# Spartan: High-speed zkSNARKs without trusted setup ![Rust](https://github.com/microsoft/Spartan/workflows/Rust/badge.svg) [![](https://img.shields.io/crates/v/spartan.svg)](<(https://crates.io/crates/spartan)>) Spartan is a high-speed zero-knowledge proof system, a cryptographic primitive that enables a prover to prove a mathematical statement to a verifier without revealing anything besides the validity of the statement. This repository provides `libspartan,` a Rust library that implements a zero-knowledge succinct non-interactive argument of knowledge (zkSNARK), which is a type of zero-knowledge proof system with short proofs and fast verification times. The details of the Spartan proof system are described in our [paper](https://eprint.iacr.org/2019/550) published at [CRYPTO 2020](https://crypto.iacr.org/2020/). The security of the Spartan variant implemented in this library is based on the discrete logarithm problem in the random oracle model. A simple example application is proving the knowledge of a secret s such that H(s) == d for a public d, where H is a cryptographic hash function (e.g., SHA-256, Keccak). A more complex application is a database-backed cloud service that produces proofs of correct state machine transitions for auditability. See this [paper](https://eprint.iacr.org/2020/758.pdf) for an overview and this [paper](https://eprint.iacr.org/2018/907.pdf) for details. Note that this library has _not_ received a security review or audit. ## Highlights We now highlight Spartan's distinctive features. - **No "toxic" waste:** Spartan is a _transparent_ zkSNARK and does not require a trusted setup. So, it does not involve any trapdoors that must be kept secret or require a multi-party ceremony to produce public parameters. - **General-purpose:** Spartan produces proofs for arbitrary NP statements. `libspartan` supports NP statements expressed as rank-1 constraint satisfiability (R1CS) instances, a popular language for which there exists efficient transformations and compiler toolchains from high-level programs of interest. - **Sub-linear verification costs:** Spartan is the first transparent proof system with sub-linear verification costs for arbitrary NP statements (e.g., R1CS). - **Standardized security:** Spartan's security relies on the hardness of computing discrete logarithms (a standard cryptographic assumption) in the random oracle model. `libspartan` uses `ristretto255`, a prime-order group abstraction atop `curve25519` (a high-speed elliptic curve). We use [`curve25519-dalek`](https://docs.rs/curve25519-dalek) for arithmetic over `ristretto255`. - **State-of-the-art performance:** Among transparent SNARKs, Spartan offers the fastest prover with speedups of 36–152× depending on the baseline, produces proofs that are shorter by 1.2–416×, and incurs the lowest verification times with speedups of 3.6–1326×. The only exception is proof sizes under Bulletproofs, but Bulletproofs incurs slower verification both asymptotically and concretely. When compared to the state-of-the-art zkSNARK with trusted setup, Spartan’s prover is 2× faster for arbitrary R1CS instances and 16× faster for data-parallel workloads. ### Implementation details `libspartan` uses [`merlin`](https://docs.rs/merlin/) to automate the Fiat-Shamir transform. We also introduce a new type called `RandomTape` that extends a `Transcript` in `merlin` to allow the prover's internal methods to produce private randomness using its private transcript without having to create `OsRng` objects throughout the code. An object of type `RandomTape` is initialized with a new random seed from `OsRng` for each proof produced by the library. ## Examples To import `libspartan` into your Rust project, add the following dependency to `Cargo.toml`: ```text spartan = "0.8.0" ``` The following example shows how to use `libspartan` to create and verify a SNARK proof. Some of our public APIs' style is inspired by the underlying crates we use. ```rust extern crate libspartan; extern crate merlin; use libspartan::{Instance, SNARKGens, SNARK}; use merlin::Transcript; fn main() { // specify the size of an R1CS instance let num_vars = 1024; let num_cons = 1024; let num_inputs = 10; let num_non_zero_entries = 1024; // produce public parameters let gens = SNARKGens::new(num_cons, num_vars, num_inputs, num_non_zero_entries); // ask the library to produce a synthentic R1CS instance let (inst, vars, inputs) = Instance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs); // create a commitment to the R1CS instance let (comm, decomm) = SNARK::encode(&inst, &gens); // produce a proof of satisfiability let mut prover_transcript = Transcript::new(b"snark_example"); let proof = SNARK::prove(&inst, &comm, &decomm, vars, &inputs, &gens, &mut prover_transcript); // verify the proof of satisfiability let mut verifier_transcript = Transcript::new(b"snark_example"); assert!(proof .verify(&comm, &inputs, &mut verifier_transcript, &gens) .is_ok()); println!("proof verification successful!"); } ``` Here is another example to use the NIZK variant of the Spartan proof system: ```rust extern crate libspartan; extern crate merlin; use libspartan::{Instance, NIZKGens, NIZK}; use merlin::Transcript; fn main() { // specify the size of an R1CS instance let num_vars = 1024; let num_cons = 1024; let num_inputs = 10; // produce public parameters let gens = NIZKGens::new(num_cons, num_vars, num_inputs); // ask the library to produce a synthentic R1CS instance let (inst, vars, inputs) = Instance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs); // produce a proof of satisfiability let mut prover_transcript = Transcript::new(b"nizk_example"); let proof = NIZK::prove(&inst, vars, &inputs, &gens, &mut prover_transcript); // verify the proof of satisfiability let mut verifier_transcript = Transcript::new(b"nizk_example"); assert!(proof .verify(&inst, &inputs, &mut verifier_transcript, &gens) .is_ok()); println!("proof verification successful!"); } ``` Finally, we provide an example that specifies a custom R1CS instance instead of using a synthetic instance ```rust #![allow(non_snake_case)] extern crate curve25519_dalek; extern crate libspartan; extern crate merlin; use curve25519_dalek::scalar::Scalar; use libspartan::{InputsAssignment, Instance, SNARKGens, VarsAssignment, SNARK}; use merlin::Transcript; use rand::rngs::OsRng; fn main() { // produce a tiny instance let ( num_cons, num_vars, num_inputs, num_non_zero_entries, inst, assignment_vars, assignment_inputs, ) = produce_tiny_r1cs(); // produce public parameters let gens = SNARKGens::new(num_cons, num_vars, num_inputs, num_non_zero_entries); // create a commitment to the R1CS instance let (comm, decomm) = SNARK::encode(&inst, &gens); // produce a proof of satisfiability let mut prover_transcript = Transcript::new(b"snark_example"); let proof = SNARK::prove( &inst, &comm, &decomm, assignment_vars, &assignment_inputs, &gens, &mut prover_transcript, ); // verify the proof of satisfiability let mut verifier_transcript = Transcript::new(b"snark_example"); assert!(proof .verify(&comm, &assignment_inputs, &mut verifier_transcript, &gens) .is_ok()); println!("proof verification successful!"); } fn produce_tiny_r1cs() -> ( usize, usize, usize, usize, Instance, VarsAssignment, InputsAssignment, ) { // We will use the following example, but one could construct any R1CS instance. // Our R1CS instance is three constraints over five variables and two public inputs // (Z0 + Z1) * I0 - Z2 = 0 // (Z0 + I1) * Z2 - Z3 = 0 // Z4 * 1 - 0 = 0 // parameters of the R1CS instance rounded to the nearest power of two let num_cons = 4; let num_vars = 5; let num_inputs = 2; let num_non_zero_entries = 5; // We will encode the above constraints into three matrices, where // the coefficients in the matrix are in the little-endian byte order let mut A: Vec<(usize, usize, [u8; 32])> = Vec::new(); let mut B: Vec<(usize, usize, [u8; 32])> = Vec::new(); let mut C: Vec<(usize, usize, [u8; 32])> = Vec::new(); // The constraint system is defined over a finite field, which in our case is // the scalar field of ristreeto255/curve25519 i.e., p = 2^{252}+27742317777372353535851937790883648493 // To construct these matrices, we will use `curve25519-dalek` but one can use any other method. // a variable that holds a byte representation of 1 let one = Scalar::one().to_bytes(); // R1CS is a set of three sparse matrices A B C, where is a row for every // constraint and a column for every entry in z = (vars, 1, inputs) // An R1CS instance is satisfiable iff: // Az \circ Bz = Cz, where z = (vars, 1, inputs) // constraint 0 entries in (A,B,C) // constraint 0 is (Z0 + Z1) * I0 - Z2 = 0. // We set 1 in matrix A for columns that correspond to Z0 and Z1 // We set 1 in matrix B for column that corresponds to I0 // We set 1 in matrix C for column that corresponds to Z2 A.push((0, 0, one)); A.push((0, 1, one)); B.push((0, num_vars + 1, one)); C.push((0, 2, one)); // constraint 1 entries in (A,B,C) A.push((1, 0, one)); A.push((1, num_vars + 2, one)); B.push((1, 2, one)); C.push((1, 3, one)); // constraint 3 entries in (A,B,C) A.push((2, 4, one)); B.push((2, num_vars, one)); let inst = Instance::new(num_cons, num_vars, num_inputs, &A, &B, &C).unwrap(); // compute a satisfying assignment let mut csprng: OsRng = OsRng; let i0 = Scalar::random(&mut csprng); let i1 = Scalar::random(&mut csprng); let z0 = Scalar::random(&mut csprng); let z1 = Scalar::random(&mut csprng); let z2 = (z0 + z1) * i0; // constraint 0 let z3 = (z0 + i1) * z2; // constraint 1 let z4 = Scalar::zero(); //constraint 2 // create a VarsAssignment let mut vars = vec![Scalar::zero().to_bytes(); num_vars]; vars[0] = z0.to_bytes(); vars[1] = z1.to_bytes(); vars[2] = z2.to_bytes(); vars[3] = z3.to_bytes(); vars[4] = z4.to_bytes(); let assignment_vars = VarsAssignment::new(&vars).unwrap(); // create an InputsAssignment let mut inputs = vec![Scalar::zero().to_bytes(); num_inputs]; inputs[0] = i0.to_bytes(); inputs[1] = i1.to_bytes(); let assignment_inputs = InputsAssignment::new(&inputs).unwrap(); // check if the instance we created is satisfiable let res = inst.is_sat(&assignment_vars, &assignment_inputs); assert_eq!(res.unwrap(), true); ( num_cons, num_vars, num_inputs, num_non_zero_entries, inst, assignment_vars, assignment_inputs, ) } ``` For more examples, see [`examples/`](examples) directory in this repo. ## Building `libspartan` Install [`rustup`](https://rustup.rs/) Switch to nightly Rust using `rustup`: ```text rustup default nightly ``` Clone the repository: ```text git clone https://github.com/Microsoft/Spartan cd Spartan ``` To build docs for public APIs of `libspartan`: ```text cargo doc ``` To run tests: ```text RUSTFLAGS="-C target_cpu=native" cargo test ``` To build `libspartan`: ```text RUSTFLAGS="-C target_cpu=native" cargo build --release ``` > NOTE: We enable SIMD instructions in `curve25519-dalek` by default, so if it fails to build remove the "simd_backend" feature argument in `Cargo.toml`. ### Supported features - `std`: enables std features (enabled by default) - `simd_backend`: enables `curve25519-dalek`'s simd feature (enabled by default) - `profile`: enables fine-grained profiling information (see below for its use) ### WASM Support `libspartan` depends upon `rand::OsRng` (internally uses `getrandom` crate), it has out of box support for `wasm32-wasi`. For the target `wasm32-unknown-unknown` disable default features for spartan and add direct dependency on `getrandom` with `wasm-bindgen` feature enabled. ```toml [dependencies] spartan = { version = "0.7", default-features = false } # since spartan uses getrandom(rand's OsRng), we need to enable 'wasm-bindgen' # feature to make it feed rand seed from js/nodejs env # https://docs.rs/getrandom/0.1.16/getrandom/index.html#support-for-webassembly-and-asmjs getrandom = { version = "0.1", features = ["wasm-bindgen"] } ``` ## Performance ### End-to-end benchmarks `libspartan` includes two benches: `benches/nizk.rs` and `benches/snark.rs`. If you report the performance of Spartan in a research paper, we recommend using these benches for higher accuracy instead of fine-grained profiling (listed below). To run end-to-end benchmarks: ```text RUSTFLAGS="-C target_cpu=native" cargo bench ``` ### Fine-grained profiling Build `libspartan` with `profile` feature enabled. It creates two profilers: `./target/release/snark` and `./target/release/nizk`. These profilers report performance as depicted below (for varying R1CS instance sizes). The reported performance is from running the profilers on a Microsoft Surface Laptop 3 on a single CPU core of Intel Core i7-1065G7 running Ubuntu 20.04 (atop WSL2 on Windows 10). See Section 9 in our [paper](https://eprint.iacr.org/2019/550) to see how this compares with other zkSNARKs in the literature. ```text $ ./target/release/snark Profiler:: SNARK * number_of_constraints 1048576 * number_of_variables 1048576 * number_of_inputs 10 * number_non-zero_entries_A 1048576 * number_non-zero_entries_B 1048576 * number_non-zero_entries_C 1048576 * SNARK::encode * SNARK::encode 14.2644201s * SNARK::prove * R1CSProof::prove * polycommit * polycommit 2.7175848s * prove_sc_phase_one * prove_sc_phase_one 683.7481ms * prove_sc_phase_two * prove_sc_phase_two 846.1056ms * polyeval * polyeval 193.4216ms * R1CSProof::prove 4.4416193s * len_r1cs_sat_proof 47024 * eval_sparse_polys * eval_sparse_polys 377.357ms * R1CSEvalProof::prove * commit_nondet_witness * commit_nondet_witness 14.4507331s * build_layered_network * build_layered_network 3.4360521s * evalproof_layered_network * len_product_layer_proof 64712 * evalproof_layered_network 15.5708066s * R1CSEvalProof::prove 34.2930559s * len_r1cs_eval_proof 133720 * SNARK::prove 39.1297568s * SNARK::proof_compressed_len 141768 * SNARK::verify * verify_sat_proof * verify_sat_proof 20.0828ms * verify_eval_proof * verify_polyeval_proof * verify_prod_proof * verify_prod_proof 1.1847ms * verify_hash_proof * verify_hash_proof 81.06ms * verify_polyeval_proof 82.3583ms * verify_eval_proof 82.8937ms * SNARK::verify 103.0536ms ``` ```text $ ./target/release/nizk Profiler:: NIZK * number_of_constraints 1048576 * number_of_variables 1048576 * number_of_inputs 10 * number_non-zero_entries_A 1048576 * number_non-zero_entries_B 1048576 * number_non-zero_entries_C 1048576 * NIZK::prove * R1CSProof::prove * polycommit * polycommit 2.7220635s * prove_sc_phase_one * prove_sc_phase_one 722.5487ms * prove_sc_phase_two * prove_sc_phase_two 862.6796ms * polyeval * polyeval 190.2233ms * R1CSProof::prove 4.4982305s * len_r1cs_sat_proof 47024 * NIZK::prove 4.5139888s * NIZK::proof_compressed_len 48134 * NIZK::verify * eval_sparse_polys * eval_sparse_polys 395.0847ms * verify_sat_proof * verify_sat_proof 19.286ms * NIZK::verify 414.5102ms ``` ## LICENSE See [LICENSE](./LICENSE) ## Contributing See [CONTRIBUTING](./CONTRIBUTING.md)