||||
transcript,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
// perform the intermediate sum-check test with claimed Az, Bz, and Cz
|
||||
let (comm_Az_claim, comm_Bz_claim, comm_Cz_claim, comm_prod_Az_Bz_claims) = &self.claims_phase2;
|
||||
let (pok_Cz_claim, proof_prod) = &self.pok_claims_phase2;
|
||||
|
||||
assert!(pok_Cz_claim
|
||||
.verify(&gens.gens_sc.gens_1, transcript, &comm_Cz_claim)
|
||||
.is_ok());
|
||||
assert!(proof_prod
|
||||
.verify(
|
||||
&gens.gens_sc.gens_1,
|
||||
transcript,
|
||||
&comm_Az_claim,
|
||||
&comm_Bz_claim,
|
||||
&comm_prod_Az_Bz_claims
|
||||
)
|
||||
.is_ok());
|
||||
|
||||
comm_Az_claim.append_to_transcript(b"comm_Az_claim", transcript);
|
||||
comm_Bz_claim.append_to_transcript(b"comm_Bz_claim", transcript);
|
||||
comm_Cz_claim.append_to_transcript(b"comm_Cz_claim", transcript);
|
||||
comm_prod_Az_Bz_claims.append_to_transcript(b"comm_prod_Az_Bz_claims", transcript);
|
||||
|
||||
let taus_bound_rx: Scalar = (0..rx.len())
|
||||
.map(|i| &rx[i] * &tau[i] + (&Scalar::one() - &rx[i]) * (&Scalar::one() - &tau[i]))
|
||||
.product();
|
||||
let expected_claim_post_phase1 = (&taus_bound_rx
|
||||
* (comm_prod_Az_Bz_claims.decompress().unwrap() - comm_Cz_claim.decompress().unwrap()))
|
||||
.compress();
|
||||
|
||||
// verify proof that expected_claim_post_phase1 == claim_post_phase1
|
||||
assert!(self
|
||||
.proof_eq_sc_phase1
|
||||
.verify(
|
||||
&gens.gens_sc.gens_1,
|
||||
transcript,
|
||||
&expected_claim_post_phase1,
|
||||
&comm_claim_post_phase1,
|
||||
)
|
||||
.is_ok());
|
||||
|
||||
// derive three public challenges and then derive a joint claim
|
||||
let r_A = transcript.challenge_scalar(b"challenege_Az");
|
||||
let r_B = transcript.challenge_scalar(b"challenege_Bz");
|
||||
let r_C = transcript.challenge_scalar(b"challenege_Cz");
|
||||
|
||||
// r_A * comm_Az_claim + r_B * comm_Bz_claim + r_C * comm_Cz_claim;
|
||||
let comm_claim_phase2 = GroupElement::vartime_multiscalar_mul(
|
||||
iter::once(&r_A)
|
||||
.chain(iter::once(&r_B))
|
||||
.chain(iter::once(&r_C)),
|
||||
iter::once(&comm_Az_claim)
|
||||
.chain(iter::once(&comm_Bz_claim))
|
||||
.chain(iter::once(&comm_Cz_claim))
|
||||
.map(|pt| pt.decompress().unwrap())
|
||||
.collect::<Vec<GroupElement>>(),
|
||||
)
|
||||
.compress();
|
||||
|
||||
// verify the joint claim with a sum-check protocol
|
||||
let (comm_claim_post_phase2, ry) = self
|
||||
.sc_proof_phase2
|
||||
.verify(
|
||||
&comm_claim_phase2,
|
||||
num_rounds_y,
|
||||
2,
|
||||
&gens.gens_sc.gens_1,
|
||||
&gens.gens_sc.gens_3,
|
||||
transcript,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
// verify Z(ry) proof against the initial commitment
|
||||
assert!(self
|
||||
.proof_eval_vars_at_ry
|
||||
.verify(
|
||||
&gens.gens_pc,
|
||||
transcript,
|
||||
&ry[1..].to_vec(),
|
||||
&self.comm_vars_at_ry,
|
||||
&self.comm_vars
|
||||
)
|
||||
.is_ok());
|
||||
|
||||
let poly_input_eval = {
|
||||
// constant term
|
||||
let mut input_as_sparse_poly_entries = vec![SparsePolyEntry::new(0, Scalar::one())];
|
||||
//remaining inputs
|
||||
input_as_sparse_poly_entries.extend(
|
||||
(0..input.len())
|
||||
.map(|i| SparsePolyEntry::new(i + 1, input[i]))
|
||||
.collect::<Vec<SparsePolyEntry>>(),
|
||||
);
|
||||
SparsePolynomial::new(n.log2(), input_as_sparse_poly_entries).evaluate(&ry[1..].to_vec())
|
||||
};
|
||||
|
||||
// compute commitment to eval_Z_at_ry = (Scalar::one() - ry[0]) * self.eval_vars_at_ry + ry[0] * poly_input_eval
|
||||
let comm_eval_Z_at_ry = GroupElement::vartime_multiscalar_mul(
|
||||
iter::once(Scalar::one() - &ry[0]).chain(iter::once(ry[0])),
|
||||
iter::once(&self.comm_vars_at_ry.decompress().unwrap()).chain(iter::once(
|
||||
&poly_input_eval.commit(&Scalar::zero(), &gens.gens_pc.gens.gens_1),
|
||||
)),
|
||||
);
|
||||
|
||||
// perform the final check in the second sum-check protocol
|
||||
let (eval_A_r, eval_B_r, eval_C_r) = evals.get_evaluations();
|
||||
let expected_claim_post_phase2 =
|
||||
(&(&r_A * &eval_A_r + &r_B * &eval_B_r + &r_C * &eval_C_r) * comm_eval_Z_at_ry).compress();
|
||||
// verify proof that expected_claim_post_phase1 == claim_post_phase1
|
||||
assert!(self
|
||||
.proof_eq_sc_phase2
|
||||
.verify(
|
||||
&gens.gens_sc.gens_1,
|
||||
transcript,
|
||||
&expected_claim_post_phase2,
|
||||
&comm_claim_post_phase2,
|
||||
)
|
||||
.is_ok());
|
||||
|
||||
Ok((rx, ry))
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use rand::rngs::OsRng;
|
||||
|
||||
fn produce_tiny_r1cs() -> (R1CSInstance, Vec<Scalar>, Vec<Scalar>) {
|
||||
// three constraints over five variables Z1, Z2, Z3, Z4, and Z5
|
||||
// rounded to the nearest power of two
|
||||
let num_cons = 128;
|
||||
let num_vars = 256;
|
||||
let num_inputs = 2;
|
||||
|
||||
// encode the above constraints into three matrices
|
||||
let mut A: Vec<SparseMatEntry> = Vec::new();
|
||||
let mut B: Vec<SparseMatEntry> = Vec::new();
|
||||
let mut C: Vec<SparseMatEntry> = Vec::new();
|
||||
|
||||
let one = Scalar::one();
|
||||
// constraint 0 entries
|
||||
// (Z1 + Z2) * I0 - Z3 = 0;
|
||||
A.push(SparseMatEntry::new(0, 0, one));
|
||||
A.push(SparseMatEntry::new(0, 1, one));
|
||||
B.push(SparseMatEntry::new(0, num_vars + 1, one));
|
||||
C.push(SparseMatEntry::new(0, 2, one));
|
||||
|
||||
// constraint 1 entries
|
||||
// (Z1 + I1) * (Z3) - Z4 = 0
|
||||
A.push(SparseMatEntry::new(1, 0, one));
|
||||
A.push(SparseMatEntry::new(1, num_vars + 2, one));
|
||||
B.push(SparseMatEntry::new(1, 2, one));
|
||||
C.push(SparseMatEntry::new(1, 3, one));
|
||||
// constraint 3 entries
|
||||
// Z5 * 1 - 0 = 0
|
||||
A.push(SparseMatEntry::new(2, 4, one));
|
||||
B.push(SparseMatEntry::new(2, num_vars, one));
|
||||
|
||||
let num_vars_x = num_cons.log2();
|
||||
let num_vars_y = (2 * num_vars).log2();
|
||||
|
||||
let poly_A = SparseMatPolynomial::new(num_vars_x, num_vars_y, A);
|
||||
let poly_B = SparseMatPolynomial::new(num_vars_x, num_vars_y, B);
|
||||
let poly_C = SparseMatPolynomial::new(num_vars_x, num_vars_y, C);
|
||||
|
||||
let inst = R1CSInstance::new(num_cons, num_vars, num_inputs, poly_A, poly_B, poly_C);
|
||||
|
||||
// compute a satisfying assignment
|
||||
let mut csprng: OsRng = OsRng;
|
||||
let i0 = Scalar::random(&mut csprng);
|
||||
let i1 = Scalar::random(&mut csprng);
|
||||
let z1 = Scalar::random(&mut csprng);
|
||||
let z2 = Scalar::random(&mut csprng);
|
||||
let z3 = (z1 + z2) * i0; // constraint 1: (Z1 + Z2) * I0 - Z3 = 0;
|
||||
let z4 = (z1 + i1) * z3; // constraint 2: (Z1 + I1) * (Z3) - Z4 = 0
|
||||
let z5 = Scalar::zero(); //constraint 3
|
||||
|
||||
let mut vars = vec![Scalar::zero(); num_vars];
|
||||
vars[0] = z1;
|
||||
vars[1] = z2;
|
||||
vars[2] = z3;
|
||||
vars[3] = z4;
|
||||
vars[4] = z5;
|
||||
|
||||
let mut input = vec![Scalar::zero(); num_inputs];
|
||||
input[0] = i0;
|
||||
input[1] = i1;
|
||||
|
||||
(inst, vars, input)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_tiny_r1cs() {
|
||||
let (inst, vars, input) = tests::produce_tiny_r1cs();
|
||||
let is_sat = inst.is_sat(&vars, &input);
|
||||
assert_eq!(is_sat, true);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_synthetic_r1cs() {
|
||||
let (inst, vars, input) = R1CSInstance::produce_synthetic_r1cs(1024, 1024, 10);
|
||||
let is_sat = inst.is_sat(&vars, &input);
|
||||
assert_eq!(is_sat, true);
|
||||
}
|
||||
|
||||
#[test]
|
||||
pub fn check_r1cs_proof() {
|
||||
let num_vars = 1024;
|
||||
let num_cons = num_vars;
|
||||
let num_inputs = 10;
|
||||
let (inst, vars, input) = R1CSInstance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
|
||||
|
||||
let gens = R1CSGens::new(num_cons, num_vars, b"test-m");
|
||||
|
||||
let mut random_tape = {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
let mut tape = Transcript::new(b"proof");
|
||||
tape.append_scalar(b"init_randomness", &Scalar::random(&mut csprng));
|
||||
tape
|
||||
};
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
let (proof, rx, ry) = R1CSProof::prove(
|
||||
&inst,
|
||||
vars,
|
||||
&input,
|
||||
&gens,
|
||||
&mut prover_transcript,
|
||||
&mut random_tape,
|
||||
);
|
||||
|
||||
let eval_table_rx = EqPolynomial::new(rx).evals();
|
||||
let eval_table_ry = EqPolynomial::new(ry).evals();
|
||||
let inst_evals = inst.evaluate_with_tables(&eval_table_rx, &eval_table_ry);
|
||||
|
||||
let mut verifier_transcript = Transcript::new(b"example");
|
||||
assert!(proof
|
||||
.verify(
|
||||
inst.get_num_vars(),
|
||||
inst.get_num_cons(),
|
||||
&input,
|
||||
&inst_evals,
|
||||
&mut verifier_transcript,
|
||||
&gens,
|
||||
)
|
||||
.is_ok());
|
||||
}
|
||||
}
|
|
@ -0,0 +1,48 @@
|
|||
pub type Scalar = super::scalar_25519::Scalar;
|
||||
pub type ScalarBytes = curve25519_dalek::scalar::Scalar;
|
||||
|
||||
pub trait ScalarFromPrimitives {
|
||||
fn to_scalar(self) -> Scalar;
|
||||
}
|
||||
|
||||
impl ScalarFromPrimitives for usize {
|
||||
#[inline]
|
||||
fn to_scalar(self) -> Scalar {
|
||||
(0..self).map(|_i| Scalar::one()).sum()
|
||||
}
|
||||
}
|
||||
|
||||
impl ScalarFromPrimitives for bool {
|
||||
#[inline]
|
||||
fn to_scalar(self) -> Scalar {
|
||||
if self {
|
||||
Scalar::one()
|
||||
} else {
|
||||
Scalar::zero()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub trait ScalarBytesFromScalar {
|
||||
fn decompress_scalar(s: &Scalar) -> ScalarBytes;
|
||||
fn decompress_vec(v: &Vec<Scalar>) -> Vec<ScalarBytes>;
|
||||
fn decompress_seq(s: &[Scalar]) -> Vec<ScalarBytes>;
|
||||
}
|
||||
|
||||
impl ScalarBytesFromScalar for Scalar {
|
||||
fn decompress_scalar(s: &Scalar) -> ScalarBytes {
|
||||
ScalarBytes::from_bytes_mod_order(s.to_bytes())
|
||||
}
|
||||
|
||||
fn decompress_vec(v: &Vec<Scalar>) -> Vec<ScalarBytes> {
|
||||
(0..v.len())
|
||||
.map(|i| Scalar::decompress_scalar(&v[i]))
|
||||
.collect::<Vec<ScalarBytes>>()
|
||||
}
|
||||
|
||||
fn decompress_seq(s: &[Scalar]) -> Vec<ScalarBytes> {
|
||||
(0..s.len())
|
||||
.map(|i| Scalar::decompress_scalar(&s[i]))
|
||||
.collect::<Vec<ScalarBytes>>()
|
||||
}
|
||||
}
|
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
|
@ -0,0 +1,190 @@
|
|||
use super::dense_mlpoly::EqPolynomial;
|
||||
use super::errors::ProofVerifyError;
|
||||
use super::r1csinstance::{
|
||||
R1CSCommitment, R1CSCommitmentGens, R1CSDecommitment, R1CSEvalProof, R1CSInstance,
|
||||
R1CSInstanceEvals,
|
||||
};
|
||||
use super::r1csproof::{R1CSGens, R1CSProof};
|
||||
use super::scalar::Scalar;
|
||||
use super::timer::Timer;
|
||||
use super::transcript::{AppendToTranscript, ProofTranscript};
|
||||
use merlin::Transcript;
|
||||
use rand::rngs::OsRng;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
pub struct SpartanGens {
|
||||
gens_r1cs_sat: R1CSGens,
|
||||
gens_r1cs_eval: R1CSCommitmentGens,
|
||||
}
|
||||
|
||||
impl SpartanGens {
|
||||
pub fn new(gens_r1cs_sat: R1CSGens, gens_r1cs_eval: R1CSCommitmentGens) -> SpartanGens {
|
||||
SpartanGens {
|
||||
gens_r1cs_sat,
|
||||
gens_r1cs_eval,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug)]
|
||||
pub struct SpartanProof {
|
||||
r1cs_sat_proof: R1CSProof,
|
||||
inst_evals: R1CSInstanceEvals,
|
||||
r1cs_eval_proof: R1CSEvalProof,
|
||||
}
|
||||
|
||||
impl SpartanProof {
|
||||
fn protocol_name() -> &'static [u8] {
|
||||
b"Spartan proof"
|
||||
}
|
||||
|
||||
/// A public computation to create a commitment to an R1CS instance
|
||||
pub fn encode(
|
||||
inst: &R1CSInstance,
|
||||
gens: &R1CSCommitmentGens,
|
||||
) -> (R1CSCommitment, R1CSDecommitment) {
|
||||
inst.commit(gens)
|
||||
}
|
||||
|
||||
/// A method to produce a proof of the satisfiability of an R1CS instance
|
||||
pub fn prove(
|
||||
inst: &R1CSInstance,
|
||||
decomm: &R1CSDecommitment,
|
||||
vars: Vec<Scalar>,
|
||||
input: &Vec<Scalar>,
|
||||
gens: &SpartanGens,
|
||||
transcript: &mut Transcript,
|
||||
) -> SpartanProof {
|
||||
// we create a Transcript object seeded with a random Scalar
|
||||
// to aid the prover produce its randomness
|
||||
let mut random_tape = {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
let mut tape = Transcript::new(b"SpartanProof");
|
||||
tape.append_scalar(b"init_randomness", &Scalar::random(&mut csprng));
|
||||
tape
|
||||
};
|
||||
|
||||
transcript.append_protocol_name(SpartanProof::protocol_name());
|
||||
let (r1cs_sat_proof, rx, ry) = {
|
||||
let (proof, rx, ry) = R1CSProof::prove(
|
||||
inst,
|
||||
vars,
|
||||
input,
|
||||
&gens.gens_r1cs_sat,
|
||||
transcript,
|
||||
&mut random_tape,
|
||||
);
|
||||
let proof_encoded: Vec<u8> = bincode::serialize(&proof).unwrap();
|
||||
Timer::print(&format!("len_r1cs_sat_proof {:?}", proof_encoded.len()));
|
||||
|
||||
(proof, rx, ry)
|
||||
};
|
||||
|
||||
// We send evaluations of A, B, C at r = (rx, ry) as claims
|
||||
// to enable the verifier complete the first sum-check
|
||||
let timer_eval = Timer::new("eval_sparse_polys");
|
||||
let inst_evals = {
|
||||
let eval_table_rx = EqPolynomial::new(rx.clone()).evals();
|
||||
let eval_table_ry = EqPolynomial::new(ry.clone()).evals();
|
||||
inst.evaluate_with_tables(&eval_table_rx, &eval_table_ry)
|
||||
};
|
||||
inst_evals.append_to_transcript(b"r1cs_inst_evals", transcript);
|
||||
timer_eval.stop();
|
||||
|
||||
let r1cs_eval_proof = {
|
||||
let proof = R1CSEvalProof::prove(
|
||||
decomm,
|
||||
&rx,
|
||||
&ry,
|
||||
&inst_evals,
|
||||
&gens.gens_r1cs_eval,
|
||||
transcript,
|
||||
&mut random_tape,
|
||||
);
|
||||
|
||||
let proof_encoded: Vec<u8> = bincode::serialize(&proof).unwrap();
|
||||
Timer::print(&format!("len_r1cs_eval_proof {:?}", proof_encoded.len()));
|
||||
proof
|
||||
};
|
||||
|
||||
SpartanProof {
|
||||
r1cs_sat_proof,
|
||||
inst_evals,
|
||||
r1cs_eval_proof,
|
||||
}
|
||||
}
|
||||
|
||||
/// A method to verify the proof of the satisfiability of an R1CS instance
|
||||
pub fn verify(
|
||||
&self,
|
||||
comm: &R1CSCommitment,
|
||||
input: &Vec<Scalar>,
|
||||
transcript: &mut Transcript,
|
||||
gens: &SpartanGens,
|
||||
) -> Result<(), ProofVerifyError> {
|
||||
transcript.append_protocol_name(SpartanProof::protocol_name());
|
||||
|
||||
let timer_sat_proof = Timer::new("verify_sat_proof");
|
||||
assert_eq!(input.len(), comm.get_num_inputs());
|
||||
let (rx, ry) = self
|
||||
.r1cs_sat_proof
|
||||
.verify(
|
||||
comm.get_num_vars(),
|
||||
comm.get_num_cons(),
|
||||
input,
|
||||
&self.inst_evals,
|
||||
transcript,
|
||||
&gens.gens_r1cs_sat,
|
||||
)
|
||||
.unwrap();
|
||||
timer_sat_proof.stop();
|
||||
|
||||
let timer_eval_proof = Timer::new("verify_eval_proof");
|
||||
self
|
||||
.inst_evals
|
||||
.append_to_transcript(b"r1cs_inst_evals", transcript);
|
||||
assert!(self
|
||||
.r1cs_eval_proof
|
||||
.verify(
|
||||
comm,
|
||||
&rx,
|
||||
&ry,
|
||||
&self.inst_evals,
|
||||
&gens.gens_r1cs_eval,
|
||||
transcript
|
||||
)
|
||||
.is_ok());
|
||||
timer_eval_proof.stop();
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
pub fn check_spartan_proof() {
|
||||
let num_vars = 256;
|
||||
let num_cons = num_vars;
|
||||
let num_inputs = 10;
|
||||
let (inst, vars, input) = R1CSInstance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
|
||||
|
||||
let r1cs_size = inst.size();
|
||||
let gens_r1cs_eval = R1CSCommitmentGens::new(&r1cs_size, b"gens_r1cs_eval");
|
||||
|
||||
// create a commitment to R1CSInstance
|
||||
let (comm, decomm) = SpartanProof::encode(&inst, &gens_r1cs_eval);
|
||||
|
||||
let gens_r1cs_sat = R1CSGens::new(num_cons, num_vars, b"gens_r1cs_sat");
|
||||
let gens = SpartanGens::new(gens_r1cs_sat, gens_r1cs_eval);
|
||||
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
let proof = SpartanProof::prove(&inst, &decomm, vars, &input, &gens, &mut prover_transcript);
|
||||
|
||||
let mut verifier_transcript = Transcript::new(b"example");
|
||||
assert!(proof
|
||||
.verify(&comm, &input, &mut verifier_transcript, &gens)
|
||||
.is_ok());
|
||||
}
|
||||
}
|
|
@ -0,0 +1,911 @@
|
|||
use super::commitments::{Commitments, MultiCommitGens};
|
||||
use super::dense_mlpoly::DensePolynomial;
|
||||
use super::errors::ProofVerifyError;
|
||||
use super::group::{CompressedGroup, GroupElement, VartimeMultiscalarMul};
|
||||
use super::nizk::DotProductProof;
|
||||
use super::scalar::Scalar;
|
||||
use super::transcript::{AppendToTranscript, ProofTranscript};
|
||||
use super::unipoly::{CompressedUniPoly, UniPoly};
|
||||
use itertools::izip;
|
||||
use merlin::Transcript;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use std::iter;
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug)]
|
||||
pub struct SumcheckInstanceProof {
|
||||
compressed_polys: Vec<CompressedUniPoly>,
|
||||
}
|
||||
|
||||
impl SumcheckInstanceProof {
|
||||
pub fn new(compressed_polys: Vec<CompressedUniPoly>) -> SumcheckInstanceProof {
|
||||
SumcheckInstanceProof { compressed_polys }
|
||||
}
|
||||
|
||||
pub fn verify(
|
||||
&self,
|
||||
claim: Scalar,
|
||||
num_rounds: usize,
|
||||
degree_bound: usize,
|
||||
transcript: &mut Transcript,
|
||||
) -> Result<(Scalar, Vec<Scalar>), ProofVerifyError> {
|
||||
let mut e = claim;
|
||||
let mut r: Vec<Scalar> = Vec::new();
|
||||
|
||||
// verify that there is a univariate polynomial for each round
|
||||
assert_eq!(self.compressed_polys.len(), num_rounds);
|
||||
for i in 0..self.compressed_polys.len() {
|
||||
let poly = self.compressed_polys[i].decompress(&e);
|
||||
|
||||
// verify degree bound
|
||||
assert_eq!(poly.degree(), degree_bound);
|
||||
|
||||
// check if G_k(0) + G_k(1) = e
|
||||
assert_eq!(poly.eval_at_zero() + poly.eval_at_one(), e);
|
||||
|
||||
// append the prover's message to the transcript
|
||||
poly.append_to_transcript(b"poly", transcript);
|
||||
|
||||
//derive the verifier's challenge for the next round
|
||||
let r_i = transcript.challenge_scalar(b"challenge_nextround");
|
||||
|
||||
r.push(r_i);
|
||||
|
||||
// evaluate the claimed degree-ell polynomial at r_i
|
||||
e = poly.evaluate(&r_i);
|
||||
}
|
||||
|
||||
Ok((e, r))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug)]
|
||||
pub struct ZKSumcheckInstanceProof {
|
||||
comm_polys: Vec<CompressedGroup>,
|
||||
comm_evals: Vec<CompressedGroup>,
|
||||
proofs: Vec<DotProductProof>,
|
||||
}
|
||||
|
||||
impl ZKSumcheckInstanceProof {
|
||||
pub fn new(
|
||||
comm_polys: Vec<CompressedGroup>,
|
||||
comm_evals: Vec<CompressedGroup>,
|
||||
proofs: Vec<DotProductProof>,
|
||||
) -> Self {
|
||||
ZKSumcheckInstanceProof {
|
||||
comm_polys,
|
||||
comm_evals,
|
||||
proofs,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn verify(
|
||||
&self,
|
||||
comm_claim: &CompressedGroup,
|
||||
num_rounds: usize,
|
||||
degree_bound: usize,
|
||||
gens_1: &MultiCommitGens,
|
||||
gens_n: &MultiCommitGens,
|
||||
transcript: &mut Transcript,
|
||||
) -> Result<(CompressedGroup, Vec<Scalar>), ProofVerifyError> {
|
||||
// verify degree bound
|
||||
assert_eq!(gens_n.n, degree_bound + 1);
|
||||
|
||||
// verify that there is a univariate polynomial for each round
|
||||
assert_eq!(self.comm_polys.len(), num_rounds);
|
||||
assert_eq!(self.comm_evals.len(), num_rounds);
|
||||
|
||||
let mut r: Vec<Scalar> = Vec::new();
|
||||
for i in 0..self.comm_polys.len() {
|
||||
let comm_poly = &self.comm_polys[i];
|
||||
|
||||
// append the prover's polynomial to the transcript
|
||||
comm_poly.append_to_transcript(b"comm_poly", transcript);
|
||||
|
||||
//derive the verifier's challenge for the next round
|
||||
let r_i = transcript.challenge_scalar(b"challenge_nextround");
|
||||
|
||||
// verify the proof of sum-check and evals
|
||||
let res = {
|
||||
let comm_claim_per_round = if i == 0 {
|
||||
comm_claim
|
||||
} else {
|
||||
&self.comm_evals[i - 1]
|
||||
};
|
||||
let comm_eval = &self.comm_evals[i];
|
||||
|
||||
// add two claims to transcript
|
||||
comm_claim_per_round.append_to_transcript(b"comm_claim_per_round", transcript);
|
||||
comm_eval.append_to_transcript(b"comm_eval", transcript);
|
||||
|
||||
// produce two weights
|
||||
let w = transcript.challenge_vector(b"combine_two_claims_to_one", 2);
|
||||
|
||||
// compute a weighted sum of the RHS
|
||||
let comm_target = GroupElement::vartime_multiscalar_mul(
|
||||
w.iter(),
|
||||
iter::once(&comm_claim_per_round)
|
||||
.chain(iter::once(&comm_eval))
|
||||
.map(|pt| pt.decompress().unwrap())
|
||||
.collect::<Vec<GroupElement>>(),
|
||||
)
|
||||
.compress();
|
||||
|
||||
let a = {
|
||||
// the vector to use to decommit for sum-check test
|
||||
let a_sc = {
|
||||
let mut a = vec![Scalar::one(); degree_bound + 1];
|
||||
a[0] = a[0] + Scalar::one();
|
||||
a
|
||||
};
|
||||
|
||||
// the vector to use to decommit for evaluation
|
||||
let a_eval = {
|
||||
let mut a = vec![Scalar::one(); degree_bound + 1];
|
||||
for j in 1..a.len() {
|
||||
a[j] = &a[j - 1] * &r_i;
|
||||
}
|
||||
a
|
||||
};
|
||||
|
||||
// take weighted sum of the two vectors using w
|
||||
assert_eq!(a_sc.len(), a_eval.len());
|
||||
(0..a_sc.len())
|
||||
.map(|i| &w[0] * &a_sc[i] + &w[1] * &a_eval[i])
|
||||
.collect::<Vec<Scalar>>()
|
||||
};
|
||||
|
||||
self.proofs[i]
|
||||
.verify(
|
||||
gens_1,
|
||||
gens_n,
|
||||
transcript,
|
||||
&a,
|
||||
&self.comm_polys[i],
|
||||
&comm_target,
|
||||
)
|
||||
.is_ok()
|
||||
};
|
||||
assert!(res);
|
||||
|
||||
r.push(r_i);
|
||||
}
|
||||
|
||||
Ok((self.comm_evals[self.comm_evals.len() - 1], r))
|
||||
}
|
||||
}
|
||||
|
||||
impl SumcheckInstanceProof {
|
||||
pub fn prove_quad<F>(
|
||||
claim: &Scalar,
|
||||
num_rounds: usize,
|
||||
poly_A: &mut DensePolynomial,
|
||||
poly_B: &mut DensePolynomial,
|
||||
comb_func: F,
|
||||
transcript: &mut Transcript,
|
||||
) -> (Self, Vec<Scalar>, Vec<Scalar>)
|
||||
where
|
||||
F: Fn(&Scalar, &Scalar) -> Scalar,
|
||||
{
|
||||
let mut e = *claim;
|
||||
let mut r: Vec<Scalar> = Vec::new();
|
||||
let mut quad_polys: Vec<CompressedUniPoly> = Vec::new();
|
||||
for _j in 0..num_rounds {
|
||||
let mut eval_point_0 = Scalar::zero();
|
||||
let mut eval_point_2 = Scalar::zero();
|
||||
|
||||
let len = poly_A.len() / 2;
|
||||
for i in 0..len {
|
||||
// eval 0: bound_func is A(low)
|
||||
eval_point_0 = &eval_point_0 + comb_func(&poly_A[i], &poly_B[i]);
|
||||
|
||||
// eval 2: bound_func is -A(low) + 2*A(high)
|
||||
let poly_A_bound_point = &poly_A[len + i] + &poly_A[len + i] - &poly_A[i];
|
||||
let poly_B_bound_point = &poly_B[len + i] + &poly_B[len + i] - &poly_B[i];
|
||||
eval_point_2 = &eval_point_2 + comb_func(&poly_A_bound_point, &poly_B_bound_point);
|
||||
}
|
||||
|
||||
let evals = vec![eval_point_0, e - eval_point_0, eval_point_2];
|
||||
let poly = UniPoly::from_evals(&evals);
|
||||
|
||||
// append the prover's message to the transcript
|
||||
poly.append_to_transcript(b"poly", transcript);
|
||||
|
||||
//derive the verifier's challenge for the next round
|
||||
let r_j = transcript.challenge_scalar(b"challenge_nextround");
|
||||
r.push(r_j);
|
||||
// bound all tables to the verifier's challenege
|
||||
poly_A.bound_poly_var_top(&r_j);
|
||||
poly_B.bound_poly_var_top(&r_j);
|
||||
|
||||
e = poly.evaluate(&r_j);
|
||||
quad_polys.push(poly.compress());
|
||||
}
|
||||
|
||||
(
|
||||
SumcheckInstanceProof::new(quad_polys),
|
||||
r,
|
||||
vec![poly_A[0], poly_B[0]],
|
||||
)
|
||||
}
|
||||
|
||||
pub fn prove_cubic<F>(
|
||||
claim: &Scalar,
|
||||
num_rounds: usize,
|
||||
poly_A: &mut DensePolynomial,
|
||||
poly_B: &mut DensePolynomial,
|
||||
poly_C: &mut DensePolynomial,
|
||||
comb_func: F,
|
||||
transcript: &mut Transcript,
|
||||
) -> (Self, Vec<Scalar>, Vec<Scalar>)
|
||||
where
|
||||
F: Fn(&Scalar, &Scalar, &Scalar) -> Scalar,
|
||||
{
|
||||
let mut e = *claim;
|
||||
let mut r: Vec<Scalar> = Vec::new();
|
||||
let mut cubic_polys: Vec<CompressedUniPoly> = Vec::new();
|
||||
for _j in 0..num_rounds {
|
||||
let mut eval_point_0 = Scalar::zero();
|
||||
let mut eval_point_2 = Scalar::zero();
|
||||
let mut eval_point_3 = Scalar::zero();
|
||||
|
||||
let len = poly_A.len() / 2;
|
||||
for i in 0..len {
|
||||
// eval 0: bound_func is A(low)
|
||||
eval_point_0 = &eval_point_0 + comb_func(&poly_A[i], &poly_B[i], &poly_C[i]);
|
||||
|
||||
// eval 2: bound_func is -A(low) + 2*A(high)
|
||||
let poly_A_bound_point = &poly_A[len + i] + &poly_A[len + i] - &poly_A[i];
|
||||
let poly_B_bound_point = &poly_B[len + i] + &poly_B[len + i] - &poly_B[i];
|
||||
let poly_C_bound_point = &poly_C[len + i] + &poly_C[len + i] - &poly_C[i];
|
||||
eval_point_2 = &eval_point_2
|
||||
+ comb_func(
|
||||
&poly_A_bound_point,
|
||||
&poly_B_bound_point,
|
||||
&poly_C_bound_point,
|
||||
);
|
||||
|
||||
// eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2)
|
||||
let poly_A_bound_point = &poly_A_bound_point + &poly_A[len + i] - &poly_A[i];
|
||||
let poly_B_bound_point = &poly_B_bound_point + &poly_B[len + i] - &poly_B[i];
|
||||
let poly_C_bound_point = &poly_C_bound_point + &poly_C[len + i] - &poly_C[i];
|
||||
|
||||
eval_point_3 = &eval_point_3
|
||||
+ comb_func(
|
||||
&poly_A_bound_point,
|
||||
&poly_B_bound_point,
|
||||
&poly_C_bound_point,
|
||||
);
|
||||
}
|
||||
|
||||
let evals = vec![eval_point_0, e - eval_point_0, eval_point_2, eval_point_3];
|
||||
let poly = UniPoly::from_evals(&evals);
|
||||
|
||||
// append the prover's message to the transcript
|
||||
poly.append_to_transcript(b"poly", transcript);
|
||||
|
||||
//derive the verifier's challenge for the next round
|
||||
let r_j = transcript.challenge_scalar(b"challenge_nextround");
|
||||
r.push(r_j);
|
||||
// bound all tables to the verifier's challenege
|
||||
poly_A.bound_poly_var_top(&r_j);
|
||||
poly_B.bound_poly_var_top(&r_j);
|
||||
poly_C.bound_poly_var_top(&r_j);
|
||||
e = poly.evaluate(&r_j);
|
||||
cubic_polys.push(poly.compress());
|
||||
}
|
||||
|
||||
(
|
||||
SumcheckInstanceProof::new(cubic_polys),
|
||||
r,
|
||||
vec![poly_A[0], poly_B[0], poly_C[0]],
|
||||
)
|
||||
}
|
||||
|
||||
pub fn prove_cubic_with_additive_term<F>(
|
||||
claim: &Scalar,
|
||||
num_rounds: usize,
|
||||
poly_A: &mut DensePolynomial,
|
||||
poly_B: &mut DensePolynomial,
|
||||
poly_C: &mut DensePolynomial,
|
||||
poly_D: &mut DensePolynomial,
|
||||
comb_func: F,
|
||||
transcript: &mut Transcript,
|
||||
) -> (Self, Vec<Scalar>, Vec<Scalar>)
|
||||
where
|
||||
F: Fn(&Scalar, &Scalar, &Scalar, &Scalar) -> Scalar,
|
||||
{
|
||||
let mut e = *claim;
|
||||
let mut r: Vec<Scalar> = Vec::new();
|
||||
let mut cubic_polys: Vec<CompressedUniPoly> = Vec::new();
|
||||
for _j in 0..num_rounds {
|
||||
let mut eval_point_0 = Scalar::zero();
|
||||
let mut eval_point_2 = Scalar::zero();
|
||||
let mut eval_point_3 = Scalar::zero();
|
||||
|
||||
let len = poly_A.len() / 2;
|
||||
for i in 0..len {
|
||||
// eval 0: bound_func is A(low)
|
||||
eval_point_0 = &eval_point_0 + comb_func(&poly_A[i], &poly_B[i], &poly_C[i], &poly_D[i]);
|
||||
|
||||
// eval 2: bound_func is -A(low) + 2*A(high)
|
||||
let poly_A_bound_point = &poly_A[len + i] + &poly_A[len + i] - &poly_A[i];
|
||||
let poly_B_bound_point = &poly_B[len + i] + &poly_B[len + i] - &poly_B[i];
|
||||
let poly_C_bound_point = &poly_C[len + i] + &poly_C[len + i] - &poly_C[i];
|
||||
let poly_D_bound_point = &poly_D[len + i] + &poly_D[len + i] - &poly_D[i];
|
||||
eval_point_2 = &eval_point_2
|
||||
+ comb_func(
|
||||
&poly_A_bound_point,
|
||||
&poly_B_bound_point,
|
||||
&poly_C_bound_point,
|
||||
&poly_D_bound_point,
|
||||
);
|
||||
|
||||
// eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2)
|
||||
let poly_A_bound_point = &poly_A_bound_point + &poly_A[len + i] - &poly_A[i];
|
||||
let poly_B_bound_point = &poly_B_bound_point + &poly_B[len + i] - &poly_B[i];
|
||||
let poly_C_bound_point = &poly_C_bound_point + &poly_C[len + i] - &poly_C[i];
|
||||
let poly_D_bound_point = &poly_D_bound_point + &poly_D[len + i] - &poly_D[i];
|
||||
eval_point_3 = &eval_point_3
|
||||
+ comb_func(
|
||||
&poly_A_bound_point,
|
||||
&poly_B_bound_point,
|
||||
&poly_C_bound_point,
|
||||
&poly_D_bound_point,
|
||||
);
|
||||
}
|
||||
|
||||
let evals = vec![eval_point_0, e - eval_point_0, eval_point_2, eval_point_3];
|
||||
let poly = UniPoly::from_evals(&evals);
|
||||
|
||||
// append the prover's message to the transcript
|
||||
poly.append_to_transcript(b"poly", transcript);
|
||||
|
||||
//derive the verifier's challenge for the next round
|
||||
let r_j = transcript.challenge_scalar(b"challenge_nextround");
|
||||
r.push(r_j);
|
||||
// bound all tables to the verifier's challenege
|
||||
poly_A.bound_poly_var_top(&r_j);
|
||||
poly_B.bound_poly_var_top(&r_j);
|
||||
poly_C.bound_poly_var_top(&r_j);
|
||||
poly_D.bound_poly_var_top(&r_j);
|
||||
e = poly.evaluate(&r_j);
|
||||
cubic_polys.push(poly.compress());
|
||||
}
|
||||
|
||||
(
|
||||
SumcheckInstanceProof::new(cubic_polys),
|
||||
r,
|
||||
vec![poly_A[0], poly_B[0], poly_C[0], poly_D[0]],
|
||||
)
|
||||
}
|
||||
|
||||
pub fn prove_cubic_batched<F>(
|
||||
claim: &Scalar,
|
||||
num_rounds: usize,
|
||||
poly_vec_par: (
|
||||
&mut Vec<&mut DensePolynomial>,
|
||||
&mut Vec<&mut DensePolynomial>,
|
||||
&mut DensePolynomial,
|
||||
),
|
||||
poly_vec_seq: (
|
||||
&mut Vec<&mut DensePolynomial>,
|
||||
&mut Vec<&mut DensePolynomial>,
|
||||
&mut Vec<&mut DensePolynomial>,
|
||||
),
|
||||
coeffs: &[Scalar],
|
||||
comb_func: F,
|
||||
transcript: &mut Transcript,
|
||||
) -> (
|
||||
Self,
|
||||
Vec<Scalar>,
|
||||
(Vec<Scalar>, Vec<Scalar>, Scalar),
|
||||
(Vec<Scalar>, Vec<Scalar>, Vec<Scalar>),
|
||||
)
|
||||
where
|
||||
F: Fn(&Scalar, &Scalar, &Scalar) -> Scalar,
|
||||
{
|
||||
let (poly_A_vec_par, poly_B_vec_par, poly_C_par) = poly_vec_par;
|
||||
let (poly_A_vec_seq, poly_B_vec_seq, poly_C_vec_seq) = poly_vec_seq;
|
||||
|
||||
//let (poly_A_vec_seq, poly_B_vec_seq, poly_C_vec_seq) = poly_vec_seq;
|
||||
let mut e = *claim;
|
||||
let mut r: Vec<Scalar> = Vec::new();
|
||||
let mut cubic_polys: Vec<CompressedUniPoly> = Vec::new();
|
||||
|
||||
for _j in 0..num_rounds {
|
||||
let mut evals: Vec<(Scalar, Scalar, Scalar)> = Vec::new();
|
||||
|
||||
for (poly_A, poly_B) in poly_A_vec_par.iter().zip(poly_B_vec_par.iter()) {
|
||||
let mut eval_point_0 = Scalar::zero();
|
||||
let mut eval_point_2 = Scalar::zero();
|
||||
let mut eval_point_3 = Scalar::zero();
|
||||
|
||||
let len = poly_A.len() / 2;
|
||||
for i in 0..len {
|
||||
// eval 0: bound_func is A(low)
|
||||
eval_point_0 = &eval_point_0 + comb_func(&poly_A[i], &poly_B[i], &poly_C_par[i]);
|
||||
|
||||
// eval 2: bound_func is -A(low) + 2*A(high)
|
||||
let poly_A_bound_point = &poly_A[len + i] + &poly_A[len + i] - &poly_A[i];
|
||||
let poly_B_bound_point = &poly_B[len + i] + &poly_B[len + i] - &poly_B[i];
|
||||
let poly_C_bound_point = &poly_C_par[len + i] + &poly_C_par[len + i] - &poly_C_par[i];
|
||||
eval_point_2 = &eval_point_2
|
||||
+ comb_func(
|
||||
&poly_A_bound_point,
|
||||
&poly_B_bound_point,
|
||||
&poly_C_bound_point,
|
||||
);
|
||||
|
||||
// eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2)
|
||||
let poly_A_bound_point = &poly_A_bound_point + &poly_A[len + i] - &poly_A[i];
|
||||
let poly_B_bound_point = &poly_B_bound_point + &poly_B[len + i] - &poly_B[i];
|
||||
let poly_C_bound_point = &poly_C_bound_point + &poly_C_par[len + i] - &poly_C_par[i];
|
||||
|
||||
eval_point_3 = &eval_point_3
|
||||
+ comb_func(
|
||||
&poly_A_bound_point,
|
||||
&poly_B_bound_point,
|
||||
&poly_C_bound_point,
|
||||
);
|
||||
}
|
||||
|
||||
evals.push((eval_point_0, eval_point_2, eval_point_3));
|
||||
}
|
||||
|
||||
for (poly_A, poly_B, poly_C) in izip!(
|
||||
poly_A_vec_seq.iter(),
|
||||
poly_B_vec_seq.iter(),
|
||||
poly_C_vec_seq.iter()
|
||||
) {
|
||||
let mut eval_point_0 = Scalar::zero();
|
||||
let mut eval_point_2 = Scalar::zero();
|
||||
let mut eval_point_3 = Scalar::zero();
|
||||
let len = poly_A.len() / 2;
|
||||
for i in 0..len {
|
||||
// eval 0: bound_func is A(low)
|
||||
eval_point_0 = &eval_point_0 + comb_func(&poly_A[i], &poly_B[i], &poly_C[i]);
|
||||
// eval 2: bound_func is -A(low) + 2*A(high)
|
||||
let poly_A_bound_point = &poly_A[len + i] + &poly_A[len + i] - &poly_A[i];
|
||||
let poly_B_bound_point = &poly_B[len + i] + &poly_B[len + i] - &poly_B[i];
|
||||
let poly_C_bound_point = &poly_C[len + i] + &poly_C[len + i] - &poly_C[i];
|
||||
eval_point_2 = &eval_point_2
|
||||
+ comb_func(
|
||||
&poly_A_bound_point,
|
||||
&poly_B_bound_point,
|
||||
&poly_C_bound_point,
|
||||
);
|
||||
// eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2)
|
||||
let poly_A_bound_point = &poly_A_bound_point + &poly_A[len + i] - &poly_A[i];
|
||||
let poly_B_bound_point = &poly_B_bound_point + &poly_B[len + i] - &poly_B[i];
|
||||
let poly_C_bound_point = &poly_C_bound_point + &poly_C[len + i] - &poly_C[i];
|
||||
eval_point_3 = &eval_point_3
|
||||
+ comb_func(
|
||||
&poly_A_bound_point,
|
||||
&poly_B_bound_point,
|
||||
&poly_C_bound_point,
|
||||
);
|
||||
}
|
||||
evals.push((eval_point_0, eval_point_2, eval_point_3));
|
||||
}
|
||||
|
||||
let evals_combined_0 = (0..evals.len()).map(|i| evals[i].0 * coeffs[i]).sum();
|
||||
let evals_combined_2 = (0..evals.len()).map(|i| evals[i].1 * coeffs[i]).sum();
|
||||
let evals_combined_3 = (0..evals.len()).map(|i| evals[i].2 * coeffs[i]).sum();
|
||||
|
||||
let evals = vec![
|
||||
evals_combined_0,
|
||||
e - evals_combined_0,
|
||||
evals_combined_2,
|
||||
evals_combined_3,
|
||||
];
|
||||
let poly = UniPoly::from_evals(&evals);
|
||||
|
||||
// append the prover's message to the transcript
|
||||
poly.append_to_transcript(b"poly", transcript);
|
||||
|
||||
//derive the verifier's challenge for the next round
|
||||
let r_j = transcript.challenge_scalar(b"challenge_nextround");
|
||||
r.push(r_j);
|
||||
|
||||
// bound all tables to the verifier's challenege
|
||||
for (poly_A, poly_B) in poly_A_vec_par.iter_mut().zip(poly_B_vec_par.iter_mut()) {
|
||||
poly_A.bound_poly_var_top(&r_j);
|
||||
poly_B.bound_poly_var_top(&r_j);
|
||||
}
|
||||
poly_C_par.bound_poly_var_top(&r_j);
|
||||
|
||||
for (poly_A, poly_B, poly_C) in izip!(
|
||||
poly_A_vec_seq.iter_mut(),
|
||||
poly_B_vec_seq.iter_mut(),
|
||||
poly_C_vec_seq.iter_mut()
|
||||
) {
|
||||
poly_A.bound_poly_var_top(&r_j);
|
||||
poly_B.bound_poly_var_top(&r_j);
|
||||
poly_C.bound_poly_var_top(&r_j);
|
||||
}
|
||||
|
||||
e = poly.evaluate(&r_j);
|
||||
cubic_polys.push(poly.compress());
|
||||
}
|
||||
|
||||
let poly_A_par_final = (0..poly_A_vec_par.len())
|
||||
.map(|i| poly_A_vec_par[i][0])
|
||||
.collect();
|
||||
let poly_B_par_final = (0..poly_B_vec_par.len())
|
||||
.map(|i| poly_B_vec_par[i][0])
|
||||
.collect();
|
||||
let claims_prod = (poly_A_par_final, poly_B_par_final, poly_C_par[0]);
|
||||
|
||||
let poly_A_seq_final = (0..poly_A_vec_seq.len())
|
||||
.map(|i| poly_A_vec_seq[i][0])
|
||||
.collect();
|
||||
let poly_B_seq_final = (0..poly_B_vec_seq.len())
|
||||
.map(|i| poly_B_vec_seq[i][0])
|
||||
.collect();
|
||||
let poly_C_seq_final = (0..poly_C_vec_seq.len())
|
||||
.map(|i| poly_C_vec_seq[i][0])
|
||||
.collect();
|
||||
let claims_dotp = (poly_A_seq_final, poly_B_seq_final, poly_C_seq_final);
|
||||
|
||||
(
|
||||
SumcheckInstanceProof::new(cubic_polys),
|
||||
r,
|
||||
claims_prod,
|
||||
claims_dotp,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl ZKSumcheckInstanceProof {
|
||||
pub fn prove_quad<F>(
|
||||
claim: &Scalar,
|
||||
blind_claim: &Scalar,
|
||||
num_rounds: usize,
|
||||
poly_A: &mut DensePolynomial,
|
||||
poly_B: &mut DensePolynomial,
|
||||
comb_func: F,
|
||||
gens_1: &MultiCommitGens,
|
||||
gens_n: &MultiCommitGens,
|
||||
transcript: &mut Transcript,
|
||||
random_tape: &mut Transcript,
|
||||
) -> (Self, Vec<Scalar>, Vec<Scalar>, Scalar)
|
||||
where
|
||||
F: Fn(&Scalar, &Scalar) -> Scalar,
|
||||
{
|
||||
let (blinds_poly, blinds_evals) = (
|
||||
random_tape.challenge_vector(b"blinds_poly", num_rounds),
|
||||
random_tape.challenge_vector(b"blinds_evals", num_rounds),
|
||||
);
|
||||
let mut claim_per_round = *claim;
|
||||
let mut comm_claim_per_round = claim_per_round.commit(&blind_claim, &gens_1).compress();
|
||||
|
||||
let mut r: Vec<Scalar> = Vec::new();
|
||||
let mut comm_polys: Vec<CompressedGroup> = Vec::new();
|
||||
let mut comm_evals: Vec<CompressedGroup> = Vec::new();
|
||||
let mut proofs: Vec<DotProductProof> = Vec::new();
|
||||
|
||||
for j in 0..num_rounds {
|
||||
let (poly, comm_poly) = {
|
||||
let mut eval_point_0 = Scalar::zero();
|
||||
let mut eval_point_2 = Scalar::zero();
|
||||
|
||||
let len = poly_A.len() / 2;
|
||||
for i in 0..len {
|
||||
// eval 0: bound_func is A(low)
|
||||
eval_point_0 = &eval_point_0 + comb_func(&poly_A[i], &poly_B[i]);
|
||||
|
||||
// eval 2: bound_func is -A(low) + 2*A(high)
|
||||
let poly_A_bound_point = &poly_A[len + i] + &poly_A[len + i] - &poly_A[i];
|
||||
let poly_B_bound_point = &poly_B[len + i] + &poly_B[len + i] - &poly_B[i];
|
||||
eval_point_2 = &eval_point_2 + comb_func(&poly_A_bound_point, &poly_B_bound_point);
|
||||
}
|
||||
|
||||
let evals = vec![eval_point_0, claim_per_round - eval_point_0, eval_point_2];
|
||||
let poly = UniPoly::from_evals(&evals);
|
||||
let comm_poly = poly.commit(gens_n, &blinds_poly[j]).compress();
|
||||
(poly, comm_poly)
|
||||
};
|
||||
|
||||
// append the prover's message to the transcript
|
||||
comm_poly.append_to_transcript(b"comm_poly", transcript);
|
||||
comm_polys.push(comm_poly);
|
||||
|
||||
//derive the verifier's challenge for the next round
|
||||
let r_j = transcript.challenge_scalar(b"challenge_nextround");
|
||||
|
||||
// bound all tables to the verifier's challenege
|
||||
poly_A.bound_poly_var_top(&r_j);
|
||||
poly_B.bound_poly_var_top(&r_j);
|
||||
|
||||
// produce a proof of sum-check and of evaluation
|
||||
let (proof, claim_next_round, comm_claim_next_round) = {
|
||||
let eval = poly.evaluate(&r_j);
|
||||
let comm_eval = eval.commit(&blinds_evals[j], gens_1).compress();
|
||||
|
||||
// we need to prove the following under homomorphic commitments:
|
||||
// (1) poly(0) + poly(1) = claim_per_round
|
||||
// (2) poly(r_j) = eval
|
||||
|
||||
// Our technique is to leverage dot product proofs:
|
||||
// (1) we can prove: <poly_in_coeffs_form, (2, 1, 1, 1)> = claim_per_round
|
||||
// (2) we can prove: <poly_in_coeffs_form, (1, r_j, r^2_j, ..) = eval
|
||||
// for efficiency we batch them using random weights
|
||||
|
||||
// add two claims to transcript
|
||||
comm_claim_per_round.append_to_transcript(b"comm_claim_per_round", transcript);
|
||||
comm_eval.append_to_transcript(b"comm_eval", transcript);
|
||||
|
||||
// produce two weights
|
||||
let w = transcript.challenge_vector(b"combine_two_claims_to_one", 2);
|
||||
|
||||
// compute a weighted sum of the RHS
|
||||
let target = &w[0] * &claim_per_round + &w[1] * &eval;
|
||||
let comm_target = GroupElement::vartime_multiscalar_mul(
|
||||
w.iter(),
|
||||
iter::once(&comm_claim_per_round)
|
||||
.chain(iter::once(&comm_eval))
|
||||
.map(|pt| pt.decompress().unwrap())
|
||||
.collect::<Vec<GroupElement>>(),
|
||||
)
|
||||
.compress();
|
||||
|
||||
let blind = {
|
||||
let blind_sc = if j == 0 {
|
||||
blind_claim
|
||||
} else {
|
||||
&blinds_evals[j - 1]
|
||||
};
|
||||
|
||||
let blind_eval = &blinds_evals[j];
|
||||
|
||||
&w[0] * blind_sc + &w[1] * blind_eval
|
||||
};
|
||||
assert_eq!(target.commit(&blind, &gens_1).compress(), comm_target);
|
||||
|
||||
let a = {
|
||||
// the vector to use to decommit for sum-check test
|
||||
let a_sc = {
|
||||
let mut a = vec![Scalar::one(); poly.degree() + 1];
|
||||
a[0] = a[0] + Scalar::one();
|
||||
a
|
||||
};
|
||||
|
||||
// the vector to use to decommit for evaluation
|
||||
let a_eval = {
|
||||
let mut a = vec![Scalar::one(); poly.degree() + 1];
|
||||
for j in 1..a.len() {
|
||||
a[j] = &a[j - 1] * &r_j;
|
||||
}
|
||||
a
|
||||
};
|
||||
|
||||
// take weighted sum of the two vectors using w
|
||||
assert_eq!(a_sc.len(), a_eval.len());
|
||||
(0..a_sc.len())
|
||||
.map(|i| &w[0] * &a_sc[i] + &w[1] * &a_eval[i])
|
||||
.collect::<Vec<Scalar>>()
|
||||
};
|
||||
|
||||
let (proof, _comm_poly, _comm_sc_eval) = DotProductProof::prove(
|
||||
gens_1,
|
||||
gens_n,
|
||||
transcript,
|
||||
random_tape,
|
||||
&poly.as_vec(),
|
||||
&blinds_poly[j],
|
||||
&a,
|
||||
&target,
|
||||
&blind,
|
||||
);
|
||||
|
||||
(proof, eval, comm_eval)
|
||||
};
|
||||
|
||||
claim_per_round = claim_next_round;
|
||||
comm_claim_per_round = comm_claim_next_round;
|
||||
|
||||
proofs.push(proof);
|
||||
r.push(r_j);
|
||||
comm_evals.push(comm_claim_per_round);
|
||||
}
|
||||
|
||||
(
|
||||
ZKSumcheckInstanceProof::new(comm_polys, comm_evals, proofs),
|
||||
r,
|
||||
vec![poly_A[0], poly_B[0]],
|
||||
blinds_evals[num_rounds - 1],
|
||||
)
|
||||
}
|
||||
|
||||
pub fn prove_cubic_with_additive_term<F>(
|
||||
claim: &Scalar,
|
||||
blind_claim: &Scalar,
|
||||
num_rounds: usize,
|
||||
poly_A: &mut DensePolynomial,
|
||||
poly_B: &mut DensePolynomial,
|
||||
poly_C: &mut DensePolynomial,
|
||||
poly_D: &mut DensePolynomial,
|
||||
comb_func: F,
|
||||
gens_1: &MultiCommitGens,
|
||||
gens_n: &MultiCommitGens,
|
||||
transcript: &mut Transcript,
|
||||
random_tape: &mut Transcript,
|
||||
) -> (Self, Vec<Scalar>, Vec<Scalar>, Scalar)
|
||||
where
|
||||
F: Fn(&Scalar, &Scalar, &Scalar, &Scalar) -> Scalar,
|
||||
{
|
||||
let (blinds_poly, blinds_evals) = (
|
||||
random_tape.challenge_vector(b"blinds_poly", num_rounds),
|
||||
random_tape.challenge_vector(b"blinds_evals", num_rounds),
|
||||
);
|
||||
|
||||
let mut claim_per_round = *claim;
|
||||
let mut comm_claim_per_round = claim_per_round.commit(&blind_claim, &gens_1).compress();
|
||||
|
||||
let mut r: Vec<Scalar> = Vec::new();
|
||||
let mut comm_polys: Vec<CompressedGroup> = Vec::new();
|
||||
let mut comm_evals: Vec<CompressedGroup> = Vec::new();
|
||||
let mut proofs: Vec<DotProductProof> = Vec::new();
|
||||
|
||||
for j in 0..num_rounds {
|
||||
let (poly, comm_poly) = {
|
||||
let mut eval_point_0 = Scalar::zero();
|
||||
let mut eval_point_2 = Scalar::zero();
|
||||
let mut eval_point_3 = Scalar::zero();
|
||||
|
||||
let len = poly_A.len() / 2;
|
||||
for i in 0..len {
|
||||
// eval 0: bound_func is A(low)
|
||||
eval_point_0 = &eval_point_0 + comb_func(&poly_A[i], &poly_B[i], &poly_C[i], &poly_D[i]);
|
||||
|
||||
// eval 2: bound_func is -A(low) + 2*A(high)
|
||||
let poly_A_bound_point = &poly_A[len + i] + &poly_A[len + i] - &poly_A[i];
|
||||
let poly_B_bound_point = &poly_B[len + i] + &poly_B[len + i] - &poly_B[i];
|
||||
let poly_C_bound_point = &poly_C[len + i] + &poly_C[len + i] - &poly_C[i];
|
||||
let poly_D_bound_point = &poly_D[len + i] + &poly_D[len + i] - &poly_D[i];
|
||||
eval_point_2 = &eval_point_2
|
||||
+ comb_func(
|
||||
&poly_A_bound_point,
|
||||
&poly_B_bound_point,
|
||||
&poly_C_bound_point,
|
||||
&poly_D_bound_point,
|
||||
);
|
||||
|
||||
// eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2)
|
||||
let poly_A_bound_point = &poly_A_bound_point + &poly_A[len + i] - &poly_A[i];
|
||||
let poly_B_bound_point = &poly_B_bound_point + &poly_B[len + i] - &poly_B[i];
|
||||
let poly_C_bound_point = &poly_C_bound_point + &poly_C[len + i] - &poly_C[i];
|
||||
let poly_D_bound_point = &poly_D_bound_point + &poly_D[len + i] - &poly_D[i];
|
||||
eval_point_3 = &eval_point_3
|
||||
+ comb_func(
|
||||
&poly_A_bound_point,
|
||||
&poly_B_bound_point,
|
||||
&poly_C_bound_point,
|
||||
&poly_D_bound_point,
|
||||
);
|
||||
}
|
||||
|
||||
let evals = vec![
|
||||
eval_point_0,
|
||||
claim_per_round - eval_point_0,
|
||||
eval_point_2,
|
||||
eval_point_3,
|
||||
];
|
||||
let poly = UniPoly::from_evals(&evals);
|
||||
let comm_poly = poly.commit(gens_n, &blinds_poly[j]).compress();
|
||||
(poly, comm_poly)
|
||||
};
|
||||
|
||||
// append the prover's message to the transcript
|
||||
comm_poly.append_to_transcript(b"comm_poly", transcript);
|
||||
comm_polys.push(comm_poly);
|
||||
|
||||
//derive the verifier's challenge for the next round
|
||||
let r_j = transcript.challenge_scalar(b"challenge_nextround");
|
||||
|
||||
// bound all tables to the verifier's challenege
|
||||
poly_A.bound_poly_var_top(&r_j);
|
||||
poly_B.bound_poly_var_top(&r_j);
|
||||
poly_C.bound_poly_var_top(&r_j);
|
||||
poly_D.bound_poly_var_top(&r_j);
|
||||
|
||||
// produce a proof of sum-check and of evaluation
|
||||
let (proof, claim_next_round, comm_claim_next_round) = {
|
||||
let eval = poly.evaluate(&r_j);
|
||||
let comm_eval = eval.commit(&blinds_evals[j], gens_1).compress();
|
||||
|
||||
// we need to prove the following under homomorphic commitments:
|
||||
// (1) poly(0) + poly(1) = claim_per_round
|
||||
// (2) poly(r_j) = eval
|
||||
|
||||
// Our technique is to leverage dot product proofs:
|
||||
// (1) we can prove: <poly_in_coeffs_form, (2, 1, 1, 1)> = claim_per_round
|
||||
// (2) we can prove: <poly_in_coeffs_form, (1, r_j, r^2_j, ..) = eval
|
||||
// for efficiency we batch them using random weights
|
||||
|
||||
// add two claims to transcript
|
||||
comm_claim_per_round.append_to_transcript(b"comm_claim_per_round", transcript);
|
||||
comm_eval.append_to_transcript(b"comm_eval", transcript);
|
||||
|
||||
// produce two weights
|
||||
let w = transcript.challenge_vector(b"combine_two_claims_to_one", 2);
|
||||
|
||||
// compute a weighted sum of the RHS
|
||||
let target = &w[0] * &claim_per_round + &w[1] * &eval;
|
||||
let comm_target = GroupElement::vartime_multiscalar_mul(
|
||||
w.iter(),
|
||||
iter::once(&comm_claim_per_round)
|
||||
.chain(iter::once(&comm_eval))
|
||||
.map(|pt| pt.decompress().unwrap())
|
||||
.collect::<Vec<GroupElement>>(),
|
||||
)
|
||||
.compress();
|
||||
|
||||
let blind = {
|
||||
let blind_sc = if j == 0 {
|
||||
blind_claim
|
||||
} else {
|
||||
&blinds_evals[j - 1]
|
||||
};
|
||||
|
||||
let blind_eval = &blinds_evals[j];
|
||||
|
||||
&w[0] * blind_sc + &w[1] * blind_eval
|
||||
};
|
||||
|
||||
assert_eq!(target.commit(&blind, &gens_1).compress(), comm_target);
|
||||
|
||||
let a = {
|
||||
// the vector to use to decommit for sum-check test
|
||||
let a_sc = {
|
||||
let mut a = vec![Scalar::one(); poly.degree() + 1];
|
||||
a[0] = a[0] + Scalar::one();
|
||||
a
|
||||
};
|
||||
|
||||
// the vector to use to decommit for evaluation
|
||||
let a_eval = {
|
||||
let mut a = vec![Scalar::one(); poly.degree() + 1];
|
||||
for j in 1..a.len() {
|
||||
a[j] = &a[j - 1] * &r_j;
|
||||
}
|
||||
a
|
||||
};
|
||||
|
||||
// take weighted sum of the two vectors using w
|
||||
assert_eq!(a_sc.len(), a_eval.len());
|
||||
(0..a_sc.len())
|
||||
.map(|i| &w[0] * &a_sc[i] + &w[1] * &a_eval[i])
|
||||
.collect::<Vec<Scalar>>()
|
||||
};
|
||||
|
||||
let (proof, _comm_poly, _comm_sc_eval) = DotProductProof::prove(
|
||||
gens_1,
|
||||
gens_n,
|
||||
transcript,
|
||||
random_tape,
|
||||
&poly.as_vec(),
|
||||
&blinds_poly[j],
|
||||
&a,
|
||||
&target,
|
||||
&blind,
|
||||
);
|
||||
|
||||
(proof, eval, comm_eval)
|
||||
};
|
||||
|
||||
proofs.push(proof);
|
||||
claim_per_round = claim_next_round;
|
||||
comm_claim_per_round = comm_claim_next_round;
|
||||
r.push(r_j);
|
||||
comm_evals.push(comm_claim_per_round);
|
||||
}
|
||||
|
||||
(
|
||||
ZKSumcheckInstanceProof::new(comm_polys, comm_evals, proofs),
|
||||
r,
|
||||
vec![poly_A[0], poly_B[0], poly_C[0], poly_D[0]],
|
||||
blinds_evals[num_rounds - 1],
|
||||
)
|
||||
}
|
||||
}
|
|
@ -0,0 +1,83 @@
|
|||
#[cfg(feature = "profile")]
|
||||
use colored::Colorize;
|
||||
#[cfg(feature = "profile")]
|
||||
use std::sync::atomic::AtomicUsize;
|
||||
#[cfg(feature = "profile")]
|
||||
use std::{sync::atomic::Ordering, time::Instant};
|
||||
|
||||
#[cfg(feature = "profile")]
|
||||
pub static CALL_DEPTH: AtomicUsize = AtomicUsize::new(0);
|
||||
|
||||
#[cfg(feature = "profile")]
|
||||
pub struct Timer {
|
||||
label: String,
|
||||
timer: Instant,
|
||||
}
|
||||
|
||||
#[cfg(feature = "profile")]
|
||||
impl Timer {
|
||||
#[inline(always)]
|
||||
pub fn new(label: &str) -> Self {
|
||||
let timer = Instant::now();
|
||||
CALL_DEPTH.fetch_add(1, Ordering::Relaxed);
|
||||
println!(
|
||||
"{:indent$}{}{}",
|
||||
"",
|
||||
"* ",
|
||||
label.yellow().bold(),
|
||||
indent = 2 * CALL_DEPTH.fetch_add(0, Ordering::Relaxed)
|
||||
);
|
||||
Self {
|
||||
label: label.to_string(),
|
||||
timer,
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn stop(&self) {
|
||||
let duration = self.timer.elapsed();
|
||||
println!(
|
||||
"{:indent$}{}{} {:?}",
|
||||
"",
|
||||
"* ",
|
||||
self.label.blue().bold(),
|
||||
duration,
|
||||
indent = 2 * CALL_DEPTH.fetch_add(0, Ordering::Relaxed)
|
||||
);
|
||||
CALL_DEPTH.fetch_sub(1, Ordering::Relaxed);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn print(msg: &str) {
|
||||
CALL_DEPTH.fetch_add(1, Ordering::Relaxed);
|
||||
println!(
|
||||
"{:indent$}{}{}",
|
||||
"",
|
||||
"* ",
|
||||
msg.to_string().green().bold(),
|
||||
indent = 2 * CALL_DEPTH.fetch_add(0, Ordering::Relaxed)
|
||||
);
|
||||
CALL_DEPTH.fetch_sub(1, Ordering::Relaxed);
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "profile"))]
|
||||
pub struct Timer {
|
||||
_label: String,
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "profile"))]
|
||||
impl Timer {
|
||||
#[inline(always)]
|
||||
pub fn new(label: &str) -> Self {
|
||||
Self {
|
||||
_label: label.to_string(),
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn stop(&self) {}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn print(_msg: &str) {}
|
||||
}
|
|
@ -0,0 +1,63 @@
|
|||
use super::group::CompressedGroup;
|
||||
use super::scalar::Scalar;
|
||||
use merlin::Transcript;
|
||||
|
||||
pub trait ProofTranscript {
|
||||
fn append_protocol_name(&mut self, protocol_name: &'static [u8]);
|
||||
fn append_scalar(&mut self, label: &'static [u8], scalar: &Scalar);
|
||||
fn append_point(&mut self, label: &'static [u8], point: &CompressedGroup);
|
||||
fn challenge_scalar(&mut self, label: &'static [u8]) -> Scalar;
|
||||
fn challenge_vector(&mut self, label: &'static [u8], len: usize) -> Vec<Scalar>;
|
||||
}
|
||||
|
||||
impl ProofTranscript for Transcript {
|
||||
fn append_protocol_name(&mut self, protocol_name: &'static [u8]) {
|
||||
self.append_message(b"protocol-name", protocol_name);
|
||||
}
|
||||
|
||||
fn append_scalar(&mut self, label: &'static [u8], scalar: &Scalar) {
|
||||
self.append_message(label, &scalar.to_bytes());
|
||||
}
|
||||
|
||||
fn append_point(&mut self, label: &'static [u8], point: &CompressedGroup) {
|
||||
self.append_message(label, point.as_bytes());
|
||||
}
|
||||
|
||||
fn challenge_scalar(&mut self, label: &'static [u8]) -> Scalar {
|
||||
let mut buf = [0u8; 64];
|
||||
self.challenge_bytes(label, &mut buf);
|
||||
Scalar::from_bytes_wide(&buf)
|
||||
}
|
||||
|
||||
fn challenge_vector(&mut self, label: &'static [u8], len: usize) -> Vec<Scalar> {
|
||||
(0..len)
|
||||
.map(|_i| self.challenge_scalar(label))
|
||||
.collect::<Vec<Scalar>>()
|
||||
}
|
||||
}
|
||||
|
||||
pub trait AppendToTranscript {
|
||||
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript);
|
||||
}
|
||||
|
||||
impl AppendToTranscript for Scalar {
|
||||
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript) {
|
||||
transcript.append_scalar(label, self);
|
||||
}
|
||||
}
|
||||
|
||||
impl AppendToTranscript for Vec<Scalar> {
|
||||
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript) {
|
||||
transcript.append_message(label, b"begin_append_vector");
|
||||
for i in 0..self.len() {
|
||||
transcript.append_scalar(label, &self[i]);
|
||||
}
|
||||
transcript.append_message(label, b"end_append_vector");
|
||||
}
|
||||
}
|
||||
|
||||
impl AppendToTranscript for CompressedGroup {
|
||||
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript) {
|
||||
transcript.append_point(label, self);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,184 @@
|
|||
use super::commitments::{Commitments, MultiCommitGens};
|
||||
use super::group::GroupElement;
|
||||
use super::scalar::{Scalar, ScalarFromPrimitives};
|
||||
use super::transcript::{AppendToTranscript, ProofTranscript};
|
||||
use merlin::Transcript;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
// ax^2 + bx + c stored as vec![a,b,c]
|
||||
// ax^3 + bx^2 + cx + d stored as vec![a,b,c,d]
|
||||
#[derive(Debug)]
|
||||
pub struct UniPoly {
|
||||
coeffs: Vec<Scalar>,
|
||||
}
|
||||
|
||||
// ax^2 + bx + c stored as vec![a,c]
|
||||
// ax^3 + bx^2 + cx + d stored as vec![a,c,d]
|
||||
#[derive(Serialize, Deserialize, Debug)]
|
||||
pub struct CompressedUniPoly {
|
||||
coeffs_except_linear_term: Vec<Scalar>,
|
||||
}
|
||||
|
||||
impl UniPoly {
|
||||
pub fn from_evals(evals: &Vec<Scalar>) -> Self {
|
||||
// we only support degree-2 or degree-3 univariate polynomials
|
||||
assert!(evals.len() == 3 || evals.len() == 4);
|
||||
let coeffs = if evals.len() == 3 {
|
||||
// ax^2 + bx + c
|
||||
let two_inv = (2 as usize).to_scalar().invert().unwrap();
|
||||
|
||||
let c = evals[0];
|
||||
let a = two_inv * (evals[2] - evals[1] - evals[1] + c);
|
||||
let b = evals[1] - c - a;
|
||||
vec![c, b, a]
|
||||
} else {
|
||||
// ax^3 + bx^2 + cx + d
|
||||
let two_inv = (2 as usize).to_scalar().invert().unwrap();
|
||||
let six_inv = (6 as usize).to_scalar().invert().unwrap();
|
||||
|
||||
let d = evals[0];
|
||||
let a = six_inv
|
||||
* (evals[3] - evals[2] - evals[2] - evals[2] + evals[1] + evals[1] + evals[1] - evals[0]);
|
||||
let b = two_inv
|
||||
* (evals[0] + evals[0] - evals[1] - evals[1] - evals[1] - evals[1] - evals[1]
|
||||
+ evals[2]
|
||||
+ evals[2]
|
||||
+ evals[2]
|
||||
+ evals[2]
|
||||
- evals[3]);
|
||||
let c = evals[1] - d - a - b;
|
||||
vec![d, c, b, a]
|
||||
};
|
||||
|
||||
UniPoly { coeffs }
|
||||
}
|
||||
|
||||
pub fn degree(&self) -> usize {
|
||||
self.coeffs.len() - 1
|
||||
}
|
||||
|
||||
pub fn as_vec(&self) -> Vec<Scalar> {
|
||||
self.coeffs.clone()
|
||||
}
|
||||
|
||||
pub fn eval_at_zero(&self) -> Scalar {
|
||||
self.coeffs[0]
|
||||
}
|
||||
|
||||
pub fn eval_at_one(&self) -> Scalar {
|
||||
(0..self.coeffs.len()).map(|i| self.coeffs[i]).sum()
|
||||
}
|
||||
|
||||
pub fn evaluate(&self, r: &Scalar) -> Scalar {
|
||||
let mut eval = self.coeffs[0];
|
||||
let mut power = *r;
|
||||
for i in 1..self.coeffs.len() {
|
||||
eval = &eval + &power * &self.coeffs[i];
|
||||
power = &power * r;
|
||||
}
|
||||
eval
|
||||
}
|
||||
|
||||
pub fn compress(&self) -> CompressedUniPoly {
|
||||
let coeffs_except_linear_term = [&self.coeffs[0..1], &self.coeffs[2..]].concat();
|
||||
assert_eq!(coeffs_except_linear_term.len() + 1, self.coeffs.len());
|
||||
CompressedUniPoly {
|
||||
coeffs_except_linear_term,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn commit(&self, gens: &MultiCommitGens, blind: &Scalar) -> GroupElement {
|
||||
self.coeffs.commit(blind, gens)
|
||||
}
|
||||
}
|
||||
|
||||
impl CompressedUniPoly {
|
||||
// we require eval(0) + eval(1) = hint, so we can solve for the linear term as:
|
||||
// linear_term = hint - 2 * constant_term - deg2 term - deg3 term
|
||||
pub fn decompress(&self, hint: &Scalar) -> UniPoly {
|
||||
let mut linear_term =
|
||||
hint - self.coeffs_except_linear_term[0] - self.coeffs_except_linear_term[0];
|
||||
for i in 1..self.coeffs_except_linear_term.len() {
|
||||
linear_term = linear_term - self.coeffs_except_linear_term[i];
|
||||
}
|
||||
|
||||
let mut coeffs: Vec<Scalar> = Vec::new();
|
||||
coeffs.extend(vec![&self.coeffs_except_linear_term[0]]);
|
||||
coeffs.extend(vec![&linear_term]);
|
||||
coeffs.extend(self.coeffs_except_linear_term[1..].to_vec());
|
||||
assert_eq!(self.coeffs_except_linear_term.len() + 1, coeffs.len());
|
||||
UniPoly { coeffs }
|
||||
}
|
||||
}
|
||||
|
||||
impl AppendToTranscript for UniPoly {
|
||||
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript) {
|
||||
transcript.append_message(label, b"UniPoly_begin");
|
||||
for i in 0..self.coeffs.len() {
|
||||
transcript.append_scalar(b"coeff", &self.coeffs[i]);
|
||||
}
|
||||
transcript.append_message(label, b"UniPoly_end");
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_from_evals_quad() {
|
||||
// polynomial is 2x^2 + 3x + 1
|
||||
let e0 = Scalar::one();
|
||||
let e1 = (6 as usize).to_scalar();
|
||||
let e2 = (15 as usize).to_scalar();
|
||||
let evals = vec![e0, e1, e2];
|
||||
let poly = UniPoly::from_evals(&evals);
|
||||
|
||||
assert_eq!(poly.eval_at_zero(), e0);
|
||||
assert_eq!(poly.eval_at_one(), e1);
|
||||
assert_eq!(poly.coeffs.len(), 3);
|
||||
assert_eq!(poly.coeffs[0], Scalar::one());
|
||||
assert_eq!(poly.coeffs[1], (3 as usize).to_scalar());
|
||||
assert_eq!(poly.coeffs[2], (2 as usize).to_scalar());
|
||||
|
||||
let hint = e0 + e1;
|
||||
let compressed_poly = poly.compress();
|
||||
let decompressed_poly = compressed_poly.decompress(&hint);
|
||||
for i in 0..decompressed_poly.coeffs.len() {
|
||||
assert_eq!(decompressed_poly.coeffs[i], poly.coeffs[i]);
|
||||
}
|
||||
|
||||
let e3 = (28 as usize).to_scalar();
|
||||
assert_eq!(poly.evaluate(&(3 as usize).to_scalar()), e3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_from_evals_cubic() {
|
||||
// polynomial is x^3 + 2x^2 + 3x + 1
|
||||
let e0 = Scalar::one();
|
||||
let e1 = (7 as usize).to_scalar();
|
||||
let e2 = (23 as usize).to_scalar();
|
||||
let e3 = (55 as usize).to_scalar();
|
||||
let evals = vec![e0, e1, e2, e3];
|
||||
let poly = UniPoly::from_evals(&evals);
|
||||
|
||||
assert_eq!(poly.eval_at_zero(), e0);
|
||||
assert_eq!(poly.eval_at_one(), e1);
|
||||
assert_eq!(poly.coeffs.len(), 4);
|
||||
assert_eq!(poly.coeffs[0], Scalar::one());
|
||||
assert_eq!(poly.coeffs[1], (3 as usize).to_scalar());
|
||||
assert_eq!(poly.coeffs[2], (2 as usize).to_scalar());
|
||||
assert_eq!(poly.coeffs[3], (1 as usize).to_scalar());
|
||||
|
||||
let hint = e0 + e1;
|
||||
let compressed_poly = poly.compress();
|
||||
let decompressed_poly = compressed_poly.decompress(&hint);
|
||||
for i in 0..decompressed_poly.coeffs.len() {
|
||||
assert_eq!(decompressed_poly.coeffs[i], poly.coeffs[i]);
|
||||
}
|
||||
|
||||
let e4 = (109 as usize).to_scalar();
|
||||
assert_eq!(poly.evaluate(&(4 as usize).to_scalar()), e4);
|
||||
}
|
||||
}
|
Загрузка…
Ссылка в новой задаче