chore: bump synapseml version to v1.0.5 (#2273)

This commit is contained in:
Mark Hamilton 2024-08-29 22:03:46 -04:00 коммит произвёл GitHub
Родитель 5c9d304077
Коммит 392f60112b
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: B5690EEEBB952194
138 изменённых файлов: 23302 добавлений и 125 удалений

Просмотреть файл

@ -11,10 +11,10 @@ SynapseML requires Scala 2.12, Spark 3.4+, and Python 3.8+.
| Topics | Links |
| :------ | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| Build | [![Build Status](https://msdata.visualstudio.com/A365/_apis/build/status/microsoft.SynapseML?branchName=master)](https://msdata.visualstudio.com/A365/_build/latest?definitionId=17563&branchName=master) [![codecov](https://codecov.io/gh/Microsoft/SynapseML/branch/master/graph/badge.svg)](https://codecov.io/gh/Microsoft/SynapseML) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) |
| Version | [![Version](https://img.shields.io/badge/version-1.0.4-blue)](https://github.com/Microsoft/SynapseML/releases) [![Release Notes](https://img.shields.io/badge/release-notes-blue)](https://github.com/Microsoft/SynapseML/releases) [![Snapshot Version](https://mmlspark.blob.core.windows.net/icons/badges/master_version3.svg)](#sbt) |
| Docs | [![Website](https://img.shields.io/badge/SynapseML-Website-blue)](https://aka.ms/spark) [![Scala Docs](https://img.shields.io/static/v1?label=api%20docs&message=scala&color=blue&logo=scala)](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/index.html#package) [![PySpark Docs](https://img.shields.io/static/v1?label=api%20docs&message=python&color=blue&logo=python)](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/index.html) [![Academic Paper](https://img.shields.io/badge/academic-paper-7fdcf7)](https://arxiv.org/abs/1810.08744) |
| Version | [![Version](https://img.shields.io/badge/version-1.0.5-blue)](https://github.com/Microsoft/SynapseML/releases) [![Release Notes](https://img.shields.io/badge/release-notes-blue)](https://github.com/Microsoft/SynapseML/releases) [![Snapshot Version](https://mmlspark.blob.core.windows.net/icons/badges/master_version3.svg)](#sbt) |
| Docs | [![Website](https://img.shields.io/badge/SynapseML-Website-blue)](https://aka.ms/spark) [![Scala Docs](https://img.shields.io/static/v1?label=api%20docs&message=scala&color=blue&logo=scala)](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/index.html#package) [![PySpark Docs](https://img.shields.io/static/v1?label=api%20docs&message=python&color=blue&logo=python)](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/index.html) [![Academic Paper](https://img.shields.io/badge/academic-paper-7fdcf7)](https://arxiv.org/abs/1810.08744) |
| Support | [![Gitter](https://badges.gitter.im/Microsoft/MMLSpark.svg)](https://gitter.im/Microsoft/MMLSpark?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge) [![Mail](https://img.shields.io/badge/mail-synapseml--support-brightgreen)](mailto:synapseml-support@microsoft.com) |
| Binder | [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/microsoft/SynapseML/v1.0.4?labpath=notebooks%2Ffeatures) |
| Binder | [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/microsoft/SynapseML/v1.0.5?labpath=notebooks%2Ffeatures) |
| Usage | [![Downloads](https://static.pepy.tech/badge/synapseml)](https://pepy.tech/project/synapseml) |
<!-- markdownlint-disable MD033 -->
<details open>
@ -119,7 +119,7 @@ In Azure Synapse notebooks please place the following in the first cell of your
{
"name": "synapseml",
"conf": {
"spark.jars.packages": "com.microsoft.azure:synapseml_2.12:1.0.4",
"spark.jars.packages": "com.microsoft.azure:synapseml_2.12:1.0.5",
"spark.jars.repositories": "https://mmlspark.azureedge.net/maven",
"spark.jars.excludes": "org.scala-lang:scala-reflect,org.apache.spark:spark-tags_2.12,org.scalactic:scalactic_2.12,org.scalatest:scalatest_2.12,com.fasterxml.jackson.core:jackson-databind",
"spark.yarn.user.classpath.first": "true",
@ -155,7 +155,7 @@ cloud](http://community.cloud.databricks.com), create a new [library from Maven
coordinates](https://docs.databricks.com/user-guide/libraries.html#libraries-from-maven-pypi-or-spark-packages)
in your workspace.
For the coordinates use: `com.microsoft.azure:synapseml_2.12:1.0.4`
For the coordinates use: `com.microsoft.azure:synapseml_2.12:1.0.5`
with the resolver: `https://mmlspark.azureedge.net/maven`. Ensure this library is
attached to your target cluster(s).
@ -163,7 +163,7 @@ Finally, ensure that your Spark cluster has at least Spark 3.2 and Scala 2.12. I
You can use SynapseML in both your Scala and PySpark notebooks. To get started with our example notebooks import the following databricks archive:
`https://mmlspark.blob.core.windows.net/dbcs/SynapseMLExamplesv1.0.4.dbc`
`https://mmlspark.blob.core.windows.net/dbcs/SynapseMLExamplesv1.0.5.dbc`
### Python Standalone
@ -174,7 +174,7 @@ the above example, or from python:
```python
import pyspark
spark = pyspark.sql.SparkSession.builder.appName("MyApp") \
.config("spark.jars.packages", "com.microsoft.azure:synapseml_2.12:1.0.4") \
.config("spark.jars.packages", "com.microsoft.azure:synapseml_2.12:1.0.5") \
.getOrCreate()
import synapse.ml
```
@ -185,9 +185,9 @@ SynapseML can be conveniently installed on existing Spark clusters via the
`--packages` option, examples:
```bash
spark-shell --packages com.microsoft.azure:synapseml_2.12:1.0.4
pyspark --packages com.microsoft.azure:synapseml_2.12:1.0.4
spark-submit --packages com.microsoft.azure:synapseml_2.12:1.0.4 MyApp.jar
spark-shell --packages com.microsoft.azure:synapseml_2.12:1.0.5
pyspark --packages com.microsoft.azure:synapseml_2.12:1.0.5
spark-submit --packages com.microsoft.azure:synapseml_2.12:1.0.5 MyApp.jar
```
### SBT
@ -196,7 +196,7 @@ If you are building a Spark application in Scala, add the following lines to
your `build.sbt`:
```scala
libraryDependencies += "com.microsoft.azure" % "synapseml_2.12" % "1.0.4"
libraryDependencies += "com.microsoft.azure" % "synapseml_2.12" % "1.0.5"
```
### Apache Livy and HDInsight
@ -210,7 +210,7 @@ Excluding certain packages from the library may be necessary due to current issu
{
"name": "synapseml",
"conf": {
"spark.jars.packages": "com.microsoft.azure:synapseml_2.12:1.0.4",
"spark.jars.packages": "com.microsoft.azure:synapseml_2.12:1.0.5",
"spark.jars.excludes": "org.scala-lang:scala-reflect,org.apache.spark:spark-tags_2.12,org.scalactic:scalactic_2.12,org.scalatest:scalatest_2.12,com.fasterxml.jackson.core:jackson-databind"
}
}

Просмотреть файл

@ -19,7 +19,7 @@ object PackageUtils {
val PackageName = s"synapseml_$ScalaVersionSuffix"
val PackageMavenCoordinate = s"$PackageGroup:$PackageName:${BuildInfo.version}"
// Use a fixed version for local testing
// val PackageMavenCoordinate = s"$PackageGroup:$PackageName:1.0.4"
// val PackageMavenCoordinate = s"$PackageGroup:$PackageName:1.0.5"
private val AvroCoordinate = "org.apache.spark:spark-avro_2.12:3.4.1"
val PackageRepository: String = SparkMLRepository

Просмотреть файл

@ -85,66 +85,66 @@
"\n",
"### Vision\n",
"[**Computer Vision**](https://azure.microsoft.com/services/cognitive-services/computer-vision/)\n",
"- Describe: provides description of an image in human readable language ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/vision/DescribeImage.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.vision.html#module-synapse.ml.services.vision.DescribeImage))\n",
"- Analyze (color, image type, face, adult/racy content): analyzes visual features of an image ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/vision/AnalyzeImage.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.vision.html#module-synapse.ml.services.vision.AnalyzeImage))\n",
"- OCR: reads text from an image ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/vision/OCR.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.vision.html#module-synapse.ml.services.vision.OCR))\n",
"- Recognize Text: reads text from an image ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/vision/RecognizeText.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.vision.html#module-synapse.ml.services.vision.RecognizeText))\n",
"- Thumbnail: generates a thumbnail of user-specified size from the image ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/vision/GenerateThumbnails.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.vision.html#module-synapse.ml.services.vision.GenerateThumbnails))\n",
"- Recognize domain-specific content: recognizes domain-specific content (celebrity, landmark) ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/vision/RecognizeDomainSpecificContent.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.vision.html#module-synapse.ml.services.vision.RecognizeDomainSpecificContent))\n",
"- Tag: identifies list of words that are relevant to the input image ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/vision/TagImage.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.vision.html#module-synapse.ml.services.vision.TagImage))\n",
"- Describe: provides description of an image in human readable language ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/vision/DescribeImage.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.vision.html#module-synapse.ml.services.vision.DescribeImage))\n",
"- Analyze (color, image type, face, adult/racy content): analyzes visual features of an image ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/vision/AnalyzeImage.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.vision.html#module-synapse.ml.services.vision.AnalyzeImage))\n",
"- OCR: reads text from an image ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/vision/OCR.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.vision.html#module-synapse.ml.services.vision.OCR))\n",
"- Recognize Text: reads text from an image ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/vision/RecognizeText.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.vision.html#module-synapse.ml.services.vision.RecognizeText))\n",
"- Thumbnail: generates a thumbnail of user-specified size from the image ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/vision/GenerateThumbnails.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.vision.html#module-synapse.ml.services.vision.GenerateThumbnails))\n",
"- Recognize domain-specific content: recognizes domain-specific content (celebrity, landmark) ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/vision/RecognizeDomainSpecificContent.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.vision.html#module-synapse.ml.services.vision.RecognizeDomainSpecificContent))\n",
"- Tag: identifies list of words that are relevant to the input image ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/vision/TagImage.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.vision.html#module-synapse.ml.services.vision.TagImage))\n",
"\n",
"[**Face**](https://azure.microsoft.com/services/cognitive-services/face/)\n",
"- Detect: detects human faces in an image ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/face/DetectFace.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.face.html#module-synapse.ml.services.face.DetectFace))\n",
"- Verify: verifies whether two faces belong to a same person, or a face belongs to a person ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/face/VerifyFaces.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.face.html#module-synapse.ml.services.face.VerifyFaces))\n",
"- Identify: finds the closest matches of the specific query person face from a person group ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/face/IdentifyFaces.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.face.html#module-synapse.ml.services.face.IdentifyFaces))\n",
"- Find similar: finds similar faces to the query face in a face list ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/face/FindSimilarFace.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.face.html#module-synapse.ml.services.face.FindSimilarFace))\n",
"- Group: divides a group of faces into disjoint groups based on similarity ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/face/GroupFaces.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.face.html#module-synapse.ml.services.face.GroupFaces))\n",
"- Detect: detects human faces in an image ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/face/DetectFace.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.face.html#module-synapse.ml.services.face.DetectFace))\n",
"- Verify: verifies whether two faces belong to a same person, or a face belongs to a person ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/face/VerifyFaces.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.face.html#module-synapse.ml.services.face.VerifyFaces))\n",
"- Identify: finds the closest matches of the specific query person face from a person group ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/face/IdentifyFaces.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.face.html#module-synapse.ml.services.face.IdentifyFaces))\n",
"- Find similar: finds similar faces to the query face in a face list ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/face/FindSimilarFace.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.face.html#module-synapse.ml.services.face.FindSimilarFace))\n",
"- Group: divides a group of faces into disjoint groups based on similarity ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/face/GroupFaces.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.face.html#module-synapse.ml.services.face.GroupFaces))\n",
"\n",
"### Speech\n",
"[**Speech Services**](https://azure.microsoft.com/products/ai-services/ai-speech)\n",
"- Speech-to-text: transcribes audio streams ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/speech/SpeechToText.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.speech.html#module-synapse.ml.services.speech.SpeechToText))\n",
"- Conversation Transcription: transcribes audio streams into live transcripts with identified speakers. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/speech/ConversationTranscription.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.speech.html#module-synapse.ml.services.speech.ConversationTranscription))\n",
"- Text to Speech: Converts text to realistic audio ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/speech/TextToSpeech.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.speech.html#module-synapse.ml.services.speech.TextToSpeech))\n",
"- Speech-to-text: transcribes audio streams ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/speech/SpeechToText.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.speech.html#module-synapse.ml.services.speech.SpeechToText))\n",
"- Conversation Transcription: transcribes audio streams into live transcripts with identified speakers. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/speech/ConversationTranscription.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.speech.html#module-synapse.ml.services.speech.ConversationTranscription))\n",
"- Text to Speech: Converts text to realistic audio ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/speech/TextToSpeech.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.speech.html#module-synapse.ml.services.speech.TextToSpeech))\n",
"\n",
"\n",
"### Language\n",
"[**AI Language**](https://azure.microsoft.com/products/ai-services/ai-language)\n",
"- Language detection: detects language of the input text ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/text/LanguageDetector.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.text.html#module-synapse.ml.services.text.LanguageDetector))\n",
"- Key phrase extraction: identifies the key talking points in the input text ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/text/KeyPhraseExtractor.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.text.html#module-synapse.ml.services.text.KeyPhraseExtractor))\n",
"- Named entity recognition: identifies known entities and general named entities in the input text ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/text/NER.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.text.html#module-synapse.ml.services.text.NER))\n",
"- Sentiment analysis: returns a score between 0 and 1 indicating the sentiment in the input text ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/text/TextSentiment.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.text.html#module-synapse.ml.services.text.TextSentiment))\n",
"- Healthcare Entity Extraction: Extracts medical entities and relationships from text. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/text/AnalyzeHealthText.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.text.html#module-synapse.ml.services.text.AnalyzeHealthText))\n",
"- Language detection: detects language of the input text ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/text/LanguageDetector.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.text.html#module-synapse.ml.services.text.LanguageDetector))\n",
"- Key phrase extraction: identifies the key talking points in the input text ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/text/KeyPhraseExtractor.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.text.html#module-synapse.ml.services.text.KeyPhraseExtractor))\n",
"- Named entity recognition: identifies known entities and general named entities in the input text ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/text/NER.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.text.html#module-synapse.ml.services.text.NER))\n",
"- Sentiment analysis: returns a score between 0 and 1 indicating the sentiment in the input text ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/text/TextSentiment.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.text.html#module-synapse.ml.services.text.TextSentiment))\n",
"- Healthcare Entity Extraction: Extracts medical entities and relationships from text. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/text/AnalyzeHealthText.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.text.html#module-synapse.ml.services.text.AnalyzeHealthText))\n",
"\n",
"\n",
"### Translation\n",
"[**Translator**](https://azure.microsoft.com/products/ai-services/translator)\n",
"- Translate: Translates text. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/translate/Translate.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.translate.html#module-synapse.ml.services.translate.Translate))\n",
"- Transliterate: Converts text in one language from one script to another script. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/translate/Transliterate.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.translate.html#module-synapse.ml.services.translate.Transliterate))\n",
"- Detect: Identifies the language of a piece of text. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/translate/Detect.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.translate.html#module-synapse.ml.services.translate.Detect))\n",
"- BreakSentence: Identifies the positioning of sentence boundaries in a piece of text. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/translate/BreakSentence.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.translate.html#module-synapse.ml.services.translate.BreakSentence))\n",
"- Dictionary Lookup: Provides alternative translations for a word and a small number of idiomatic phrases. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/translate/DictionaryLookup.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.translate.html#module-synapse.ml.services.translate.DictionaryLookup))\n",
"- Dictionary Examples: Provides examples that show how terms in the dictionary are used in context. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/translate/DictionaryExamples.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.translate.html#module-synapse.ml.services.translate.DictionaryExamples))\n",
"- Document Translation: Translates documents across all supported languages and dialects while preserving document structure and data format. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/translate/DocumentTranslator.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.translate.html#module-synapse.ml.services.translate.DocumentTranslator))\n",
"- Translate: Translates text. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/translate/Translate.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.translate.html#module-synapse.ml.services.translate.Translate))\n",
"- Transliterate: Converts text in one language from one script to another script. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/translate/Transliterate.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.translate.html#module-synapse.ml.services.translate.Transliterate))\n",
"- Detect: Identifies the language of a piece of text. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/translate/Detect.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.translate.html#module-synapse.ml.services.translate.Detect))\n",
"- BreakSentence: Identifies the positioning of sentence boundaries in a piece of text. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/translate/BreakSentence.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.translate.html#module-synapse.ml.services.translate.BreakSentence))\n",
"- Dictionary Lookup: Provides alternative translations for a word and a small number of idiomatic phrases. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/translate/DictionaryLookup.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.translate.html#module-synapse.ml.services.translate.DictionaryLookup))\n",
"- Dictionary Examples: Provides examples that show how terms in the dictionary are used in context. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/translate/DictionaryExamples.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.translate.html#module-synapse.ml.services.translate.DictionaryExamples))\n",
"- Document Translation: Translates documents across all supported languages and dialects while preserving document structure and data format. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/translate/DocumentTranslator.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.translate.html#module-synapse.ml.services.translate.DocumentTranslator))\n",
"\n",
"### Document Intelligence\n",
"[**Document Intelligence**](https://azure.microsoft.com/products/ai-services/ai-document-intelligence/)\n",
"- Analyze Layout: Extract text and layout information from a given document. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/form/AnalyzeLayout.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.form.html#module-synapse.ml.services.form.AnalyzeLayout))\n",
"- Analyze Receipts: Detects and extracts data from receipts using optical character recognition (OCR) and our receipt model, enabling you to easily extract structured data from receipts such as merchant name, merchant phone number, transaction date, transaction total, and more. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/form/AnalyzeReceipts.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.form.html#module-synapse.ml.services.form.AnalyzeReceipts))\n",
"- Analyze Business Cards: Detects and extracts data from business cards using optical character recognition (OCR) and our business card model, enabling you to easily extract structured data from business cards such as contact names, company names, phone numbers, emails, and more. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/form/AnalyzeBusinessCards.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.form.html#module-synapse.ml.services.form.AnalyzeBusinessCards))\n",
"- Analyze Invoices: Detects and extracts data from invoices using optical character recognition (OCR) and our invoice understanding deep learning models, enabling you to easily extract structured data from invoices such as customer, vendor, invoice ID, invoice due date, total, invoice amount due, tax amount, ship to, bill to, line items and more. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/form/AnalyzeInvoices.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.form.html#module-synapse.ml.services.form.AnalyzeInvoices))\n",
"- Analyze ID Documents: Detects and extracts data from identification documents using optical character recognition (OCR) and our ID document model, enabling you to easily extract structured data from ID documents such as first name, last name, date of birth, document number, and more. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/form/AnalyzeIDDocuments.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.form.html#module-synapse.ml.services.form.AnalyzeIDDocuments))\n",
"- Analyze Custom Form: Extracts information from forms (PDFs and images) into structured data based on a model created from a set of representative training forms. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/form/AnalyzeCustomModel.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.form.html#module-synapse.ml.services.form.AnalyzeCustomModel))\n",
"- Get Custom Model: Get detailed information about a custom model. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/form/GetCustomModel.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/form/ListCustomModels.html))\n",
"- List Custom Models: Get information about all custom models. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/form/ListCustomModels.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.form.html#module-synapse.ml.services.form.ListCustomModels))\n",
"- Analyze Layout: Extract text and layout information from a given document. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/form/AnalyzeLayout.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.form.html#module-synapse.ml.services.form.AnalyzeLayout))\n",
"- Analyze Receipts: Detects and extracts data from receipts using optical character recognition (OCR) and our receipt model, enabling you to easily extract structured data from receipts such as merchant name, merchant phone number, transaction date, transaction total, and more. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/form/AnalyzeReceipts.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.form.html#module-synapse.ml.services.form.AnalyzeReceipts))\n",
"- Analyze Business Cards: Detects and extracts data from business cards using optical character recognition (OCR) and our business card model, enabling you to easily extract structured data from business cards such as contact names, company names, phone numbers, emails, and more. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/form/AnalyzeBusinessCards.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.form.html#module-synapse.ml.services.form.AnalyzeBusinessCards))\n",
"- Analyze Invoices: Detects and extracts data from invoices using optical character recognition (OCR) and our invoice understanding deep learning models, enabling you to easily extract structured data from invoices such as customer, vendor, invoice ID, invoice due date, total, invoice amount due, tax amount, ship to, bill to, line items and more. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/form/AnalyzeInvoices.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.form.html#module-synapse.ml.services.form.AnalyzeInvoices))\n",
"- Analyze ID Documents: Detects and extracts data from identification documents using optical character recognition (OCR) and our ID document model, enabling you to easily extract structured data from ID documents such as first name, last name, date of birth, document number, and more. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/form/AnalyzeIDDocuments.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.form.html#module-synapse.ml.services.form.AnalyzeIDDocuments))\n",
"- Analyze Custom Form: Extracts information from forms (PDFs and images) into structured data based on a model created from a set of representative training forms. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/form/AnalyzeCustomModel.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.form.html#module-synapse.ml.services.form.AnalyzeCustomModel))\n",
"- Get Custom Model: Get detailed information about a custom model. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/form/GetCustomModel.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/form/ListCustomModels.html))\n",
"- List Custom Models: Get information about all custom models. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/form/ListCustomModels.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.form.html#module-synapse.ml.services.form.ListCustomModels))\n",
"\n",
"### Decision\n",
"[**Anomaly Detector**](https://azure.microsoft.com/products/ai-services/ai-anomaly-detector)\n",
"- Anomaly status of latest point: generates a model using preceding points and determines whether the latest point is anomalous ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/anomaly/DetectLastAnomaly.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.anomaly.html#module-synapse.ml.services.anomaly.DetectLastAnomaly))\n",
"- Find anomalies: generates a model using an entire series and finds anomalies in the series ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/anomaly/DetectAnomalies.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.anomaly.html#module-synapse.ml.services.anomaly.DetectAnomalies))\n",
"- Anomaly status of latest point: generates a model using preceding points and determines whether the latest point is anomalous ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/anomaly/DetectLastAnomaly.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.anomaly.html#module-synapse.ml.services.anomaly.DetectLastAnomaly))\n",
"- Find anomalies: generates a model using an entire series and finds anomalies in the series ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/anomaly/DetectAnomalies.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.anomaly.html#module-synapse.ml.services.anomaly.DetectAnomalies))\n",
"\n",
"### Search\n",
"- [**Bing Image search**](https://azure.microsoft.com/services/services-services/bing-image-search-api/) ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/bing/BingImageSearch.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.bing.html#module-synapse.ml.services.bing.BingImageSearch))\n",
"- [**Azure Cognitive search**](https://docs.microsoft.com/azure/search/search-what-is-azure-search) ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/com/microsoft/azure/synapse/ml/services/search/AzureSearchWriter$.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.search.html#module-synapse.ml.services.search.AzureSearchWriter))"
"- [**Bing Image search**](https://azure.microsoft.com/services/services-services/bing-image-search-api/) ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/bing/BingImageSearch.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.bing.html#module-synapse.ml.services.bing.BingImageSearch))\n",
"- [**Azure Cognitive search**](https://docs.microsoft.com/azure/search/search-what-is-azure-search) ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/search/AzureSearchWriter$.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.search.html#module-synapse.ml.services.search.AzureSearchWriter))"
]
},
{

Просмотреть файл

@ -21,12 +21,12 @@ Restarting the cluster automatically installs horovod v0.25.0 with pytorch_light
You could install the single synapseml-deep-learning wheel package to get the full functionality of deep vision classification.
Run the following command:
```powershell
pip install synapseml==1.0.4
pip install synapseml==1.0.5
```
An alternative is installing the SynapseML jar package in library management section, by adding:
```
Coordinate: com.microsoft.azure:synapseml_2.12:1.0.4
Coordinate: com.microsoft.azure:synapseml_2.12:1.0.5
Repository: https://mmlspark.azureedge.net/maven
```
:::note

Просмотреть файл

@ -266,7 +266,7 @@
"source": [
"## 4 - Simplify form recognition output\n",
"\n",
"This code uses the [FormOntologyLearner](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.services.form.html#module-synapse.ml.services.form.FormOntologyTransformer), a transformer that analyzes the output of Form Recognizer transformers (for Azure AI Document Intelligence) and infers a tabular data structure. The output of AnalyzeInvoices is dynamic and varies based on the features detected in your content.\n",
"This code uses the [FormOntologyLearner](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.form.html#module-synapse.ml.services.form.FormOntologyTransformer), a transformer that analyzes the output of Form Recognizer transformers (for Azure AI Document Intelligence) and infers a tabular data structure. The output of AnalyzeInvoices is dynamic and varies based on the features detected in your content.\n",
"\n",
"FormOntologyLearner extends the utility of the AnalyzeInvoices transformer by looking for patterns that can be used to create a tabular data structure. Organizing the output into multiple columns and rows makes for simpler downstream analysis."
]

Просмотреть файл

@ -18,50 +18,50 @@ sidebar_label: CyberML
In other words, it returns a sample from the complement set.
## feature engineering: [indexers.py](https://github.com/microsoft/SynapseML/blob/master/core/src/main/python/synapse/ml/cyber/feature/indexers.py)
1. [IdIndexer](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.indexers.IdIndexer)
1. [IdIndexer](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.indexers.IdIndexer)
is a SparkML [Estimator](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Estimator.html).
Given a dataframe, it creates an IdIndexerModel (described next) for categorical features. The model
maps each partition and column seen in the given dataframe to an ID,
for each partition or one consecutive range for all partition and column values.
2. [IdIndexerModel](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.indexers.IdIndexerModel)
2. [IdIndexerModel](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.indexers.IdIndexerModel)
is a SparkML [Transformer](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Transformer.html).
Given a dataframe maps each partition and column field to a consecutive integer ID.
Partitions or column values not encountered in the estimator are mapped to 0.
The model can operate in two modes, either create consecutive integer ID independently
3. [MultiIndexer](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.indexers.MultiIndexer)
3. [MultiIndexer](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.indexers.MultiIndexer)
is a SparkML [Estimator](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Estimator.html).
Uses multiple IdIndexers to generate a MultiIndexerModel (described next) for categorical features. The model
contains multiple IdIndexers for multiple partitions and columns.
4. [MultiIndexerModel](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.indexers.MultiIndexerModel)
4. [MultiIndexerModel](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.indexers.MultiIndexerModel)
is a SparkML [Transformer](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Transformer.html).
Given a dataframe maps each partition and column field to a consecutive integer ID.
Partitions or column values not encountered in the estimator are mapped to 0.
The model can operate in two modes, either create consecutive integer ID independently
## feature engineering: [scalers.py](https://github.com/microsoft/SynapseML/blob/master/core/src/main/python/synapse/ml/cyber/feature/scalers.py)
1. [StandardScalarScaler](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.scalers.StandardScalarScaler)
1. [StandardScalarScaler](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.scalers.StandardScalarScaler)
is a SparkML [Estimator](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Estimator.html).
Given a dataframe it creates a StandardScalarScalerModel (described next) which normalizes
any given dataframe according to the mean and standard deviation calculated on the
dataframe given to the estimator.
2. [StandardScalarScalerModel](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.scalers.StandardScalarScalerModel)
2. [StandardScalarScalerModel](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.scalers.StandardScalarScalerModel)
is a SparkML [Transformer](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Transformer.html).
Given a dataframe with a value column x, the transformer changes its value as follows:
x'=(x-mean)/stddev. That is, if the transformer is given the same dataframe the estimator
was given then the value column will have a mean of 0.0 and a standard deviation of 1.0.
3. [LinearScalarScaler](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.scalers.LinearScalarScaler)
3. [LinearScalarScaler](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.scalers.LinearScalarScaler)
is a SparkML [Estimator](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Estimator.html).
Given a dataframe it creates a LinearScalarScalerModel (described next) which normalizes
any given dataframe according to the minimum and maximum values calculated on the
dataframe given to the estimator.
4. [LinearScalarScalerModel](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.scalers.LinearScalarScalerModel)
4. [LinearScalarScalerModel](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.scalers.LinearScalarScalerModel)
is a SparkML [Transformer](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Transformer.html).
Given a dataframe with a value column x, the transformer changes its value such that
if the transformer is given the same dataframe the estimator
was given then the value column will be scaled linearly to the given ranges.
## access anomalies: [collaborative_filtering.py](https://github.com/microsoft/SynapseML/blob/master/core/src/main/python/synapse/ml/cyber/anomaly/collaborative_filtering.py)
1. [AccessAnomaly](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.cyber.anomaly.html#synapse.ml.cyber.anomaly.collaborative_filtering.AccessAnomaly)
1. [AccessAnomaly](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.cyber.anomaly.html#synapse.ml.cyber.anomaly.collaborative_filtering.AccessAnomaly)
is a SparkML [Estimator](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Estimator.html).
Given a dataframe, the estimator generates an AccessAnomalyModel (described next). The model
can detect anomalous access of users to resources where the access
@ -69,14 +69,14 @@ sidebar_label: CyberML
a resource from Finance. This result is based solely on access patterns rather than explicit features.
Internally, the code is based on Collaborative Filtering as implemented in Spark, using
Matrix Factorization with Alternating Least Squares.
2. [AccessAnomalyModel](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.cyber.anomaly.html#synapse.ml.cyber.anomaly.collaborative_filtering.AccessAnomalyModel)
2. [AccessAnomalyModel](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.cyber.anomaly.html#synapse.ml.cyber.anomaly.collaborative_filtering.AccessAnomalyModel)
is a SparkML [Transformer](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Transformer.html).
Given a dataframe the transformer computes a value between (-inf, inf) where positive
values indicate an anomaly score. Anomaly scores are computed to have a mean of 1.0
and a standard deviation of 1.0 over the original dataframe given to the estimator.
3. [ModelNormalizeTransformer](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.cyber.anomaly.html#synapse.ml.cyber.anomaly.collaborative_filtering.ModelNormalizeTransformer)
3. [ModelNormalizeTransformer](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.cyber.anomaly.html#synapse.ml.cyber.anomaly.collaborative_filtering.ModelNormalizeTransformer)
is a SparkML [Transformer](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Transformer.html).
This transformer is used internally by AccessAnomaly to normalize a model to generate
anomaly scores with mean 0.0 and standard deviation of 1.0.
4. [AccessAnomalyConfig](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.cyber.anomaly.html#synapse.ml.cyber.anomaly.collaborative_filtering.AccessAnomalyConfig)
4. [AccessAnomalyConfig](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.cyber.anomaly.html#synapse.ml.cyber.anomaly.collaborative_filtering.AccessAnomalyConfig)
contains the default values for AccessAnomaly.

Просмотреть файл

@ -34,7 +34,7 @@
"# Create an Azure Databricks cluster and install the following libs\n",
"\n",
"1. In Cluster Libraries install from library source Maven:\n",
"Coordinates: com.microsoft.azure:synapseml_2.12:1.0.4\n",
"Coordinates: com.microsoft.azure:synapseml_2.12:1.0.5\n",
"Repository: https://mmlspark.azureedge.net/maven\n",
"\n",
"2. In Cluster Libraries install from PyPI the library called plotly"

Просмотреть файл

@ -16,11 +16,11 @@
"\n",
"This sample demonstrates how to use the following APIs:\n",
"- [`TrainRegressor`\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.train.html?#module-synapse.ml.train.TrainRegressor)\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.train.html?#module-synapse.ml.train.TrainRegressor)\n",
"- [`ComputePerInstanceStatistics`\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.train.html?#module-synapse.ml.train.ComputePerInstanceStatistics)\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.train.html?#module-synapse.ml.train.ComputePerInstanceStatistics)\n",
"- [`DataConversion`\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.featurize.html?#module-synapse.ml.featurize.DataConversion)"
" ](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.featurize.html?#module-synapse.ml.featurize.DataConversion)"
]
},
{

Просмотреть файл

@ -15,15 +15,15 @@
"\n",
"This sample demonstrates the use of several members of the synapseml library:\n",
"- [`TrainRegressor`\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.train.html?#module-synapse.ml.train.TrainRegressor)\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.train.html?#module-synapse.ml.train.TrainRegressor)\n",
"- [`SummarizeData`\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.stages.html?#module-synapse.ml.stages.SummarizeData)\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.stages.html?#module-synapse.ml.stages.SummarizeData)\n",
"- [`CleanMissingData`\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.featurize.html?#module-synapse.ml.featurize.CleanMissingData)\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.featurize.html?#module-synapse.ml.featurize.CleanMissingData)\n",
"- [`ComputeModelStatistics`\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.train.html?#module-synapse.ml.train.ComputeModelStatistics)\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.train.html?#module-synapse.ml.train.ComputeModelStatistics)\n",
"- [`FindBestModel`\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/synapse.ml.automl.html?#module-synapse.ml.automl.FindBestModel)\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.automl.html?#module-synapse.ml.automl.FindBestModel)\n",
"\n",
"First, import the pandas package so that we can read and parse the datafile\n",
"using `pandas.read_csv()`"

Просмотреть файл

@ -32,7 +32,7 @@ For Spark3.4 pools
{
"name": "synapseml",
"conf": {
"spark.jars.packages": "com.microsoft.azure:synapseml_2.12:1.0.4",
"spark.jars.packages": "com.microsoft.azure:synapseml_2.12:1.0.5",
"spark.jars.repositories": "https://mmlspark.azureedge.net/maven",
"spark.jars.excludes": "org.scala-lang:scala-reflect,org.apache.spark:spark-tags_2.12,org.scalactic:scalactic_2.12,org.scalatest:scalatest_2.12,com.fasterxml.jackson.core:jackson-databind",
"spark.yarn.user.classpath.first": "true",
@ -64,8 +64,8 @@ installed via pip with `pip install pyspark`.
```python
import pyspark
spark = pyspark.sql.SparkSession.builder.appName("MyApp") \
# Use 0.11.4-spark3.3 version for Spark3.3 and 1.0.4 version for Spark3.4
.config("spark.jars.packages", "com.microsoft.azure:synapseml_2.12:1.0.4") \
# Use 0.11.4-spark3.3 version for Spark3.3 and 1.0.5 version for Spark3.4
.config("spark.jars.packages", "com.microsoft.azure:synapseml_2.12:1.0.5") \
.config("spark.jars.repositories", "https://mmlspark.azureedge.net/maven") \
.getOrCreate()
import synapse.ml
@ -78,8 +78,8 @@ your `build.sbt`:
```scala
resolvers += "SynapseML" at "https://mmlspark.azureedge.net/maven"
// Use 0.11.4-spark3.3 version for Spark3.3 and 1.0.4 version for Spark3.4
libraryDependencies += "com.microsoft.azure" % "synapseml_2.12" % "1.0.4"
// Use 0.11.4-spark3.3 version for Spark3.3 and 1.0.5 version for Spark3.4
libraryDependencies += "com.microsoft.azure" % "synapseml_2.12" % "1.0.5"
```
## Spark package
@ -88,10 +88,10 @@ SynapseML can be conveniently installed on existing Spark clusters via the
`--packages` option, examples:
```bash
# Use 0.11.4-spark3.3 version for Spark3.3 and 1.0.4 version for Spark3.4
spark-shell --packages com.microsoft.azure:synapseml_2.12:1.0.4
pyspark --packages com.microsoft.azure:synapseml_2.12:1.0.4
spark-submit --packages com.microsoft.azure:synapseml_2.12:1.0.4 MyApp.jar
# Use 0.11.4-spark3.3 version for Spark3.3 and 1.0.5 version for Spark3.4
spark-shell --packages com.microsoft.azure:synapseml_2.12:1.0.5
pyspark --packages com.microsoft.azure:synapseml_2.12:1.0.5
spark-submit --packages com.microsoft.azure:synapseml_2.12:1.0.5 MyApp.jar
```
A similar technique can be used in other Spark contexts too. For example, you can use SynapseML
@ -106,7 +106,7 @@ cloud](http://community.cloud.databricks.com), create a new [library from Maven
coordinates](https://docs.databricks.com/user-guide/libraries.html#libraries-from-maven-pypi-or-spark-packages)
in your workspace.
For the coordinates use: `com.microsoft.azure:synapseml_2.12:1.0.4` for Spark3.4 Cluster and
For the coordinates use: `com.microsoft.azure:synapseml_2.12:1.0.5` for Spark3.4 Cluster and
`com.microsoft.azure:synapseml_2.12:0.11.4-spark3.3` for Spark3.3 Cluster;
Add the resolver: `https://mmlspark.azureedge.net/maven`. Ensure this library is
attached to your target cluster(s).
@ -115,7 +115,7 @@ Finally, ensure that your Spark cluster has at least Spark 3.2 and Scala 2.12.
You can use SynapseML in both your Scala and PySpark notebooks. To get started with our example notebooks, import the following databricks archive:
`https://mmlspark.blob.core.windows.net/dbcs/SynapseMLExamplesv1.0.4.dbc`
`https://mmlspark.blob.core.windows.net/dbcs/SynapseMLExamplesv1.0.5.dbc`
## Apache Livy and HDInsight
@ -128,8 +128,8 @@ Excluding certain packages from the library may be necessary due to current issu
{
"name": "synapseml",
"conf": {
# Use 0.11.4-spark3.3 version for Spark3.3 and 1.0.4 version for Spark3.4
"spark.jars.packages": "com.microsoft.azure:synapseml_2.12:1.0.4",
# Use 0.11.4-spark3.3 version for Spark3.3 and 1.0.5 version for Spark3.4
"spark.jars.packages": "com.microsoft.azure:synapseml_2.12:1.0.5",
"spark.jars.excludes": "org.scala-lang:scala-reflect,org.apache.spark:spark-tags_2.12,org.scalactic:scalactic_2.12,org.scalatest:scalatest_2.12,com.fasterxml.jackson.core:jackson-databind"
}
}
@ -142,8 +142,8 @@ In Azure Synapse, "spark.yarn.user.classpath.first" should be set to "true" to o
{
"name": "synapseml",
"conf": {
# Use 0.11.4-spark3.3 version for Spark3.3 and 1.0.4 version for Spark3.4
"spark.jars.packages": "com.microsoft.azure:synapseml_2.12:1.0.4",
# Use 0.11.4-spark3.3 version for Spark3.3 and 1.0.5 version for Spark3.4
"spark.jars.packages": "com.microsoft.azure:synapseml_2.12:1.0.5",
"spark.jars.excludes": "org.scala-lang:scala-reflect,org.apache.spark:spark-tags_2.12,org.scalactic:scalactic_2.12,org.scalatest:scalatest_2.12,com.fasterxml.jackson.core:jackson-databind",
"spark.yarn.user.classpath.first": "true"
}

Просмотреть файл

@ -32,7 +32,7 @@ You can now select one of the sample notebooks and run it, or create your own.
In the preceding docker command, `mcr.microsoft.com/mmlspark/release` specifies the project and image name that you
want to run. There's another component implicit here: the _tsag_ (=
version) that you want to use. Specifying it explicitly looks like
`mcr.microsoft.com/mmlspark/release:1.0.4` for the `1.0.4` tag.
`mcr.microsoft.com/mmlspark/release:1.0.5` for the `1.0.5` tag.
Leaving `mcr.microsoft.com/mmlspark/release` by itself has an implicit `latest` tag, so it's
equivalent to `mcr.microsoft.com/mmlspark/release:latest`. The `latest` tag is identical to the
@ -48,7 +48,7 @@ that you'll probably want to use can look as follows:
docker run -it --rm \
-p 127.0.0.1:80:8888 \
-v ~/myfiles:/notebooks/myfiles \
mcr.microsoft.com/mmlspark/release:1.0.4
mcr.microsoft.com/mmlspark/release:1.0.5
```
In this example, backslashes are for readability; you
@ -58,7 +58,7 @@ path and line breaks looks a little different:
docker run -it --rm `
-p 127.0.0.1:80:8888 `
-v C:\myfiles:/notebooks/myfiles `
mcr.microsoft.com/mmlspark/release:1.0.4
mcr.microsoft.com/mmlspark/release:1.0.5
Let's break this command and go over the meaning of each part:
@ -141,7 +141,7 @@ Let's break this command and go over the meaning of each part:
model.write().overwrite().save('myfiles/myTrainedModel.mml')
```
- **`mcr.microsoft.com/mmlspark/release:1.0.4`**
- **`mcr.microsoft.com/mmlspark/release:1.0.5`**
Finally, this argument specifies an explicit version tag for the image that we want to
run.

Просмотреть файл

@ -37,7 +37,7 @@ for a Windows x64 machine or jdk-8u231-macosx-x64.dmg for macOS. Then, use the c
### 3. Install Apache Spark
[Download and install Apache Spark](https://spark.apache.org/downloads.html) with version >= 3.2.0.
(SynapseML v1.0.4 only supports spark version >= 3.2.0)
(SynapseML v1.0.5 only supports spark version >= 3.2.0)
Extract downloaded zipped files (with 7-Zip app on Windows or `tar` on linux) and remember the location of
extracted files, we take `~/bin/spark-3.2.0-bin-hadoop3.2/` as an example here.
@ -127,7 +127,7 @@ In your command prompt or terminal, run the following command:
dotnet add package Microsoft.Spark --version 2.1.1
```
:::note
This tutorial uses Microsoft.Spark version 2.1.1 as SynapseML 1.0.4 depends on it.
This tutorial uses Microsoft.Spark version 2.1.1 as SynapseML 1.0.5 depends on it.
Change to corresponding version if necessary.
:::
@ -137,7 +137,7 @@ In your command prompt or terminal, run the following command:
```powershell
# Update Nuget Config to include SynapseML Feed
dotnet nuget add source https://mmlspark.blob.core.windows.net/synapsemlnuget/index.json -n SynapseMLFeed
dotnet add package SynapseML.Cognitive --version 1.0.4
dotnet add package SynapseML.Cognitive --version 1.0.5
```
The `dotnet nuget add` command adds SynapseML's resolver to the source, so that our package can be found.
@ -202,7 +202,7 @@ namespace SynapseMLApp
of Apache Spark applications, which manages the context and information of your application. A DataFrame is a way of organizing
data into a set of named columns.
Create a [TextSentiment](https://mmlspark.blob.core.windows.net/docs/1.0.4/dotnet/classSynapse_1_1ML_1_1Cognitive_1_1TextSentiment.html)
Create a [TextSentiment](https://mmlspark.blob.core.windows.net/docs/1.0.5/dotnet/classSynapse_1_1ML_1_1Cognitive_1_1TextSentiment.html)
instance, set corresponding subscription key and other configurations. Then, apply transformation to the dataframe,
which analyzes the sentiment based on each row, and stores result into output column.
@ -218,9 +218,9 @@ dotnet build
Navigate to your build output directory. For example, in Windows you could run `cd bin\Debug\net5.0`.
Use the spark-submit command to submit your application to run on Apache Spark.
```powershell
spark-submit --class org.apache.spark.deploy.dotnet.DotnetRunner --packages com.microsoft.azure:synapseml_2.12:1.0.4 --master local microsoft-spark-3-2_2.12-2.1.1.jar dotnet SynapseMLApp.dll
spark-submit --class org.apache.spark.deploy.dotnet.DotnetRunner --packages com.microsoft.azure:synapseml_2.12:1.0.5 --master local microsoft-spark-3-2_2.12-2.1.1.jar dotnet SynapseMLApp.dll
```
`--packages com.microsoft.azure:synapseml_2.12:1.0.4` specifies the dependency on synapseml_2.12 version 1.0.4;
`--packages com.microsoft.azure:synapseml_2.12:1.0.5` specifies the dependency on synapseml_2.12 version 1.0.5;
`microsoft-spark-3-2_2.12-2.1.1.jar` specifies Microsoft.Spark version 2.1.1 and Spark version 3.2
:::note
This command assumes you have downloaded Apache Spark and added it to your PATH environment variable so that you can use spark-submit.
@ -238,7 +238,7 @@ When your app runs, the sentiment analysis result is written to the console.
+-----------------------------------------+--------+-----+--------------------------------------------------+
```
Congratulations! You successfully authored and ran a .NET for SynapseML app.
Refer to the [developer docs](https://mmlspark.blob.core.windows.net/docs/1.0.4/dotnet/index.html) for API guidance.
Refer to the [developer docs](https://mmlspark.blob.core.windows.net/docs/1.0.5/dotnet/index.html) for API guidance.
## Next

Просмотреть файл

@ -13,8 +13,8 @@ Make sure you have followed the guidance in [.NET installation](../Dotnet%20Setu
Install NuGet packages by running following command:
```powershell
dotnet add package Microsoft.Spark --version 2.1.1
dotnet add package SynapseML.Lightgbm --version 1.0.4
dotnet add package SynapseML.Core --version 1.0.4
dotnet add package SynapseML.Lightgbm --version 1.0.5
dotnet add package SynapseML.Core --version 1.0.5
```
Use the following code in your main program file:
@ -91,7 +91,7 @@ namespace SynapseMLApp
Run `dotnet build` to build the project. Then navigate to build output directory, and run following command:
```powershell
spark-submit --class org.apache.spark.deploy.dotnet.DotnetRunner --packages com.microsoft.azure:synapseml_2.12:1.0.4,org.apache.hadoop:hadoop-azure:3.3.1 --master local microsoft-spark-3-2_2.12-2.1.1.jar dotnet SynapseMLApp.dll
spark-submit --class org.apache.spark.deploy.dotnet.DotnetRunner --packages com.microsoft.azure:synapseml_2.12:1.0.5,org.apache.hadoop:hadoop-azure:3.3.1 --master local microsoft-spark-3-2_2.12-2.1.1.jar dotnet SynapseMLApp.dll
```
:::note
Here we added two packages: synapseml_2.12 for SynapseML's scala source, and hadoop-azure to support reading files from ADLS.

Просмотреть файл

@ -55,7 +55,7 @@ Installing all dependencies may be time-consuming. When complete, run:
library(sparklyr)
library(dplyr)
config <- spark_config()
config$sparklyr.defaultPackages <- "com.microsoft.azure:synapseml_2.12:1.0.4"
config$sparklyr.defaultPackages <- "com.microsoft.azure:synapseml_2.12:1.0.5"
sc <- spark_connect(master = "local", config = config)
...
```
@ -120,7 +120,7 @@ and then use spark_connect with method = "databricks":
```R
install.packages("devtools")
devtools::install_url("https://mmlspark.azureedge.net/rrr/synapseml-1.0.4.zip")
devtools::install_url("https://mmlspark.azureedge.net/rrr/synapseml-1.0.5.zip")
library(sparklyr)
library(dplyr)
sc <- spark_connect(method = "databricks")

2
start
Просмотреть файл

@ -4,7 +4,7 @@ export OPENMPI_VERSION="3.1.2"
export SPARK_VERSION="3.4.1"
export HADOOP_VERSION="3.3"
export SYNAPSEML_VERSION="1.0.4" # Binder compatibility version
export SYNAPSEML_VERSION="1.0.5" # Binder compatibility version
echo "Beginning Spark Session..."
exec "$@"

Просмотреть файл

@ -1,6 +1,6 @@
FROM mcr.microsoft.com/oss/mirror/docker.io/library/ubuntu:20.04
ARG SYNAPSEML_VERSION=1.0.4
ARG SYNAPSEML_VERSION=1.0.5
ARG DEBIAN_FRONTEND=noninteractive
ENV SPARK_VERSION=3.4.1

Просмотреть файл

@ -15,9 +15,9 @@ docker build . --build-arg SYNAPSEML_VERSION=<YOUR-VERSION-HERE> -f tools/docker
eg.
For building image with SynapseML version 1.0.4, run:
For building image with SynapseML version 1.0.5, run:
```
docker build . --build-arg SYNAPSEML_VERSION=1.0.4 -f tools/docker/demo/Dockerfile -t synapseml:1.0.4
docker build . --build-arg SYNAPSEML_VERSION=1.0.5 -f tools/docker/demo/Dockerfile -t synapseml:1.0.5
```
# Run the image

Просмотреть файл

@ -27,7 +27,7 @@ syanpseMLConf = pyspark.SparkConf().setAll(
(
"spark.jars.packages",
"com.microsoft.azure:synapseml_2.12:"
+ os.getenv("SYNAPSEML_VERSION", "1.0.4")
+ os.getenv("SYNAPSEML_VERSION", "1.0.5")
+ ",org.apache.hadoop:hadoop-azure:2.7.0,org.apache.hadoop:hadoop-common:2.7.0,com.microsoft.azure:azure-storage:2.0.0",
),
(

Просмотреть файл

@ -1,6 +1,6 @@
FROM mcr.microsoft.com/oss/mirror/docker.io/library/ubuntu:20.04
ARG SYNAPSEML_VERSION=1.0.4
ARG SYNAPSEML_VERSION=1.0.5
ARG DEBIAN_FRONTEND=noninteractive
ENV SPARK_VERSION=3.4.1

Просмотреть файл

@ -1,7 +1,7 @@
const math = require('remark-math')
const katex = require('rehype-katex')
const path = require('path');
let version = "1.0.4";
let version = "1.0.5";
module.exports = {
title: 'SynapseML',
@ -13,7 +13,7 @@ module.exports = {
projectName: 'SynapseML',
trailingSlash: true,
customFields: {
version: "1.0.4",
version: "1.0.5",
},
stylesheets: [
{
@ -88,11 +88,11 @@ module.exports = {
},
{
label: 'Python API Reference',
to: 'https://mmlspark.blob.core.windows.net/docs/1.0.4/pyspark/index.html',
to: 'https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/index.html',
},
{
label: 'Scala API Reference',
to: 'https://mmlspark.blob.core.windows.net/docs/1.0.4/scala/index.html',
to: 'https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/index.html',
},
],
},

Просмотреть файл

@ -268,7 +268,7 @@ function Home() {
{
"name": "synapseml",
"conf": {
"spark.jars.packages": "com.microsoft.azure:synapseml_2.12:1.0.4",
"spark.jars.packages": "com.microsoft.azure:synapseml_2.12:1.0.5",
"spark.jars.repositories": "https://mmlspark.azureedge.net/maven",
"spark.jars.excludes": "org.scala-lang:scala-reflect,org.apache.spark:spark-tags_2.12,org.scalactic:scalactic_2.12,org.scalatest:scalatest_2.12,com.fasterxml.jackson.core:jackson-databind",
"spark.yarn.user.classpath.first": "true",
@ -314,9 +314,9 @@ function Home() {
SynapseML can be conveniently installed on existing Spark
clusters via the --packages option, examples:
<CodeSnippet
snippet={`spark-shell --packages com.microsoft.azure:synapseml_2.12:1.0.4 # Please use 1.0.4 version for Spark3.4 and 0.11.4-spark3.3 version for Spark3.3
pyspark --packages com.microsoft.azure:synapseml_2.12:1.0.4
spark-submit --packages com.microsoft.azure:synapseml_2.12:1.0.4 MyApp.jar `}
snippet={`spark-shell --packages com.microsoft.azure:synapseml_2.12:1.0.5 # Please use 1.0.5 version for Spark3.4 and 0.11.4-spark3.3 version for Spark3.3
pyspark --packages com.microsoft.azure:synapseml_2.12:1.0.5
spark-submit --packages com.microsoft.azure:synapseml_2.12:1.0.5 MyApp.jar `}
lang="bash"
></CodeSnippet>
This can be used in other Spark contexts too. For example, you
@ -344,7 +344,7 @@ spark-submit --packages com.microsoft.azure:synapseml_2.12:1.0.4 MyApp.jar `}
<p>For the coordinates:</p>
Spark 3.4 Cluster:
<CodeSnippet
snippet={`com.microsoft.azure:synapseml_2.12:1.0.4`}
snippet={`com.microsoft.azure:synapseml_2.12:1.0.5`}
lang="bash"
></CodeSnippet>
Spark 3.3 Cluster:
@ -367,7 +367,7 @@ spark-submit --packages com.microsoft.azure:synapseml_2.12:1.0.4 MyApp.jar `}
notebooks. To get started with our example notebooks import
the following databricks archive:
<CodeSnippet
snippet={`https://mmlspark.blob.core.windows.net/dbcs/SynapseMLExamplesv1.0.4.dbc`}
snippet={`https://mmlspark.blob.core.windows.net/dbcs/SynapseMLExamplesv1.0.5.dbc`}
lang="bash"
></CodeSnippet>
</TabItem>
@ -405,7 +405,7 @@ spark-submit --packages com.microsoft.azure:synapseml_2.12:1.0.4 MyApp.jar `}
<CodeSnippet
snippet={`import pyspark
spark = (pyspark.sql.SparkSession.builder.appName("MyApp")
.config("spark.jars.packages", "com.microsoft.azure:synapseml_2.12:1.0.4") # Please use 1.0.4 version for Spark3.4 and 0.11.4-spark3.3 version for Spark3.3
.config("spark.jars.packages", "com.microsoft.azure:synapseml_2.12:1.0.5") # Please use 1.0.5 version for Spark3.4 and 0.11.4-spark3.3 version for Spark3.3
.config("spark.jars.repositories", "https://mmlspark.azureedge.net/maven")
.getOrCreate())
import synapse.ml`}
@ -417,7 +417,7 @@ import synapse.ml`}
following lines to your build.sbt:
<CodeSnippet
snippet={`resolvers += "SynapseML" at "https://mmlspark.azureedge.net/maven"
libraryDependencies += "com.microsoft.azure" %% "synapseml_2.12" % "1.0.4" // Please use 1.0.4 version for Spark3.2 and 1.0.4-spark3.3 version for Spark3.3`}
libraryDependencies += "com.microsoft.azure" %% "synapseml_2.12" % "1.0.5" // Please use 1.0.5 version for Spark3.2 and 1.0.5-spark3.3 version for Spark3.3`}
lang="jsx"
></CodeSnippet>
</TabItem>

Просмотреть файл

@ -0,0 +1,228 @@
---
title: Spark Serving
hide_title: true
sidebar_label: About
---
<img src="https://mmlspark.blob.core.windows.net/graphics/SparkServing3.svg" width="90" align="left" />
# Spark Serving
### An Engine for Deploying Spark Jobs as Distributed Web Services
- **Distributed**: Takes full advantage of Node, JVM, and thread level
parallelism that Spark is famous for.
- **Fast**: No single node bottlenecks, no round trips to Python.
Requests can be routed directly to and from worker JVMs through
network switches. Spin up a web service in a matter of seconds.
- **Low Latency**: When using continuous serving,
you can achieve latencies as low as 1 millisecond.
- **Deployable Anywhere**: Works anywhere that runs Spark such as
Databricks, HDInsight, AZTK, DSVMs, local, or on your own
cluster. Usable from Spark, PySpark, and SparklyR.
- **Lightweight**: No dependence on costly Kafka or
Kubernetes clusters.
- **Idiomatic**: Uses the same API as batch and structured streaming.
- **Flexible**: Spin up and manage several services on a single Spark
cluster. Synchronous and Asynchronous service management and
extensibility. Deploy any spark job that is expressible as a
structured streaming query. Use serving sources/sinks with other
Spark data sources/sinks for more complex deployments.
## Usage
### Jupyter Notebook Examples
- [Deploy a classifier trained on the Adult Census Dataset](../Quickstart%20-%20Deploying%20a%20Classifier)
- More coming soon!
### Spark Serving Hello World
```python
import synapse.ml
import pyspark
from pyspark.sql.functions import udf, col, length
from pyspark.sql.types import *
df = spark.readStream.server() \
.address("localhost", 8888, "my_api") \
.load() \
.parseRequest(StructType().add("foo", StringType()).add("bar", IntegerType()))
replies = df.withColumn("fooLength", length(col("foo")))\
.makeReply("fooLength")
server = replies\
.writeStream \
.server() \
.replyTo("my_api") \
.queryName("my_query") \
.option("checkpointLocation", "file:///path/to/checkpoints") \
.start()
```
### Deploying a Deep Network with the CNTKModel
```python
import synapse.ml
from synapse.ml.cntk import CNTKModel
import pyspark
from pyspark.sql.functions import udf, col
df = spark.readStream.server() \
.address("localhost", 8888, "my_api")
.load()
.parseRequest(<Insert your models input schema here>)
# See notebook examples for how to create and save several
# examples of CNTK models
network = CNTKModel.load("file:///path/to/my_cntkmodel.mml")
transformed_df = network.transform(df).makeReply(<Whatever column you wish to send back>)
server = transformed_df \
.writeStream \
.server() \
.replyTo("my_api") \
.queryName("my_query") \
.option("checkpointLocation", "file:///path/to/checkpoints") \
.start()
```
## Architecture
Spark Serving adds special streaming sources and sinks to turn any
structured streaming job into a web service. Spark Serving comes
with two deployment options that vary based on what form of load balancing
is being used.
In brief you can use:
`spark.readStream.server()`: For head node load balanced services
`spark.readStream.distributedServer()`: For custom load balanced services
`spark.readStream.continuousServer()`: For a custom load balanced, submillisecond-latency continuous server
to create the various different serving dataframes and use the equivalent statements after `df.writeStream`
for replying to the web requests.
### Head Node Load Balanced
You can deploy head node load balancing with the `HTTPSource` and
`HTTPSink` classes. This mode spins up a queue on the head node,
distributes work across partitions, then collects response data back to
the head node. All HTTP requests are kept and replied to on the head
node. In both python and Scala these classes can be access by using
`spark.readStream.server()` after importing SynapseML.
This mode allows for more complex windowing, repartitioning, and
SQL operations. This option is also idea for rapid setup and testing,
as it doesn't require any further load balancing or network
switches. A diagram of this configuration can be seen in this image:
<p align="center">
<img src="https://mmlspark.blob.core.windows.net/graphics/HeadNodeDistributed2.png" width="600" />
</p>
### Fully Distributed (Custom Load Balancer)
You can configure Spark Serving for a custom load balancer using the
`DistributedHTTPSource` and `DistributedHTTPSink` classes. This mode
spins up servers on each executor JVM.
In both python and Scala these classes can be access by using
`spark.readStream.distributedServer()` after importing SynapseML.
Each server will feed its
executor's partitions in parallel. This mode is key for high throughput
and low latency as data doesn't need to be transferred to and from the
head node. This deployment results in several web services that all
route into the same spark computation. You can deploy an external load
balancer to unify the executor's services under a single IP address.
Support for automatic load balancer management and deployment is
targeted for the next release of SynapseML. A diagram of this
configuration can be seen here:
<p align="center">
<img src="https://mmlspark.blob.core.windows.net/graphics/FullyDistributed2.png" width="600" />
</p>
Queries that involve data movement across workers, such as a nontrivial
SQL join, need special consideration. The user must ensure that the
right machine replies to each request. One can route data back to the
originating partition with a broadcast join. In the future, request
routing will be automatically handled by the sink.
### Sub-Millisecond Latency with Continuous Processing
<p align="center">
<img src="https://mmlspark.blob.core.windows.net/graphics/latency_comparison.png" width="600" />
</p>
Continuous processing can be enabled by hooking into the `HTTPSourceV2` class using:
spark.readStream.continuousServer()
...
In continuous serving, much like continuous streaming you need to add a trigger to your write statement:
df.writeStream
.continuousServer()
.trigger(continuous="1 second")
...
The architecture is similar to the custom load balancer setup described earlier.
More specifically, Spark will manage a web service on each partition.
These webservices can be unified together using an Azure Load Balancer,
Kubernetes Service Endpoint, Azure Application gateway or any other way to load balance a distributed service.
It's currently the user's responsibility to optionally unify these services as they see fit.
In the future, we'll include options to dynamically spin up and manage a load balancer.
#### Databricks Setup
Databricks is a managed architecture and they've restricted
all incoming traffic to the nodes of the cluster.
If you create a web service in your databricks cluster (head or worker nodes),
your cluster can communicate with the service, but the outside world can't.
However, in the future, Databricks will support Virtual Network Injection, so problem will not arise.
In the meantime, you must use SSH tunneling to forward the services to another machine(s)
to act as a networking gateway. This machine can be any machine that accepts SSH traffic and requests.
We have included settings to automatically configure this SSH tunneling for convenience.
##### Linux Gateway Setup - Azure
1. [Create a Linux VM using SSH](https://docs.microsoft.com/en-us/azure/virtual-machines/linux/quick-create-portal)
2. [Open ports 8000-9999 from the Azure portal](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/nsg-quickstart-portal)
3. Open the port on the firewall on the VM
```$xslt
firewall-cmd --zone=public --add-port=8000-10000/tcp --permanent
firewall-cmd --reload
echo "GatewayPorts yes" >> /etc/ssh/sshd_config
service ssh --full-restart
```
4. Add your private key to a private container in [Azure Storage Blob](https://docs.microsoft.com/en-us/azure/storage/common/storage-quickstart-create-account?toc=%2Fazure%2Fstorage%2Fblobs%2Ftoc.json&tabs=portal).
5. Generate a SAS link for your key and save it.
6. Include the following parameters on your reader to configure the SSH tunneling:
serving_inputs = (spark.readStream.continuousServer()
.option("numPartitions", 1)
.option("forwarding.enabled", True) # enable ssh forwarding to a gateway machine
.option("forwarding.username", "username")
.option("forwarding.sshHost", "ip or dns")
.option("forwarding.keySas", "SAS url from the previous step")
.address("localhost", 8904, "my_api")
.load()
This setup will make your service require an extra jump and affect latency.
It's important to pick a gateway that has good connectivity to your spark cluster.
For best performance and ease of configuration, we suggest using Spark Serving
on an open cluster environment such as Kubernetes, Mesos, or Azure Batch.
## Parameters
| Parameter Name | Description | Necessary | Default Value | Applicable When |
| ------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------- | ------------- | ----------------------------------------------------------------------------------------------------- |
| host | The host to spin up a server on | Yes | | |
| port | The starting port when creating the web services. Web services will increment this port several times to find an open port. In the future, the flexibility of this param will be expanded | yes | | |
| name | The Path of the api a user would call. The format is `hostname:port/name` | yes | | |
| forwarding.enabled | Whether to forward the services to a gateway machine | no | false | When you need to forward services out of a protected network. Only Supported for Continuous Serving. |
| forwarding.username | the username to connect to on the remote host | no | | |
| forwarding.sshport | the port to ssh connect to | no | 22 | |
| forwarding.sshHost | the host of the gateway machine | no | | |
| forwarding.keySas | A Secure access link that can be used to automatically download the required ssh private key | no | | Sometimes more convenient than a directory |
| forwarding.keyDir | A directory on the machines holding the private key | no | "~/.ssh" | Useful if you can't send keys over the wire securely |

Просмотреть файл

@ -0,0 +1,114 @@
---
title: Quickstart - Deploying a Classifier
hide_title: true
status: stable
---
## Model Deployment with Spark Serving
In this example, we try to predict incomes from the *Adult Census* dataset. Then we will use Spark serving to deploy it as a realtime web service.
First, we import needed packages:
Now let's read the data and split it to train and test sets:
```python
data = spark.read.parquet(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/AdultCensusIncome.parquet"
)
data = data.select(["education", "marital-status", "hours-per-week", "income"])
train, test = data.randomSplit([0.75, 0.25], seed=123)
train.limit(10).toPandas()
```
`TrainClassifier` can be used to initialize and fit a model, it wraps SparkML classifiers.
You can use `help(synapse.ml.TrainClassifier)` to view the different parameters.
Note that it implicitly converts the data into the format expected by the algorithm. More specifically it:
tokenizes, hashes strings, one-hot encodes categorical variables, assembles the features into a vector
etc. The parameter `numFeatures` controls the number of hashed features.
```python
from synapse.ml.train import TrainClassifier
from pyspark.ml.classification import LogisticRegression
model = TrainClassifier(
model=LogisticRegression(), labelCol="income", numFeatures=256
).fit(train)
```
After the model is trained, we score it against the test dataset and view metrics.
```python
from synapse.ml.train import ComputeModelStatistics, TrainedClassifierModel
prediction = model.transform(test)
prediction.printSchema()
```
```python
metrics = ComputeModelStatistics().transform(prediction)
metrics.limit(10).toPandas()
```
First, we will define the webservice input/output.
For more information, you can visit the [documentation for Spark Serving](https://github.com/Microsoft/SynapseML/blob/master/docs/mmlspark-serving.md)
```python
from pyspark.sql.types import *
from synapse.ml.io import *
import uuid
serving_inputs = (
spark.readStream.server()
.address("localhost", 8898, "my_api")
.option("name", "my_api")
.load()
.parseRequest("my_api", test.schema)
)
serving_outputs = model.transform(serving_inputs).makeReply("prediction")
server = (
serving_outputs.writeStream.server()
.replyTo("my_api")
.queryName("my_query")
.option("checkpointLocation", "file:///tmp/checkpoints-{}".format(uuid.uuid1()))
.start()
)
```
Test the webservice
```python
import requests
data = '{"education":" 10th","marital-status":"Divorced","hours-per-week":40.0}'
r = requests.post(data=data, url="http://localhost:8898/my_api")
print("Response {}".format(r.text))
```
```python
import requests
data = '{"education":" Masters","marital-status":"Married-civ-spouse","hours-per-week":40.0}'
r = requests.post(data=data, url="http://localhost:8898/my_api")
print("Response {}".format(r.text))
```
```python
import time
time.sleep(20) # wait for server to finish setting up (just to be safe)
server.stop()
```
```python
```

Просмотреть файл

@ -0,0 +1,149 @@
---
title: Advanced Usage - Async, Batching, and Multi-Key
hide_title: true
status: stable
---
# AI Services Advanced Guide: Asynchrony, Batching, Multi-Key
## Step 1: Imports and Keys
```
from synapse.ml.core.platform import find_secret
service_key = find_secret(
secret_name="ai-services-api-key", keyvault="mmlspark-build-keys"
)
service_loc = "eastus"
```
## Step 2: Basic Usage
Image 1 | Image 2 | Image 3
:-------------------------:|:-------------------------:|:----------------------:|
!<img src="https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/ComputerVision/Images/objects.jpg" width="300" /> | <img src="https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/ComputerVision/Images/dog.jpg" width="300" /> | <img src="https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/ComputerVision/Images/house.jpg" width="300" />
```
from synapse.ml.services.vision import AnalyzeImage
# Create a dataframe with the image URLs
base_url = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/ComputerVision/Images/"
image_df = spark.createDataFrame(
[(base_url + "objects.jpg",), (base_url + "dog.jpg",), (base_url + "house.jpg",)],
["image"],
)
# Run the Computer Vision service. Analyze Image extracts infortmation from/about the images.
analyzer = (
AnalyzeImage()
.setLocation(service_loc)
.setSubscriptionKey(service_key)
.setVisualFeatures(
["Categories", "Color", "Description", "Faces", "Objects", "Tags"]
)
.setOutputCol("analysis_results")
.setImageUrlCol("image")
.setErrorCol("error")
)
image_results = analyzer.transform(image_df).cache()
```
#### First we'll look at the full response objects:
```
display(image_results)
```
#### We can select out just what we need:
```
display(image_results.select("analysis_results.description.captions.text"))
```
#### What's going on under the hood
<img src="https://mmlspark.blob.core.windows.net/graphics/Cog%20Service%20NB/cog_service.svg" width="300" />
When we call the AI service transformer, we start cognitive service clients on each of your spark workers.
These clients send requests to the cloud, and turn the JSON responses into Spark Struct Types so that you can access any field that the service returns.
## Step 3: Asynchronous Usage
<img src="https://mmlspark.blob.core.windows.net/graphics/Cog%20Service%20NB/async_parallelism.svg" width="700"/>
Apache Spark ordinarily parallelizes a computation to all of it's worker threads. When working with services however this parallelism doesent fully maximize throughput because workers sit idle as requests are processed on the server. The `concurrency` parameter makes sure that each worker can stay busy as they wait for requests to complete.
```
display(analyzer.setConcurrency(3).transform(image_df))
```
#### Faster without extra hardware:
<img src="https://mmlspark.blob.core.windows.net/graphics/Cog%20Service%20NB/async_relative%20(2).png" width="500" />
## Step 4: Batching
```
from synapse.ml.services.language import AnalyzeText
# Create a dataframe
text_df = spark.createDataFrame(
[
("I am so happy today, its sunny!",),
("I am frustrated by this rush hour traffic",),
("The AI services on spark is pretty lit",),
],
["text"],
)
sentiment = (
AnalyzeText()
.setKind("SentimentAnalysis")
.setTextCol("text")
.setLocation(service_loc)
.setSubscriptionKey(service_key)
.setOutputCol("sentiment")
.setErrorCol("error")
.setBatchSize(10)
)
# Show the results of your text query
display(sentiment.transform(text_df).select("text", "sentiment.documents.sentiment"))
```
## Step 5: Multi-Key
```
from pyspark.sql.functions import udf
import random
service_key_2 = find_secret(
secret_name="ai-services-api-key-2", keyvault="mmlspark-build-keys"
)
keys = [service_key, service_key_2]
@udf
def random_key():
return keys[random.randint(0, len(keys) - 1)]
image_df2 = image_df.withColumn("key", random_key())
results = analyzer.setSubscriptionKeyCol("key").transform(image_df2)
```
```
display(results.select("key", "analysis_results.description.captions.text"))
```
## Learn More
- [Explore other cogntive services](../Overview)
- [Read our paper "Large-Scale Intelligent Microservices"](https://arxiv.org/abs/2009.08044)

Просмотреть файл

@ -0,0 +1,276 @@
---
title: Geospatial Services
hide_title: true
status: stable
---
<img width="500" src="https://azurecomcdn.azureedge.net/cvt-18f087887a905ed3ae5310bee894aa53fc03cfffadc5dc9902bfe3469d832fec/less/images/section/azure-maps.png" />
# Azure Maps Geospatial Services
[Microsoft Azure Maps ](https://azure.microsoft.com/services/azure-maps/) provides developers from all industries with powerful geospatial capabilities. Those geospatial capabilities are packed with the freshest mapping data. Azure Maps is available for web, mobile (iOS and Android), Microsoft Power BI, Microsoft Power Apps and Microsoft Synapse. Azure Maps is an Open API compliant set of REST APIs. The following are only a high-level overview of the services which Azure Maps offers - Maps, Search, Routing, Traffic, Weather, Time Zones, Geolocation, Geofencing, Map Data, Creator, and Spatial Operations.
## Usage
### Geocode addresses
[**Address Geocoding**](https://docs.microsoft.com/rest/api/maps/search/post-search-address-batch) The Search Address Batch API sends batches of queries to Search Address API using just a single API call. This API geocodes text addresses or partial addresses and the geocoding search index will be queried for everything above the street level data. **Note** that the geocoder is very tolerant of typos and incomplete addresses. It will also handle everything from exact street addresses or street or intersections as well as higher level geographies such as city centers, counties, states etc.
### Reverse Geocode Coordinates
[**Reverse Geocoding**](https://docs.microsoft.com/rest/api/maps/search/post-search-address-reverse-batch) The Search Address Reverse Batch API sends batches of queries to Search Address Reverse API using just a single API call. This API takes in location coordinates and translates them into human readable street addresses. Most often this is needed in tracking applications where you receive a GPS feed from the device or asset and wish to know what address where the coordinate is located.
### Get Point In Polygon
[**Get Point in Polygon**](https://docs.microsoft.com/rest/api/maps/spatial/get-point-in-polygon) This API returns a boolean value indicating whether a point is inside a set of polygons. The set of polygons can we pre-created by using the [**Data Upload API**](https://docs.microsoft.com/rest/api/maps/data/upload-preview) referenced by a unique udid.
## Prerequisites
1. Sign into the [Azure Portal](https://portal.azure.com) and create an Azure Maps account by following these [instructions](https://docs.microsoft.com/azure/azure-maps/how-to-manage-account-keys#create-a-new-account).
1. Once the Maps account is created, provision a Maps Creator Resource by following these [instructions](https://docs.microsoft.com/azure/azure-maps/how-to-manage-creator#create-creator-resource). Creator is a [geographically scoped service](https://docs.microsoft.com/azure/azure-maps/creator-geographic-scope). Pick appropriate location while provisioning the creator resource.
1. Follow these [instructions](https://learn.microsoft.com/azure/synapse-analytics/machine-learning/overview-cognitive-services#create-an-apache-spark-cluster) to set up your Azure Databricks environment and install SynapseML.
1. After you create a new notebook in Azure Databricks, copy the **Shared code** below and paste into a new cell in your notebook.
1. Choose a service sample, below, and copy paste it into a second new cell in your notebook.
1. Replace the `AZUREMAPS_API_KEY` placeholders with your own [Maps account key](https://docs.microsoft.com/azure/azure-maps/how-to-manage-authentication#view-authentication-details).
1. Choose the run button (triangle icon) in the upper right corner of the cell, then select **Run Cell**.
1. View results in a table below the cell.
## Shared code
To get started, we'll need to add this code to the project:
```python
from pyspark.sql.types import StructType, StructField, DoubleType
from pyspark.sql.functions import col
import requests
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
# Configure more resiliant requests to stop flakiness
retry_strategy = Retry(
total=3,
status_forcelist=[429, 500, 502, 503, 504],
allowed_methods=["HEAD", "GET", "PUT", "DELETE", "OPTIONS", "TRACE"],
)
adapter = HTTPAdapter(max_retries=retry_strategy)
http = requests.Session()
http.mount("https://", adapter)
http.mount("http://", adapter)
```
```python
from synapse.ml.services import *
from synapse.ml.services.geospatial import *
from synapse.ml.core.platform import *
# An Azure Maps account key
maps_key = find_secret(secret_name="azuremaps-api-key", keyvault="mmlspark-build-keys")
```
## Geocoding sample
The azure maps geocoder sends batches of queries to the [Search Address API](https://docs.microsoft.com/rest/api/maps/search/getsearchaddress). The API limits the batch size to 10000 queries per request.
```python
from synapse.ml.stages import FixedMiniBatchTransformer, FlattenBatch
df = spark.createDataFrame(
[
("One, Microsoft Way, Redmond",),
("400 Broad St, Seattle",),
("350 5th Ave, New York",),
("Pike Pl, Seattle",),
("Champ de Mars, 5 Avenue Anatole France, 75007 Paris",),
],
[
"address",
],
)
def extract_location_fields(df):
# Use this function to select only lat/lon columns into the dataframe
return df.select(
col("*"),
col("output.response.results")
.getItem(0)
.getField("position")
.getField("lat")
.alias("Latitude"),
col("output.response.results")
.getItem(0)
.getField("position")
.getField("lon")
.alias("Longitude"),
).drop("output")
# Run the Azure Maps geocoder to enhance the data with location data
geocoder = (
AddressGeocoder()
.setSubscriptionKey(maps_key)
.setAddressCol("address")
.setOutputCol("output")
)
# Show the results of your text query in a table format
display(
extract_location_fields(
geocoder.transform(FixedMiniBatchTransformer().setBatchSize(10).transform(df))
)
)
```
## Reverse Geocoding sample
The azure maps reverse geocoder sends batches of queries to the [Search Address Reverse API](https://docs.microsoft.com/rest/api/maps/search/get-search-address-reverse) using just a single API call. The API allows caller to batch up to 10,000 queries per request
```python
# Create a dataframe that's tied to it's column names
df = spark.createDataFrame(
(
(
(48.858561, 2.294911),
(47.639765, -122.127896),
(47.621028, -122.348170),
(47.734012, -122.102737),
)
),
StructType([StructField("lat", DoubleType()), StructField("lon", DoubleType())]),
)
# Run the Azure Maps geocoder to enhance the data with location data
rev_geocoder = (
ReverseAddressGeocoder()
.setSubscriptionKey(maps_key)
.setLatitudeCol("lat")
.setLongitudeCol("lon")
.setOutputCol("output")
)
# Show the results of your text query in a table format
display(
rev_geocoder.transform(FixedMiniBatchTransformer().setBatchSize(10).transform(df))
.select(
col("*"),
col("output.response.addresses")
.getItem(0)
.getField("address")
.getField("freeformAddress")
.alias("In Polygon"),
col("output.response.addresses")
.getItem(0)
.getField("address")
.getField("country")
.alias("Intersecting Polygons"),
)
.drop("output")
)
```
## Check Point In Polygon sample
This API returns a boolean value indicating whether a point is inside a set of polygons. The polygon can be added to your creator account using the [**Data Upload API**](https://docs.microsoft.com/rest/api/maps/data/upload-preview). The API then returns a unique udid to reference the polygon.
### Set up geojson Polygons in your azure maps creator account
Based on where the creator resource was provisioned, we need to prefix the appropriate geography code to the azure maps URL. In this example, the assumption is that the creator resource was provisioned in `East US 2` Location and hence we pick `us` as our geo prefix.
```python
import time
import json
# Choose a geography, you want your data to reside in.
# Allowed values
# us => North American datacenters
# eu -> European datacenters
url_geo_prefix = "us"
# Upload a geojson with polygons in them
r = http.post(
f"https://{url_geo_prefix}.atlas.microsoft.com/mapData/upload?api-version=1.0&dataFormat=geojson&subscription-key={maps_key}",
json={
"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"properties": {"geometryId": "test_geometry"},
"geometry": {
"type": "Polygon",
"coordinates": [
[
[-122.14290618896484, 47.67856488312544],
[-122.03956604003906, 47.67856488312544],
[-122.03956604003906, 47.7483271435476],
[-122.14290618896484, 47.7483271435476],
[-122.14290618896484, 47.67856488312544],
]
],
},
}
],
},
)
long_running_operation = r.headers.get("location")
time.sleep(30) # Sometimes this may take upto 30 seconds
print(f"Status Code: {r.status_code}, Long Running Operation: {long_running_operation}")
# This Operation completes in approximately 5 ~ 15 seconds
user_data_id_resource_url = json.loads(
http.get(f"{long_running_operation}&subscription-key={maps_key}").content
)["resourceLocation"]
user_data_id = json.loads(
http.get(f"{user_data_id_resource_url}&subscription-key={maps_key}").content
)["udid"]
```
### Use the function to check if point is in polygon
```python
# Create a dataframe that's tied to it's column names
df = spark.createDataFrame(
(
(
(48.858561, 2.294911),
(47.639765, -122.127896),
(47.621028, -122.348170),
(47.734012, -122.102737),
)
),
StructType([StructField("lat", DoubleType()), StructField("lon", DoubleType())]),
)
# Run the Azure Maps geocoder to enhance the data with location data
check_point_in_polygon = (
CheckPointInPolygon()
.setSubscriptionKey(maps_key)
.setGeography(url_geo_prefix)
.setUserDataIdentifier(user_data_id)
.setLatitudeCol("lat")
.setLongitudeCol("lon")
.setOutputCol("output")
)
# Show the results of your text query in a table format
display(
check_point_in_polygon.transform(df)
.select(
col("*"),
col("output.result.pointInPolygons").alias("In Polygon"),
col("output.result.intersectingGeometries").alias("Intersecting Polygons"),
)
.drop("output")
)
```
### Cleanup
```python
res = http.delete(
f"https://{url_geo_prefix}.atlas.microsoft.com/mapData/{user_data_id}?api-version=1.0&subscription-key={maps_key}"
)
```

Просмотреть файл

@ -0,0 +1,321 @@
---
title: Multivariate Anomaly Detection
hide_title: true
status: stable
---
# Recipe: Azure AI Services - Multivariate Anomaly Detection
This recipe shows how you can use SynapseML and Azure AI services on Apache Spark for multivariate anomaly detection. Multivariate anomaly detection allows for the detection of anomalies among many variables or time series, taking into account all the inter-correlations and dependencies between the different variables. In this scenario, we use SynapseML to train a model for multivariate anomaly detection using the Azure AI services, and we then use to the model to infer multivariate anomalies within a dataset containing synthetic measurements from three IoT sensors.
To learn more about the Azure AI Anomaly Detector, refer to [this documentation page](https://docs.microsoft.com/azure/ai-services/anomaly-detector/).
## Important
Starting on the 20th of September, 2023 you wont be able to create new Anomaly Detector resources. The Anomaly Detector service is being retired on the 1st of October, 2026.
## Setup
### Create an Anomaly Detector resource
Follow the instructions to create an `Anomaly Detector` resource using the Azure portal or alternatively, you can also use the Azure CLI to create this resource.
- In the Azure portal, select **Create** in your resource group, and then type **Anomaly Detector**. Select the Anomaly Detector resource.
- Give the resource a name, and ideally use the same region as the rest of your resource group. Use the default options for the rest, and then select **Review + Create** and then **Create**.
- Once the Anomaly Detector resource is created, open it and select the `Keys and Endpoints` panel in the left nav. Copy the key for the Anomaly Detector resource into the `ANOMALY_API_KEY` environment variable, or store it in the `anomalyKey` variable.
### Create a Storage Account resource
In order to save intermediate data, you need to create an Azure Blob Storage Account. Within that storage account, create a container for storing the intermediate data. Make note of the container name, and copy the connection string to that container. You need it later to populate the `containerName` variable and the `BLOB_CONNECTION_STRING` environment variable.
### Enter your service keys
Let's start by setting up the environment variables for our service keys. The next cell sets the `ANOMALY_API_KEY` and the `BLOB_CONNECTION_STRING` environment variables based on the values stored in our Azure Key Vault. If you're running this tutorial in your own environment, make sure you set these environment variables before you proceed.
Now, lets read the `ANOMALY_API_KEY` and `BLOB_CONNECTION_STRING` environment variables and set the `containerName` and `location` variables.
```python
from synapse.ml.core.platform import find_secret
# An Anomaly Dectector subscription key
anomalyKey = find_secret(
secret_name="anomaly-api-key", keyvault="mmlspark-build-keys"
) # use your own anomaly api key
# Your storage account name
storageName = "anomalydetectiontest" # use your own storage account name
# A connection string to your blob storage account
storageKey = find_secret(
secret_name="madtest-storage-key", keyvault="mmlspark-build-keys"
) # use your own storage key
# A place to save intermediate MVAD results
intermediateSaveDir = (
"wasbs://madtest@anomalydetectiontest.blob.core.windows.net/intermediateData"
)
# The location of the anomaly detector resource that you created
location = "westus2"
```
First we connect to our storage account so that anomaly detector can save intermediate results there:
```python
spark.sparkContext._jsc.hadoopConfiguration().set(
f"fs.azure.account.key.{storageName}.blob.core.windows.net", storageKey
)
```
Let's import all the necessary modules.
```python
import numpy as np
import pandas as pd
import pyspark
from pyspark.sql.functions import col
from pyspark.sql.functions import lit
from pyspark.sql.types import DoubleType
import matplotlib.pyplot as plt
import synapse.ml
from synapse.ml.services.anomaly import *
```
Now, let's read our sample data into a Spark DataFrame.
```python
df = (
spark.read.format("csv")
.option("header", "true")
.load("wasbs://publicwasb@mmlspark.blob.core.windows.net/MVAD/sample.csv")
)
df = (
df.withColumn("sensor_1", col("sensor_1").cast(DoubleType()))
.withColumn("sensor_2", col("sensor_2").cast(DoubleType()))
.withColumn("sensor_3", col("sensor_3").cast(DoubleType()))
)
# Let's inspect the dataframe:
df.show(5)
```
We can now create an `estimator` object, which is used to train our model. We specify the start and end times for the training data. We also specify the input columns to use, and the name of the column that contains the timestamps. Finally, we specify the number of data points to use in the anomaly detection sliding window, and we set the connection string to the Azure Blob Storage Account.
```python
trainingStartTime = "2020-06-01T12:00:00Z"
trainingEndTime = "2020-07-02T17:55:00Z"
timestampColumn = "timestamp"
inputColumns = ["sensor_1", "sensor_2", "sensor_3"]
estimator = (
SimpleFitMultivariateAnomaly()
.setSubscriptionKey(anomalyKey)
.setLocation(location)
.setStartTime(trainingStartTime)
.setEndTime(trainingEndTime)
.setIntermediateSaveDir(intermediateSaveDir)
.setTimestampCol(timestampColumn)
.setInputCols(inputColumns)
.setSlidingWindow(200)
)
```
Now that we created the `estimator`, let's fit it to the data:
```python
model = estimator.fit(df)
```
Once the training is done, we can now use the model for inference. The code in the next cell specifies the start and end times for the data we would like to detect the anomalies in.
```python
inferenceStartTime = "2020-07-02T18:00:00Z"
inferenceEndTime = "2020-07-06T05:15:00Z"
result = (
model.setStartTime(inferenceStartTime)
.setEndTime(inferenceEndTime)
.setOutputCol("results")
.setErrorCol("errors")
.setInputCols(inputColumns)
.setTimestampCol(timestampColumn)
.transform(df)
)
result.show(5)
```
When we called `.show(5)` in the previous cell, it showed us the first five rows in the dataframe. The results were all `null` because they weren't inside the inference window.
To show the results only for the inferred data, lets select the columns we need. We can then order the rows in the dataframe by ascending order, and filter the result to only show the rows that are in the range of the inference window. In our case `inferenceEndTime` is the same as the last row in the dataframe, so can ignore that.
Finally, to be able to better plot the results, lets convert the Spark dataframe to a Pandas dataframe.
```python
rdf = (
result.select(
"timestamp",
*inputColumns,
"results.interpretation",
"isAnomaly",
"results.severity"
)
.orderBy("timestamp", ascending=True)
.filter(col("timestamp") >= lit(inferenceStartTime))
.toPandas()
)
rdf
```
Format the `contributors` column that stores the contribution score from each sensor to the detected anomalies. The next cell formats this data, and splits the contribution score of each sensor into its own column.
For Spark3.3 and below versions, the output of select statements will be in the format of `List<Rows>`, so to format the data into dictionary and generate the values when interpretation is empty, please use the below parse method:
```
def parse(x):
if len(x) > 0:
return dict([item[:2] for item in x])
else:
return {"sensor_1": 0, "sensor_2": 0, "sensor_3": 0}
```
Staring with Spark3.4, the output of the select statement is already formatted as a `numpy.ndarry<dictionary>` and no need to format the data again, so please use below parse method to generate the values when interpretation is empty:
```python
def parse(x):
if len(x) == 0:
return {"sensor_1": 0, "sensor_2": 0, "sensor_3": 0}
rdf["contributors"] = rdf["interpretation"].apply(parse)
rdf = pd.concat(
[
rdf.drop(["contributors"], axis=1),
pd.json_normalize(rdf["contributors"]).rename(
columns={
"sensor_1": "series_1",
"sensor_2": "series_2",
"sensor_3": "series_3",
}
),
],
axis=1,
)
rdf
```
Great! We now have the contribution scores of sensors 1, 2, and 3 in the `series_0`, `series_1`, and `series_2` columns respectively.
Run the next cell to plot the results. The `minSeverity` parameter specifies the minimum severity of the anomalies to be plotted.
```python
minSeverity = 0.1
####### Main Figure #######
plt.figure(figsize=(23, 8))
plt.plot(
rdf["timestamp"],
rdf["sensor_1"],
color="tab:orange",
line,
linewidth=2,
label="sensor_1",
)
plt.plot(
rdf["timestamp"],
rdf["sensor_2"],
color="tab:green",
line,
linewidth=2,
label="sensor_2",
)
plt.plot(
rdf["timestamp"],
rdf["sensor_3"],
color="tab:blue",
line,
linewidth=2,
label="sensor_3",
)
plt.grid(axis="y")
plt.tick_params(axis="x", which="both", bottom=False, labelbottom=False)
plt.legend()
anoms = list(rdf["severity"] >= minSeverity)
_, _, ymin, ymax = plt.axis()
plt.vlines(np.where(anoms), ymin=ymin, ymax=ymax, color="r", alpha=0.8)
plt.legend()
plt.title(
"A plot of the values from the three sensors with the detected anomalies highlighted in red."
)
plt.show()
####### Severity Figure #######
plt.figure(figsize=(23, 1))
plt.tick_params(axis="x", which="both", bottom=False, labelbottom=False)
plt.plot(
rdf["timestamp"],
rdf["severity"],
color="black",
line,
linewidth=2,
label="Severity score",
)
plt.plot(
rdf["timestamp"],
[minSeverity] * len(rdf["severity"]),
color="red",
line,
linewidth=1,
label="minSeverity",
)
plt.grid(axis="y")
plt.legend()
plt.ylim([0, 1])
plt.title("Severity of the detected anomalies")
plt.show()
####### Contributors Figure #######
plt.figure(figsize=(23, 1))
plt.tick_params(axis="x", which="both", bottom=False, labelbottom=False)
plt.bar(
rdf["timestamp"], rdf["series_1"], width=2, color="tab:orange", label="sensor_1"
)
plt.bar(
rdf["timestamp"],
rdf["series_2"],
width=2,
color="tab:green",
label="sensor_2",
bottom=rdf["series_1"],
)
plt.bar(
rdf["timestamp"],
rdf["series_3"],
width=2,
color="tab:blue",
label="sensor_3",
bottom=rdf["series_1"] + rdf["series_2"],
)
plt.grid(axis="y")
plt.legend()
plt.ylim([0, 1])
plt.title("The contribution of each sensor to the detected anomaly")
plt.show()
```
<img width="1300" src="https://mmlspark.blob.core.windows.net/graphics/multivariate-anomaly-detection-plot.png"/>
The plots show the raw data from the sensors (inside the inference window) in orange, green, and blue. The red vertical lines in the first figure show the detected anomalies that have a severity greater than or equal to `minSeverity`.
The second plot shows the severity score of all the detected anomalies, with the `minSeverity` threshold shown in the dotted red line.
Finally, the last plot shows the contribution of the data from each sensor to the detected anomalies. It helps us diagnose and understand the most likely cause of each anomaly.

Просмотреть файл

@ -0,0 +1,563 @@
---
title: Overview
hide_title: true
status: stable
---
# Azure AI services
<image width="200" alt-text="icon" src="https://mmlspark.blob.core.windows.net/graphics/Readme/cog_services_on_spark_2.svg" />
Azure AI services help developers and organizations rapidly create intelligent, cutting-edge, market-ready, and responsible applications with out-of-the-box and pre-built and customizable APIs and models.
SynapseML allows you to build powerful and highly scalable predictive and analytical models from various Spark data sources. Synapse Spark provide built-in SynapseML libraries including synapse.ml.services.
## Important
Starting on the 20th of September, 2023 you wont be able to create new Anomaly Detector resources. The Anomaly Detector service is being retired on the 1st of October, 2026.
## Prerequisites on Azure Databricks
1. Follow the steps in [Getting started](https://docs.microsoft.com/azure/services-services/big-data/getting-started) to set up your Azure Databricks and Azure AI services environment. This tutorial shows you how to install SynapseML and how to create your Spark cluster in Databricks.
1. After you create a new notebook in Azure Databricks, copy the **Shared code** below and paste into a new cell in your notebook.
1. Choose a service sample, below, and copy paste it into a second new cell in your notebook.
1. Replace any of the service subscription key placeholders with your own key.
1. Choose the run button (triangle icon) in the upper right corner of the cell, then select **Run Cell**.
1. View results in a table below the cell.
## Prerequisites on Azure Synapse Analytics
The tutorial, [Pre-requisites for using Azure AI services in Azure Synapse](https://learn.microsoft.com/azure/synapse-analytics/machine-learning/tutorial-configure-cognitive-services-synapse), walks you through a couple steps you need to perform before using Azure AI services in Synapse Analytics.
[Azure AI services](https://azure.microsoft.com/products/ai-services/) is a suite of APIs, SDKs, and services that developers can use to add intelligent features to their applications. AI services empower developers even when they don't have direct AI or data science skills or knowledge. Azure AI services help developers create applications that can see, hear, speak, understand, and even begin to reason. The catalog of services within Azure AI services can be categorized into five main pillars: Vision, Speech, Language, Web search, and Decision.
## Usage
### Vision
[**Computer Vision**](https://azure.microsoft.com/services/cognitive-services/computer-vision/)
- Describe: provides description of an image in human readable language ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/vision/DescribeImage.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.vision.html#module-synapse.ml.services.vision.DescribeImage))
- Analyze (color, image type, face, adult/racy content): analyzes visual features of an image ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/vision/AnalyzeImage.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.vision.html#module-synapse.ml.services.vision.AnalyzeImage))
- OCR: reads text from an image ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/vision/OCR.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.vision.html#module-synapse.ml.services.vision.OCR))
- Recognize Text: reads text from an image ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/vision/RecognizeText.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.vision.html#module-synapse.ml.services.vision.RecognizeText))
- Thumbnail: generates a thumbnail of user-specified size from the image ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/vision/GenerateThumbnails.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.vision.html#module-synapse.ml.services.vision.GenerateThumbnails))
- Recognize domain-specific content: recognizes domain-specific content (celebrity, landmark) ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/vision/RecognizeDomainSpecificContent.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.vision.html#module-synapse.ml.services.vision.RecognizeDomainSpecificContent))
- Tag: identifies list of words that are relevant to the input image ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/vision/TagImage.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.vision.html#module-synapse.ml.services.vision.TagImage))
[**Face**](https://azure.microsoft.com/services/cognitive-services/face/)
- Detect: detects human faces in an image ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/face/DetectFace.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.face.html#module-synapse.ml.services.face.DetectFace))
- Verify: verifies whether two faces belong to a same person, or a face belongs to a person ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/face/VerifyFaces.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.face.html#module-synapse.ml.services.face.VerifyFaces))
- Identify: finds the closest matches of the specific query person face from a person group ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/face/IdentifyFaces.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.face.html#module-synapse.ml.services.face.IdentifyFaces))
- Find similar: finds similar faces to the query face in a face list ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/face/FindSimilarFace.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.face.html#module-synapse.ml.services.face.FindSimilarFace))
- Group: divides a group of faces into disjoint groups based on similarity ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/face/GroupFaces.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.face.html#module-synapse.ml.services.face.GroupFaces))
### Speech
[**Speech Services**](https://azure.microsoft.com/products/ai-services/ai-speech)
- Speech-to-text: transcribes audio streams ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/speech/SpeechToText.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.speech.html#module-synapse.ml.services.speech.SpeechToText))
- Conversation Transcription: transcribes audio streams into live transcripts with identified speakers. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/speech/ConversationTranscription.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.speech.html#module-synapse.ml.services.speech.ConversationTranscription))
- Text to Speech: Converts text to realistic audio ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/speech/TextToSpeech.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.speech.html#module-synapse.ml.services.speech.TextToSpeech))
### Language
[**AI Language**](https://azure.microsoft.com/products/ai-services/ai-language)
- Language detection: detects language of the input text ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/text/LanguageDetector.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.text.html#module-synapse.ml.services.text.LanguageDetector))
- Key phrase extraction: identifies the key talking points in the input text ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/text/KeyPhraseExtractor.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.text.html#module-synapse.ml.services.text.KeyPhraseExtractor))
- Named entity recognition: identifies known entities and general named entities in the input text ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/text/NER.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.text.html#module-synapse.ml.services.text.NER))
- Sentiment analysis: returns a score between 0 and 1 indicating the sentiment in the input text ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/text/TextSentiment.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.text.html#module-synapse.ml.services.text.TextSentiment))
- Healthcare Entity Extraction: Extracts medical entities and relationships from text. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/text/AnalyzeHealthText.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.text.html#module-synapse.ml.services.text.AnalyzeHealthText))
### Translation
[**Translator**](https://azure.microsoft.com/products/ai-services/translator)
- Translate: Translates text. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/translate/Translate.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.translate.html#module-synapse.ml.services.translate.Translate))
- Transliterate: Converts text in one language from one script to another script. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/translate/Transliterate.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.translate.html#module-synapse.ml.services.translate.Transliterate))
- Detect: Identifies the language of a piece of text. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/translate/Detect.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.translate.html#module-synapse.ml.services.translate.Detect))
- BreakSentence: Identifies the positioning of sentence boundaries in a piece of text. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/translate/BreakSentence.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.translate.html#module-synapse.ml.services.translate.BreakSentence))
- Dictionary Lookup: Provides alternative translations for a word and a small number of idiomatic phrases. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/translate/DictionaryLookup.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.translate.html#module-synapse.ml.services.translate.DictionaryLookup))
- Dictionary Examples: Provides examples that show how terms in the dictionary are used in context. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/translate/DictionaryExamples.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.translate.html#module-synapse.ml.services.translate.DictionaryExamples))
- Document Translation: Translates documents across all supported languages and dialects while preserving document structure and data format. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/translate/DocumentTranslator.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.translate.html#module-synapse.ml.services.translate.DocumentTranslator))
### Document Intelligence
[**Document Intelligence**](https://azure.microsoft.com/products/ai-services/ai-document-intelligence/)
- Analyze Layout: Extract text and layout information from a given document. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/form/AnalyzeLayout.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.form.html#module-synapse.ml.services.form.AnalyzeLayout))
- Analyze Receipts: Detects and extracts data from receipts using optical character recognition (OCR) and our receipt model, enabling you to easily extract structured data from receipts such as merchant name, merchant phone number, transaction date, transaction total, and more. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/form/AnalyzeReceipts.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.form.html#module-synapse.ml.services.form.AnalyzeReceipts))
- Analyze Business Cards: Detects and extracts data from business cards using optical character recognition (OCR) and our business card model, enabling you to easily extract structured data from business cards such as contact names, company names, phone numbers, emails, and more. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/form/AnalyzeBusinessCards.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.form.html#module-synapse.ml.services.form.AnalyzeBusinessCards))
- Analyze Invoices: Detects and extracts data from invoices using optical character recognition (OCR) and our invoice understanding deep learning models, enabling you to easily extract structured data from invoices such as customer, vendor, invoice ID, invoice due date, total, invoice amount due, tax amount, ship to, bill to, line items and more. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/form/AnalyzeInvoices.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.form.html#module-synapse.ml.services.form.AnalyzeInvoices))
- Analyze ID Documents: Detects and extracts data from identification documents using optical character recognition (OCR) and our ID document model, enabling you to easily extract structured data from ID documents such as first name, last name, date of birth, document number, and more. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/form/AnalyzeIDDocuments.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.form.html#module-synapse.ml.services.form.AnalyzeIDDocuments))
- Analyze Custom Form: Extracts information from forms (PDFs and images) into structured data based on a model created from a set of representative training forms. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/form/AnalyzeCustomModel.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.form.html#module-synapse.ml.services.form.AnalyzeCustomModel))
- Get Custom Model: Get detailed information about a custom model. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/form/GetCustomModel.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/form/ListCustomModels.html))
- List Custom Models: Get information about all custom models. ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/form/ListCustomModels.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.form.html#module-synapse.ml.services.form.ListCustomModels))
### Decision
[**Anomaly Detector**](https://azure.microsoft.com/products/ai-services/ai-anomaly-detector)
- Anomaly status of latest point: generates a model using preceding points and determines whether the latest point is anomalous ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/anomaly/DetectLastAnomaly.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.anomaly.html#module-synapse.ml.services.anomaly.DetectLastAnomaly))
- Find anomalies: generates a model using an entire series and finds anomalies in the series ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/anomaly/DetectAnomalies.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.anomaly.html#module-synapse.ml.services.anomaly.DetectAnomalies))
### Search
- [**Bing Image search**](https://azure.microsoft.com/services/services-services/bing-image-search-api/) ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/bing/BingImageSearch.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.bing.html#module-synapse.ml.services.bing.BingImageSearch))
- [**Azure Cognitive search**](https://docs.microsoft.com/azure/search/search-what-is-azure-search) ([Scala](https://mmlspark.blob.core.windows.net/docs/1.0.5/scala/com/microsoft/azure/synapse/ml/services/search/AzureSearchWriter$.html), [Python](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.search.html#module-synapse.ml.services.search.AzureSearchWriter))
## Prepare your system
To begin, import required libraries and initialize your Spark session.
```python
from pyspark.sql.functions import udf, col
from synapse.ml.io.http import HTTPTransformer, http_udf
from requests import Request
from pyspark.sql.functions import lit
from pyspark.ml import PipelineModel
from pyspark.sql.functions import col
```
Import Azure AI services libraries and replace the keys and locations in the following code snippet with your Azure AI services key and location.
```python
from synapse.ml.services import *
from synapse.ml.core.platform import *
# A general AI services key for AI Language, Computer Vision and Document Intelligence (or use separate keys that belong to each service)
service_key = find_secret(
secret_name="ai-services-api-key", keyvault="mmlspark-build-keys"
) # Replace the call to find_secret with your key as a python string. e.g. service_key="27snaiw..."
service_loc = "eastus"
# A Bing Search v7 subscription key
bing_search_key = find_secret(
secret_name="bing-search-key", keyvault="mmlspark-build-keys"
) # Replace the call to find_secret with your key as a python string.
# An Anomaly Detector subscription key
anomaly_key = find_secret(
secret_name="anomaly-api-key", keyvault="mmlspark-build-keys"
) # Replace the call to find_secret with your key as a python string. If you don't have an anomaly detection resource created before Sep 20th 2023, you won't be able to create one.
anomaly_loc = "westus2"
# A Translator subscription key
translator_key = find_secret(
secret_name="translator-key", keyvault="mmlspark-build-keys"
) # Replace the call to find_secret with your key as a python string.
translator_loc = "eastus"
# An Azure search key
search_key = find_secret(
secret_name="azure-search-key", keyvault="mmlspark-build-keys"
) # Replace the call to find_secret with your key as a python string.
```
## Perform sentiment analysis on text
The [AI Language](https://azure.microsoft.com/products/ai-services/ai-language/) service provides several algorithms for extracting intelligent insights from text. For example, we can find the sentiment of given input text. The service will return a score between 0.0 and 1.0 where low scores indicate negative sentiment and high score indicates positive sentiment. This sample uses three simple sentences and returns the sentiment for each.
```python
# Create a dataframe that's tied to it's column names
df = spark.createDataFrame(
[
("I am so happy today, its sunny!", "en-US"),
("I am frustrated by this rush hour traffic", "en-US"),
("The AI services on spark aint bad", "en-US"),
],
["text", "language"],
)
# Run the Text Analytics service with options
sentiment = (
AnalyzeText()
.setKind("SentimentAnalysis")
.setTextCol("text")
.setLocation(service_loc)
.setSubscriptionKey(service_key)
.setOutputCol("sentiment")
.setErrorCol("error")
.setLanguageCol("language")
)
# Show the results of your text query in a table format
display(
sentiment.transform(df).select(
"text", col("sentiment.documents.sentiment").alias("sentiment")
)
)
```
## Perform text analytics for health data
The [Text Analytics for Health Service](https://docs.microsoft.com/azure/ai-services/language-service/text-analytics-for-health/overview?tabs=ner) extracts and labels relevant medical information from unstructured text such as doctor's notes, discharge summaries, clinical documents, and electronic health records.
The following code sample analyzes and transforms text from doctors notes into structured data.
```python
df = spark.createDataFrame(
[
("20mg of ibuprofen twice a day",),
("1tsp of Tylenol every 4 hours",),
("6-drops of Vitamin B-12 every evening",),
],
["text"],
)
healthcare = (
AnalyzeHealthText()
.setSubscriptionKey(service_key)
.setLocation(service_loc)
.setLanguage("en")
.setOutputCol("response")
)
display(healthcare.transform(df))
```
## Translate text into a different language
[Translator](https://azure.microsoft.com/services/ai-services/translator/) is a cloud-based machine translation service and is part of the Azure AI services family of AI APIs used to build intelligent apps. Translator is easy to integrate in your applications, websites, tools, and solutions. It allows you to add multi-language user experiences in 90 languages and dialects and can be used to translate text without hosting your own algorithm.
The following code sample does a simple text translation by providing the sentences you want to translate and target languages you want to translate them to.
```python
from pyspark.sql.functions import col, flatten
# Create a dataframe including sentences you want to translate
df = spark.createDataFrame(
[(["Hello, what is your name?", "Bye"],)],
[
"text",
],
)
# Run the Translator service with options
translate = (
Translate()
.setSubscriptionKey(translator_key)
.setLocation(translator_loc)
.setTextCol("text")
.setToLanguage(["zh-Hans"])
.setOutputCol("translation")
)
# Show the results of the translation.
display(
translate.transform(df)
.withColumn("translation", flatten(col("translation.translations")))
.withColumn("translation", col("translation.text"))
.select("translation")
)
```
## Extract information from a document into structured data
[Azure AI Document Intelligence](https://azure.microsoft.com/products/ai-services/ai-document-intelligence/) is a part of Azure Applied AI Services that lets you build automated data processing software using machine learning technology. With Azure AI Document Intelligence, you can identify and extract text, key/value pairs, selection marks, tables, and structure from your documents. The service outputs structured data that includes the relationships in the original file, bounding boxes, confidence and more.
The following code sample analyzes a business card image and extracts its information into structured data.
```python
from pyspark.sql.functions import col, explode
# Create a dataframe containing the source files
imageDf = spark.createDataFrame(
[
(
"https://mmlspark.blob.core.windows.net/datasets/FormRecognizer/business_card.jpg",
)
],
[
"source",
],
)
# Run the Form Recognizer service
analyzeBusinessCards = (
AnalyzeBusinessCards()
.setSubscriptionKey(service_key)
.setLocation(service_loc)
.setImageUrlCol("source")
.setOutputCol("businessCards")
)
# Show the results of recognition.
display(
analyzeBusinessCards.transform(imageDf)
.withColumn(
"documents", explode(col("businessCards.analyzeResult.documentResults.fields"))
)
.select("source", "documents")
)
```
## Computer Vision sample
[Azure AI Vision](https://azure.microsoft.com/products/ai-services/ai-vision/) analyzes images to identify structure such as faces, objects, and natural-language descriptions.
The following code sample analyzes images and labels them with *tags*. Tags are one-word descriptions of things in the image, such as recognizable objects, people, scenery, and actions.
```python
# Create a dataframe with the image URLs
base_url = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/ComputerVision/Images/"
df = spark.createDataFrame(
[
(base_url + "objects.jpg",),
(base_url + "dog.jpg",),
(base_url + "house.jpg",),
],
[
"image",
],
)
# Run the Computer Vision service. Analyze Image extracts information from/about the images.
analysis = (
AnalyzeImage()
.setLocation(service_loc)
.setSubscriptionKey(service_key)
.setVisualFeatures(
["Categories", "Color", "Description", "Faces", "Objects", "Tags"]
)
.setOutputCol("analysis_results")
.setImageUrlCol("image")
.setErrorCol("error")
)
# Show the results of what you wanted to pull out of the images.
display(analysis.transform(df).select("image", "analysis_results.description.tags"))
```
## Search for images that are related to a natural language query
[Bing Image Search](https://www.microsoft.com/bing/apis/bing-image-search-api) searches the web to retrieve images related to a user's natural language query.
The following code sample uses a text query that looks for images with quotes. The output of the code is a list of image URLs that contain photos related to the query.
```python
# Number of images Bing will return per query
imgsPerBatch = 10
# A list of offsets, used to page into the search results
offsets = [(i * imgsPerBatch,) for i in range(100)]
# Since web content is our data, we create a dataframe with options on that data: offsets
bingParameters = spark.createDataFrame(offsets, ["offset"])
# Run the Bing Image Search service with our text query
bingSearch = (
BingImageSearch()
.setSubscriptionKey(bing_search_key)
.setOffsetCol("offset")
.setQuery("Martin Luther King Jr. quotes")
.setCount(imgsPerBatch)
.setOutputCol("images")
)
# Transformer that extracts and flattens the richly structured output of Bing Image Search into a simple URL column
getUrls = BingImageSearch.getUrlTransformer("images", "url")
# This displays the full results returned, uncomment to use
# display(bingSearch.transform(bingParameters))
# Since we have two services, they are put into a pipeline
pipeline = PipelineModel(stages=[bingSearch, getUrls])
# Show the results of your search: image URLs
display(pipeline.transform(bingParameters))
```
## Transform speech to text
The [Speech-to-text](https://azure.microsoft.com/products/ai-services/ai-speech/) service converts streams or files of spoken audio to text. The following code sample transcribes one audio file to text.
```python
# Create a dataframe with our audio URLs, tied to the column called "url"
df = spark.createDataFrame(
[("https://mmlspark.blob.core.windows.net/datasets/Speech/audio2.wav",)], ["url"]
)
# Run the Speech-to-text service to translate the audio into text
speech_to_text = (
SpeechToTextSDK()
.setSubscriptionKey(service_key)
.setLocation(service_loc)
.setOutputCol("text")
.setAudioDataCol("url")
.setLanguage("en-US")
.setProfanity("Masked")
)
# Show the results of the translation
display(speech_to_text.transform(df).select("url", "text.DisplayText"))
```
## Transform text to speech
[Text to speech](https://azure.microsoft.com/products/ai-services/text-to-speech/) is a service that allows you to build apps and services that speak naturally, choosing from more than 270 neural voices across 119 languages and variants.
The following code sample transforms text into an audio file that contains the content of the text.
```python
from synapse.ml.services.speech import TextToSpeech
fs = ""
if running_on_databricks():
fs = "dbfs:"
elif running_on_synapse_internal():
fs = "Files"
# Create a dataframe with text and an output file location
df = spark.createDataFrame(
[
(
"Reading out loud is fun! Check out aka.ms/spark for more information",
fs + "/output.mp3",
)
],
["text", "output_file"],
)
tts = (
TextToSpeech()
.setSubscriptionKey(service_key)
.setTextCol("text")
.setLocation(service_loc)
.setVoiceName("en-US-JennyNeural")
.setOutputFileCol("output_file")
)
# Check to make sure there were no errors during audio creation
display(tts.transform(df))
```
## Detect anomalies in time series data
If you don't have an anomaly detection resource created before Sep 20th 2023, you won't be able to create one. You may want to skip this part.
[Anomaly Detector](https://azure.microsoft.com/services/cognitive-services/anomaly-detector/) is great for detecting irregularities in your time series data. The following code sample uses the Anomaly Detector service to find anomalies in a time series.
```python
# Create a dataframe with the point data that Anomaly Detector requires
df = spark.createDataFrame(
[
("1972-01-01T00:00:00Z", 826.0),
("1972-02-01T00:00:00Z", 799.0),
("1972-03-01T00:00:00Z", 890.0),
("1972-04-01T00:00:00Z", 900.0),
("1972-05-01T00:00:00Z", 766.0),
("1972-06-01T00:00:00Z", 805.0),
("1972-07-01T00:00:00Z", 821.0),
("1972-08-01T00:00:00Z", 20000.0),
("1972-09-01T00:00:00Z", 883.0),
("1972-10-01T00:00:00Z", 898.0),
("1972-11-01T00:00:00Z", 957.0),
("1972-12-01T00:00:00Z", 924.0),
("1973-01-01T00:00:00Z", 881.0),
("1973-02-01T00:00:00Z", 837.0),
("1973-03-01T00:00:00Z", 9000.0),
],
["timestamp", "value"],
).withColumn("group", lit("series1"))
# Run the Anomaly Detector service to look for irregular data
anamoly_detector = (
SimpleDetectAnomalies()
.setSubscriptionKey(anomaly_key)
.setLocation(anomaly_loc)
.setTimestampCol("timestamp")
.setValueCol("value")
.setOutputCol("anomalies")
.setGroupbyCol("group")
.setGranularity("monthly")
)
# Show the full results of the analysis with the anomalies marked as "True"
display(
anamoly_detector.transform(df).select("timestamp", "value", "anomalies.isAnomaly")
)
```
## Get information from arbitrary web APIs
With HTTP on Spark, any web service can be used in your big data pipeline. In this example, we use the [World Bank API](http://api.worldbank.org/v2/country/) to get information about various countries around the world.
```python
# Use any requests from the python requests library
def world_bank_request(country):
return Request(
"GET", "http://api.worldbank.org/v2/country/{}?format=json".format(country)
)
# Create a dataframe with specifies which countries we want data on
df = spark.createDataFrame([("br",), ("usa",)], ["country"]).withColumn(
"request", http_udf(world_bank_request)(col("country"))
)
# Much faster for big data because of the concurrency :)
client = (
HTTPTransformer().setConcurrency(3).setInputCol("request").setOutputCol("response")
)
# Get the body of the response
def get_response_body(resp):
return resp.entity.content.decode()
# Show the details of the country data returned
display(
client.transform(df).select(
"country", udf(get_response_body)(col("response")).alias("response")
)
)
```
## Azure AI search sample
In this example, we show how you can enrich data using Cognitive Skills and write to an Azure Search Index using SynapseML.
```python
search_service = "mmlspark-azure-search"
search_index = "test-33467690"
df = spark.createDataFrame(
[
(
"upload",
"0",
"https://mmlspark.blob.core.windows.net/datasets/DSIR/test1.jpg",
),
(
"upload",
"1",
"https://mmlspark.blob.core.windows.net/datasets/DSIR/test2.jpg",
),
],
["searchAction", "id", "url"],
)
tdf = (
AnalyzeImage()
.setSubscriptionKey(service_key)
.setLocation(service_loc)
.setImageUrlCol("url")
.setOutputCol("analyzed")
.setErrorCol("errors")
.setVisualFeatures(
["Categories", "Tags", "Description", "Faces", "ImageType", "Color", "Adult"]
)
.transform(df)
.select("*", "analyzed.*")
.drop("errors", "analyzed")
)
tdf.writeToAzureSearch(
subscriptionKey=search_key,
actionCol="searchAction",
serviceName=search_service,
indexName=search_index,
keyCol="id",
)
```

Просмотреть файл

@ -0,0 +1,162 @@
---
title: Quickstart - Analyze Celebrity Quotes
hide_title: true
status: stable
---
# Celebrity Quote Analysis with The Azure AI Services
<img src="https://mmlspark.blob.core.windows.net/graphics/SparkSummit2/cog_services.png" width="800" />
```python
from synapse.ml.services import *
from pyspark.ml import PipelineModel
from pyspark.sql.functions import col, udf
from pyspark.ml.feature import SQLTransformer
from synapse.ml.core.platform import find_secret
# put your service keys here
ai_service_key = find_secret(
secret_name="ai-services-api-key", keyvault="mmlspark-build-keys"
)
ai_service_location = "eastus"
bing_search_key = find_secret(
secret_name="bing-search-key", keyvault="mmlspark-build-keys"
)
```
### Extracting celebrity quote images using Bing Image Search on Spark
Here we define two Transformers to extract celebrity quote images.
<img src="https://mmlspark.blob.core.windows.net/graphics/Cog%20Service%20NB/step%201.png" width="600" />
```python
imgsPerBatch = 10 # the number of images Bing will return for each query
offsets = [
(i * imgsPerBatch,) for i in range(100)
] # A list of offsets, used to page into the search results
bingParameters = spark.createDataFrame(offsets, ["offset"])
bingSearch = (
BingImageSearch()
.setSubscriptionKey(bing_search_key)
.setOffsetCol("offset")
.setQuery("celebrity quotes")
.setCount(imgsPerBatch)
.setOutputCol("images")
)
# Transformer to that extracts and flattens the richly structured output of Bing Image Search into a simple URL column
getUrls = BingImageSearch.getUrlTransformer("images", "url")
```
### Recognizing Images of Celebrities
This block identifies the name of the celebrities for each of the images returned by the Bing Image Search.
<img src="https://mmlspark.blob.core.windows.net/graphics/Cog%20Service%20NB/step%202.png" width="600" />
```python
celebs = (
RecognizeDomainSpecificContent()
.setSubscriptionKey(ai_service_key)
.setLocation(ai_service_location)
.setModel("celebrities")
.setImageUrlCol("url")
.setOutputCol("celebs")
)
# Extract the first celebrity we see from the structured response
firstCeleb = SQLTransformer(
statement="SELECT *, celebs.result.celebrities[0].name as firstCeleb FROM __THIS__"
)
```
### Reading the quote from the image.
This stage performs OCR on the images to recognize the quotes.
<img src="https://mmlspark.blob.core.windows.net/graphics/Cog%20Service%20NB/step%203.png" width="600" />
```python
from synapse.ml.stages import UDFTransformer
recognizeText = (
RecognizeText()
.setSubscriptionKey(ai_service_key)
.setLocation(ai_service_location)
.setImageUrlCol("url")
.setMode("Printed")
.setOutputCol("ocr")
.setConcurrency(5)
)
def getTextFunction(ocrRow):
if ocrRow is None:
return None
return "\n".join([line.text for line in ocrRow.recognitionResult.lines])
# this transformer wil extract a simpler string from the structured output of recognize text
getText = (
UDFTransformer()
.setUDF(udf(getTextFunction))
.setInputCol("ocr")
.setOutputCol("text")
)
```
### Understanding the Sentiment of the Quote
<img src="https://mmlspark.blob.core.windows.net/graphics/Cog%20Service%20NB/step4.jpg" width="600" />
```python
sentimentTransformer = (
TextSentiment()
.setLocation(ai_service_location)
.setSubscriptionKey(ai_service_key)
.setTextCol("text")
.setOutputCol("sentiment")
)
# Extract the sentiment score from the API response body
getSentiment = SQLTransformer(
statement="SELECT *, sentiment.document.sentiment as sentimentLabel FROM __THIS__"
)
```
### Tying it all together
Now that we have built the stages of our pipeline it's time to chain them together into a single model that can be used to process batches of incoming data
<img src="https://mmlspark.blob.core.windows.net/graphics/Cog%20Service%20NB/full_pipe_2.jpg" width="800" />
```python
from synapse.ml.stages import SelectColumns
# Select the final coulmns
cleanupColumns = SelectColumns().setCols(
["url", "firstCeleb", "text", "sentimentLabel"]
)
celebrityQuoteAnalysis = PipelineModel(
stages=[
bingSearch,
getUrls,
celebs,
firstCeleb,
recognizeText,
getText,
sentimentTransformer,
getSentiment,
cleanupColumns,
]
)
celebrityQuoteAnalysis.transform(bingParameters).show(5)
```

Просмотреть файл

@ -0,0 +1,273 @@
---
title: Quickstart - Analyze Text
hide_title: true
status: stable
---
# Analyze Text with SynapseML and Azure AI Language
[Azure AI Language](https://learn.microsoft.com/azure/ai-services/language-service/overview) is a cloud-based service that provides Natural Language Processing (NLP) features for understanding and analyzing text. Use this service to help build intelligent applications using the web-based Language Studio, REST APIs, and client libraries.
You can use SynapseML with Azure AI Language for **named entity recognition**, **language detection**, **entity linking**, **key phrase extraction**, **Pii entity recognition** and **sentiment analysis**.
```python
from synapse.ml.services.language import AnalyzeText
from synapse.ml.core.platform import find_secret
ai_service_key = find_secret(
secret_name="ai-services-api-key", keyvault="mmlspark-build-keys"
)
ai_service_location = "eastus"
```
## Named Entity Recognition
[Named Entity Recognition](https://learn.microsoft.com/azure/ai-services/language-service/named-entity-recognition/overview) is one of the features offered by Azure AI Language, a collection of machine learning and AI algorithms in the cloud for developing intelligent applications that involve written language. The NER feature can identify and categorize entities in unstructured text. For example: people, places, organizations, and quantities. Refer to [this article](https://learn.microsoft.com/azure/ai-services/language-service/named-entity-recognition/language-support?tabs=ga-api) for the full list of supported languages.
```python
df = spark.createDataFrame(
data=[
["en", "Dr. Smith has a very modern medical office, and she has great staff."],
["en", "I had a wonderful trip to Seattle last week."],
],
schema=["language", "text"],
)
entity_recognition = (
AnalyzeText()
.setKind("EntityRecognition")
.setLocation(ai_service_location)
.setSubscriptionKey(ai_service_key)
.setTextCol("text")
.setOutputCol("entities")
.setErrorCol("error")
.setLanguageCol("language")
)
df_results = entity_recognition.transform(df)
display(df_results.select("language", "text", "entities.documents.entities"))
```
This cell should yield a result that looks like:
| language | text | entities |
|:--------------|:-----------|:------------|
| en | Dr. Smith has a very modern medical office, and she has great staff. | [{"category": "Person", "confidenceScore": 0.98, "length": 5, "offset": 4, "subcategory": null, "text": "Smith"}, {"category": "Location", "confidenceScore": 0.79, "length": 14, "offset": 28, "subcategory": "Structural", "text": "medical office"}, {"category": "PersonType", "confidenceScore": 0.85, "length": 5, "offset": 62, "subcategory": null, "text": "staff"}] |
| en | I had a wonderful trip to Seattle last week. | [{"category": "Event", "confidenceScore": 0.74, "length": 4, "offset": 18, "subcategory": null, "text": "trip"}, {"category": "Location", "confidenceScore": 1, "length": 7, "offset": 26, "subcategory": "GPE", "text": "Seattle"}, {"category": "DateTime", "confidenceScore": 0.8, "length": 9, "offset": 34, "subcategory": "DateRange", "text": "last week"}] |
## LanguageDetection
[Language detection](https://learn.microsoft.com/azure/ai-services/language-service/language-detection/overview) can detect the language a document is written in. It returns a language code for a wide range of languages, variants, dialects, and some regional/cultural languages. Refer to [this article](https://learn.microsoft.com/azure/ai-services/language-service/language-detection/language-support) for the full list of supported languages.
```python
df = spark.createDataFrame(
data=[
["This is a document written in English."],
["这是一份用中文写的文件"],
],
schema=["text"],
)
language_detection = (
AnalyzeText()
.setKind("LanguageDetection")
.setLocation(ai_service_location)
.setSubscriptionKey(ai_service_key)
.setTextCol("text")
.setOutputCol("detected_language")
.setErrorCol("error")
)
df_results = language_detection.transform(df)
display(df_results.select("text", "detected_language.documents.detectedLanguage"))
```
This cell should yield a result that looks like:
| text | detectedLanguage |
|:-----------|:------------|
| This is a document written in English. | {"name": "English", "iso6391Name": "en", "confidenceScore": 0.99} |
| 这是一份用中文写的文件 | {"name": "Chinese_Simplified", "iso6391Name": "zh_chs", "confidenceScore": 1} |
## EntityLinking
[Entity linking](https://learn.microsoft.com/azure/ai-services/language-service/entity-linking/overview) identifies and disambiguates the identity of entities found in text. For example, in the sentence "We went to Seattle last week.", the word "Seattle" would be identified, with a link to more information on Wikipedia. [English and Spanish are supported](https://learn.microsoft.com/azure/ai-services/language-service/entity-linking/language-support).
```python
df = spark.createDataFrame(
data=[
["Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975."],
["We went to Seattle last week."],
],
schema=["text"],
)
entity_linking = (
AnalyzeText()
.setKind("EntityLinking")
.setLocation(ai_service_location)
.setSubscriptionKey(ai_service_key)
.setTextCol("text")
.setOutputCol("entity_linking")
.setErrorCol("error")
)
df_results = entity_linking.transform(df)
display(df_results.select("text", "entity_linking.documents.entities"))
```
This cell should yield a result that looks like:
| text | entities |
|:-----------|:------------|
| Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975. | [{"bingId": "a093e9b9-90f5-a3d5-c4b8-5855e1b01f85", "dataSource": "Wikipedia", "id": "Microsoft", "language": "en", "matches": [{"confidenceScore": 0.48, "length": 9, "offset": 0, "text": "Microsoft"}], "name": "Microsoft", "url": "https://en.wikipedia.org/wiki/Microsoft"}, {"bingId": "0d47c987-0042-5576-15e8-97af601614fa", "dataSource": "Wikipedia", "id": "Bill Gates", "language": "en", "matches": [{"confidenceScore": 0.52, "length": 10, "offset": 25, "text": "Bill Gates"}], "name": "Bill Gates", "url": "https://en.wikipedia.org/wiki/Bill_Gates"}, {"bingId": "df2c4376-9923-6a54-893f-2ee5a5badbc7", "dataSource": "Wikipedia", "id": "Paul Allen", "language": "en", "matches": [{"confidenceScore": 0.54, "length": 10, "offset": 40, "text": "Paul Allen"}], "name": "Paul Allen", "url": "https://en.wikipedia.org/wiki/Paul_Allen"}, {"bingId": "52535f87-235e-b513-54fe-c03e4233ac6e", "dataSource": "Wikipedia", "id": "April 4", "language": "en", "matches": [{"confidenceScore": 0.38, "length": 7, "offset": 54, "text": "April 4"}], "name": "April 4", "url": "https://en.wikipedia.org/wiki/April_4"}] |
| We went to Seattle last week. | [{"bingId": "5fbba6b8-85e1-4d41-9444-d9055436e473", "dataSource": "Wikipedia", "id": "Seattle", "language": "en", "matches": [{"confidenceScore": 0.17, "length": 7, "offset": 11, "text": "Seattle"}], "name": "Seattle", "url": "https://en.wikipedia.org/wiki/Seattle"}] |
## KeyPhraseExtraction
[Key phrase extraction](https://learn.microsoft.com/en-us/azure/ai-services/language-service/key-phrase-extraction/overview) is one of the features offered by Azure AI Language, a collection of machine learning and AI algorithms in the cloud for developing intelligent applications that involve written language. Use key phrase extraction to quickly identify the main concepts in text. For example, in the text "The food was delicious and the staff were wonderful.", key phrase extraction will return the main topics: "food" and "wonderful staff". Refer to [this article](https://learn.microsoft.com/azure/ai-services/language-service/key-phrase-extraction/language-support) for the full list of supported languages.
```python
df = spark.createDataFrame(
data=[
["Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975."],
["Dr. Smith has a very modern medical office, and she has great staff."],
],
schema=["text"],
)
key_phrase_extraction = (
AnalyzeText()
.setKind("KeyPhraseExtraction")
.setLocation(ai_service_location)
.setSubscriptionKey(ai_service_key)
.setTextCol("text")
.setOutputCol("key_phrase_extraction")
.setErrorCol("error")
)
df_results = key_phrase_extraction.transform(df)
display(df_results.select("text", "key_phrase_extraction.documents.keyPhrases"))
```
This cell should yield a result that looks like:
| text | keyPhrases |
|:-----------|:------------|
| Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975. | ["Bill Gates", "Paul Allen", "Microsoft", "April"] |
| Dr. Smith has a very modern medical office, and she has great staff. | ["modern medical office", "Dr. Smith", "great staff"] |
## PiiEntityRecognition
The PII detection feature can identify, categorize, and redact sensitive information in unstructured text. For example: phone numbers, email addresses, and forms of identification. The method for utilizing PII in conversations is different than other use cases, and articles for this use have been separated. Refer to [this article](https://learn.microsoft.com/azure/ai-services/language-service/personally-identifiable-information/language-support?tabs=documents) for the full list of supported languages.
```python
df = spark.createDataFrame(
data=[
["Call our office at 312-555-1234, or send an email to support@contoso.com"],
["Dr. Smith has a very modern medical office, and she has great staff."],
],
schema=["text"],
)
pii_entity_recognition = (
AnalyzeText()
.setKind("PiiEntityRecognition")
.setLocation(ai_service_location)
.setSubscriptionKey(ai_service_key)
.setTextCol("text")
.setOutputCol("pii_entity_recognition")
.setErrorCol("error")
)
df_results = pii_entity_recognition.transform(df)
display(df_results.select("text", "pii_entity_recognition.documents.entities"))
```
This cell should yield a result that looks like:
| text | entities |
|:-----------|:------------|
| Call our office at 312-555-1234, or send an email to support@contoso.com | [{"category": "PhoneNumber", "confidenceScore": 0.8, "length": 12, "offset": 19, "subcategory": null, "text": "312-555-1234"}, {"category": "Email", "confidenceScore": 0.8, "length": 19, "offset": 53, "subcategory": null, "text": "support@contoso.com"}] |
| Dr. Smith has a very modern medical office, and she has great staff. | [{"category": "Person", "confidenceScore": 0.93, "length": 5, "offset": 4, "subcategory": null, "text": "Smith"}] |
## SentimentAnalysis
[Sentiment analysis](https://learn.microsoft.com/en-us/azure/ai-services/language-service/sentiment-opinion-mining/overview) and opinion mining are features offered by the Language service, a collection of machine learning and AI algorithms in the cloud for developing intelligent applications that involve written language. These features help you find out what people think of your brand or topic by mining text for clues about positive or negative sentiment, and can associate them with specific aspects of the text. Refer to [this article](https://learn.microsoft.com/azure/ai-services/language-service/sentiment-opinion-mining/language-support) for the full list of supported languages.
```python
df = spark.createDataFrame(
data=[
["The food and service were unacceptable. The concierge was nice, however."],
["It taste great."],
],
schema=["text"],
)
sentiment_analysis = (
AnalyzeText()
.setKind("SentimentAnalysis")
.setLocation(ai_service_location)
.setSubscriptionKey(ai_service_key)
.setTextCol("text")
.setOutputCol("sentiment_analysis")
.setErrorCol("error")
)
df_results = sentiment_analysis.transform(df)
display(df_results.select("text", "sentiment_analysis.documents.sentiment"))
```
This cell should yield a result that looks like:
| text | sentiment |
|:-----------|:------------|
| The food and service were unacceptable. The concierge was nice, however. | mixed |
| It tastes great. | positive |
## Analyze Text with TextAnalyze
Text Analyze is Deprecated, please use AnalyzeText instead
```python
df = spark.createDataFrame(
data=[
["en", "Hello Seattle"],
["en", "There once was a dog who lived in London and thought she was a human"],
],
schema=["language", "text"],
)
```
```python
from synapse.ml.services import *
text_analyze = (
TextAnalyze()
.setLocation(ai_service_location)
.setSubscriptionKey(ai_service_key)
.setTextCol("text")
.setOutputCol("textAnalysis")
.setErrorCol("error")
.setLanguageCol("language")
.setEntityRecognitionParams(
{"model-version": "latest"}
) # Can pass parameters to each model individually
.setIncludePii(False) # Users can manually exclude tasks to speed up analysis
.setIncludeEntityLinking(False)
.setIncludeSentimentAnalysis(False)
)
df_results = text_analyze.transform(df)
```
```python
display(df_results)
```

Просмотреть файл

@ -0,0 +1,121 @@
---
title: Quickstart - Create Audiobooks
hide_title: true
status: stable
---
# Create audiobooks using neural Text to speech
## Step 1: Load libraries and add service information
```python
from synapse.ml.core.platform import *
if running_on_synapse():
from notebookutils import mssparkutils
# Fill this in with your Azure AI service information
service_key = find_secret(
secret_name="ai-services-api-key", keyvault="mmlspark-build-keys"
) # Replace this line with a string like service_key = "dddjnbdkw9329"
service_loc = "eastus"
storage_container = "audiobooks"
storage_key = find_secret(
secret_name="madtest-storage-key", keyvault="mmlspark-build-keys"
)
storage_account = "anomalydetectiontest"
```
## Step 2: Attach the storage account to hold the audio files
```python
spark_key_setting = f"fs.azure.account.key.{storage_account}.blob.core.windows.net"
spark.sparkContext._jsc.hadoopConfiguration().set(spark_key_setting, storage_key)
```
```python
import os
from os.path import exists, join
mount_path = f"wasbs://{storage_container}@{storage_account}.blob.core.windows.net/"
if running_on_synapse():
mount_dir = join("/synfs", mssparkutils.env.getJobId(), storage_container)
if not exists(mount_dir):
mssparkutils.fs.mount(
mount_path, f"/{storage_container}", {"accountKey": storage_key}
)
elif running_on_databricks():
if not exists(f"/dbfs/mnt/{storage_container}"):
dbutils.fs.mount(
source=mount_path,
mount_point=f"/mnt/{storage_container}",
extra_configs={spark_key_setting: storage_key},
)
```
## Step 3: Read in text data
```python
from pyspark.sql.functions import udf
@udf
def make_audio_filename(part):
return f"wasbs://{storage_container}@{storage_account}.blob.core.windows.net/alice_in_wonderland/part_{part}.wav"
df = (
spark.read.parquet(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/alice_in_wonderland.parquet"
)
.repartition(10)
.withColumn("filename", make_audio_filename("part"))
)
display(df)
```
## Step 4: Synthesize audio from text
<div>
<img src="https://mmlspark.blob.core.windows.net/graphics/NeuralTTS_hero.jpeg" width="500" />
</div>
```python
from synapse.ml.services.speech import TextToSpeech
tts = (
TextToSpeech()
.setSubscriptionKey(service_key)
.setTextCol("text")
.setLocation(service_loc)
.setErrorCol("error")
.setVoiceName("en-US-SteffanNeural")
.setOutputFileCol("filename")
)
audio = tts.transform(df).cache()
display(audio)
```
## Step 5: Listen to an audio file
```python
from IPython.display import Audio
def get_audio_file(num):
if running_on_databricks():
return f"/dbfs/mnt/{storage_container}/alice_in_wonderland/part_{num}.wav"
else:
return join(mount_dir, f"alice_in_wonderland/part_{num}.wav")
Audio(filename=get_audio_file(1))
```

Просмотреть файл

@ -0,0 +1,95 @@
---
title: Quickstart - Create a Visual Search Engine
hide_title: true
status: stable
---
<h1>Creating a searchable Art Database with The MET's open-access collection</h1>
In this example, we show how you can enrich data using Cognitive Skills and write to an Azure Search Index using SynapseML. We use a subset of The MET's open-access collection and enrich it by passing it through 'Describe Image' and a custom 'Image Similarity' skill. The results are then written to a searchable index.
```python
import os, sys, time, json, requests
from pyspark.sql.functions import lit, udf, col, split
from synapse.ml.core.platform import *
ai_service_key = find_secret(
secret_name="ai-services-api-key", keyvault="mmlspark-build-keys"
)
ai_service_loc = "eastus"
azure_search_key = find_secret(
secret_name="azure-search-key", keyvault="mmlspark-build-keys"
)
search_service = "mmlspark-azure-search"
search_index = "test"
```
```python
data = (
spark.read.format("csv")
.option("header", True)
.load("wasbs://publicwasb@mmlspark.blob.core.windows.net/metartworks_sample.csv")
.withColumn("searchAction", lit("upload"))
.withColumn("Neighbors", split(col("Neighbors"), ",").cast("array<string>"))
.withColumn("Tags", split(col("Tags"), ",").cast("array<string>"))
.limit(25)
)
```
<img src="https://mmlspark.blob.core.windows.net/graphics/CognitiveSearchHyperscale/MetArtworkSamples.png" width="800" />
```python
from synapse.ml.services import AnalyzeImage
from synapse.ml.stages import SelectColumns
# define pipeline
describeImage = (
AnalyzeImage()
.setSubscriptionKey(ai_service_key)
.setLocation(ai_service_loc)
.setImageUrlCol("PrimaryImageUrl")
.setOutputCol("RawImageDescription")
.setErrorCol("Errors")
.setVisualFeatures(
["Categories", "Description", "Faces", "ImageType", "Color", "Adult"]
)
.setConcurrency(5)
)
df2 = (
describeImage.transform(data)
.select("*", "RawImageDescription.*")
.drop("Errors", "RawImageDescription")
)
```
<img src="https://mmlspark.blob.core.windows.net/graphics/CognitiveSearchHyperscale/MetArtworksProcessed.png" width="800" />
Before writing the results to a Search Index, you must define a schema which must specify the name, type, and attributes of each field in your index. Refer [Create a basic index in Azure Search](https://docs.microsoft.com/azure/search/search-what-is-an-index) for more information.
```python
from synapse.ml.services import *
df2.writeToAzureSearch(
subscriptionKey=azure_search_key,
actionCol="searchAction",
serviceName=search_service,
indexName=search_index,
keyCol="ObjectID",
)
```
The Search Index can be queried using the [Azure Search REST API](https://docs.microsoft.com/rest/api/searchservice/) by sending GET or POST requests and specifying query parameters that give the criteria for selecting matching documents. For more information on querying refer [Query your Azure Search index using the REST API](https://docs.microsoft.com/rest/api/searchservice/Search-Documents)
```python
url = "https://{}.search.windows.net/indexes/{}/docs/search?api-version=2019-05-06".format(
search_service, search_index
)
requests.post(
url, json={"search": "Glass"}, headers={"api-key": azure_search_key}
).json()
```

Просмотреть файл

@ -0,0 +1,337 @@
---
title: Quickstart - Document Question and Answering with PDFs
hide_title: true
status: stable
---
# A Guide to Q&A on PDF Documents
## Introduction
In this notebook, we'll demonstrate how to develop a context-aware question answering framework for any form of a document using [OpenAI models](https://azure.microsoft.com/products/ai-services/openai-service), [SynapseML](https://microsoft.github.io/SynapseML/) and [Azure AI Services](https://azure.microsoft.com/products/ai-services/). In this notebook, we assume that PDF documents are the source of data, however, the same framework can be easiy extended to other document formats too.
Well cover the following key steps:
1. Preprocessing PDF Documents: Learn how to load the PDF documents into a Spark DataFrame, read the documents using the [Azure AI Document Intelligence](https://azure.microsoft.com/products/ai-services/ai-document-intelligence) in Azure AI Services, and use SynapseML to split the documents into chunks.
2. Embedding Generation and Storage: Learn how to generate embeddings for the chunks using SynapseML and [Azure OpenAI Services](https://azure.microsoft.com/products/ai-services/openai-service), store the embeddings in a vector store using [Azure Cognitive Search](https://azure.microsoft.com/products/search), and search the vector store to answer the users question.
3. Question Answering Pipeline: Learn how to retrieve relevant document based on the users question and provide the answer using [Langchain](https://python.langchain.com/en/latest/index.html#).
We start by installing the necessary python libraries.
```python
%pip install openai==0.28.1 langchain==0.0.331
```
### Step 1: Provide the keys for Azure AI Services and Azure OpenAI to authenticate the applications.
To authenticate Azure AI Services and Azure OpenAI applications, you need to provide the respective API keys. Here is an example of how you can provide the keys in Python code. `find_secret()` function uses Azure Keyvault to get the API keys, however you can directly paste your own keys there.
```python
from pyspark.sql import SparkSession
from synapse.ml.core.platform import find_secret
ai_services_key = find_secret(
secret_name="ai-services-api-key", keyvault="mmlspark-build-keys"
)
ai_services_location = "eastus"
# Fill in the following lines with your Azure service information
aoai_service_name = "synapseml-openai-2"
aoai_endpoint = f"https://{aoai_service_name}.openai.azure.com/"
aoai_key = find_secret(secret_name="openai-api-key-2", keyvault="mmlspark-build-keys")
aoai_deployment_name_embeddings = "text-embedding-ada-002"
aoai_deployment_name_query = "gpt-35-turbo"
aoai_model_name_query = "gpt-35-turbo"
# Azure Cognitive Search
cogsearch_name = "mmlspark-azure-search"
cogsearch_index_name = "examplevectorindex"
cogsearch_api_key = find_secret(
secret_name="azure-search-key", keyvault="mmlspark-build-keys"
)
```
### Step 2: Load the PDF documents into a Spark DataFrame.
For this tutorial, we will be using NASA's [Earth](https://www.nasa.gov/sites/default/files/atoms/files/earth_book_2019_tagged.pdf) and [Earth at Night](https://www.nasa.gov/sites/default/files/atoms/files/earth_at_night_508.pdf) e-books. To load PDF documents into a Spark DataFrame, you can use the ```spark.read.format("binaryFile")``` method provided by Apache Spark.
```python
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType
document_path = "wasbs://publicwasb@mmlspark.blob.core.windows.net/NASAEarth" # path to your document
df = spark.read.format("binaryFile").load(document_path).limit(10).cache()
```
This code will read the PDF documents and create a Spark DataFrame named df with the contents of the PDFs. The DataFrame will have a schema that represents the structure of the PDF documents, including their textual content.
Let's take a glimpse at the contents of the e-books we are working with. Below are some screenshots that showcase the essence of the books; as you can see they contain information about the Earth.
<img src="https://mmlspark.blob.core.windows.net/graphics/notebooks/NASAearthbook_screenshot.png" width="500" />
<img src="https://mmlspark.blob.core.windows.net/graphics/notebooks/NASAearthatnight_screenshot.png" width="460" />
##### Display the raw data from the PDF documents
```python
# Show the dataframe without the content
display(df.drop("content"))
```
### Step 3: Read the documents using Azure AI Document Intelligence.
We utilize [SynapseML](https://microsoft.github.io/SynapseML/), an ecosystem of tools designed to enhance the distributed computing framework [Apache Spark](https://github.com/apache/spark). SynapseML introduces advanced networking capabilities to the Spark ecosystem and offers user-friendly SparkML transformers for various [Azure AI Services](https://azure.microsoft.com/products/ai-services).
Additionally, we employ AnalyzeDocument from Azure AI Services to extract the complete document content and present it in the designated columns called "output_content" and "paragraph."
```python
from synapse.ml.services.form import AnalyzeDocument
from pyspark.sql.functions import col
analyze_document = (
AnalyzeDocument()
.setPrebuiltModelId("prebuilt-layout")
.setSubscriptionKey(ai_services_key)
.setLocation(ai_services_location)
.setImageBytesCol("content")
.setOutputCol("result")
.setPages(
"1-15"
) # Here we are reading the first 15 pages of the documents for demo purposes
)
analyzed_df = (
analyze_document.transform(df)
.withColumn("output_content", col("result.analyzeResult.content"))
.withColumn("paragraphs", col("result.analyzeResult.paragraphs"))
).cache()
```
We can observe the analayzed Spark DataFrame named ```analyzed_df``` using the following code. Note that we drop the "content" column as it is not needed anymore.
```python
analyzed_df = analyzed_df.drop("content")
display(analyzed_df)
```
### Step 4: Split the documents into chunks.
After analyzing the document, we leverage SynapseMLs PageSplitter to divide the documents into smaller sections, which are subsequently stored in the “chunks” column. This allows for more granular representation and processing of the document content.
```python
from synapse.ml.featurize.text import PageSplitter
ps = (
PageSplitter()
.setInputCol("output_content")
.setMaximumPageLength(4000)
.setMinimumPageLength(3000)
.setOutputCol("chunks")
)
splitted_df = ps.transform(analyzed_df)
display(splitted_df)
```
Note that the chunks for each document are presented in a single row inside an array. In order to embed all the chunks in the following cells, we need to have each chunk in a separate row. To accomplish that, we first explode these arrays so there is only one chunk in each row, then filter the Spark DataFrame in order to only keep the path to the document and the chunk in a single row.
```python
# Each column contains many chunks for the same document as a vector.
# Explode will distribute and replicate the content of a vecor across multple rows
from pyspark.sql.functions import explode, col
exploded_df = splitted_df.select("path", explode(col("chunks")).alias("chunk")).select(
"path", "chunk"
)
display(exploded_df)
```
### Step 5: Generate Embeddings.
To produce embeddings for each chunk, we utilize both SynapseML and Azure OpenAI Service. By integrating the Azure OpenAI service with SynapseML, we can leverage the power of the Apache Spark distributed computing framework to process numerous prompts using the OpenAI service. This integration enables the SynapseML embedding client to generate embeddings in a distributed manner, enabling efficient processing of large volumes of data. If you're interested in applying large language models at a distributed scale using Azure OpenAI and Azure Synapse Analytics, you can refer to [this approach](https://microsoft.github.io/SynapseML/docs/Explore%20Algorithms/OpenAI/). For more detailed information on generating embeddings with Azure OpenAI, you can look [here]( https://learn.microsoft.com/azure/cognitive-services/openai/how-to/embeddings?tabs=console).
```python
from synapse.ml.services.openai import OpenAIEmbedding
embedding = (
OpenAIEmbedding()
.setSubscriptionKey(aoai_key)
.setDeploymentName(aoai_deployment_name_embeddings)
.setCustomServiceName(aoai_service_name)
.setTextCol("chunk")
.setErrorCol("error")
.setOutputCol("embeddings")
)
df_embeddings = embedding.transform(exploded_df)
display(df_embeddings)
```
### Step 6: Store the embeddings in Azure Cognitive Search Vector Store.
[Azure Cognitive Search](https://learn.microsoft.com/azure/search/search-what-is-azure-search) offers a user-friendly interface for creating a vector database, as well as storing and retrieving data using vector search. If you're interested in learning more about vector search, you can look [here](https://github.com/Azure/cognitive-search-vector-pr/tree/main).
Storing data in the AzureCogSearch vector database involves two main steps:
Creating the Index: The first step is to establish the index or schema of the vector database. This entails defining the structure and properties of the data that will be stored and indexed in the vector database.
Adding Chunked Documents and Embeddings: The second step involves adding the chunked documents, along with their corresponding embeddings, to the vector datastore. This allows for efficient storage and retrieval of the data using vector search capabilities.
By following these steps, you can effectively store your chunked documents and their associated embeddings in the AzureCogSearch vector database, enabling seamless retrieval of relevant information through vector search functionality.
```python
from pyspark.sql.functions import monotonically_increasing_id
from pyspark.sql.functions import lit
df_embeddings = (
df_embeddings.drop("error")
.withColumn(
"idx", monotonically_increasing_id().cast("string")
) # create index ID for ACS
.withColumn("searchAction", lit("upload"))
)
```
```python
from synapse.ml.services import writeToAzureSearch
import json
df_embeddings.writeToAzureSearch(
subscriptionKey=cogsearch_api_key,
actionCol="searchAction",
serviceName=cogsearch_name,
indexName=cogsearch_index_name,
keyCol="idx",
vectorCols=json.dumps([{"name": "embeddings", "dimension": 1536}]),
)
```
### Step 7: Ask a Question.
After processing the document, we can proceed to pose a question. We will use [SynapseML](https://microsoft.github.io/SynapseML/docs/Explore%20Algorithms/OpenAI/Quickstart%20-%20OpenAI%20Embedding/) to convert the user's question into an embedding and then utilize cosine similarity to retrieve the top K document chunks that closely match the user's question. It's worth mentioning that alternative similarity metrics can also be employed.
```python
user_question = "What did the astronaut Edgar Mitchell call Earth?"
retrieve_k = 2 # Retrieve the top 2 documents from vector database
```
```python
import requests
# Ask a question and convert to embeddings
def gen_question_embedding(user_question):
# Convert question to embedding using synapseML
from synapse.ml.services.openai import OpenAIEmbedding
df_ques = spark.createDataFrame([(user_question, 1)], ["questions", "dummy"])
embedding = (
OpenAIEmbedding()
.setSubscriptionKey(aoai_key)
.setDeploymentName(aoai_deployment_name_embeddings)
.setCustomServiceName(aoai_service_name)
.setTextCol("questions")
.setErrorCol("errorQ")
.setOutputCol("embeddings")
)
df_ques_embeddings = embedding.transform(df_ques)
row = df_ques_embeddings.collect()[0]
question_embedding = row.embeddings.tolist()
return question_embedding
def retrieve_k_chunk(k, question_embedding):
# Retrieve the top K entries
url = f"https://{cogsearch_name}.search.windows.net/indexes/{cogsearch_index_name}/docs/search?api-version=2023-07-01-Preview"
payload = json.dumps(
{"vector": {"value": question_embedding, "fields": "embeddings", "k": k}}
)
headers = {
"Content-Type": "application/json",
"api-key": cogsearch_api_key,
}
response = requests.request("POST", url, headers=headers, data=payload)
output = json.loads(response.text)
print(response.status_code)
return output
# Generate embeddings for the question and retrieve the top k document chunks
question_embedding = gen_question_embedding(user_question)
output = retrieve_k_chunk(retrieve_k, question_embedding)
```
### Step 8: Respond to a Users Question.
To provide a response to the user's question, we will utilize the [LangChain](https://python.langchain.com/en/latest/index.html) framework. With the LangChain framework we will augment the retrieved documents with respect to the user's question. Following this, we can request a response to the user's question from our framework.
```python
# Import necenssary libraries and setting up OpenAI
from langchain.llms import AzureOpenAI
from langchain import PromptTemplate
from langchain.chains import LLMChain
import openai
openai.api_type = "azure"
openai.api_base = aoai_endpoint
openai.api_version = "2022-12-01"
openai.api_key = aoai_key
```
We can now wrap up the Q&A journey by asking a question and checking the answer. You will see that Edgar Mitchell called Earth "a sparkling blue and white jewel"!
```python
# Define a Question Answering chain function using LangChain
def qa_chain_func():
# Define llm model
llm = AzureOpenAI(
deployment_name=aoai_deployment_name_query,
model_name=aoai_model_name_query,
openai_api_key=aoai_key,
openai_api_version="2022-12-01",
)
# Write a preprompt with context and query as variables
template = """
context :{context}
Answer the question based on the context above. If the
information to answer the question is not present in the given context then reply "I don't know".
Question: {query}
Answer: """
# Define a prompt template
prompt_template = PromptTemplate(
input_variables=["context", "query"], template=template
)
# Define a chain
qa_chain = LLMChain(llm=llm, prompt=prompt_template)
return qa_chain
# Concatenate the content of retrieved documents
context = [i["chunk"] for i in output["value"]]
# Make a Quesion Answer chain function and pass
qa_chain = qa_chain_func()
answer = qa_chain.run({"context": context, "query": user_question})
print(answer)
```

Просмотреть файл

@ -0,0 +1,193 @@
---
title: Quickstart - Flooding Risk
hide_title: true
status: stable
---
# Visualizing Customer addresses on a flood plane
King County (WA) publishes flood plain data as well as tax parcel data. We can use the addresses in the tax parcel data and use the geocoder to calculate coordinates. Using this coordinates and the flood plain data we can enrich out dataset with a flag indicating whether the house is in a flood zone or not.
The following data has been sourced from King County's Open data portal. [_Link_](https://data.kingcounty.gov/)
1. [Address Data](https://mmlspark.blob.core.windows.net/publicwasb/maps/KingCountyAddress.csv)
1. [Flood plains](https://mmlspark.blob.core.windows.net/publicwasb/maps/KingCountyFloodPlains.geojson)
For this demonstration, please follow the instructions on setting up your azure maps account from the overview notebook.
## Prerequisites
1. Upload the flood plains data as map data to your creator resource
```python
import json
import time
import requests
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
# Configure more resiliant requests to stop flakiness
retry_strategy = Retry(
total=3,
status_forcelist=[429, 500, 502, 503, 504],
allowed_methods=["HEAD", "GET", "PUT", "DELETE", "OPTIONS", "TRACE"],
)
adapter = HTTPAdapter(max_retries=retry_strategy)
http = requests.Session()
http.mount("https://", adapter)
http.mount("http://", adapter)
```
```python
from synapse.ml.core.platform import *
# Azure Maps account key
maps_key = find_secret(
secret_name="azuremaps-api-key", keyvault="mmlspark-build-keys"
) # Replace this with your azure maps key
# Creator Geo prefix
# for this example, assuming that the creator resource is created in `EAST US 2`.
atlas_geo_prefix = "us"
# Load flood plains data
flood_plain_geojson = http.get(
"https://mmlspark.blob.core.windows.net/publicwasb/maps/KingCountyFloodPlains.geojson"
).content
# Upload this flood plains data to your maps/creator account. This is a Long-Running async operation and takes approximately 15~30 seconds to complete
r = http.post(
f"https://{atlas_geo_prefix}.atlas.microsoft.com/mapData/upload?api-version=1.0&dataFormat=geojson&subscription-key={maps_key}",
json=json.loads(flood_plain_geojson),
)
# Poll for resource upload completion
resource_location = r.headers.get("location")
for _ in range(20):
resource = json.loads(
http.get(f"{resource_location}&subscription-key={maps_key}").content
)
status = resource["status"].lower()
if status == "running":
time.sleep(5) # wait in a polling loop
elif status == "succeeded":
break
else:
raise ValueError("Unknown status {}".format(status))
# Once the above operation returns a HTTP 201, get the user_data_id of the flood plains data, you uploaded to your map account.
user_data_id_resource_url = resource["resourceLocation"]
user_data_id = json.loads(
http.get(f"{user_data_id_resource_url}&subscription-key={maps_key}").content
)["udid"]
```
Now that we have the flood plains data setup in our maps account, we can use the `CheckPointInPolygon` function to check if a location `(lat,lon)` coordinate is in a flood zone.
### Load address data:
```python
data = spark.read.option("header", "true").csv(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/maps/KingCountyAddress.csv"
)
# Visualize incoming schema
print("Schema:")
data.printSchema()
# Choose a subset of the data for this example
subset_data = data.limit(50)
display(subset_data)
```
### Wire-up the Address Geocoder
We will use the address geocoder to enrich the dataset with location coordinates of the addresses.
```python
from pyspark.sql.functions import col
from synapse.ml.stages import FixedMiniBatchTransformer, FlattenBatch
from synapse.ml.services.geospatial import *
def extract_location_fields(df):
# Use this function to select only lat/lon columns into the dataframe
return df.select(
col("*"),
col("output.response.results")
.getItem(0)
.getField("position")
.getField("lat")
.alias("Latitude"),
col("output.response.results")
.getItem(0)
.getField("position")
.getField("lon")
.alias("Longitude"),
).drop("output")
# Azure Maps geocoder to enhance the dataframe with location data
geocoder = (
AddressGeocoder()
.setSubscriptionKey(maps_key)
.setAddressCol("FullAddress")
.setOutputCol("output")
)
# Set up a fixed mini batch transformer to geocode addresses
batched_dataframe = geocoder.transform(
FixedMiniBatchTransformer().setBatchSize(10).transform(subset_data.coalesce(1))
)
geocoded_addresses = extract_location_fields(
FlattenBatch().transform(batched_dataframe)
)
# Display the results
display(geocoded_addresses)
```
Now that we have geocoded the addresses, we can now use the `CheckPointInPolygon` function to check if a property is in a flood zone or not.
### Setup Check Point In Polygon
```python
def extract_point_in_polygon_result_fields(df):
# Use this function to select only lat/lon columns into the dataframe
return df.select(
col("*"),
col("output.result.pointInPolygons").alias("In Polygon"),
col("output.result.intersectingGeometries").alias("Intersecting Polygons"),
).drop("output")
check_point_in_polygon = (
CheckPointInPolygon()
.setSubscriptionKey(maps_key)
.setGeography(atlas_geo_prefix)
.setUserDataIdentifier(user_data_id)
.setLatitudeCol("Latitude")
.setLongitudeCol("Longitude")
.setOutputCol("output")
)
flood_plain_addresses = extract_point_in_polygon_result_fields(
check_point_in_polygon.transform(geocoded_addresses)
)
# Display the results
display(flood_plain_addresses)
```
### Cleanup Uploaded User Data (Optional)
You can (optionally) delete the uploaded geojson polygon.
```python
res = http.delete(
f"https://{atlas_geo_prefix}.atlas.microsoft.com/mapData/{user_data_id}?api-version=1.0&subscription-key={maps_key}"
)
```

Просмотреть файл

@ -0,0 +1,188 @@
---
title: Quickstart - Predictive Maintenance
hide_title: true
status: stable
---
# Recipe: Predictive maintenance with the Azure AI Services for Big Data
This recipe shows how you can use Azure Synapse Analytics and Azure AI services on Apache Spark for predictive maintenance of IoT devices. We'll follow along with the [CosmosDB and Synapse Link](https://github.com/Azure-Samples/cosmosdb-synapse-link-samples) sample. To keep things simple, in this recipe we'll read the data straight from a CSV file rather than getting streamed data through CosmosDB and Synapse Link. We strongly encourage you to look over the Synapse Link sample.
## Important
Starting on the 20th of September, 2023 you wont be able to create new Anomaly Detector resources. The Anomaly Detector service is being retired on the 1st of October, 2026.
## Hypothetical scenario
The hypothetical scenario is a Power Plant, where IoT devices are monitoring [steam turbines](https://en.wikipedia.org/wiki/Steam_turbine). The IoTSignals collection has Revolutions per minute (RPM) and Megawatts (MW) data for each turbine. Signals from steam turbines are being analyzed and anomalous signals are detected.
There could be outliers in the data in random frequency. In those situations, RPM values will go up and MW output will go down, for circuit protection. The idea is to see the data varying at the same time, but with different signals.
## Prerequisites
* An Azure subscription - [Create one for free](https://azure.microsoft.com/free/)
* [Azure Synapse workspace](https://docs.microsoft.com/azure/synapse-analytics/get-started-create-workspace) configured with a [serverless Apache Spark pool](https://docs.microsoft.com/en-us/azure/synapse-analytics/get-started-analyze-spark)
## Setup
### Create an Anomaly Detector resource
Azure AI Services are represented by Azure resources that you subscribe to. Create a resource for Translator using the [Azure portal](https://docs.microsoft.com/azure/cognitive-services/cognitive-services-apis-create-account?tabs=multiservice%2Clinux) or [Azure CLI](https://learn.microsoft.com/azure/ai-services/multi-service-resource). You can also:
- View an existing resource in the [Azure portal](https://portal.azure.com/).
Make note of the endpoint and the key for this resource, you'll need it in this guide.
## Enter your service keys
Let's start by adding your key and location.
```python
import os
from synapse.ml.core.platform import find_secret
service_key = find_secret(
secret_name="anomaly-api-key", keyvault="mmlspark-build-keys"
) # Paste your anomaly detector key here
location = "westus2" # Paste your anomaly detector location here
```
## Read data into a DataFrame
Next, let's read the IoTSignals file into a DataFrame. Open a new notebook in your Synapse workspace and create a DataFrame from the file.
```python
df_signals = spark.read.csv(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/iot/IoTSignals.csv",
header=True,
inferSchema=True,
)
```
### Run anomaly detection using AI services on Spark
The goal is to find instances where the signals from the IoT devices were outputting anomalous values so that we can see when something is going wrong and do predictive maintenance. To do that, let's use Anomaly Detector on Spark:
```python
from pyspark.sql.functions import col, struct
from synapse.ml.services.anomaly import SimpleDetectAnomalies
from synapse.ml.core.spark import FluentAPI
detector = (
SimpleDetectAnomalies()
.setSubscriptionKey(service_key)
.setLocation(location)
.setOutputCol("anomalies")
.setGroupbyCol("grouping")
.setSensitivity(95)
.setGranularity("secondly")
)
df_anomaly = (
df_signals.where(col("unitSymbol") == "RPM")
.withColumn("timestamp", col("dateTime").cast("string"))
.withColumn("value", col("measureValue").cast("double"))
.withColumn("grouping", struct("deviceId"))
.mlTransform(detector)
).cache()
df_anomaly.createOrReplaceTempView("df_anomaly")
```
Let's take a look at the data:
```python
df_anomaly.select("timestamp", "value", "deviceId", "anomalies.isAnomaly").show(3)
```
This cell should yield a result that looks like:
| timestamp | value | deviceId | isAnomaly |
|:--------------------|--------:|:-----------|:------------|
| 2020-05-01 18:33:51 | 3174 | dev-7 | False |
| 2020-05-01 18:33:52 | 2976 | dev-7 | False |
| 2020-05-01 18:33:53 | 2714 | dev-7 | False |
## Visualize anomalies for one of the devices
IoTSignals.csv has signals from multiple IoT devices. We'll focus on a specific device and visualize anomalous outputs from the device.
```python
df_anomaly_single_device = spark.sql(
"""
select
timestamp,
measureValue,
anomalies.expectedValue,
anomalies.expectedValue + anomalies.upperMargin as expectedUpperValue,
anomalies.expectedValue - anomalies.lowerMargin as expectedLowerValue,
case when anomalies.isAnomaly=true then 1 else 0 end as isAnomaly
from
df_anomaly
where deviceid = 'dev-1' and timestamp < '2020-04-29'
order by timestamp
limit 200"""
)
```
Now that we have created a dataframe that represents the anomalies for a particular device, we can visualize these anomalies:
```python
import matplotlib.pyplot as plt
from pyspark.sql.functions import col
adf = df_anomaly_single_device.toPandas()
adf_subset = df_anomaly_single_device.where(col("isAnomaly") == 1).toPandas()
plt.figure(figsize=(23, 8))
plt.plot(
adf["timestamp"],
adf["expectedUpperValue"],
color="darkred",
line,
linewidth=0.25,
label="UpperMargin",
)
plt.plot(
adf["timestamp"],
adf["expectedValue"],
color="darkgreen",
line,
linewidth=2,
label="Expected Value",
)
plt.plot(
adf["timestamp"],
adf["measureValue"],
"b",
color="royalblue",
line,
linewidth=2,
label="Actual",
)
plt.plot(
adf["timestamp"],
adf["expectedLowerValue"],
color="black",
line,
linewidth=0.25,
label="Lower Margin",
)
plt.plot(adf_subset["timestamp"], adf_subset["measureValue"], "ro", label="Anomaly")
plt.legend()
plt.title("RPM Anomalies with Confidence Intervals")
plt.show()
```
If successful, your output will look like this:
![Anomaly Detector Plot](https://github.com/MicrosoftDocs/azure-docs/raw/master/articles/cognitive-services/big-data/media/anomaly-output.png)
## Next steps
Learn how to do predictive maintenance at scale with Azure AI services, Azure Synapse Analytics, and Azure CosmosDB. For more information, see the full sample on [GitHub](https://github.com/Azure-Samples/cosmosdb-synapse-link-samples).

Просмотреть файл

@ -0,0 +1,505 @@
---
title: Quickstart - Isolation Forests
hide_title: true
status: stable
---
# Multivariate Anomaly Detection with Isolation Forest
This article shows how you can use SynapseML on Apache Spark for multivariate anomaly detection. Multivariate anomaly detection allows for the detection of anomalies among many variables or time series, taking into account all the inter-correlations and dependencies between the different variables. In this scenario, we use SynapseML to train an Isolation Forest model for multivariate anomaly detection, and we then use to the trained model to infer multivariate anomalies within a dataset containing synthetic measurements from three IoT sensors.
To learn more about the Isolation Forest model please refer to the original paper by [Liu _et al._](https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf?q=isolation-forest).
## Prerequisites
- If running on Synapse, you'll need to [create an AML workspace and set up linked Service](../../Use%20with%20MLFlow/Overview.md) and add the following installation cell.
- If running on Fabric, you need to add the following installation cell and attach the notebook to a lakehouse. On the left side of your notebook, select Add to add an existing lakehouse or create a new one.
```python
# %%configure -f
# {
# "name": "synapseml",
# "conf": {
# "spark.jars.packages": "com.microsoft.azure:synapseml_2.12:<THE_SYNAPSEML_VERSION_YOU_WANT>",
# "spark.jars.repositories": "https://mmlspark.azureedge.net/maven",
# "spark.jars.excludes": "org.scala-lang:scala-reflect,org.apache.spark:spark-tags_2.12,org.scalactic:scalactic_2.12,org.scalatest:scalatest_2.12,com.fasterxml.jackson.core:jackson-databind",
# "spark.yarn.user.classpath.first": "true",
# "spark.sql.parquet.enableVectorizedReader": "false"
# }
# }
```
```python
%pip install sqlparse raiwidgets interpret-community mlflow==2.6.0 numpy==1.22.4
```
## Library imports
```python
import uuid
import mlflow
from pyspark.sql import functions as F
from pyspark.ml.feature import VectorAssembler
from pyspark.sql.types import *
from pyspark.ml import Pipeline
from synapse.ml.isolationforest import *
from synapse.ml.explainers import *
from synapse.ml.core.platform import *
from synapse.ml.isolationforest import *
```
```python
# %matplotlib inline
```
## Input data
```python
# Table inputs
timestampColumn = "timestamp" # str: the name of the timestamp column in the table
inputCols = [
"sensor_1",
"sensor_2",
"sensor_3",
] # list(str): the names of the input variables
# Training Start time, and number of days to use for training:
trainingStartTime = (
"2022-02-24T06:00:00Z" # datetime: datetime for when to start the training
)
trainingEndTime = (
"2022-03-08T23:55:00Z" # datetime: datetime for when to end the training
)
inferenceStartTime = (
"2022-03-09T09:30:00Z" # datetime: datetime for when to start the training
)
inferenceEndTime = (
"2022-03-20T23:55:00Z" # datetime: datetime for when to end the training
)
# Isolation Forest parameters
contamination = 0.021
num_estimators = 100
max_samples = 256
max_features = 1.0
# MLFlow experiment
artifact_path = "isolationforest"
model_name = f"isolation-forest-model"
platform = current_platform()
experiment_name = {
"databricks": f"/Shared/isolation_forest_experiment-{str(uuid.uuid1())}/",
"synapse": f"isolation_forest_experiment-{str(uuid.uuid1())}",
"synapse_internal": f"isolation_forest_experiment-{str(uuid.uuid1())}", # Fabric
}.get(platform, f"isolation_forest_experiment")
```
## Read data
```python
df = (
spark.read.format("csv")
.option("header", "true")
.load(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/generated_sample_mvad_data.csv"
)
)
```
cast columns to appropriate data types
```python
df = (
df.orderBy(timestampColumn)
.withColumn("timestamp", F.date_format(timestampColumn, "yyyy-MM-dd'T'HH:mm:ss'Z'"))
.withColumn("sensor_1", F.col("sensor_1").cast(DoubleType()))
.withColumn("sensor_2", F.col("sensor_2").cast(DoubleType()))
.withColumn("sensor_3", F.col("sensor_3").cast(DoubleType()))
.drop("_c5")
)
display(df)
```
## Training data preparation
```python
# filter to data with timestamps within the training window
df_train = df.filter(
(F.col(timestampColumn) >= trainingStartTime)
& (F.col(timestampColumn) <= trainingEndTime)
)
display(df_train.limit(5))
```
## Test data preparation
```python
# filter to data with timestamps within the inference window
df_test = df.filter(
(F.col(timestampColumn) >= inferenceStartTime)
& (F.col(timestampColumn) <= inferenceEndTime)
)
display(df_test.limit(5))
```
## Train Isolation Forest model
```python
isolationForest = (
IsolationForest()
.setNumEstimators(num_estimators)
.setBootstrap(False)
.setMaxSamples(max_samples)
.setMaxFeatures(max_features)
.setFeaturesCol("features")
.setPredictionCol("predictedLabel")
.setScoreCol("outlierScore")
.setContamination(contamination)
.setContaminationError(0.01 * contamination)
.setRandomSeed(1)
)
```
Next, we create an ML pipeline to train the Isolation Forest model. We also demonstrate how to create an MLFlow experiment and register the trained model.
Note that MLFlow model registration is strictly only required if accessing the trained model at a later time. For training the model, and performing inferencing in the same notebook, the model object model is sufficient.
```python
if running_on_synapse():
from synapse.ml.core.platform import find_secret
tracking_url = find_secret(
secret_name="aml-mlflow-tracking-url", keyvault="mmlspark-build-keys"
) # check link in prerequisites for more information on mlflow tracking url
mlflow.set_tracking_uri(tracking_url)
```
```python
mlflow.set_experiment(experiment_name)
with mlflow.start_run() as run:
va = VectorAssembler(inputCols=inputCols, outputCol="features")
pipeline = Pipeline(stages=[va, isolationForest])
model = pipeline.fit(df_train)
mlflow.spark.log_model(
model, artifact_path=artifact_path, registered_model_name=model_name
)
```
## Perform inferencing
Load the trained Isolation Forest Model
```python
# if running_on_databricks():
# model_version = <your_model_version>
# model_uri = f"models:/{model_name}/{model_version}"
# elif running_on_synapse_internal():
# model_uri = "runs:/{run_id}/{artifact_path}".format(
# run_id=run.info.run_id, artifact_path=artifact_path
# )
# model = mlflow.spark.load_model(model_uri)
```
Perform inferencing
```python
df_test_pred = model.transform(df_test)
display(df_test_pred.limit(5))
```
## ML interpretability
In this section, we use ML interpretability tools to help unpack the contribution of each sensor to the detected anomalies at any point in time.
```python
# Here, we create a TabularSHAP explainer, set the input columns to all the features the model takes, specify the model and the target output column
# we are trying to explain. In this case, we are trying to explain the "outlierScore" output.
shap = TabularSHAP(
inputCols=inputCols,
outputCol="shapValues",
model=model,
targetCol="outlierScore",
backgroundData=F.broadcast(df_test.sample(0.02)),
)
```
Display the dataframe with `shapValues` column
```python
shap_df = shap.transform(df_test_pred)
```
```python
# Define UDF
vec2array = F.udf(lambda vec: vec.toArray().tolist(), ArrayType(FloatType()))
```
```python
# Here, we extract the SHAP values, the original features and the outlier score column. Then we convert it to a Pandas DataFrame for visualization.
# For each observation, the first element in the SHAP values vector is the base value (the mean output of the background dataset),
# and each of the following elements represents the SHAP values for each feature
shaps = (
shap_df.withColumn("shapValues", vec2array(F.col("shapValues").getItem(0)))
.select(
["shapValues", "outlierScore"] + inputCols + [timestampColumn, "predictedLabel"]
)
.withColumn("sensor_1_localimp", F.col("shapValues")[1])
.withColumn("sensor_2_localimp", F.col("shapValues")[2])
.withColumn("sensor_3_localimp", F.col("shapValues")[3])
)
```
```python
shaps_local = shaps.toPandas()
shaps_local
```
Retrieve local feature importances
```python
local_importance_values = shaps_local[["shapValues"]]
eval_data = shaps_local[inputCols]
```
```python
# Removing the first element in the list of local importance values (this is the base value or mean output of the background dataset)
list_local_importance_values = local_importance_values.values.tolist()
converted_importance_values = []
bias = []
for classarray in list_local_importance_values:
for rowarray in classarray:
converted_list = rowarray.tolist()
bias.append(converted_list[0])
# remove the bias from local importance values
del converted_list[0]
converted_importance_values.append(converted_list)
```
```python
from interpret_community.adapter import ExplanationAdapter
adapter = ExplanationAdapter(inputCols, classification=False)
global_explanation = adapter.create_global(
converted_importance_values, eval_data, expected_values=bias
)
```
```python
# view the global importance values
global_explanation.global_importance_values
```
```python
# view the local importance values
global_explanation.local_importance_values
```
```python
# Defining a wrapper class with predict method for creating the Explanation Dashboard
class wrapper(object):
def __init__(self, model):
self.model = model
def predict(self, data):
sparkdata = spark.createDataFrame(data)
return (
model.transform(sparkdata)
.select("outlierScore")
.toPandas()
.values.flatten()
.tolist()
)
```
## Visualize results
Visualize anomaly results and feature contribution scores (derived from local feature importance)
```python
import matplotlib.pyplot as plt
def visualize(rdf):
anoms = list(rdf["predictedLabel"] == 1)
fig = plt.figure(figsize=(26, 12))
ax = fig.add_subplot(611)
ax.title.set_text(f"Multivariate Anomaly Detection Results")
ax.plot(
rdf[timestampColumn],
rdf["sensor_1"],
color="tab:orange",
line,
linewidth=2,
label="sensor_1",
)
ax.grid(axis="y")
_, _, ymin, ymax = plt.axis()
ax.vlines(
rdf[timestampColumn][anoms],
ymin=ymin,
ymax=ymax,
color="tab:red",
alpha=0.2,
linewidth=6,
)
ax.tick_params(axis="x", which="both", bottom=False, labelbottom=False)
ax.set_ylabel("sensor1_value")
ax.legend()
ax = fig.add_subplot(612, sharex=ax)
ax.plot(
rdf[timestampColumn],
rdf["sensor_2"],
color="tab:green",
line,
linewidth=2,
label="sensor_2",
)
ax.grid(axis="y")
_, _, ymin, ymax = plt.axis()
ax.vlines(
rdf[timestampColumn][anoms],
ymin=ymin,
ymax=ymax,
color="tab:red",
alpha=0.2,
linewidth=6,
)
ax.tick_params(axis="x", which="both", bottom=False, labelbottom=False)
ax.set_ylabel("sensor2_value")
ax.legend()
ax = fig.add_subplot(613, sharex=ax)
ax.plot(
rdf[timestampColumn],
rdf["sensor_3"],
color="tab:purple",
line,
linewidth=2,
label="sensor_3",
)
ax.grid(axis="y")
_, _, ymin, ymax = plt.axis()
ax.vlines(
rdf[timestampColumn][anoms],
ymin=ymin,
ymax=ymax,
color="tab:red",
alpha=0.2,
linewidth=6,
)
ax.tick_params(axis="x", which="both", bottom=False, labelbottom=False)
ax.set_ylabel("sensor3_value")
ax.legend()
ax = fig.add_subplot(614, sharex=ax)
ax.tick_params(axis="x", which="both", bottom=False, labelbottom=False)
ax.plot(
rdf[timestampColumn],
rdf["outlierScore"],
color="black",
line,
linewidth=2,
label="Outlier score",
)
ax.set_ylabel("outlier score")
ax.grid(axis="y")
ax.legend()
ax = fig.add_subplot(615, sharex=ax)
ax.tick_params(axis="x", which="both", bottom=False, labelbottom=False)
ax.bar(
rdf[timestampColumn],
rdf["sensor_1_localimp"].abs(),
width=2,
color="tab:orange",
label="sensor_1",
)
ax.bar(
rdf[timestampColumn],
rdf["sensor_2_localimp"].abs(),
width=2,
color="tab:green",
label="sensor_2",
bottom=rdf["sensor_1_localimp"].abs(),
)
ax.bar(
rdf[timestampColumn],
rdf["sensor_3_localimp"].abs(),
width=2,
color="tab:purple",
label="sensor_3",
bottom=rdf["sensor_1_localimp"].abs() + rdf["sensor_2_localimp"].abs(),
)
ax.set_ylabel("Contribution scores")
ax.grid(axis="y")
ax.legend()
plt.show()
```
```python
visualize(shaps_local)
```
When you run the cell above, you will see the following plots:
![](https://mmlspark.blob.core.windows.net/graphics/notebooks/mvad_results_local_importances.jpg)
- The first 3 plots above show the sensor time series data in the inference window, in orange, green, purple and blue. The red vertical lines show the detected anomalies (`prediction` = 1).
- The fourth plot shows the outlierScore of all the points, with the `minOutlierScore` threshold shown by the dotted red horizontal line.
- The last plot shows the contribution scores of each sensor to the `outlierScore` for that point.
Plot aggregate feature importance
```python
plt.figure(figsize=(10, 7))
plt.bar(inputCols, global_explanation.global_importance_values)
plt.ylabel("global importance values")
```
When you run the cell above, you will see the following global feature importance plot:
![](https://mmlspark.blob.core.windows.net/graphics/notebooks/global-feature-importance.jpg)
Visualize the explanation in the ExplanationDashboard from https://github.com/microsoft/responsible-ai-widgets.
```python
# View the model explanation in the ExplanationDashboard
from raiwidgets import ExplanationDashboard
ExplanationDashboard(global_explanation, wrapper(model), dataset=eval_data)
```

Просмотреть файл

@ -0,0 +1,61 @@
---
title: Overview
hide_title: true
sidebar_label: Overview
---
## Causal Inference on Apache Spark
### What is Causal Inference?
One challenge that has taken the spotlight in recent years is using machine learning to drive decision makings in policy and business.
Often, businesses and policymakers would like to study whether an incentive or intervention will lead to a desired outcome and by how much.
For example, if we give customers a discount (treatment), how much more will they purchase in the future (outcome).
Traditionally, people use correlation analysis or prediction model to understand correlated factors, but going from prediction to an
impactful decision isn't always straightforward as correlation doesn't imply causation. In many cases, confounding variables influence
both the probability of treatment and the outcome, introducing more non-causal correlation.
Causal inference helps to bridge the gap between prediction and decision-making.
### Causal Inference language
| Term | Example |
|-----------------|--------------------------------------------------------------------|
| Treatment (T) | Seeing an advertisement |
| Outcome (Y) | Probability of buying a specific new game |
| Confounders (W) | Current gaming habits, past purchases, customer location, platform |
### Causal Inference and Double machine learning
The gold standard approach to isolating causal questions is to run an experiment that randomly assigns the treatment to some customers.
Randomization eliminates any relationship between the confounders and the probability of treatment,
so any differences between treated and untreated customers can only reflect the direct causal effect of the treatment on the outcome (treatment effect).
However, in many cases, treatments experiments are either impossible or cost prohibitive.
As a result, we look toward causal inference methods that allow us to estimate the treatment effect using observational data.
The SynapseML causal package implements a technique "Double machine learning", which can be used to estimate the average treatment effect via machine learning models.
Unlike regression-based approaches that make strict parametric assumptions, this machine learning-based approach allows us to model non-linear relationships between the confounders, treatment, and outcome.
### Usage
In PySpark, you can run the `DoubleMLEstimator` via:
```python
from pyspark.ml.classification import LogisticRegression
from synapse.ml.causal import DoubleMLEstimator
dml = (DoubleMLEstimator()
.setTreatmentCol("Treatment")
.setTreatmentModel(LogisticRegression())
.setOutcomeCol("Outcome")
.setOutcomeModel(LogisticRegression())
.setMaxIter(20))
dmlModel = dml.fit(dataset)
```
> Note: all columns except "Treatment" and "Outcome" in your dataset will be used as confounders.
> Note: For discrete treatment, the treatment column must be `int` or `bool`. `0` and `False` will be treated as the control group.
After fitting the model, you can get average treatment effect and confidence interval:
```python
dmlModel.getAvgTreatmentEffect()
dmlModel.getConfidenceInterval()
```
For an end to end application, check out the DoubleMLEstimator [notebook
example](../Quickstart%20-%20Measure%20Causal%20Effects).

Просмотреть файл

@ -0,0 +1,91 @@
---
title: Quickstart - Measure Causal Effects
hide_title: true
status: stable
---
# Startup Investment Attribution - Understand Outreach Effort's Effect
**This sample notebook aims to show the application of using SynapseML's DoubleMLEstimator for inferring causality using observational data.**
A startup that sells software would like to know whether its outreach efforts were successful in attracting new customers or boosting consumption among existing customers. In other words, they would like to learn the treatment effect of each investment on customers' software usage.
In an ideal world, the startup would run several randomized experiments where each customer would receive a random assortment of investments. However, this can be logistically prohibitive or strategically unsound: the startup might not have the resources to design such experiments or they might not want to risk losing out on big opportunities due to lack of incentives.
In this customer scenario walkthrough, we show how SynapseML causal package can use historical investment data to learn the investment effect.
## Background
In this scenario, a startup that sells software provides discounts incentives to its customer. A customer might be given or not.
The startup has historical data on these investments for 2,000 customers, as well as how much revenue these customers generated in the year after the investments were made. They would like to use this data to learn the optimal incentive policy for each existing or new customer in order to maximize the return on investment (ROI).
The startup faces a challenge: the dataset is biased because historically the larger customers received the most incentives. Thus, they need a causal model that can remove the bias.
## Data
The data* contains ~2,000 customers and is comprised of:
* Customer features: details about the industry, size, revenue, and technology profile of each customer.
* Interventions: information about which incentive was given to a customer.
* Outcome: the amount of product the customer bought in the year after the incentives were given.
| Feature Name | Type | Details |
|-----------------|------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Global Flag | W | whether the customer has global offices |
| Major Flag | W | whether the customer is a large consumer in their industry (as opposed to SMC - Small Medium Corporation - or SMB - Small Medium Business) |
| SMC Flag | W | whether the customer is a Small Medium Corporation (SMC, as opposed to major and SMB) |
| Commercial Flag | W | whether the customer's business is commercial (as opposed to public secor) |
| IT Spend | W | $ spent on IT-related purchases |
| Employee Count | W | number of employees |
| PC Count | W | number of PCs used by the customer | |
| Discount | T | whether the customer was given a discount (binary) |
| Revenue | Y | $ Revenue from customer given by the amount of software purchased |
```python
# Import the sample multi-attribution data
data = (
spark.read.format("csv")
.option("inferSchema", True)
.option("header", True)
.load(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/multi_attribution_sample.csv"
)
)
```
## Get Causal Effects with SynapseML DoubleMLEstimator
```python
from synapse.ml.causal import *
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.regression import LinearRegression
treatmentColumn = "Discount"
outcomeColumn = "Revenue"
dml = (
DoubleMLEstimator()
.setTreatmentModel(LogisticRegression())
.setTreatmentCol(treatmentColumn)
.setOutcomeModel(LinearRegression())
.setOutcomeCol(outcomeColumn)
.setMaxIter(20)
)
model = dml.fit(data)
```
```python
# Get average treatment effect, it returns a numeric value, e.g. 5166.78324
# It means, on average, customers who received a discount spent $5,166 more on software
model.getAvgTreatmentEffect()
```
```python
# Get treatment effect's confidence interval, e.g. [4765.826181160708, 5371.2817538168965]
model.getConfidenceInterval()
```

Просмотреть файл

@ -0,0 +1,143 @@
---
title: Quickstart - Measure Heterogeneous Effects
hide_title: true
status: stable
---
# Startup Investment Attribution - Understand Outreach Effort's Effect"
**This sample notebook aims to show the application of using SynapseML's DoubleMLEstimator for inferring causality using observational data.**
A startup that sells software would like to know whether its outreach efforts were successful in attracting new customers or boosting consumption among existing customers. In other words, they would like to learn the treatment effect of each investment on customers' software usage.
In an ideal world, the startup would run several randomized experiments where each customer would receive a random assortment of investments. However, this can be logistically prohibitive or strategically unsound: the startup might not have the resources to design such experiments or they might not want to risk losing out on big opportunities due to lack of incentives.
In this customer scenario walkthrough, we show how SynapseML causal package can use historical investment data to learn the investment effect.
## Background
In this scenario, a startup that sells software provides discounts incentives to its customer. A customer might be given or not.
The startup has historical data on these investments for 2,000 customers, as well as how much revenue these customers generated in the year after the investments were made. They would like to use this data to learn the optimal incentive policy for each existing or new customer in order to maximize the return on investment (ROI).
The startup faces a challenge: the dataset is biased because historically the larger customers received the most incentives. Thus, they need a causal model that can remove the bias.
## Data
The data* contains ~2,000 customers and is comprised of:
* Customer features: details about the industry, size, revenue, and technology profile of each customer.
* Interventions: information about which incentive was given to a customer.
* Outcome: the amount of product the customer bought in the year after the incentives were given.
| Feature Name | Type | Details |
|-----------------|------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Global Flag | W | whether the customer has global offices |
| Major Flag | W | whether the customer is a large consumer in their industry (as opposed to SMC - Small Medium Corporation - or SMB - Small Medium Business) |
| SMC Flag | W | whether the customer is a Small Medium Corporation (SMC, as opposed to major and SMB) |
| Commercial Flag | W | whether the customer's business is commercial (as opposed to public secor) |
| IT Spend | W | dollar spent on IT-related purchases |
| Employee Count | W | number of employees |
| PC Count | W | number of PCs used by the customer | |
| Size | X | customer's size given by their yearly total revenue | |
| Discount | T | whether the customer was given a discount (binary) |
| Revenue | Y | $ Revenue from customer given by the amount of software purchased |
```python
# Import the sample multi-attribution data
data = (
spark.read.format("csv")
.option("inferSchema", True)
.option("header", True)
.load(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/multi_attribution_sample.csv"
)
)
```
# Get Heterogenous Causal Effects with SynapseML OrthoDML Estimator
```python
data.columns
```
```python
from synapse.ml.causal import *
from pyspark.ml import Pipeline
from synapse.ml.causal import *
from pyspark.ml.feature import VectorAssembler
from pyspark.sql.types import IntegerType, BooleanType, DateType, DoubleType
import matplotlib.pyplot as plt
```
```python
treatmentColumn = "Discount"
outcomeColumn = "Revenue"
confounderColumns = [
"Global Flag",
"Major Flag",
"SMC Flag",
"Commercial Flag",
"Employee Count",
"PC Count",
]
heteroColumns = ["Size", "IT Spend"]
heterogeneityVecCol = "XVec"
confounderVecCol = "XWVec"
data = data.withColumn(treatmentColumn, data.Discount.cast(DoubleType()))
heterogeneityVector = VectorAssembler(
inputCols=heteroColumns, outputCol=heterogeneityVecCol
)
confounderVector = VectorAssembler(
inputCols=confounderColumns, outputCol=confounderVecCol
)
pipeline = Pipeline(stages=[heterogeneityVector, confounderVector])
ppfit = pipeline.fit(data).transform(data)
```
```python
### Create the Ortho Forest DML Estimator Model
mtTransform = (
OrthoForestDMLEstimator()
.setNumTrees(100)
.setTreatmentCol(treatmentColumn)
.setOutcomeCol(outcomeColumn)
.setHeterogeneityVecCol(heterogeneityVecCol)
.setConfounderVecCol(confounderVecCol)
.setMaxDepth(10)
.setMinSamplesLeaf(10)
)
```
```python
### Fit the model for the data
finalModel = mtTransform.fit(ppfit)
```
```python
### Transform the input data to see the model in action
finalPred = finalModel.transform(ppfit)
```
```python
### Get the data in Pandas
pd_final = finalPred.toPandas()
```
```python
### Plot and see the non-linear effects
plt.scatter("Size", mtTransform.getOutputCol(), data=pd_final)
```

Просмотреть файл

@ -0,0 +1,231 @@
---
title: Quickstart - Synthetic difference in differences
hide_title: true
status: stable
---
# Scalable Synthetic Difference in Differences
This sample notebook aims to show readers how to use SynapseML's `DiffInDiffEstimator`, `SyntheticControlEstimator` and `SyntheticDiffInDiffEstimator` to estimate the causal effect of a treatment on a particular outcome.
In this sample notebook, we will use the California smoking cessation program example to demonstrate usage of the SyntheticDiffInDiff Estimator. The goal of the analysis is to estimate the effect of increased cigarette taxes on smoking in California.
```python
from pyspark.sql.types import *
from synapse.ml.causal import (
DiffInDiffEstimator,
SyntheticControlEstimator,
SyntheticDiffInDiffEstimator,
)
from matplotlib import pyplot as plt
from matplotlib import style
import pandas as pd
import numpy as np
spark.sparkContext.setLogLevel("INFO")
style.use("ggplot")
```
We will select 5 columns from the dataset: state, year, cigsale, california, after_treatment.
```python
df = (
spark.read.option("header", True)
.option("inferSchema", True)
.csv("wasbs://publicwasb@mmlspark.blob.core.windows.net/smoking.csv")
.select("state", "year", "cigsale", "california", "after_treatment")
)
display(df)
```
First, we use the `DiffInDiffEstimator` to estimate the causal effect with regular difference in differences method. We set the treatment indicator column to "california", set post-treatment indicator column to "after_treatment", and set the outcome column to "cigsale".
```python
estimator1 = DiffInDiffEstimator(
treatmentCol="california", postTreatmentCol="after_treatment", outcomeCol="cigsale"
)
model1 = estimator1.fit(df)
print("[Diff in Diff] treatment effect: {}".format(model1.treatmentEffect))
print("[Diff in Diff] standard error: {}".format(model1.standardError))
```
The treatment effect estimated by difference in differences should be -27.349.
Next, we use `SyntheticControlEstimator` to synthesize a control unit and use the synthetic control to estimate the causal effect. To create the synthetic control unit, we need to set the column which indicates the time when each outcome is measured, and the column which indicates the unit for which the outcome is measured.
```python
estimator2 = SyntheticControlEstimator(
timeCol="year",
unitCol="state",
treatmentCol="california",
postTreatmentCol="after_treatment",
outcomeCol="cigsale",
maxIter=5000,
numIterNoChange=50,
tol=1e-4,
stepSize=1.0,
)
model2 = estimator2.fit(df)
print("[Synthetic Control] treatment effect: {}".format(model2.treatmentEffect))
print("[Synthetic Control] standard error: {}".format(model2.standardError))
```
The treatment effect estimated by synthetic control should be about -19.354.
Internally, a constrained least square regression is used to solve the unit weights for the synthetic control, and we can plot the loss history.
```python
lossHistory = pd.Series(np.array(model2.lossHistoryUnitWeights))
plt.plot(lossHistory[2000:])
plt.title("loss history - unit weights")
plt.xlabel("Iteration")
plt.ylabel("Loss")
plt.show()
print("Mimimal loss: {}".format(lossHistory.min()))
```
We can also visualize the synthetic control and compare it with the treated unit.
```python
sc_weights = model2.unitWeights.toPandas().set_index("state")
pdf = df.toPandas()
sc = (
pdf.query("~california")
.pivot(index="year", columns="state", values="cigsale")
.dot(sc_weights)
)
plt.plot(sc, label="Synthetic Control")
plt.plot(sc.index, pdf.query("california")["cigsale"], label="California", color="C1")
plt.title("Synthetic Control Estimation")
plt.ylabel("Cigarette Sales")
plt.vlines(
x=1988,
ymin=40,
ymax=140,
line,
lw=2,
label="Proposition 99",
color="black",
)
plt.legend()
```
Lastly, we use `SyntheticDiffInDiffEstimator` to estimate the causal effect.
```python
estimator3 = SyntheticDiffInDiffEstimator(
timeCol="year",
unitCol="state",
treatmentCol="california",
postTreatmentCol="after_treatment",
outcomeCol="cigsale",
maxIter=5000,
numIterNoChange=50,
tol=1e-4,
stepSize=1.0,
)
model3 = estimator3.fit(df)
print("[Synthetic Diff in Diff] treatment effect: {}".format(model3.treatmentEffect))
print("[Synthetic Diff in Diff] standard error: {}".format(model3.standardError))
```
The treatment effect estimated by synthetic control should be about -15.554.
Again, we can plot the loss history from the optimizer used to solve the unit weights and the time weights.
```python
lossHistory = pd.Series(np.array(model3.lossHistoryUnitWeights))
plt.plot(lossHistory[1000:])
plt.title("loss history - unit weights")
plt.xlabel("Iteration")
plt.ylabel("Loss")
plt.show()
print("Mimimal loss: {}".format(lossHistory.min()))
```
```python
lossHistory = pd.Series(np.array(model3.lossHistoryTimeWeights))
plt.plot(lossHistory[1000:])
plt.title("loss history - time weights")
plt.xlabel("Iteration")
plt.ylabel("Loss")
plt.show()
print("Mimimal loss: {}".format(lossHistory.min()))
```
Here we plot the synthetic diff in diff estimate together with the time weights.
```python
unit_weights = model3.unitWeights.toPandas().set_index("state")
unit_intercept = model3.unitIntercept
time_weights = model3.timeWeights.toPandas().set_index("year")
time_intercept = model3.timeIntercept
pdf = df.toPandas()
pivot_df_control = pdf.query("~california").pivot(
index="year", columns="state", values="cigsale"
)
pivot_df_treat = pdf.query("california").pivot(
index="year", columns="state", values="cigsale"
)
sc_did = pivot_df_control.values @ unit_weights.values
treated_mean = pivot_df_treat.mean(axis=1)
```
```python
fig, (ax1, ax2) = plt.subplots(
2, 1, figsize=(15, 8), sharex=True, gridspec_kw={"height_ratios": [3, 1]}
)
fig.suptitle("Synthetic Diff in Diff Estimation")
ax1.plot(
pivot_df_control.mean(axis=1), lw=3, color="C1", ls="dashed", label="Control Avg."
)
ax1.plot(treated_mean, lw=3, color="C0", label="California")
ax1.plot(
pivot_df_control.index,
sc_did,
label="Synthetic Control (SDID)",
color="C1",
alpha=0.8,
)
ax1.set_ylabel("Cigarette Sales")
ax1.vlines(
1989,
treated_mean.min(),
treated_mean.max(),
color="black",
ls="dotted",
label="Prop. 99",
)
ax1.legend()
ax2.bar(time_weights.index, time_weights["value"], color="skyblue")
ax2.set_ylabel("Time Weights")
ax2.set_xlabel("Time")
ax2.vlines(1989, 0, 1, color="black", ls="dotted")
```

Просмотреть файл

@ -0,0 +1,216 @@
---
title: Quickstart - SparkML vs SynapseML
hide_title: true
status: stable
---
# Classification - SparkML vs SynapseML
<p><img src="https://images-na.ssl-images-amazon.com/images/G/01/img16/books/bookstore/landing-page/1000638_books_landing-page_bookstore-photo-01.jpg" title="Image from https://images-na.ssl-images-amazon.com/images/G/01/img16/books/bookstore/landing-page/1000638_books_landing-page_bookstore-photo-01.jpg" /><br /></p>
In this article, you perform the same classification task in two
different ways: once using plain **`pyspark`** and once using the
**`synapseml`** library. The two methods yield the same performance,
but highlights the simplicity of using `synapseml` compared to `pyspark`.
The task is to predict whether a customer's review of a book sold on
Amazon is good (rating > 3) or bad based on the text of the review. You
accomplish it by training LogisticRegression learners with different
hyperparameters and choosing the best model.
## Setup
Import necessary Python libraries and get a spark session.
## Read the data
Download and read in the data.
```python
rawData = spark.read.parquet(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/BookReviewsFromAmazon10K.parquet"
)
rawData.show(5)
```
## Extract features and process data
Real data is more complex than the above dataset. It's common
for a dataset to have features of multiple types, such as text, numeric, and
categorical. To illustrate how difficult it's to work with these
datasets, add two numerical features to the dataset: the **word count** of the review and the **mean word length**.
```python
from pyspark.sql.functions import udf
from pyspark.sql.types import *
def wordCount(s):
return len(s.split())
def wordLength(s):
import numpy as np
ss = [len(w) for w in s.split()]
return round(float(np.mean(ss)), 2)
wordLengthUDF = udf(wordLength, DoubleType())
wordCountUDF = udf(wordCount, IntegerType())
```
```python
from synapse.ml.stages import UDFTransformer
wordLength = "wordLength"
wordCount = "wordCount"
wordLengthTransformer = UDFTransformer(
inputCol="text", outputCol=wordLength, udf=wordLengthUDF
)
wordCountTransformer = UDFTransformer(
inputCol="text", outputCol=wordCount, udf=wordCountUDF
)
```
```python
from pyspark.ml import Pipeline
data = (
Pipeline(stages=[wordLengthTransformer, wordCountTransformer])
.fit(rawData)
.transform(rawData)
.withColumn("label", rawData["rating"] > 3)
.drop("rating")
)
```
```python
data.show(5)
```
## Classify using pyspark
To choose the best LogisticRegression classifier using the `pyspark`
library, we need to *explicitly* perform the following steps:
1. Process the features:
- Tokenize the text column
- Hash the tokenized column into a vector using hashing
- Merge the numeric features with the vector
2. Process the label column: cast it into the proper type.
3. Train multiple LogisticRegression algorithms on the `train` dataset
with different hyperparameters
4. Compute the area under the ROC curve for each of the trained models
and select the model with the highest metric as computed on the
`test` dataset
5. Evaluate the best model on the `validation` set
```python
from pyspark.ml.feature import Tokenizer, HashingTF
from pyspark.ml.feature import VectorAssembler
# Featurize text column
tokenizer = Tokenizer(inputCol="text", outputCol="tokenizedText")
numFeatures = 10000
hashingScheme = HashingTF(
inputCol="tokenizedText", outputCol="TextFeatures", numFeatures=numFeatures
)
tokenizedData = tokenizer.transform(data)
featurizedData = hashingScheme.transform(tokenizedData)
# Merge text and numeric features in one feature column
featureColumnsArray = ["TextFeatures", "wordCount", "wordLength"]
assembler = VectorAssembler(inputCols=featureColumnsArray, outputCol="features")
assembledData = assembler.transform(featurizedData)
# Select only columns of interest
# Convert rating column from boolean to int
processedData = assembledData.select("label", "features").withColumn(
"label", assembledData.label.cast(IntegerType())
)
```
```python
from pyspark.ml.evaluation import BinaryClassificationEvaluator
from pyspark.ml.classification import LogisticRegression
# Prepare data for learning
train, test, validation = processedData.randomSplit([0.60, 0.20, 0.20], seed=123)
# Train the models on the 'train' data
lrHyperParams = [0.05, 0.1, 0.2, 0.4]
logisticRegressions = [
LogisticRegression(regParam=hyperParam) for hyperParam in lrHyperParams
]
evaluator = BinaryClassificationEvaluator(
rawPredictionCol="rawPrediction", metricName="areaUnderROC"
)
metrics = []
models = []
# Select the best model
for learner in logisticRegressions:
model = learner.fit(train)
models.append(model)
scoredData = model.transform(test)
metrics.append(evaluator.evaluate(scoredData))
bestMetric = max(metrics)
bestModel = models[metrics.index(bestMetric)]
# Get AUC on the validation dataset
scoredVal = bestModel.transform(validation)
print(evaluator.evaluate(scoredVal))
```
## Classify using SynapseML
The steps needed with `synapseml` are simpler:
1. The **`TrainClassifier`** Estimator featurizes the data internally,
as long as the columns selected in the `train`, `test`, `validation`
dataset represent the features
2. The **`FindBestModel`** Estimator finds the best model from a pool of
trained models by finding the model that performs best on the `test`
dataset given the specified metric
3. The **`ComputeModelStatistics`** Transformer computes the different
metrics on a scored dataset (in our case, the `validation` dataset)
at the same time
```python
from synapse.ml.train import TrainClassifier, ComputeModelStatistics
from synapse.ml.automl import FindBestModel
# Prepare data for learning
train, test, validation = data.randomSplit([0.60, 0.20, 0.20], seed=123)
# Train the models on the 'train' data
lrHyperParams = [0.05, 0.1, 0.2, 0.4]
logisticRegressions = [
LogisticRegression(regParam=hyperParam) for hyperParam in lrHyperParams
]
lrmodels = [
TrainClassifier(model=lrm, labelCol="label", numFeatures=10000).fit(train)
for lrm in logisticRegressions
]
# Select the best model
bestModel = FindBestModel(evaluationMetric="AUC", models=lrmodels).fit(test)
# Get AUC on the validation dataset
predictions = bestModel.transform(validation)
metrics = ComputeModelStatistics().transform(predictions)
print(
"Best model's AUC on validation set = "
+ "{0:.2f}%".format(metrics.first()["AUC"] * 100)
)
```

Просмотреть файл

@ -0,0 +1,55 @@
---
title: Quickstart - Train Classifier
hide_title: true
status: stable
---
## Classification - Adult Census
In this example, we try to predict incomes from the *Adult Census* dataset.
First, we import the packages (use `help(synapse)` to view contents),
Now let's read the data and split it to train and test sets:
```python
data = spark.read.parquet(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/AdultCensusIncome.parquet"
)
data = data.select(["education", "marital-status", "hours-per-week", "income"])
train, test = data.randomSplit([0.75, 0.25], seed=123)
train.limit(10).toPandas()
```
`TrainClassifier` can be used to initialize and fit a model, it wraps SparkML classifiers.
You can use `help(synapse.ml.train.TrainClassifier)` to view the different parameters.
Note that it implicitly converts the data into the format expected by the algorithm: tokenize
and hash strings, one-hot encodes categorical variables, assembles the features into a vector
and so on. The parameter `numFeatures` controls the number of hashed features.
```python
from synapse.ml.train import TrainClassifier
from pyspark.ml.classification import LogisticRegression
model = TrainClassifier(
model=LogisticRegression(), labelCol="income", numFeatures=256
).fit(train)
```
Finally, we save the model so it can be used in a scoring program.
```python
from synapse.ml.core.platform import *
if running_on_synapse() or running_on_synapse_internal():
model.write().overwrite().save("Files/models/AdultCensus.mml")
elif running_on_databricks():
model.write().overwrite().save("dbfs:/AdultCensus.mml")
elif running_on_binder():
model.write().overwrite().save("/tmp/AdultCensus.mml")
else:
print(f"{current_platform()} platform not supported")
```

Просмотреть файл

@ -0,0 +1,82 @@
---
title: Quickstart - Vowpal Wabbit on Tabular Data
hide_title: true
status: stable
---
# Classification - Adult Census using Vowpal Wabbit in SynapseML
In this example, we predict incomes from the *Adult Census* dataset using Vowpal Wabbit (VW) classifier in SynapseML.
First, we read the data and split it into train and test sets as in this [example](https://github.com/Microsoft/SynapseML/blob/master/notebooks/Classification%20-%20Adult%20Census.ipynb
).
```python
data = spark.read.parquet(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/AdultCensusIncome.parquet"
)
data = data.select(["education", "marital-status", "hours-per-week", "income"])
train, test = data.randomSplit([0.75, 0.25], seed=123)
train.limit(10).toPandas()
```
Next, we define a pipeline that includes feature engineering and training of a VW classifier. We use a featurizer provided by VW that hashes the feature names.
Note that VW expects classification labels being -1 or 1. Thus, the income category is mapped to this space before feeding training data into the pipeline.
```python
from pyspark.sql.functions import when, col
from pyspark.ml import Pipeline
from synapse.ml.vw import VowpalWabbitFeaturizer, VowpalWabbitClassifier
# Define classification label
train = (
train.withColumn("label", when(col("income").contains("<"), 0.0).otherwise(1.0))
.repartition(1)
.cache()
)
print(train.count())
# Specify featurizer
vw_featurizer = VowpalWabbitFeaturizer(
inputCols=["education", "marital-status", "hours-per-week"], outputCol="features"
)
# Define VW classification model
args = "--loss_function=logistic --quiet --holdout_off"
vw_model = VowpalWabbitClassifier(
featuresCol="features", labelCol="label", passThroughArgs=args, numPasses=10
)
# Create a pipeline
vw_pipeline = Pipeline(stages=[vw_featurizer, vw_model])
```
Then, we are ready to train the model by fitting the pipeline with the training data.
```python
# Train the model
vw_trained = vw_pipeline.fit(train)
```
After the model is trained, we apply it to predict the income of each sample in the test set.
```python
# Making predictions
test = test.withColumn("label", when(col("income").contains("<"), 0.0).otherwise(1.0))
prediction = vw_trained.transform(test)
prediction.limit(10).toPandas()
```
Finally, we evaluate the model performance using `ComputeModelStatistics` function which will compute confusion matrix, accuracy, precision, recall, and AUC by default for classification models.
```python
from synapse.ml.train import ComputeModelStatistics
metrics = ComputeModelStatistics(
evaluationMetric="classification", labelCol="label", scoredLabelsCol="prediction"
).transform(prediction)
metrics.toPandas()
```

Просмотреть файл

@ -0,0 +1,213 @@
---
title: Quickstart - Vowpal Wabbit on Text Data
hide_title: true
status: stable
---
# Twitter Sentiment Classification using Vowpal Wabbit in SynapseML
In this example, we show how to build a sentiment classification model using Vowpal Wabbit (VW) in SynapseML. The data set we use to train and evaluate the model is [Sentiment140](http://help.sentiment140.com/for-students/?source=post_page---------------------------) twitter data. First, we import a few packages that we need.
```python
import os
import urllib.request
import pandas as pd
from zipfile import ZipFile
from pyspark.sql.functions import udf, rand, when, col
from pyspark.ml import Pipeline
from pyspark.ml.feature import CountVectorizer, RegexTokenizer
from synapse.ml.vw import VowpalWabbitClassifier
from synapse.ml.train import ComputeModelStatistics
from pyspark.mllib.evaluation import BinaryClassificationMetrics
import matplotlib.pyplot as plt
```
```python
# URL to download the sentiment140 dataset and data file names
DATA_URL = "https://mmlspark.blob.core.windows.net/publicwasb/twittersentimenttrainingandtestdata.zip"
TRAIN_FILENAME = "training.1600000.processed.noemoticon.csv"
TEST_FILENAME = "testdata.manual.2009.06.14.csv"
# Folder for storing the downloaded data
DATA_FOLDER = "data"
# Data column names
COL_NAMES = ["label", "id", "date", "query_string", "user", "text"]
# Text encoding type of the data
ENCODING = "iso-8859-1"
```
## Data Preparation
We use [Sentiment140](http://help.sentiment140.com/for-students/?source=post_page---------------------------) twitter data which originated from a Stanford research project to train and evaluate VW classification model on Spark. The same dataset has been used in a previous [Azure Machine Learning sample](https://github.com/Azure-Samples/MachineLearningSamples-TwitterSentimentPrediction) on twitter sentiment prediction. Before using the data to build the classification model, we first download and clean up the data.
```python
def download_data(url, data_folder=DATA_FOLDER, filename="downloaded_data.zip"):
"""Download and extract data from url"""
data_dir = "./" + DATA_FOLDER
if not os.path.exists(data_dir):
os.makedirs(data_dir)
downloaded_filepath = os.path.join(data_dir, filename)
print("Downloading data...")
urllib.request.urlretrieve(url, downloaded_filepath)
print("Extracting data...")
zipfile = ZipFile(downloaded_filepath)
zipfile.extractall(data_dir)
zipfile.close()
print("Finished data downloading and extraction.")
download_data(DATA_URL)
```
Let's read the training data into a Spark DataFrame.
```python
df_train = pd.read_csv(
os.path.join(".", DATA_FOLDER, TRAIN_FILENAME),
header=None,
names=COL_NAMES,
encoding=ENCODING,
)
df_train = spark.createDataFrame(df_train, verifySchema=False)
```
We can take a look at the training data and check how many samples it has. We should see that there are 1.6 million samples in the training data. There are 6 fields in the training data:
* label: the sentiment of the tweet (0.0 = negative, 2.0 = neutral, 4.0 = positive)
* id: the id of the tweet
* date: the date of the tweet
* query_string: The query used to extract the data. If there is no query, then this value is NO_QUERY.
* user: the user that tweeted
* text: the text of the tweet
```python
df_train.limit(10).toPandas()
```
```python
print("Number of training samples: ", df_train.count())
```
Before training the model, we randomly permute the data to mix negative and positive samples. This is helpful for properly training online learning algorithms like VW. To speed up model training, we use a subset of the data to train the model. If training with the full training set, typically you will see better performance of the model on the test set.
```python
df_train = (
df_train.orderBy(rand())
.limit(100000)
.withColumn("label", when(col("label") > 0, 1.0).otherwise(0.0))
.select(["label", "text"])
)
```
## VW SynapseML Training
Now we are ready to define a pipeline which consists of feature engineering steps and the VW model.
```python
# Specify featurizers
tokenizer = RegexTokenizer(inputCol="text", outputCol="words")
count_vectorizer = CountVectorizer(inputCol="words", outputCol="features")
# Define VW classification model
args = "--loss_function=logistic --quiet --holdout_off"
vw_model = VowpalWabbitClassifier(
featuresCol="features", labelCol="label", passThroughArgs=args, numPasses=10
)
# Create a pipeline
vw_pipeline = Pipeline(stages=[tokenizer, count_vectorizer, vw_model])
```
With the prepared training data, we can fit the model pipeline as follows.
```python
vw_trained = vw_pipeline.fit(df_train)
```
## Model Performance Evaluation
After training the model, we evaluate the performance of the model using the test set which is manually labeled.
```python
df_test = pd.read_csv(
os.path.join(".", DATA_FOLDER, TEST_FILENAME),
header=None,
names=COL_NAMES,
encoding=ENCODING,
)
df_test = spark.createDataFrame(df_test, verifySchema=False)
```
We only use positive and negative tweets in the test set to evaluate the model, since our model is a binary classification model trained with only positive and negative tweets.
```python
print("Number of test samples before filtering: ", df_test.count())
df_test = (
df_test.filter(col("label") != 2.0)
.withColumn("label", when(col("label") > 0, 1.0).otherwise(0.0))
.select(["label", "text"])
)
print("Number of test samples after filtering: ", df_test.count())
```
```python
# Make predictions
predictions = vw_trained.transform(df_test)
predictions.limit(10).toPandas()
```
```python
# Compute model performance metrics
metrics = ComputeModelStatistics(
evaluationMetric="classification", labelCol="label", scoredLabelsCol="prediction"
).transform(predictions)
metrics.toPandas()
```
```python
# Utility class for plotting ROC curve (https://stackoverflow.com/questions/52847408/pyspark-extract-roc-curve)
class CurveMetrics(BinaryClassificationMetrics):
def __init__(self, *args):
super(CurveMetrics, self).__init__(*args)
def get_curve(self, method):
rdd = getattr(self._java_model, method)().toJavaRDD()
points = []
for row in rdd.collect():
points += [(float(row._1()), float(row._2()))]
return points
preds = predictions.select("label", "probability").rdd.map(
lambda row: (float(row["probability"][1]), float(row["label"]))
)
roc_points = CurveMetrics(preds).get_curve("roc")
# Plot ROC curve
fig = plt.figure()
x_val = [x[0] for x in roc_points]
y_val = [x[1] for x in roc_points]
plt.title("ROC curve on test set")
plt.xlabel("False positive rate")
plt.ylabel("True positive rate")
plt.plot(x_val, y_val)
# Use display() if you're on Azure Databricks or you can do plt.show()
plt.show()
```
You should see an ROC curve like the following after the above cell is executed.
<img src="https://user-images.githubusercontent.com/20047467/69376052-9b0a3380-0c77-11ea-9266-11aa44350cbe.png" width="400" height="320" />

Просмотреть файл

@ -0,0 +1,76 @@
---
title: Distributed Training
sidebar_label: Distributed Training
---
### Why Simple Deep Learning
Creating a Spark-compatible deep learning system can be challenging for users who may not have a
thorough understanding of deep learning and distributed systems. Additionally, writing custom deep learning
scripts may be a cumbersome and time-consuming task.
SynapseML aims to simplify this process by building on top of the [Horovod](https://github.com/horovod/horovod) Estimator, a general-purpose
distributed deep learning model that is compatible with SparkML, and [Pytorch-lightning](https://github.com/Lightning-AI/lightning),
a lightweight wrapper around the popular PyTorch deep learning framework.
SynapseML's simple deep learning toolkit makes it easy to use modern deep learning methods in Apache Spark.
By providing a collection of Estimators, SynapseML enables users to perform distributed transfer learning on
spark clusters to solve custom machine learning tasks without requiring in-depth domain expertise.
Whether you're a data scientist, data engineer, or business analyst this project aims to make modern deep-learning methods easy to use for new domain-specific problems.
### SynapseML's Simple DNN
SynapseML goes beyond the limited support for deep networks in SparkML and provides out-of-the-box solutions for various common scenarios:
- Visual Classification: Users can apply transfer learning for image classification tasks, using pretrained models and fine-tuning them to solve custom classification problems.
- Text Classification: SynapseML simplifies the process of implementing natural language processing tasks such as sentiment analysis, text classification, and language modeling by providing prebuilt models and tools.
- And more coming soon
### Why Horovod
Horovod is a distributed deep learning framework developed by Uber, which has become popular for its ability to scale
deep learning tasks across multiple GPUs and compute nodes efficiently. It's designed to work with TensorFlow, Keras, PyTorch, and Apache MXNet.
- Scalability: Horovod uses efficient communication algorithms like ring-allreduce and hierarchical all reduce, which allow it to scale the training process across multiple GPUs and nodes without significant performance degradation.
- Easy Integration: Horovod can be easily integrated into existing deep learning codebases with minimal changes, making it a popular choice for distributed training.
- Fault Tolerance: Horovod provides fault tolerance features like elastic training. It can dynamically adapt to changes in the number of workers or recover from failures.
- Community Support: Horovod has an active community and is widely used in the industry, which ensures that the framework is continually updated and improved.
### Why Pytorch Lightning
PyTorch Lightning is a lightweight wrapper around the popular PyTorch deep learning framework, designed to make it
easier to write clean, modular, and scalable deep learning code. PyTorch Lightning has several advantages that
make it an excellent choice for SynapseML's Simple Deep Learning:
- Code Organization: PyTorch Lightning promotes a clean and organized code structure by separating the research code from the engineering code. This property makes it easier to maintain, debug, and share deep learning models.
- Flexibility: PyTorch Lightning retains the flexibility and expressiveness of PyTorch while adding useful abstractions to simplify the training loop and other boilerplate code.
- Built-in Best Practices: PyTorch Lightning incorporates many best practices for deep learning, such as automatic optimization, gradient clipping, and learning rate scheduling, making it easier for users to achieve optimal performance.
- Compatibility: PyTorch Lightning is compatible with a wide range of popular tools and frameworks, including Horovod, which allows users to easily use distributed training capabilities.
- Rapid Development: With PyTorch Lightning, users can quickly experiment with different model architectures and training strategies without worrying about low-level implementation details.
### Sample usage with DeepVisionClassifier
DeepVisionClassifier incorporates all models supported by [torchvision](https://github.com/pytorch/vision).
:::note
The current version is based on pytorch_lightning v1.5.0 and torchvision v0.12.0
:::
By providing a spark dataframe that contains an 'imageCol' and 'labelCol', you could directly apply 'transform' function
on it with DeepVisionClassifier.
```python
train_df = spark.createDataframe([
("PATH_TO_IMAGE_1.jpg", 1),
("PATH_TO_IMAGE_2.jpg", 2)
], ["image", "label"])
deep_vision_classifier = DeepVisionClassifier(
backbone="resnet50", # Put your backbone here
store=store, # Corresponding store
callbacks=callbacks, # Optional callbacks
num_classes=17,
batch_size=16,
epochs=epochs,
validation=0.1,
)
deep_vision_model = deep_vision_classifier.fit(train_df)
```
DeepVisionClassifier does distributed-training on spark with Horovod under the hood, after this fitting process it returns
a DeepVisionModel. With this code you could use the model for inference directly:
```python
pred_df = deep_vision_model.transform(test_df)
```
## Examples
- [Quickstart - Fine-tune a Text Classifier](../Quickstart%20-%20Fine-tune%20a%20Text%20Classifier)
- [Quickstart - Fine-tune a Vision Classifier](../Quickstart%20-%20Fine-tune%20a%20Vision%20Classifier)

Просмотреть файл

@ -0,0 +1,42 @@
---
title: Getting Started
sidebar_label: Getting Started
---
:::note
This is a sample with databricks 10.4.x-gpu-ml-scala2.12 runtime
:::
## 1. Reinstall horovod using our prepared script
We build on top of torchvision, horovod and pytorch_lightning, so we need to reinstall horovod by building on specific versions of those packages.
Download our [horovod installation script](https://mmlspark.blob.core.windows.net/publicwasb/horovod_installation.sh) and upload
it to databricks dbfs.
Add the path of this script to `Init Scripts` section when configuring the spark cluster.
Restarting the cluster automatically installs horovod v0.25.0 with pytorch_lightning v1.5.0 and torchvision v0.12.0.
## 2. Install SynapseML Deep Learning Component
You could install the single synapseml-deep-learning wheel package to get the full functionality of deep vision classification.
Run the following command:
```powershell
pip install synapseml==1.0.5
```
An alternative is installing the SynapseML jar package in library management section, by adding:
```
Coordinate: com.microsoft.azure:synapseml_2.12:1.0.5
Repository: https://mmlspark.azureedge.net/maven
```
:::note
If you install the jar package, follow the first two cells of this [sample](../Quickstart%20-%20Fine-tune%20a%20Vision%20Classifier#environment-setup----reinstall-horovod-based-on-new-version-of-pytorch)
to ensure horovod recognizes SynapseML.
:::
## 3. Try our sample notebook
You could follow the rest of this [sample](../Quickstart%20-%20Fine-Tune a Vision Classifier) and have a try on your own dataset.
Supported models (`backbone` parameter for `DeepVisionClassifer`) should be string format of [Torchvision-supported models](https://github.com/pytorch/vision/blob/v0.12.0/torchvision/models/__init__.py);
You could also check by running `backbone in torchvision.models.__dict__`.

Просмотреть файл

@ -0,0 +1,108 @@
---
title: ONNX
hide_title: true
sidebar_label: ONNX
description: Learn how to use the ONNX model transformer to run inference for an ONNX model on Spark.
---
# ONNX model inferencing on Spark
## ONNX
[ONNX](https://onnx.ai/) is an open format to represent both deep learning and traditional machine learning models. With ONNX, AI developers can more easily move models between state-of-the-art tools and choose the combination that is best for them.
SynapseML now includes a Spark transformer to bring a trained ONNX model to Apache Spark, so you can run inference on your data with Spark's large-scale data processing power.
## ONNXHub
Although you can use your own local model, many popular existing models are provided through the ONNXHub. You can use
a model's ONNXHub name (for example "MNIST") and download the bytes of the model, and some metadata about the model. You can also list
available models, optionally filtering by name or tags.
```scala
// List models
val hub = new ONNXHub()
val models = hub.listModels(model = Some("mnist"), tags = Some(Seq("vision")))
// Retrieve and transform with a model
val info = hub.getModelInfo("resnet50")
val bytes = hub.load(name)
val model = new ONNXModel()
.setModelPayload(bytes)
.setFeedDict(Map("data" -> "features"))
.setFetchDict(Map("rawPrediction" -> "resnetv24_dense0_fwd"))
.setSoftMaxDict(Map("rawPrediction" -> "probability"))
.setArgMaxDict(Map("rawPrediction" -> "prediction"))
.setMiniBatchSize(1)
val (probability, _) = model.transform({YOUR_DATAFRAME})
.select("probability", "prediction")
.as[(Vector, Double)]
.head
```
## Usage
1. Create a `com.microsoft.azure.synapse.ml.onnx.ONNXModel` object and use `setModelLocation` or `setModelPayload` to load the ONNX model.
For example:
```scala
val onnx = new ONNXModel().setModelLocation("/path/to/model.onnx")
```
Optionally, create the model from the ONNXHub.
```scala
val onnx = new ONNXModel().setModelPayload(hub.load("MNIST"))
```
2. Use ONNX visualization tool (for example, [Netron](https://netron.app/)) to inspect the ONNX model's input and output nodes.
![Screenshot that illustrates an ONNX model's input and output nodes](https://mmlspark.blob.core.windows.net/graphics/ONNXModelInputsOutputs.png)
3. Set the parameters properly to the `ONNXModel` object.
The `com.microsoft.azure.synapse.ml.onnx.ONNXModel` class provides a set of parameters to control the behavior of the inference.
| Parameter | Description | Default Value |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------|
| feedDict | Map the ONNX model's expected input node names to the input DataFrame's column names. Make sure the input DataFrame's column schema matches with the corresponding input's shape of the ONNX model. For example, an image classification model may have an input node of shape `[1, 3, 224, 224]` with type Float. It's assumed that the first dimension (1) is the batch size. Then the input DataFrame's corresponding column's type should be `ArrayType(ArrayType(ArrayType(FloatType)))`. | None |
| fetchDict | Map the output DataFrame's column names to the ONNX model's output node names. NOTE: If you put outputs that are intermediate in the model, transform will automatically slice at those outputs. See the section on [Slicing](#slicing). | None |
| miniBatcher | Specify the MiniBatcher to use. | `FixedMiniBatchTransformer` with batch size 10 |
| softMaxDict | A map between output DataFrame columns, where the value column will be computed from taking the softmax of the key column. If the 'rawPrediction' column contains logits outputs, then one can set softMaxDict to `Map("rawPrediction" -> "probability")` to obtain the probability outputs. | None |
| argMaxDict | A map between output DataFrame columns, where the value column will be computed from taking the argmax of the key column. This parameter can be used to convert probability or logits output to the predicted label. | None |
| deviceType | Specify a device type the model inference runs on. Supported types are: CPU or CUDA. If not specified, auto detection will be used. | None |
| optimizationLevel | Specify the [optimization level](https://onnxruntime.ai/docs/performance/model-optimizations/graph-optimizations.html#graph-optimization-levels) for the ONNX graph optimizations. Supported values are: `NO_OPT`, `BASIC_OPT`, `EXTENDED_OPT`, `ALL_OPT`. | `ALL_OPT` |
4. Call `transform` method to run inference on the input DataFrame.
## <a name="slicing"></a>Model Slicing
By default, an ONNX model is treated as a black box with inputs and outputs.
If you want to use intermediate nodes of a model, you can slice the model at particular nodes. Slicing will create a new model,
keeping only parts of the model that are needed for those nodes. This new model's outputs will be the outputs from
the intermediate nodes. You can save the sliced model and use it to transform just like any other ONNXModel.
This slicing feature is used implicitly by the ImageFeaturizer, which uses ONNX models. The OnnxHub manifest entry for each model
includes which intermediate node outputs should be used for featurization, so the ImageFeaturizer will automatically slice at the correct nodes.
The below example shows how to perform the slicing manually with a direct ONNXModel.
```scala
// create a df: Dataframe with image data
val hub = new ONNXHub()
val info = hub.getModelInfo("resnet50")
val bytes = hub.load(name)
val intermediateOutputName = "resnetv24_pool1_fwd"
val slicedModel = new ONNXModel()
.setModelPayload(bytes)
.setFeedDict(Map("data" -> "features"))
.setFetchDict(Map("rawFeatures" -> intermediateOutputName)) // automatic slicing based on fetch dictionary
// -- or --
// .sliceAtOutput(intermediateOutputName) // manual slicing
val slicedModelDf = slicedModel.transform(df)
```
## Example
- [Image Explainers](../../Responsible%20AI/Image%20Explainers)
- [Quickstart - ONNX Model Inference](../Quickstart%20-%20ONNX%20Model%20Inference)

Просмотреть файл

@ -0,0 +1,105 @@
---
title: Quickstart - Fine-tune a Text Classifier
hide_title: true
status: stable
---
## Deep Learning - Deep Text Classifier
### Environment Setup on databricks
```python
# install cloudpickle 2.0.0 to add synapse module for usage of horovod
%pip install cloudpickle==2.0.0 --force-reinstall --no-deps
```
```python
import synapse
import cloudpickle
cloudpickle.register_pickle_by_value(synapse)
```
```python
! horovodrun --check-build
```
### Read Dataset
```python
import urllib
urllib.request.urlretrieve(
"https://mmlspark.blob.core.windows.net/publicwasb/text_classification/Emotion_classification.csv",
"/tmp/Emotion_classification.csv",
)
import pandas as pd
from pyspark.ml.feature import StringIndexer
df = pd.read_csv("/tmp/Emotion_classification.csv")
df = spark.createDataFrame(df)
indexer = StringIndexer(inputCol="Emotion", outputCol="label")
indexer_model = indexer.fit(df)
df = indexer_model.transform(df).drop(("Emotion"))
train_df, test_df = df.randomSplit([0.85, 0.15], seed=1)
display(train_df)
```
### Training
```python
from horovod.spark.common.store import DBFSLocalStore
from pytorch_lightning.callbacks import ModelCheckpoint
from synapse.ml.dl import *
import uuid
checkpoint = "bert-base-uncased"
run_output_dir = f"/dbfs/FileStore/test/{checkpoint}/{str(uuid.uuid4())[:8]}"
store = DBFSLocalStore(run_output_dir)
epochs = 1
callbacks = [ModelCheckpoint(filename="{epoch}-{train_loss:.2f}")]
```
```python
deep_text_classifier = DeepTextClassifier(
checkpoint=checkpoint,
store=store,
callbacks=callbacks,
num_classes=6,
batch_size=16,
epochs=epochs,
validation=0.1,
text_col="Text",
)
deep_text_model = deep_text_classifier.fit(train_df.limit(6000).repartition(50))
```
### Prediction
```python
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
pred_df = deep_text_model.transform(test_df.limit(500))
evaluator = MulticlassClassificationEvaluator(
predictionCol="prediction", labelCol="label", metricName="accuracy"
)
print("Test accuracy:", evaluator.evaluate(pred_df))
```
```python
# Cleanup the output dir for test
dbutils.fs.rm(run_output_dir, True)
```

Просмотреть файл

@ -0,0 +1,139 @@
---
title: Quickstart - Fine-tune a Vision Classifier
hide_title: true
status: stable
---
## Deep Learning - Deep Vision Classifier
### Environment Setup on databricks
### -- reinstall horovod based on new version of pytorch
```python
# install cloudpickle 2.0.0 to add synapse module for usage of horovod
%pip install cloudpickle==2.0.0 --force-reinstall --no-deps
```
```python
import synapse
import cloudpickle
import os
import urllib.request
import zipfile
cloudpickle.register_pickle_by_value(synapse)
```
```python
! horovodrun --check-build
```
```python
from pyspark.sql.functions import udf, col, regexp_replace
from pyspark.sql.types import IntegerType
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
```
### Read Dataset
```python
folder_path = "/tmp/flowers_prepped"
zip_url = "https://mmlspark.blob.core.windows.net/datasets/Flowers/flowers_prepped.zip"
zip_path = "/dbfs/tmp/flowers_prepped.zip"
if not os.path.exists("/dbfs" + folder_path):
urllib.request.urlretrieve(zip_url, zip_path)
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall("/dbfs/tmp")
os.remove(zip_path)
```
```python
def assign_label(path):
num = int(path.split("/")[-1].split(".")[0].split("_")[1])
return num // 81
assign_label_udf = udf(assign_label, IntegerType())
```
```python
# These files are already uploaded for build test machine
train_df = (
spark.read.format("binaryFile")
.option("pathGlobFilter", "*.jpg")
.load(folder_path + "/train")
.withColumn("image", regexp_replace("path", "dbfs:", "/dbfs"))
.withColumn("label", assign_label_udf(col("path")))
.select("image", "label")
)
display(train_df.limit(100))
```
```python
test_df = (
spark.read.format("binaryFile")
.option("pathGlobFilter", "*.jpg")
.load(folder_path + "/test")
.withColumn("image", regexp_replace("path", "dbfs:", "/dbfs"))
.withColumn("label", assign_label_udf(col("path")))
.select("image", "label")
)
```
### Training
```python
from horovod.spark.common.store import DBFSLocalStore
from pytorch_lightning.callbacks import ModelCheckpoint
from synapse.ml.dl import *
import uuid
run_output_dir = f"/dbfs/FileStore/test/resnet50/{str(uuid.uuid4())[:8]}"
store = DBFSLocalStore(run_output_dir)
epochs = 10
callbacks = [ModelCheckpoint(filename="{epoch}-{train_loss:.2f}")]
```
```python
deep_vision_classifier = DeepVisionClassifier(
backbone="resnet50",
store=store,
callbacks=callbacks,
num_classes=17,
batch_size=16,
epochs=epochs,
validation=0.1,
)
deep_vision_model = deep_vision_classifier.fit(train_df)
```
### Prediction
```python
pred_df = deep_vision_model.transform(test_df)
evaluator = MulticlassClassificationEvaluator(
predictionCol="prediction", labelCol="label", metricName="accuracy"
)
print("Test accuracy:", evaluator.evaluate(pred_df))
```
```python
# Cleanup the output dir for test
dbutils.fs.rm(run_output_dir, True)
```

Просмотреть файл

@ -0,0 +1,172 @@
---
title: Quickstart - ONNX Model Inference
hide_title: true
status: stable
---
# ONNX Inference on Spark
In this example, you train a LightGBM model and convert the model to [ONNX](https://onnx.ai/) format. Once converted, you use the model to infer some testing data on Spark.
This example uses the following Python packages and versions:
- `onnxmltools==1.7.0`
- `lightgbm==3.2.1`
## Load the example data
To load the example data, add the following code examples to cells in your notebook and then run the cells:
```python
%pip install lightgbm onnxmltools==1.7.0
```
```python
df = (
spark.read.format("csv")
.option("header", True)
.option("inferSchema", True)
.load(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/company_bankruptcy_prediction_data.csv"
)
)
display(df)
```
The output should look similar to the following table, though the values and number of rows may differ:
| Interest Coverage Ratio | Net Income Flag | Equity to Liability |
| ----- | ----- | ----- |
| 0.5641 | 1.0 | 0.0165 |
| 0.5702 | 1.0 | 0.0208 |
| 0.5673 | 1.0 | 0.0165 |
## Use LightGBM to train a model
```python
from pyspark.ml.feature import VectorAssembler
from synapse.ml.lightgbm import LightGBMClassifier
feature_cols = df.columns[1:]
featurizer = VectorAssembler(inputCols=feature_cols, outputCol="features")
train_data = featurizer.transform(df)["Bankrupt?", "features"]
model = (
LightGBMClassifier(featuresCol="features", labelCol="Bankrupt?")
.setEarlyStoppingRound(300)
.setLambdaL1(0.5)
.setNumIterations(1000)
.setNumThreads(-1)
.setMaxDeltaStep(0.5)
.setNumLeaves(31)
.setMaxDepth(-1)
.setBaggingFraction(0.7)
.setFeatureFraction(0.7)
.setBaggingFreq(2)
.setObjective("binary")
.setIsUnbalance(True)
.setMinSumHessianInLeaf(20)
.setMinGainToSplit(0.01)
)
model = model.fit(train_data)
```
## Convert the model to ONNX format
The following code exports the trained model to a LightGBM booster and then converts it to ONNX format:
```python
from synapse.ml.core.platform import running_on_binder
if running_on_binder():
from IPython import get_ipython
```
```python
import lightgbm as lgb
from lightgbm import Booster, LGBMClassifier
def convertModel(lgbm_model: LGBMClassifier or Booster, input_size: int) -> bytes:
from onnxmltools.convert import convert_lightgbm
from onnxconverter_common.data_types import FloatTensorType
initial_types = [("input", FloatTensorType([-1, input_size]))]
onnx_model = convert_lightgbm(
lgbm_model, initial_types=initial_types, target_opset=9
)
return onnx_model.SerializeToString()
booster_model_str = model.getLightGBMBooster().modelStr().get()
booster = lgb.Booster(model_str=booster_model_str)
model_payload_ml = convertModel(booster, len(feature_cols))
```
After conversion, load the ONNX payload into an `ONNXModel` and inspect the model inputs and outputs:
```python
from synapse.ml.onnx import ONNXModel
onnx_ml = ONNXModel().setModelPayload(model_payload_ml)
print("Model inputs:" + str(onnx_ml.getModelInputs()))
print("Model outputs:" + str(onnx_ml.getModelOutputs()))
```
Map the model input to the input dataframe's column name (FeedDict), and map the output dataframe's column names to the model outputs (FetchDict).
```python
onnx_ml = (
onnx_ml.setDeviceType("CPU")
.setFeedDict({"input": "features"})
.setFetchDict({"probability": "probabilities", "prediction": "label"})
.setMiniBatchSize(5000)
)
```
## Use the model for inference
To perform inference with the model, the following code creates test data and transforms the data through the ONNX model.
```python
from pyspark.ml.feature import VectorAssembler
import pandas as pd
import numpy as np
n = 1000 * 1000
m = 95
test = np.random.rand(n, m)
testPdf = pd.DataFrame(test)
cols = list(map(str, testPdf.columns))
testDf = spark.createDataFrame(testPdf)
testDf = testDf.union(testDf).repartition(200)
testDf = (
VectorAssembler()
.setInputCols(cols)
.setOutputCol("features")
.transform(testDf)
.drop(*cols)
.cache()
)
display(onnx_ml.transform(testDf))
```
The output should look similar to the following table, though the values and number of rows may differ:
| Index | Features | Prediction | Probability |
| ----- | ----- | ----- | ----- |
| 1 | `"{"type":1,"values":[0.105...` | 0 | `"{"0":0.835...` |
| 2 | `"{"type":1,"values":[0.814...` | 0 | `"{"0":0.658...` |

Просмотреть файл

@ -0,0 +1,139 @@
---
title: Quickstart - Transfer Learn for Image Classification
hide_title: true
status: stable
---
## Deep Learning - Flower Image Classification
```python
from pyspark.ml import Transformer, Estimator, Pipeline
from pyspark.ml.classification import LogisticRegression
import sys, time
```
```python
# Load the images
# use flowers_and_labels.parquet on larger cluster in order to get better results
imagesWithLabels = (
spark.read.parquet(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/flowers_and_labels2.parquet"
)
.withColumnRenamed("bytes", "image")
.sample(0.1)
)
imagesWithLabels.printSchema()
```
![Smiley face](https://i.imgur.com/p2KgdYL.jpg)
```python
from synapse.ml.opencv import ImageTransformer
from synapse.ml.image import UnrollImage
from synapse.ml.onnx import ImageFeaturizer
from synapse.ml.stages import *
# Make some featurizers
it = ImageTransformer().setOutputCol("scaled").resize(size=(60, 60))
ur = UnrollImage().setInputCol("scaled").setOutputCol("features")
dc1 = DropColumns().setCols(["scaled", "image"])
lr1 = (
LogisticRegression().setMaxIter(8).setFeaturesCol("features").setLabelCol("labels")
)
dc2 = DropColumns().setCols(["features"])
basicModel = Pipeline(stages=[it, ur, dc1, lr1, dc2])
```
```python
resnet = (
ImageFeaturizer().setInputCol("image").setOutputCol("features").setModel("ResNet50")
)
dc3 = DropColumns().setCols(["image"])
lr2 = (
LogisticRegression().setMaxIter(8).setFeaturesCol("features").setLabelCol("labels")
)
dc4 = DropColumns().setCols(["features"])
deepModel = Pipeline(stages=[resnet, dc3, lr2, dc4])
```
![Resnet 18](https://i.imgur.com/Mb4Dyou.png)
### How does it work?
![Convolutional network weights](http://i.stack.imgur.com/Hl2H6.png)
### Run the experiment
```python
def timedExperiment(model, train, test):
start = time.time()
result = model.fit(train).transform(test).toPandas()
print("Experiment took {}s".format(time.time() - start))
return result
```
```python
train, test = imagesWithLabels.randomSplit([0.8, 0.2])
train.count(), test.count()
```
```python
basicResults = timedExperiment(basicModel, train, test)
```
```python
deepResults = timedExperiment(deepModel, train, test)
```
### Plot confusion matrix.
```python
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
import numpy as np
def evaluate(results, name):
y, y_hat = results["labels"], results["prediction"]
y = [int(l) for l in y]
accuracy = np.mean([1.0 if pred == true else 0.0 for (pred, true) in zip(y_hat, y)])
cm = confusion_matrix(y, y_hat)
cm = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis]
plt.text(
40, 10, "$Accuracy$ $=$ ${}\%$".format(round(accuracy * 100, 1)), fontsize=14
)
plt.imshow(cm, interpolation="nearest", cmap=plt.cm.Blues)
plt.colorbar()
plt.xlabel("$Predicted$ $label$", fontsize=18)
plt.ylabel("$True$ $Label$", fontsize=18)
plt.title("$Normalized$ $CM$ $for$ ${}$".format(name))
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
evaluate(deepResults, "CNTKModel + LR")
plt.subplot(1, 2, 2)
evaluate(basicResults, "LR")
# Note that on the larger dataset the accuracy will bump up from 44% to >90%
display(plt.show())
```

Просмотреть файл

@ -0,0 +1,335 @@
---
title: HyperOpt
hide_title: true
status: stable
---
# Hyperparameter tuning: SynapseML with Hyperopt
[SynapseML](https://github.com/microsoft/SynapseML) is an open-source library that simplifies the creation of massively scalable machine learning (ML) pipelines. SynapseML provides simple, composable, and distributed APIs for a wide variety of different machine learning tasks such as text analytics, vision, anomaly detection, and many others.
[Hyperopt](https://github.com/hyperopt/hyperopt), on the other hand, is a Python library for serial and parallel optimization over complex search spaces, including real-valued, discrete, and conditional dimensions.
This guide showcases the process of tuning a distributed algorithm in Spark with SynapseML and Hyperopt.
The use case of this guide is for distributed machine learning in Python that requires hyperparameter tuning. It provides a demo on how to tune hyperparameters for a machine learning workflow in SynapseML and can be used as a reference to tune other distributed machine learning algorithms from Spark MLlib or other libraries.
The guide includes two sections:
* Running distributed training with SynapseML without hyperparameter tuning.
* Using Hyperopt to tune hyperparameters in the distributed training workflow.
## Prerequisites
- If you are running it on Synapse, you'll need to [create an AML workspace and set up linked Service](../../../Use%20with%20MLFlow/Overview/).
## Requirements
- Install HyperOpt
```python
%pip install hyperopt mlflow
```
## MLflow autologging
To track model training and tuning with MLflow, you could enable MLflow autologging by running `mlflow.pyspark.ml.autolog()`.
```python
from synapse.ml.core.platform import *
if running_on_synapse_internal():
experiment_name = "hyperopt-synapseml"
elif running_on_synapse():
experiment_name = "hyperopt-synapseml"
else:
experiment_name = "/Shared/hyperopt-synapseml"
```
```python
import mlflow
mlflow.__version__
```
```python
# Set pyspark autologging logModelAllowlist to include SynapseML models
spark.sparkContext._conf.set(
"spark.mlflow.pysparkml.autolog.logModelAllowlistFile",
"https://mmlspark.blob.core.windows.net/publicwasb/log_model_allowlist.txt",
)
```
```python
# enable autologging
mlflow.pyspark.ml.autolog()
```
### Set experiment name for tracking
```python
# Set MLflow experiment.
if running_on_synapse():
from notebookutils.mssparkutils import azureML
linked_service = "AzureMLService1" # use your linked service name
ws = azureML.getWorkspace(linked_service)
mlflow.set_tracking_uri(ws.get_mlflow_tracking_uri())
mlflow.set_experiment(experiment_name)
```
## Part 1. Run distributed training using MLlib
This section shows a simple example of distributed training using SynapseML. For more information and examples, visit the official [website](https://microsoft.github.io/SynapseML/)
## Prepare Dataset
We use [*California Housing* dataset](https://scikit-learn.org/stable/datasets/real_world.html#california-housing-dataset).
The data was derived from the 1990 U.S. census. It consists of 20640 entries with 8 features.
We use `sklearn.datasets` module to download it easily, then split the set into training and testing by 75/25.
```python
import numpy as np
import pandas as pd
from sklearn.datasets import fetch_california_housing
import time
```
```python
try:
california = fetch_california_housing()
except EOFError:
print("Encountered EOFError while downloading, retrying once...")
time.sleep(5)
california = fetch_california_housing()
feature_cols = ["f" + str(i) for i in range(california.data.shape[1])]
header = ["target"] + feature_cols
df = spark.createDataFrame(
pd.DataFrame(
data=np.column_stack((california.target, california.data)), columns=header
)
).repartition(1)
print("Dataframe has {} rows".format(df.count()))
display(df)
```
Following is the summary of the data set.
```python
display(df.summary().toPandas())
```
### Create a function to train a model
In this section, you define a function to train a gradient boosting model with SynapseML LightgbmRegressor. Wrapping the training code in a function is important for passing the function to Hyperopt for tuning later.
We evaluate the prediction result by using `synapse.ml.train.ComputeModelStatistics` which returns four metrics:
* [MSE (Mean Squared Error)](https://en.wikipedia.org/wiki/Mean_squared_error)
* [RMSE (Root Mean Squared Error)](https://en.wikipedia.org/wiki/Root-mean-square_deviation) = sqrt(MSE)
* [R Squared](https://en.wikipedia.org/wiki/Coefficient_of_determination)
* [MAE (Mean Absolute Error)](https://en.wikipedia.org/wiki/Mean_absolute_error)
```python
from pyspark.ml.feature import VectorAssembler
# Convert features into a single vector column
featurizer = VectorAssembler(inputCols=feature_cols, outputCol="features")
data = featurizer.transform(df)["target", "features"]
train_data, test_data = data.randomSplit([0.75, 0.25], seed=42)
train_data, validation_data = train_data.randomSplit([0.85, 0.15], seed=42)
display(train_data)
# Using one partition since the training dataset is very small
repartitioned_data = train_data.repartition(1).cache()
```
```python
from synapse.ml.lightgbm import LightGBMRegressor
from synapse.ml.train import ComputeModelStatistics
def train_tree(alpha, learningRate, numLeaves, numIterations):
"""
This train() function:
- takes hyperparameters as inputs (for tuning later)
- returns the F1 score on the validation dataset
Wrapping code as a function makes it easier to reuse the code later with Hyperopt.
"""
# Use MLflow to track training.
# Specify "nested=True" since this single model will be logged as a child run of Hyperopt's run.
with mlflow.start_run(nested=True):
lgr = LightGBMRegressor(
objective="quantile",
alpha=alpha,
learningRate=learningRate,
numLeaves=numLeaves,
labelCol="target",
numIterations=numIterations,
)
model = lgr.fit(repartitioned_data)
cms = ComputeModelStatistics(
evaluationMetric="regression", labelCol="target", scoresCol="prediction"
)
# Define an evaluation metric and evaluate the model on the test dataset.
predictions = model.transform(test_data)
metrics = cms.transform(predictions).collect()[0].asDict()
# log metrics with mlflow
mlflow.log_metric("MSE", metrics["mean_squared_error"])
mlflow.log_metric("RMSE", metrics["root_mean_squared_error"])
mlflow.log_metric("R^2", metrics["R^2"])
mlflow.log_metric("MAE", metrics["mean_absolute_error"])
return model, metrics["R^2"]
```
Run the training function to make sure it works.
It's a good idea to make sure training code runs before adding in tuning.
```python
initial_model, val_metric = train_tree(
alpha=0.2, learningRate=0.3, numLeaves=31, numIterations=50
)
print(
f"The trained decision tree achieved a R^2 of {val_metric} on the validation data"
)
```
## Part 2. Use Hyperopt to tune hyperparameters
In the second section, the Hyperopt workflow is created by:
* Define a function to minimize
* Define a search space over hyperparameters
* Specifying the search algorithm and using `fmin()` for tuning the model.
For more information about the Hyperopt APIs, see the [Hyperopt documentation](http://hyperopt.github.io/hyperopt/).
### Define a function to minimize
* Input: hyperparameters
* Internally: Reuse the training function defined above.
* Output: loss
```python
from hyperopt import fmin, tpe, hp, Trials, STATUS_OK
def train_with_hyperopt(params):
"""
An example train method that calls into MLlib.
This method is passed to hyperopt.fmin().
:param params: hyperparameters as a dict. Its structure is consistent with how search space is defined. See below.
:return: dict with fields 'loss' (scalar loss) and 'status' (success/failure status of run)
"""
# For integer parameters, make sure to convert them to int type if Hyperopt is searching over a continuous range of values.
alpha = params["alpha"]
learningRate = params["learningRate"]
numLeaves = int(params["numLeaves"])
numIterations = int(params["numIterations"])
model, r_squared = train_tree(alpha, learningRate, numLeaves, numIterations)
# Hyperopt expects you to return a loss (for which lower is better), so take the negative of the R^2 (for which higher is better).
loss = -r_squared
return {"loss": loss, "status": STATUS_OK}
```
### Define the search space over hyperparameters
This example tunes four hyperparameters: `alpha`, `learningRate`, `numLeaves` and `numIterations`. See the [Hyperopt documentation](https://github.com/hyperopt/hyperopt/wiki/FMin#21-parameter-expressions) for details on defining a search space and parameter expressions.
```python
space = {
"alpha": hp.uniform("alpha", 0, 1),
"learningRate": hp.uniform("learningRate", 0, 1),
"numLeaves": hp.uniformint("numLeaves", 30, 50),
"numIterations": hp.uniformint("numIterations", 20, 100),
}
```
### Tune the model using Hyperopt `fmin()`
For tuning the model with Hyperopt's `fmin()`, the following steps are taken:
- Setting `max_evals` to the maximum number of points in the hyperparameter space to be tested.
- Specifying the search algorithm, either `hyperopt.tpe.suggest` or `hyperopt.rand.suggest`.
- `hyperopt.tpe.suggest`: Tree of Parzen Estimators, a Bayesian approach which iteratively and adaptively selects new hyperparameter settings to explore based on previous results
- `hyperopt.rand.suggest`: Random search, a non-adaptive approach that randomly samples the search space
**Important:**
When using Hyperopt with SynapseML and other distributed training algorithms, do not pass a `trials` argument to `fmin()`. When you do not include the `trials` argument, Hyperopt uses the default `Trials` class, which runs on the cluster driver. Hyperopt needs to evaluate each trial on the driver node so that each trial can initiate distributed training jobs.
Do not use the `SparkTrials` class with SynapseML. `SparkTrials` is designed to distribute trials for algorithms that are not themselves distributed. SynapseML uses distributed computing already and is not compatible with `SparkTrials`.
```python
algo = tpe.suggest
with mlflow.start_run():
best_params = fmin(fn=train_with_hyperopt, space=space, algo=algo, max_evals=8)
```
```python
# Print out the parameters that produced the best model
best_params
```
### Retrain the model on the full training dataset
For tuning, this workflow split the training dataset into training and validation subsets. Now, retrain the model using the "best" hyperparameters on the full training dataset.
```python
best_alpha = best_params["alpha"]
best_learningRate = best_params["learningRate"]
best_numIterations = int(best_params["numIterations"])
best_numLeaves = int(best_params["numLeaves"])
final_model, val_r_squared = train_tree(
best_alpha, best_learningRate, best_numIterations, best_numLeaves
)
```
Use the test dataset to compare evaluation metrics for the initial and "best" models.
```python
# Define an evaluation metric and evaluate the model on the test dataset.
cms = ComputeModelStatistics(
evaluationMetric="regression", labelCol="target", scoresCol="prediction"
)
initial_model_predictions = initial_model.transform(test_data)
initial_model_test_metric = (
cms.transform(initial_model_predictions).collect()[0].asDict()["R^2"]
)
final_model_predictions = final_model.transform(test_data)
final_model_test_metric = (
cms.transform(final_model_predictions).collect()[0].asDict()["R^2"]
)
print(
f"On the test data, the initial (untuned) model achieved R^2 {initial_model_test_metric}, and the final (tuned) model achieved {final_model_test_metric}."
)
```

Просмотреть файл

@ -0,0 +1,99 @@
---
title: Quickstart - Random Search
hide_title: true
status: stable
---
# HyperParameterTuning - Fighting Breast Cancer
This tutorial shows how SynapseML can be used to identify the best combination of hyperparameters for your chosen classifiers, ultimately resulting in more accurate and reliable models. In order to demonstrate this, we'll show how to perform distributed randomized grid search hyperparameter tuning to build a model to identify breast cancer.
## 1 - Set up dependencies
Start by importing pandas and setting up our Spark session.
Next, read the data and split it into tuning and test sets.
```python
data = spark.read.parquet(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/BreastCancer.parquet"
).cache()
tune, test = data.randomSplit([0.80, 0.20])
tune.limit(10).toPandas()
```
Define the models to be used.
```python
from synapse.ml.automl import TuneHyperparameters
from synapse.ml.train import TrainClassifier
from pyspark.ml.classification import (
LogisticRegression,
RandomForestClassifier,
GBTClassifier,
)
logReg = LogisticRegression()
randForest = RandomForestClassifier()
gbt = GBTClassifier()
smlmodels = [logReg, randForest, gbt]
mmlmodels = [TrainClassifier(model=model, labelCol="Label") for model in smlmodels]
```
## 2 - Find the best model using AutoML
Import SynapseML's AutoML classes from `synapse.ml.automl`.
Specify the hyperparameters using the `HyperparamBuilder`. Add either `DiscreteHyperParam` or `RangeHyperParam` hyperparameters. `TuneHyperparameters` will randomly choose values from a uniform distribution:
```python
from synapse.ml.automl import *
paramBuilder = (
HyperparamBuilder()
.addHyperparam(logReg, logReg.regParam, RangeHyperParam(0.1, 0.3))
.addHyperparam(randForest, randForest.numTrees, DiscreteHyperParam([5, 10]))
.addHyperparam(randForest, randForest.maxDepth, DiscreteHyperParam([3, 5]))
.addHyperparam(gbt, gbt.maxBins, RangeHyperParam(8, 16))
.addHyperparam(gbt, gbt.maxDepth, DiscreteHyperParam([3, 5]))
)
searchSpace = paramBuilder.build()
# The search space is a list of params to tuples of estimator and hyperparam
print(searchSpace)
randomSpace = RandomSpace(searchSpace)
```
Next, run TuneHyperparameters to get the best model.
```python
bestModel = TuneHyperparameters(
evaluationMetric="accuracy",
models=mmlmodels,
numFolds=2,
numRuns=len(mmlmodels) * 2,
parallelism=1,
paramSpace=randomSpace.space(),
seed=0,
).fit(tune)
```
## 3 - Evaluate the model
We can view the best model's parameters and retrieve the underlying best model pipeline
```python
print(bestModel.getBestModelInfo())
print(bestModel.getBestModel())
```
We can score against the test set and view metrics.
```python
from synapse.ml.train import ComputeModelStatistics
prediction = bestModel.transform(test)
metrics = ComputeModelStatistics().transform(prediction)
metrics.limit(10).toPandas()
```

Просмотреть файл

@ -0,0 +1,262 @@
---
title: Overview
hide_title: true
sidebar_label: Overview
---
# LightGBM on Apache Spark
### LightGBM
[LightGBM](https://github.com/Microsoft/LightGBM) is an open-source,
distributed, high-performance gradient boosting (GBDT, GBRT, GBM, or
MART) framework. This framework specializes in creating high-quality and
GPU enabled decision tree algorithms for ranking, classification, and
many other machine learning tasks. LightGBM is part of Microsoft's
[DMTK](http://github.com/microsoft/dmtk) project.
### Advantages of LightGBM through SynapseML
- **Composability**: LightGBM models can be incorporated into existing
SparkML Pipelines, and used for batch, streaming, and serving
workloads.
- **Performance**: LightGBM on Spark is 10-30% faster than SparkML on
the Higgs dataset, and achieves a 15% increase in AUC. [Parallel
experiments](https://github.com/Microsoft/LightGBM/blob/master/docs/Experiments.rst#parallel-experiment)
have verified that LightGBM can achieve a linear speed-up by using
multiple machines for training in specific settings.
- **Functionality**: LightGBM offers a wide array of [tunable
parameters](https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst),
that one can use to customize their decision tree system. LightGBM on
Spark also supports new types of problems such as quantile regression.
- **Cross platform** LightGBM on Spark is available on Spark, PySpark, and SparklyR
### Usage
In PySpark, you can run the `LightGBMClassifier` via:
```python
from synapse.ml.lightgbm import LightGBMClassifier
model = LightGBMClassifier(learningRate=0.3,
numIterations=100,
numLeaves=31).fit(train)
```
Similarly, you can run the `LightGBMRegressor` by setting the
`application` and `alpha` parameters:
```python
from synapse.ml.lightgbm import LightGBMRegressor
model = LightGBMRegressor(application='quantile',
alpha=0.3,
learningRate=0.3,
numIterations=100,
numLeaves=31).fit(train)
```
For an end to end application, check out the LightGBM [notebook
example](../Quickstart%20-%20Classification,%20Ranking,%20and%20Regression).
### Arguments/Parameters
SynapseML exposes getters/setters for many common LightGBM parameters.
In python, you can use property-value pairs, or in Scala use
fluent setters. Examples of both are shown in this section.
```scala
import com.microsoft.azure.synapse.ml.lightgbm.LightGBMClassifier
val classifier = new LightGBMClassifier()
.setLearningRate(0.2)
.setNumLeaves(50)
```
LightGBM has far more parameters than SynapseML exposes. For cases where you
need to set some parameters that SynapseML doesn't expose a setter for, use
passThroughArgs. This argument is just a free string that you can use to add extra parameters
to the command SynapseML sends to configure LightGBM.
In python:
```python
from synapse.ml.lightgbm import LightGBMClassifier
model = LightGBMClassifier(passThroughArgs="force_row_wise=true min_sum_hessian_in_leaf=2e-3",
numIterations=100,
numLeaves=31).fit(train)
```
In Scala:
```scala
import com.microsoft.azure.synapse.ml.lightgbm.LightGBMClassifier
val classifier = new LightGBMClassifier()
.setPassThroughArgs("force_row_wise=true min_sum_hessian_in_leaf=2e-3")
.setLearningRate(0.2)
.setNumLeaves(50)
```
For formatting options and specific argument documentation, see
[LightGBM docs](https://lightgbm.readthedocs.io/en/v3.3.2/Parameters.html). SynapseML sets some
parameters specifically for the Spark distributed environment and
shouldn't be changed. Some parameters are for CLI mode only, and don't work within
Spark.
You can mix *passThroughArgs* and explicit args, as shown in the example. SynapseML
merges them to create one argument string to send to LightGBM. If you set a parameter in
both places, *passThroughArgs* takes precedence.
### Architecture
LightGBM on Spark uses the Simple Wrapper and Interface Generator (SWIG)
to add Java support for LightGBM. These Java Binding use the Java Native
Interface call into the [distributed C++
API](https://github.com/Microsoft/LightGBM/blob/master/include/LightGBM/c_api.h).
We initialize LightGBM by calling
[`LGBM_NetworkInit`](https://github.com/Microsoft/LightGBM/blob/master/include/LightGBM/c_api.h)
with the Spark executors within a MapPartitions call. We then pass each
workers partitions into LightGBM to create the in-memory distributed
dataset for LightGBM. We can then train LightGBM to produce a model
that can then be used for inference.
The `LightGBMClassifier` and `LightGBMRegressor` use the SparkML API,
inherit from the same base classes, integrate with SparkML pipelines,
and can be tuned with [SparkML's cross
validators](https://spark.apache.org/docs/latest/ml-tuning.html).
Models built can be saved as SparkML pipeline with native LightGBM model
using `saveNativeModel()`. Additionally, they're fully compatible with [PMML](https://en.wikipedia.org/wiki/Predictive_Model_Markup_Language) and
can be converted to PMML format through the
[JPMML-SparkML-LightGBM](https://github.com/alipay/jpmml-sparkml-lightgbm) plugin.
#### Dynamic Allocation Limitations
The native LightGBM library has a *distributed mode* that allows the algorithm to work over multiple *machines*. SynapseML
uses this mode to call LightGBM from Spark. SynapseML first gathers all the Spark executor networking information, passes that to LightGBM, and then
waits for LightGBM to complete its work. However, the native LightGBM algorithm implementation assumes all networking is constant over the time period of a single
training or scoring session. The native LightGBM distributed mode was designed this way and isn't a limitation of SynapseML by itself.
Dynamic compute changes can cause LightGBM problems if the Spark executors change during data processing. Spark can naturally
take advantage of cluster autoscaling and can also dynamically replace any failed executor with another, but LightGBM can't
handle these networking changes. Large datasets are affected in particular since they're more likely to cause executor scaling
or have a single executor fail during a single processing pass.
If you're experiencing problems with LightGBM as exposed through SynapseML due to executor changes (for example, occasional Task failures or networking hangs),
there are several options.
1. In the Spark platform, turn off any autoscaling on the cluster you have provisioned.
2. Set *numTasks* manually to be smaller so that fewer executors are used (reducing probability of single executor failure).
3. Turn off dynamic executor scaling with configuration in a notebook cell. In Synapse and Fabric, you can use:
```python
%%configure
{
"conf":
{
"spark.dynamicAllocation.enabled": "false"
}
}
```
Note: setting any custom configuration can affect cluster startup time if your compute platform takes advantage of "live pools"
to improve notebook performance.
If you still have problems, you can consider splitting your data into smaller segments using *numBatches*. Splitting into multiple
batches increases total processing time, but can potentially be used to increase reliability.
### Data Transfer Mode
SynapseML must pass data from Spark partitions to LightGBM native Datasets before turning over control to
the actual LightGBM execution code for training and inference. SynapseML has two modes
that control how this data is transferred: *streaming* and *bulk*.
This mode doesn't affect training but can affect memory usage and overall fit/transform time.
#### Bulk Execution mode
The "Bulk" mode is older and requires accumulating all data in executor memory before creating Datasets. This mode can cause
OOM errors for large data, especially since the data must be accumulated in its original uncompressed double-format size.
For now, "bulk" mode is the default since "streaming" is new, but SynapseML will eventually make streaming the default.
For bulk mode, native LightGBM Datasets can either be created per partition (useSingleDatasetMode=false), or
per executor (useSingleDatasetMode=true). Generally, one Dataset per executor is more efficient since it reduces LightGBM network size and complexity during training or fitting. It also avoids using slow network protocols on partitions
that are actually on the same executor node.
#### Streaming Execution Mode
The "streaming" execution mode uses new native LightGBM APIs created just for SynapseML that don't require loading extra copies of the data into memory. In particular, data is passed directly
from partitions to Datasets in small "micro-batches", similar to Spark streaming. The `microBatchSize` parameter controls the size of these micro-batches.
Smaller micro-batch sizes reduce memory overhead, but larger sizes avoid overhead from repeatedly transferring data to the native layer. The default
100, uses far less memory than bulk mode since only 100 rows of data will be loaded at a time. If your dataset has
few columns, you can increase the batch size. Alternatively, if
your dataset has a large number of columns you can decrease the micro-batch size to avoid OOM issues.
These new streaming APIs in LightGBM are thread-safe, and allow all partitions in the same executor
to push data into a shared Dataset in parallel. Because of this, streaming mode always uses the more efficient
"useSingleDatasetMode=true", creating only one Dataset per executor.
You can explicitly specify Execution Mode and MicroBatch size as parameters.
val lgbm = new LightGBMClassifier()
.setExecutionMode("streaming")
.setMicroBatchSize(100)
.setLabelCol(labelColumn)
.setObjective("binary")
...
<train classifier>
For streaming mode, only one Dataset is created per partition, so *useSingleDataMode* has no effect. It's effectively always true.
### Data Sampling
In order for LightGBM algorithm to work, it must first create a set of bin boundaries for optimization. It does this calculation by
first sampling the data before any training or inferencing starts. ([LightGBM docs](https://github.com/Microsoft/LightGBM)). The number of
samples to use is set using *binSampleCount*, which must be a minimal percent of the data or LightGBM rejects it.
For *bulk* mode, this sampling is automatically done over the entire data, and each executor uses its own partitions to calculate samples for only
a subset of the features. This distributed sampling can have subtle effects since partitioning can affect the calculated bins.
Also, all data is sampled no matter what.
For *streaming* mode, there are more explicit user controls for this sampling, and it's all done from the driver.
The *samplingMode* property controls the behavior. The efficiency of these methods increases from first to last.
- *global* - Like bulk mode, the random sample is calculated by iterating over entire data (hence data is traversed twice)
- *subset* - (default) Samples only from the first *samplingSubsetSize* elements. Assumes this subset is representative.
- *fixed* - There's no random sample. The first *binSampleSize* rows are used. Assumes randomized data.
For large row counts, *subset* and *fixed* modes can save a first iteration over the entire data.
#### Reference Dataset
The sampling of the data to calculate bin boundaries happens every *fit* call.
If repeating a fit many times (for example, hyperparameter tuning), this calculation is duplicated effort.
For *streaming* mode, there's an optimization that a client can set to use the previously calculated bin boundaries. The
sampling calculation results in a *reference dataset*, which can be reused. After a fit, there will be a *referenceDataset* property
on the estimator that was calculated and used for that fit. If that is set on the next estimator (or you reuse the same one),
it will use that instead of resampling the data.
```python
from synapse.ml.lightgbm import LightGBMClassifier
classifier = LightGBMClassifier(learningRate=0.3,
numIterations=100,
numLeaves=31)
model1 = classifier.fit(train)
classifier.learningRate = 0.4
model2 = classifier.fit(train)
```
The 'model2' call to 'fit' doesn't resample the data and uses the same bin boundaries as 'model1'.
*Caution*: Some parameters actually affect the bin boundary calculation and require the use of a new reference dataset every time.
These parameters include *isEnableSparse*, *useMissing*, and *zeroAsMissing* that you can set from SynapseML. If you manually set
some parameters with *passThroughArgs*, you should look at LightGBM docs to see if they affect bin boundaries. If you're setting
any parameter that affects bin boundaries and reusing the same estimator, you should set referenceDataset to an empty array between calls.
### Barrier Execution Mode
By default LightGBM uses the regular spark paradigm for launching tasks and communicates with the driver to coordinate task execution.
The driver thread aggregates all task host:port information and then communicates the full list back to the workers in order for NetworkInit to be called.
This procedure requires the driver to know how many tasks there are, and a mismatch between the expected number of tasks and the actual number causes
the initialization to deadlock.
If you're experiencing network issues, you can try using Spark's *barrier* execution mode. SynapseML provides a `UseBarrierExecutionMode` flag,
to use Apache Spark's `barrier()` stage to ensure all tasks execute at the same time.
Barrier execution mode changes the logic to aggregate `host:port` information across all tasks in a synchronized way.
To use it in scala, you can call setUseBarrierExecutionMode(true), for example:
val lgbm = new LightGBMClassifier()
.setLabelCol(labelColumn)
.setObjective(binaryObjective)
.setUseBarrierExecutionMode(true)
...
<train classifier>
Note: barrier execution mode can also cause complicated issues, so use it only if needed.

Просмотреть файл

@ -0,0 +1,302 @@
---
title: Quickstart - Classification, Ranking, and Regression
hide_title: true
status: stable
---
# LightGBM
## What is LightGBM
[LightGBM](https://github.com/Microsoft/LightGBM) is an open-source,
distributed, high-performance gradient boosting (GBDT, GBRT, GBM, or
MART) framework. This framework specializes in creating high-quality and
GPU-enabled decision tree algorithms for ranking, classification, and
many other machine learning tasks. LightGBM is part of Microsoft's
[DMTK](https://github.com/microsoft/dmtk) project.
### Advantages of LightGBM
- **Composability**: LightGBM models can be incorporated into existing
SparkML pipelines and used for batch, streaming, and serving
workloads.
- **Performance**: LightGBM on Spark is 10-30% faster than SparkML on
the [Higgs dataset](https://archive.ics.uci.edu/dataset/280/higgs) and achieves a 15% increase in AUC. [Parallel
experiments](https://github.com/Microsoft/LightGBM/blob/master/docs/Experiments.rst#parallel-experiment)
have verified that LightGBM can achieve a linear speed-up by using
multiple machines for training in specific settings.
- **Functionality**: LightGBM offers a wide array of [tunable
parameters](https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst),
that one can use to customize their decision tree system. LightGBM on
Spark also supports new types of problems such as quantile regression.
- **Cross platform**: LightGBM on Spark is available on Spark, PySpark, and SparklyR.
### LightGBM Usage
- **LightGBMClassifier**: used for building classification models. For example, to predict whether a company bankrupts or not, we could build a binary classification model with `LightGBMClassifier`.
- **LightGBMRegressor**: used for building regression models. For example, to predict housing price, we could build a regression model with `LightGBMRegressor`.
- **LightGBMRanker**: used for building ranking models. For example, to predict the relevance of website search results, we could build a ranking model with `LightGBMRanker`.
## Use `LightGBMClassifier` to train a classification model
In this example, we use LightGBM to build a classification model in order to predict bankruptcy.
### Read dataset
```python
from synapse.ml.core.platform import *
```
```python
df = (
spark.read.format("csv")
.option("header", True)
.option("inferSchema", True)
.load(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/company_bankruptcy_prediction_data.csv"
)
)
# print dataset size
print("records read: " + str(df.count()))
print("Schema: ")
df.printSchema()
```
```python
display(df)
```
### Split the dataset into train and test sets
```python
train, test = df.randomSplit([0.85, 0.15], seed=1)
```
### Add a featurizer to convert features into vectors
```python
from pyspark.ml.feature import VectorAssembler
feature_cols = df.columns[1:]
featurizer = VectorAssembler(inputCols=feature_cols, outputCol="features")
train_data = featurizer.transform(train)["Bankrupt?", "features"]
test_data = featurizer.transform(test)["Bankrupt?", "features"]
```
### Check if the data is unbalanced
```python
display(train_data.groupBy("Bankrupt?").count())
```
### Model Training
```python
from synapse.ml.lightgbm import LightGBMClassifier
model = LightGBMClassifier(
objective="binary", featuresCol="features", labelCol="Bankrupt?", isUnbalance=True
)
```
```python
model = model.fit(train_data)
```
"saveNativeModel" allows you to extract the underlying lightGBM model for fast deployment after you train on Spark.
```python
from synapse.ml.lightgbm import LightGBMClassificationModel
if running_on_synapse():
model.saveNativeModel("/models/lgbmclassifier.model")
model = LightGBMClassificationModel.loadNativeModelFromFile(
"/models/lgbmclassifier.model"
)
if running_on_synapse_internal():
model.saveNativeModel("Files/models/lgbmclassifier.model")
model = LightGBMClassificationModel.loadNativeModelFromFile(
"Files/models/lgbmclassifier.model"
)
else:
model.saveNativeModel("/tmp/lgbmclassifier.model")
model = LightGBMClassificationModel.loadNativeModelFromFile(
"/tmp/lgbmclassifier.model"
)
```
### Visualize feature importance
```python
import pandas as pd
import matplotlib.pyplot as plt
feature_importances = model.getFeatureImportances()
fi = pd.Series(feature_importances, index=feature_cols)
fi = fi.sort_values(ascending=True)
f_index = fi.index
f_values = fi.values
# print feature importances
print("f_index:", f_index)
print("f_values:", f_values)
# plot
x_index = list(range(len(fi)))
x_index = [x / len(fi) for x in x_index]
plt.rcParams["figure.figsize"] = (20, 20)
plt.barh(
x_index, f_values, height=0.028, align="center", color="tan", tick_label=f_index
)
plt.xlabel("importances")
plt.ylabel("features")
plt.show()
```
### Generate predictions with the model
```python
predictions = model.transform(test_data)
predictions.limit(10).toPandas()
```
```python
from synapse.ml.train import ComputeModelStatistics
metrics = ComputeModelStatistics(
evaluationMetric="classification",
labelCol="Bankrupt?",
scoredLabelsCol="prediction",
).transform(predictions)
display(metrics)
```
## Use `LightGBMRegressor` to train a quantile regression model
In this example, we show how to use LightGBM to build a regression model.
### Read dataset
```python
triazines = spark.read.format("libsvm").load(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/triazines.scale.svmlight"
)
```
```python
# print some basic info
print("records read: " + str(triazines.count()))
print("Schema: ")
triazines.printSchema()
display(triazines.limit(10))
```
### Split dataset into train and test sets
```python
train, test = triazines.randomSplit([0.85, 0.15], seed=1)
```
### Train the model using `LightGBMRegressor`
```python
from synapse.ml.lightgbm import LightGBMRegressor
model = LightGBMRegressor(
objective="quantile", alpha=0.2, learningRate=0.3, numLeaves=31
).fit(train)
```
```python
print(model.getFeatureImportances())
```
### Generate predictions with the model
```python
scoredData = model.transform(test)
display(scoredData)
```
```python
from synapse.ml.train import ComputeModelStatistics
metrics = ComputeModelStatistics(
evaluationMetric="regression", labelCol="label", scoresCol="prediction"
).transform(scoredData)
display(metrics)
```
## Use `LightGBMRanker` to train a ranking model
### Read the dataset
```python
df = spark.read.format("parquet").load(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/lightGBMRanker_train.parquet"
)
# print some basic info
print("records read: " + str(df.count()))
print("Schema: ")
df.printSchema()
display(df.limit(10))
```
### Train the ranking model using `LightGBMRanker`.
```python
from synapse.ml.lightgbm import LightGBMRanker
features_col = "features"
query_col = "query"
label_col = "labels"
lgbm_ranker = LightGBMRanker(
labelCol=label_col,
featuresCol=features_col,
groupCol=query_col,
predictionCol="preds",
leafPredictionCol="leafPreds",
featuresShapCol="importances",
repartitionByGroupingColumn=True,
numLeaves=32,
numIterations=200,
evalAt=[1, 3, 5],
metric="ndcg",
)
```
```python
lgbm_ranker_model = lgbm_ranker.fit(df)
```
### Generate predictions with the model
```python
dt = spark.read.format("parquet").load(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/lightGBMRanker_test.parquet"
)
predictions = lgbm_ranker_model.transform(dt)
predictions.limit(10).toPandas()
```

Просмотреть файл

@ -0,0 +1,236 @@
---
title: Langchain
hide_title: true
status: stable
---
# Using the LangChain Transformer
LangChain is a software development framework designed to simplify the creation of applications using large language models (LLMs). Chains in LangChain go beyond just a single LLM call and are sequences of calls (can be a call to an LLM or a different utility), automating the execution of a series of calls and actions.
To make it easier to scale up the LangChain execution on a large dataset, we have integrated LangChain with the distributed machine learning library [SynapseML](https://www.microsoft.com/en-us/research/blog/synapseml-a-simple-multilingual-and-massively-parallel-machine-learning-library/). This integration makes it easy to use the [Apache Spark](https://spark.apache.org/) distributed computing framework to process millions of data with the LangChain Framework.
This tutorial shows how to apply LangChain at scale for paper summarization and organization. We start with a table of arxiv links and apply the LangChain Transformerto automatically extract the corresponding paper title, authors, summary, and some related works.
## Step 1: Prerequisites
The key prerequisites for this quickstart include a working Azure OpenAI resource, and an Apache Spark cluster with SynapseML installed. We suggest creating a Synapse workspace, but an Azure Databricks, HDInsight, or Spark on Kubernetes, or even a python environment with the `pyspark` package will work.
1. An Azure OpenAI resource – request access [here](https://customervoice.microsoft.com/Pages/ResponsePage.aspx?id=v4j5cvGGr0GRqy180BHbR7en2Ais5pxKtso_Pz4b1_xUOFA5Qk1UWDRBMjg0WFhPMkIzTzhKQ1dWNyQlQCN0PWcu) before [creating a resource](https://docs.microsoft.com/en-us/azure/cognitive-services/openai/how-to/create-resource?pivots=web-portal#create-a-resource)
1. [Create a Synapse workspace](https://docs.microsoft.com/en-us/azure/synapse-analytics/get-started-create-workspace)
1. [Create a serverless Apache Spark pool](https://docs.microsoft.com/en-us/azure/synapse-analytics/get-started-analyze-spark#create-a-serverless-apache-spark-pool)
## Step 2: Import this guide as a notebook
The next step is to add this code into your Spark cluster. You can either create a notebook in your Spark platform and copy the code into this notebook to run the demo. Or download the notebook and import it into Synapse Analytics
1. Import the notebook into [Microsoft Fabric](https://learn.microsoft.com/en-us/fabric/data-engineering/how-to-use-notebook), [Synapse Workspace](https://docs.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-development-using-notebooks#create-a-notebook) or if using Databricks into the [Databricks Workspace](https://docs.microsoft.com/en-us/azure/databricks/notebooks/notebooks-manage#create-a-notebook).
1. Install SynapseML on your cluster. Please see the installation instructions for Synapse at the bottom of [the SynapseML website](https://microsoft.github.io/SynapseML/). Note that this requires pasting an additional cell at the top of the notebook you just imported.
1. Connect your notebook to a cluster and follow along, editing and running the cells below.
```python
%pip install openai==0.28.1 langchain==0.0.331 pdf2image pdfminer.six unstructured==0.10.24 pytesseract numpy==1.22.4
```
```python
import os, openai, langchain, uuid
from langchain.llms import AzureOpenAI, OpenAI
from langchain.agents import load_tools, initialize_agent, AgentType
from langchain.chains import TransformChain, LLMChain, SimpleSequentialChain
from langchain.document_loaders import OnlinePDFLoader
from langchain.tools.bing_search.tool import BingSearchRun, BingSearchAPIWrapper
from langchain.prompts import PromptTemplate
from synapse.ml.services.langchain import LangchainTransformer
from synapse.ml.core.platform import running_on_synapse, find_secret
```
## Step 3: Fill in the service information and construct the LLM
Next, please edit the cell in the notebook to point to your service. In particular set the `model_name`, `deployment_name`, `openai_api_base`, and `open_api_key` variables to match those for your OpenAI service. Please feel free to replace `find_secret` with your key as follows
`openai_api_key = "99sj2w82o...."`
`bing_subscription_key = "..."`
Note that you also need to set up your Bing search to gain access to your [Bing Search subscription key](https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/create-bing-search-service-resource).
```python
openai_api_key = find_secret(
secret_name="openai-api-key-2", keyvault="mmlspark-build-keys"
)
openai_api_base = "https://synapseml-openai-2.openai.azure.com/"
openai_api_version = "2022-12-01"
openai_api_type = "azure"
deployment_name = "gpt-35-turbo"
bing_search_url = "https://api.bing.microsoft.com/v7.0/search"
bing_subscription_key = find_secret(
secret_name="bing-search-key", keyvault="mmlspark-build-keys"
)
os.environ["BING_SUBSCRIPTION_KEY"] = bing_subscription_key
os.environ["BING_SEARCH_URL"] = bing_search_url
os.environ["OPENAI_API_TYPE"] = openai_api_type
os.environ["OPENAI_API_VERSION"] = openai_api_version
os.environ["OPENAI_API_BASE"] = openai_api_base
os.environ["OPENAI_API_KEY"] = openai_api_key
llm = AzureOpenAI(
deployment_name=deployment_name,
model_name=deployment_name,
temperature=0.1,
verbose=True,
)
```
## Step 4: Basic Usage of LangChain Transformer
### Create a chain
We will start by demonstrating the basic usage with a simple chain that creates definitions for input words
```python
copy_prompt = PromptTemplate(
input_variables=["technology"],
template="Define the following word: {technology}",
)
chain = LLMChain(llm=llm, prompt=copy_prompt)
transformer = (
LangchainTransformer()
.setInputCol("technology")
.setOutputCol("definition")
.setChain(chain)
.setSubscriptionKey(openai_api_key)
.setUrl(openai_api_base)
)
```
### Create a dataset and apply the chain
```python
# construction of test dataframe
df = spark.createDataFrame(
[(0, "docker"), (1, "spark"), (2, "python")], ["label", "technology"]
)
display(transformer.transform(df))
```
### Save and load the LangChain transformer
LangChain Transformers can be saved and loaded. Note that LangChain serialization only works for chains that don't have memory.
```python
temp_dir = "tmp"
if not os.path.exists(temp_dir):
os.mkdir(temp_dir)
path = os.path.join(temp_dir, "langchainTransformer")
transformer.save(path)
loaded = LangchainTransformer.load(path)
display(loaded.transform(df))
```
## Step 5: Using LangChain for Large scale literature review
### Create a Sequential Chain for paper summarization
We will now construct a Sequential Chain for extracting structured information from an arxiv link. In particular, we will ask langchain to extract the title, author information, and a summary of the paper content. After that, we use a web search tool to find the recent papers written by the first author.
To summarize, our sequential chain contains the following steps:
1. **Transform Chain**: Extract Paper Content from arxiv Link **=>**
1. **LLMChain**: Summarize the Paper, extract paper title and authors **=>**
1. **Transform Chain**: to generate the prompt **=>**
1. **Agent with Web Search Tool**: Use Web Search to find the recent papers by the first author
```python
def paper_content_extraction(inputs: dict) -> dict:
arxiv_link = inputs["arxiv_link"]
loader = OnlinePDFLoader(arxiv_link)
pages = loader.load_and_split()
return {"paper_content": pages[0].page_content + pages[1].page_content}
def prompt_generation(inputs: dict) -> dict:
output = inputs["Output"]
prompt = (
"find the paper title, author, summary in the paper description below, output them. After that, Use websearch to find out 3 recent papers of the first author in the author section below (first author is the first name separated by comma) and list the paper titles in bullet points: <Paper Description Start>\n"
+ output
+ "<Paper Description End>."
)
return {"prompt": prompt}
paper_content_extraction_chain = TransformChain(
input_variables=["arxiv_link"],
output_variables=["paper_content"],
transform=paper_content_extraction,
verbose=False,
)
paper_summarizer_template = """You are a paper summarizer, given the paper content, it is your job to summarize the paper into a short summary, and extract authors and paper title from the paper content.
Here is the paper content:
{paper_content}
Output:
paper title, authors and summary.
"""
prompt = PromptTemplate(
input_variables=["paper_content"], template=paper_summarizer_template
)
summarize_chain = LLMChain(llm=llm, prompt=prompt, verbose=False)
prompt_generation_chain = TransformChain(
input_variables=["Output"],
output_variables=["prompt"],
transform=prompt_generation,
verbose=False,
)
bing = BingSearchAPIWrapper(k=3)
tools = [BingSearchRun(api_wrapper=bing)]
web_search_agent = initialize_agent(
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=False
)
sequential_chain = SimpleSequentialChain(
chains=[
paper_content_extraction_chain,
summarize_chain,
prompt_generation_chain,
web_search_agent,
]
)
```
### Apply the LangChain transformer to perform this workload at scale
We can now use our chain at scale using the `LangchainTransformer`
```python
paper_df = spark.createDataFrame(
[
(0, "https://arxiv.org/pdf/2107.13586.pdf"),
(1, "https://arxiv.org/pdf/2101.00190.pdf"),
(2, "https://arxiv.org/pdf/2103.10385.pdf"),
(3, "https://arxiv.org/pdf/2110.07602.pdf"),
],
["label", "arxiv_link"],
)
# construct langchain transformer using the paper summarizer chain define above
paper_info_extractor = (
LangchainTransformer()
.setInputCol("arxiv_link")
.setOutputCol("paper_info")
.setChain(sequential_chain)
.setSubscriptionKey(openai_api_key)
.setUrl(openai_api_base)
)
# extract paper information from arxiv links, the paper information needs to include:
# paper title, paper authors, brief paper summary, and recent papers published by the first author
display(paper_info_extractor.transform(paper_df))
```

Просмотреть файл

@ -0,0 +1,294 @@
---
title: OpenAI
hide_title: true
status: stable
---
# Azure OpenAI for big data
The Azure OpenAI service can be used to solve a large number of natural language tasks through prompting the completion API. To make it easier to scale your prompting workflows from a few examples to large datasets of examples, we have integrated the Azure OpenAI service with the distributed machine learning library [SynapseML](https://www.microsoft.com/en-us/research/blog/synapseml-a-simple-multilingual-and-massively-parallel-machine-learning-library/). This integration makes it easy to use the [Apache Spark](https://spark.apache.org/) distributed computing framework to process millions of prompts with the OpenAI service. This tutorial shows how to apply large language models at a distributed scale using Azure OpenAI.
## Prerequisites
The key prerequisites for this quickstart include a working Azure OpenAI resource, and an Apache Spark cluster with SynapseML installed. We suggest creating a Synapse workspace, but an Azure Databricks, HDInsight, or Spark on Kubernetes, or even a python environment with the `pyspark` package will work.
1. An Azure OpenAI resource – request access [here](https://customervoice.microsoft.com/Pages/ResponsePage.aspx?id=v4j5cvGGr0GRqy180BHbR7en2Ais5pxKtso_Pz4b1_xUOFA5Qk1UWDRBMjg0WFhPMkIzTzhKQ1dWNyQlQCN0PWcu) before [creating a resource](https://docs.microsoft.com/en-us/azure/cognitive-services/openai/how-to/create-resource?pivots=web-portal#create-a-resource)
1. [Create a Synapse workspace](https://docs.microsoft.com/en-us/azure/synapse-analytics/get-started-create-workspace)
1. [Create a serverless Apache Spark pool](https://docs.microsoft.com/en-us/azure/synapse-analytics/get-started-analyze-spark#create-a-serverless-apache-spark-pool)
## Import this guide as a notebook
The next step is to add this code into your Spark cluster. You can either create a notebook in your Spark platform and copy the code into this notebook to run the demo. Or download the notebook and import it into Synapse Analytics
- [Download this demo as a notebook](https://github.com/microsoft/SynapseML/blob/master/docs/Explore%20Algorithms/OpenAI/OpenAI.ipynb) (select **Raw**, then save the file)
- Import the notebook.
* If you are using Synapse Analytics [into the Synapse Workspace](https://docs.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-development-using-notebooks#create-a-notebook)
* If your are using Databricks [import into the Databricks Workspace](https://docs.microsoft.com/en-us/azure/databricks/notebooks/notebooks-manage#create-a-notebook).
* If you are using Fabric [import into the Fabric Workspace](https://learn.microsoft.com/en-us/fabric/data-engineering/how-to-use-notebook)
- Install SynapseML on your cluster. See the installation instructions for Synapse at the bottom of [the SynapseML website](https://microsoft.github.io/SynapseML/).
* If you are using Fabric, please check [Installation Guide](https://learn.microsoft.com/en-us/fabric/data-science/install-synapseml). This requires pasting an extra cell at the top of the notebook you imported.
- Connect your notebook to a cluster and follow along, editing and running the cells.
## Fill in service information
Next, edit the cell in the notebook to point to your service. In particular set the `service_name`, `deployment_name`, `location`, and `key` variables to match them to your OpenAI service:
```python
from synapse.ml.core.platform import find_secret
# Fill in the following lines with your service information
# Learn more about selecting which embedding model to choose: https://openai.com/blog/new-and-improved-embedding-model
service_name = "synapseml-openai-2"
deployment_name = "gpt-35-turbo"
deployment_name_embeddings = "text-embedding-ada-002"
key = find_secret(
secret_name="openai-api-key-2", keyvault="mmlspark-build-keys"
) # please replace this line with your key as a string
assert key is not None and service_name is not None
```
## Create a dataset of prompts
Next, create a dataframe consisting of a series of rows, with one prompt per row.
You can also load data directly from ADLS or other databases. For more information on loading and preparing Spark dataframes, see the [Apache Spark data loading guide](https://spark.apache.org/docs/latest/sql-data-sources.html).
```python
df = spark.createDataFrame(
[
("Hello my name is",),
("The best code is code thats",),
("SynapseML is ",),
]
).toDF("prompt")
```
## Create the OpenAICompletion Apache Spark Client
To apply the OpenAI Completion service to your dataframe you created, create an OpenAICompletion object, which serves as a distributed client. Parameters of the service can be set either with a single value, or by a column of the dataframe with the appropriate setters on the `OpenAICompletion` object. Here we're setting `maxTokens` to 200. A token is around four characters, and this limit applies to the sum of the prompt and the result. We're also setting the `promptCol` parameter with the name of the prompt column in the dataframe.
```python
from synapse.ml.services.openai import OpenAICompletion
completion = (
OpenAICompletion()
.setSubscriptionKey(key)
.setDeploymentName(deployment_name)
.setCustomServiceName(service_name)
.setMaxTokens(200)
.setPromptCol("prompt")
.setErrorCol("error")
.setOutputCol("completions")
)
```
## Transform the dataframe with the OpenAICompletion Client
After creating the dataframe and the completion client, you can transform your input dataset and add a column called `completions` with all of the information the service adds. Select just the text for simplicity.
```python
from pyspark.sql.functions import col
completed_df = completion.transform(df).cache()
display(
completed_df.select(
col("prompt"),
col("error"),
col("completions.choices.text").getItem(0).alias("text"),
)
)
```
Your output should look something like this. The completion text will be different from the sample.
| **prompt** | **error** | **text** |
|:----------------------------: |:----------: |:-------------------------------------------------------------------------------------------------------------------------------------: |
| Hello my name is | null | Makaveli I'm eighteen years old and I want to be a rapper when I grow up I love writing and making music I'm from Los Angeles, CA |
| The best code is code thats | null | understandable This is a subjective statement, and there is no definitive answer. |
| SynapseML is | null | A machine learning algorithm that is able to learn how to predict the future outcome of events. |
## More Usage Examples
### Generating Text Embeddings
In addition to completing text, we can also embed text for use in downstream algorithms or vector retrieval architectures. Creating embeddings allows you to search and retrieve documents from large collections and can be used when prompt engineering isn't sufficient for the task.
For more information on using `OpenAIEmbedding` see our [embedding guide](./Quickstart%20-%20OpenAI%20Embedding).
```python
from synapse.ml.services.openai import OpenAIEmbedding
embedding = (
OpenAIEmbedding()
.setSubscriptionKey(key)
.setDeploymentName(deployment_name_embeddings)
.setCustomServiceName(service_name)
.setTextCol("prompt")
.setErrorCol("error")
.setOutputCol("embeddings")
)
display(embedding.transform(df))
```
### Chat Completion
Models such as ChatGPT and GPT-4 are capable of understanding chats instead of single prompts. The `OpenAIChatCompletion` transformer exposes this functionality at scale.
```python
from synapse.ml.services.openai import OpenAIChatCompletion
from pyspark.sql import Row
from pyspark.sql.types import *
def make_message(role, content):
return Row(role=role, content=content, name=role)
chat_df = spark.createDataFrame(
[
(
[
make_message(
"system", "You are an AI chatbot with red as your favorite color"
),
make_message("user", "Whats your favorite color"),
],
),
(
[
make_message("system", "You are very excited"),
make_message("user", "How are you today"),
],
),
]
).toDF("messages")
chat_completion = (
OpenAIChatCompletion()
.setSubscriptionKey(key)
.setDeploymentName(deployment_name)
.setCustomServiceName(service_name)
.setMessagesCol("messages")
.setErrorCol("error")
.setOutputCol("chat_completions")
)
display(
chat_completion.transform(chat_df).select(
"messages", "chat_completions.choices.message.content"
)
)
```
### Improve throughput with request batching
The example makes several requests to the service, one for each prompt. To complete multiple prompts in a single request, use batch mode. First, in the OpenAICompletion object, instead of setting the Prompt column to "Prompt", specify "batchPrompt" for the BatchPrompt column.
To do so, create a dataframe with a list of prompts per row.
As of this writing there's currently a limit of 20 prompts in a single request, and a hard limit of 2048 "tokens", or approximately 1500 words.
```python
```
```python
batch_df = spark.createDataFrame(
[
(["The time has come", "Pleased to", "Today stocks", "Here's to"],),
(["The only thing", "Ask not what", "Every litter", "I am"],),
]
).toDF("batchPrompt")
```
Next we create the OpenAICompletion object. Rather than setting the prompt column, set the batchPrompt column if your column is of type `Array[String]`.
```python
batch_completion = (
OpenAICompletion()
.setSubscriptionKey(key)
.setDeploymentName(deployment_name)
.setCustomServiceName(service_name)
.setMaxTokens(200)
.setBatchPromptCol("batchPrompt")
.setErrorCol("error")
.setOutputCol("completions")
)
```
In the call to transform, a request will be made per row. Since there are multiple prompts in a single row, each request is sent with all prompts in that row. The results contain a row for each row in the request.
```python
completed_batch_df = batch_completion.transform(batch_df).cache()
display(completed_batch_df)
```
### Using an automatic minibatcher
If your data is in column format, you can transpose it to row format using SynapseML's `FixedMiniBatcherTransformer`.
```python
from pyspark.sql.types import StringType
from synapse.ml.stages import FixedMiniBatchTransformer
from synapse.ml.core.spark import FluentAPI
completed_autobatch_df = (
df.coalesce(
1
) # Force a single partition so that our little 4-row dataframe makes a batch of size 4, you can remove this step for large datasets
.mlTransform(FixedMiniBatchTransformer(batchSize=4))
.withColumnRenamed("prompt", "batchPrompt")
.mlTransform(batch_completion)
)
display(completed_autobatch_df)
```
### Prompt engineering for translation
The Azure OpenAI service can solve many different natural language tasks through [prompt engineering](https://docs.microsoft.com/en-us/azure/cognitive-services/openai/how-to/completions). Here, we show an example of prompting for language translation:
```python
translate_df = spark.createDataFrame(
[
("Japanese: Ookina hako \nEnglish: Big box \nJapanese: Midori tako\nEnglish:",),
(
"French: Quel heure et il au Montreal? \nEnglish: What time is it in Montreal? \nFrench: Ou est le poulet? \nEnglish:",
),
]
).toDF("prompt")
display(completion.transform(translate_df))
```
### Prompt for question answering
Here, we prompt GPT-3 for general-knowledge question answering:
```python
qa_df = spark.createDataFrame(
[
(
"Q: Where is the Grand Canyon?\nA: The Grand Canyon is in Arizona.\n\nQ: What is the weight of the Burj Khalifa in kilograms?\nA:",
)
]
).toDF("prompt")
display(completion.transform(qa_df))
```

Просмотреть файл

@ -0,0 +1,215 @@
---
title: Quickstart - Custom Embeddings and Approximate KNN on GPU
hide_title: true
status: stable
---
# Embedding Text with local (per node) NVIDIA TensorRT accelerator and GPU based Aproximate Nearest Neighbor (ANN)
The demo extending existing [Azure OpenAI based demo](https://github.com/microsoft/SynapseML/blob/master/docs/Explore%20Algorithms/OpenAI/Quickstart%20-%20OpenAI%20Embedding%20and%20GPU%20based%20KNN.ipynb) when encoding is processed by OpenAI requests and KNN was using GPU based brute force search. This tutorial shows how to perform fast local embeddings using [multilingual E5 text embeddings](https://arxiv.org/abs/2402.05672) and fast aproximate Nearest Neighbor search using IVFFlat alcorithm. All tutorial stages accelerated by NVIDIA GPU using [NVIDIA TensorRT](https://developer.nvidia.com/tensorrt) and [Spark Rapids ML](https://github.com/NVIDIA/spark-rapids-ml). The tutorial folder contains two benchmark notebooks to demonstrate advantages of the presented GPU based approach compare to [previos CPU based demo](https://github.com/microsoft/SynapseML/blob/master/docs/Explore%20Algorithms/OpenAI/Quickstart%20-%20OpenAI%20Embedding.ipynb)
The key prerequisites for this quickstart include a working Azure OpenAI resource, and an Apache Spark cluster with SynapseML installed. We suggest creating a Synapse workspace, but currently the notebook was running on Databricks GPU based cluster using Standard_NC24ads_A100_v4 with 6 workers. Databricks Runtime was 13.3 LTS ML (includes Apache Spark 3.4.1, GPU, Scala 2.12) with related [init_script](https://github.com/microsoft/SynapseML/tree/master/tools/init_scripts) to install all required packages.
## Step 1: Prepare Environment
It will imports required libraries and get initial settings
```python
import torch
import sys
import pyspark.sql.functions as F
from pyspark.sql.types import StructType, StructField, IntegerType, StringType
from pyspark.ml.linalg import Vectors
from pyspark.ml.linalg import VectorUDT
from spark_rapids_ml.knn import (
ApproximateNearestNeighbors,
ApproximateNearestNeighborsModel,
)
from synapse.ml.hf import HuggingFaceSentenceEmbedder
from synapse.ml.nn import KNN
```
## Step 2: Load Input Data
It will load public dataset and generate extra syntetic rows if set by size parameter
The loaded dataset has 1000 rows. If you specify <i>number_of_input_rows</i> in [1..1000] it will cut extra rows if needed
If <i>number_of_input_rows</i> in [1000..1000000] it will generate extra rows using cross join of original data
```python
file_path = "wasbs://publicwasb@mmlspark.blob.core.windows.net/fine_food_reviews_1k.csv"
df = spark.read.options(inferSchema="True", delimiter=",", header=True).csv(file_path)
df = df.withColumn(
"data",
F.format_string("Title: %s; Content: %s", F.trim(df.Summary), F.trim(df.Text)),
)
# Size of DF
number_of_input_rows = 100
# Check if the row count is less than 10
if number_of_input_rows <= 0 or number_of_input_rows >= 1000000:
raise ValueError(f"Limit is {number_of_input_rows}, which should be less than 1M.")
if number_of_input_rows > 1000:
# Cross-join the DataFrame with itself to create n x n pairs for string concatenation (synthetic data)
cross_joined_df = df.crossJoin(df.withColumnRenamed("data", "data_"))
# Create a new column 'result_vector' by concatenating the two source vectors
tmp_df = cross_joined_df.withColumn(
"result_vector",
F.concat(F.col("data"), F.lit(". \n"), F.col("data_")),
)
# Select only the necessary columns and show the result
tmp_df = tmp_df.select("result_vector")
# Shuffle the DataFrame with a fixed seed to have close strings spreaded
seed = 42
df = (
tmp_df.withColumnRenamed("result_vector", "data")
.withColumn("id", F.monotonically_increasing_id())
.orderBy(F.rand(seed))
)
df = df.limit(number_of_input_rows).repartition(10).cache()
print(f"Loaded: {number_of_input_rows} rows")
```
## Step 3: Generate Embeddings
We will first generate embeddings using NVIDIA TensorRT optimized SentenceTransformer. In the demo you can use two fifferent HF models: intfloat/e5-large-v2 or sentence-transformers/all-MiniLM-L6-v2"
```python
# To create embedder with different models, uncomment the following line
# embedder = HuggingFaceSentenceEmbedder(modelName="intfloat/e5-large-v2", inputCol="data", outputCol="embeddings", runtime="tensorrt")
embedder = HuggingFaceSentenceEmbedder(
modelName="sentence-transformers/all-MiniLM-L6-v2",
inputCol="data",
outputCol="embeddings",
runtime="tensorrt",
)
embeddings = embedder.transform(df).select("id", "embeddings").cache()
```
## Step 4: Build the query against embeddings
Get query embeddings running standard SentenceTransformer just on the driver. Convert embedding results to a data frame
```python
# Sample query
queries = ["desserts", "disgusting"]
ids = [1, 2]
# Create DataFrame directly from the data and schema
query_df = spark.createDataFrame(
list(zip(ids, queries)),
StructType(
[
StructField("id", IntegerType(), nullable=False),
StructField("data", StringType(), nullable=False),
]
),
)
query_embeddings = embedder.transform(query_df).select("id", "embeddings").cache()
```
## Step 5: Build a fast vector index to over review embeddings
We will use fast NVIDIA Rapids indexer. This KNN implementation will work only on GPU. If you want to use CPU then switch to synapse.ml.nn CPU based KNN implementation
```python
RUN_ON_GPU = torch.cuda.is_available()
```
```python
if RUN_ON_GPU:
rapids_knn_model = (
ApproximateNearestNeighbors(k=5)
.setInputCol("embeddings")
.setIdCol("id")
.fit(embeddings)
)
else:
array_to_vector_udf = udf(lambda array: Vectors.dense(array), VectorUDT())
df_with_vectors = embeddings.withColumn(
"features", array_to_vector_udf(embeddings["embeddings"])
)
knn = (
KNN()
.setFeaturesCol("features")
.setValuesCol("id")
.setOutputCol("output")
.setK(10)
)
knn_model = knn.fit(df_with_vectors)
```
## Step 6: Find top k Nearest Neighbors ON GPU
We will use fast ANN [IVFFlat algorithm](https://developer.nvidia.com/blog/accelerated-vector-search-approximating-with-rapids-raft-ivf-flat/) from Rapids
```python
if RUN_ON_GPU:
(_, _, knn_df) = rapids_knn_model.kneighbors(query_embeddings)
else:
array_to_vector_udf = udf(lambda array: Vectors.dense(array), VectorUDT())
df_with_vectors = query_embeddings.withColumn(
"features", array_to_vector_udf(query_embeddings["embeddings"])
)
knn_df = knn_model.transform(df_with_vectors)
```
## Step 7: Collect and display results
```python
if RUN_ON_GPU:
result_df = (
knn_df.withColumn(
"zipped", F.explode(F.arrays_zip(F.col("indices"), F.col("distances")))
)
.select(
F.col("query_id"),
F.col("zipped.indices").alias("id"),
F.col("zipped.distances").alias("distance"),
)
.join(df, on="id", how="inner")
.select("query_id", "id", "data", "distance")
)
else:
knn_df = knn_df.withColumnRenamed("data", "original_data")
result_df = (
knn_df.withColumn("match", F.explode("output"))
.join(df, df["id"] == F.col("match.value"))
.select("original_data", F.col("data"), "match.distance")
)
display(result_df)
```
# Results
The goal of this demo is to showcase two acceleration techniques: local (per node) embedding generation and approximate KNN. Compared to the original method, which relies on HTTP requests to the OpenAI model and CPU-based KNN. The new approach is significantly more scalable and provides substantial acceleration, especially for large input datasets.
This is the comparison dureation results on 10 T4 GPU nodes for both approaches:
![KNN Comparison](https://mmlspark.blob.core.windows.net/graphics/Documentation/knn_comparison.png)

Просмотреть файл

@ -0,0 +1,202 @@
---
title: Quickstart - OpenAI Embedding and GPU based KNN
hide_title: true
status: stable
---
# Embedding Text with Azure OpenAI and GPU based KNN
The Azure OpenAI service can be used to solve a large number of natural language tasks through prompting the completion API. To make it easier to scale your prompting workflows from a few examples to large datasets of examples we have integrated the Azure OpenAI service with the distributed machine learning library [Spark Rapids ML](https://github.com/NVIDIA/spark-rapids-ml/). This integration makes it easy to use the [Apache Spark](https://spark.apache.org/) distributed computing framework to process millions of prompts with the OpenAI service. This tutorial shows how to apply large language models to generate embeddings for large datasets of text. This demo is based on "Quickstart - OpenAI Embedding" notebook with NVIDIA GPU accelerated KNN.
**Note**: Running the notebook with the demo dataset (Step 4) will generate the same results as CPU based “Quickstart - OpenAI Embedding” notebook. To see GPU acceleration you need to run query against bigger embeddings.
For example, running 100K rows dataset will give 6x acceleration and consume less than 10x memory on 2 nodes NVIDIA T4 cluster compare to AMD Epic (Rome) 2 nodes CPU cluster.
## Step 1: Prerequisites
The key prerequisites for this quickstart include a working Azure OpenAI resource, and an Apache Spark cluster with SynapseML installed. We suggest creating a Synapse workspace, but an Azure Databricks, HDInsight, or Spark on Kubernetes, or even a python environment with the `pyspark` package will work.
1. An Azure OpenAI resource – request access [here](https://customervoice.microsoft.com/Pages/ResponsePage.aspx?id=v4j5cvGGr0GRqy180BHbR7en2Ais5pxKtso_Pz4b1_xUOFA5Qk1UWDRBMjg0WFhPMkIzTzhKQ1dWNyQlQCN0PWcu) before [creating a resource](https://docs.microsoft.com/en-us/azure/cognitive-services/openai/how-to/create-resource?pivots=web-portal#create-a-resource)
1. [Create a Synapse workspace](https://docs.microsoft.com/en-us/azure/synapse-analytics/get-started-create-workspace)
1. [Create a serverless Apache Spark pool](https://docs.microsoft.com/en-us/azure/synapse-analytics/get-started-analyze-spark#create-a-serverless-apache-spark-pool)
## Step 2: Import this guide as a notebook
The next step is to add this code into your Spark cluster. You can either create a notebook in your Spark platform and copy the code into this notebook to run the demo. Or download the notebook and import it into Synapse Analytics
1. [Download this demo as a notebook](https://github.com/microsoft/SynapseML/blob/master/notebooks/features/cognitive_services/CognitiveServices%20-%20OpenAI%20Embedding.ipynb) (click Raw, then save the file)
1. Import the notebook [into the Synapse Workspace](https://docs.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-development-using-notebooks#create-a-notebook) or if using Databricks [into the Databricks Workspace](https://docs.microsoft.com/en-us/azure/databricks/notebooks/notebooks-manage#create-a-notebook)
1. Install SynapseML on your cluster. Please see the installation instructions for Synapse at the bottom of [the SynapseML website](https://microsoft.github.io/SynapseML/). Note that this requires pasting an additional cell at the top of the notebook you just imported
3. To run the notebook on Databricks add related init script (/tools/init_scripts/init-rapidsml-cuda-11.8.sh)
4. Connect your notebook to a cluster and follow along, editing and rnnung the cells below.
## Step 3: Fill in your service information
Next, please edit the cell in the notebook to point to your service. In particular set the `service_name`, `deployment_name`, `location`, and `key` variables to match those for your OpenAI service
```python
from synapse.ml.core.platform import find_secret
# Fill in the following lines with your service information
# Learn more about selecting which embedding model to choose: https://openai.com/blog/new-and-improved-embedding-model
service_name = "synapseml-openai-2"
deployment_name_embeddings = "text-embedding-ada-002"
key = find_secret(
secret_name="openai-api-key-2", keyvault="mmlspark-build-keys"
) # please replace this with your key as a string
assert key is not None and service_name is not None
```
## Step 4: Load Data
In this demo we will explore a dataset of fine food reviews
```python
import pyspark.sql.functions as F
df = (
spark.read.options(inferSchema="True", delimiter=",", header=True)
.csv("wasbs://publicwasb@mmlspark.blob.core.windows.net/fine_food_reviews_1k.csv")
.repartition(5)
)
df = df.withColumn(
"combined",
F.format_string("Title: %s; Content: %s", F.trim(df.Summary), F.trim(df.Text)),
)
display(df)
```
## Step 5: Generate Embeddings
We will first generate embeddings for the reviews using the SynapseML OpenAIEmbedding client.
```python
from synapse.ml.services.openai import OpenAIEmbedding
embedding = (
OpenAIEmbedding()
.setSubscriptionKey(key)
.setDeploymentName(deployment_name_embeddings)
.setCustomServiceName(service_name)
.setTextCol("combined")
.setErrorCol("error")
.setOutputCol("embeddings")
)
completed_df = embedding.transform(df).cache()
display(completed_df)
```
## Step 6: Reduce Embedding dimensionality for Visualization
We reduce the dimensionality to 2 dimensions using t-SNE decomposition.
```python
import pandas as pd
from sklearn.manifold import TSNE
import numpy as np
collected = list(completed_df.collect())
matrix = np.array([[r["embeddings"]] for r in collected])[:, 0, :].astype(np.float64)
scores = np.array([[r["Score"]] for r in collected]).reshape(-1)
tsne = TSNE(n_components=2, perplexity=15, random_state=42, init="pca")
vis_dims = tsne.fit_transform(matrix)
vis_dims.shape
```
## Step 7: Plot the embeddings
We now use t-SNE to reduce the dimensionality of the embeddings from 1536 to 2. Once the embeddings are reduced to two dimensions, we can plot them in a 2D scatter plot. We colour each review by its star rating, ranging from red for negative reviews, to green for positive reviews. We can observe a decent data separation even in the reduced 2 dimensions.
```python
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
colors = ["red", "darkorange", "gold", "turquoise", "darkgreen"]
x = [x for x, y in vis_dims]
y = [y for x, y in vis_dims]
color_indices = scores - 1
colormap = matplotlib.colors.ListedColormap(colors)
plt.scatter(x, y, c=color_indices, cmap=colormap, alpha=0.3)
for score in [0, 1, 2, 3, 4]:
avg_x = np.array(x)[scores - 1 == score].mean()
avg_y = np.array(y)[scores - 1 == score].mean()
color = colors[score]
plt.scatter(avg_x, avg_y, marker="x", color=color, s=100)
plt.title("Amazon ratings visualized in language using t-SNE")
```
## Step 8: Build the query against embeddings
Note: The data types of the ID columns in the document and query dataframes should be the same. For some OpenAI models, users should use separate models for embedding documents and queries. These models are denoted by the "-doc" and "-query" suffixes respectively.
```python
from pyspark.ml import PipelineModel
embedding_query = (
OpenAIEmbedding()
.setSubscriptionKey(key)
.setDeploymentName(deployment_name_embeddings)
.setCustomServiceName(service_name)
.setTextCol("query")
.setErrorCol("error")
.setOutputCol("embeddings")
)
query_df = (
spark.createDataFrame(
[
(
0,
"desserts",
),
(
1,
"disgusting",
),
]
)
.toDF("id", "query")
.withColumn("id", F.col("id").cast("int"))
)
embedding_query_df = (
embedding_query.transform(query_df).select("id", "embeddings").cache()
)
```
## Step 9: Fit KNN model
Build KNN model using fit method
```python
from spark_rapids_ml.knn import NearestNeighbors
rapids_knn = NearestNeighbors(k=10)
rapids_knn.setInputCol("embeddings").setIdCol("id")
rapids_knn_model = rapids_knn.fit(completed_df.select("id", "embeddings"))
```
## Step 10: Retrieve query results
Find k nearest neighbors
```python
(_, _, knn_df) = rapids_knn_model.kneighbors(embedding_query_df)
display(knn_df)
```

Просмотреть файл

@ -0,0 +1,207 @@
---
title: Quickstart - OpenAI Embedding
hide_title: true
status: stable
---
# Embedding Text with Azure OpenAI
The Azure OpenAI service can be used to solve a large number of natural language tasks through prompting the completion API. To make it easier to scale your prompting workflows from a few examples to large datasets of examples we have integrated the Azure OpenAI service with the distributed machine learning library [SynapseML](https://www.microsoft.com/en-us/research/blog/synapseml-a-simple-multilingual-and-massively-parallel-machine-learning-library/). This integration makes it easy to use the [Apache Spark](https://spark.apache.org/) distributed computing framework to process millions of prompts with the OpenAI service. This tutorial shows how to apply large language models to generate embeddings for large datasets of text.
## Step 1: Prerequisites
The key prerequisites for this quickstart include a working Azure OpenAI resource, and an Apache Spark cluster with SynapseML installed. We suggest creating a Synapse workspace, but an Azure Databricks, HDInsight, or Spark on Kubernetes, or even a python environment with the `pyspark` package will work.
1. An Azure OpenAI resource – request access [here](https://customervoice.microsoft.com/Pages/ResponsePage.aspx?id=v4j5cvGGr0GRqy180BHbR7en2Ais5pxKtso_Pz4b1_xUOFA5Qk1UWDRBMjg0WFhPMkIzTzhKQ1dWNyQlQCN0PWcu) before [creating a resource](https://docs.microsoft.com/en-us/azure/cognitive-services/openai/how-to/create-resource?pivots=web-portal#create-a-resource)
1. [Create a Synapse workspace](https://docs.microsoft.com/en-us/azure/synapse-analytics/get-started-create-workspace)
1. [Create a serverless Apache Spark pool](https://docs.microsoft.com/en-us/azure/synapse-analytics/get-started-analyze-spark#create-a-serverless-apache-spark-pool)
## Step 2: Import this guide as a notebook
The next step is to add this code into your Spark cluster. You can either create a notebook in your Spark platform and copy the code into this notebook to run the demo. Or download the notebook and import it into Synapse Analytics
1. [Download this demo as a notebook](https://github.com/microsoft/SynapseML/blob/master/notebooks/features/cognitive_services/CognitiveServices%20-%20OpenAI%20Embedding.ipynb) (click Raw, then save the file)
1. Import the notebook [into the Synapse Workspace](https://docs.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-development-using-notebooks#create-a-notebook) or if using Databricks [into the Databricks Workspace](https://docs.microsoft.com/en-us/azure/databricks/notebooks/notebooks-manage#create-a-notebook)
1. Install SynapseML on your cluster. Please see the installation instructions for Synapse at the bottom of [the SynapseML website](https://microsoft.github.io/SynapseML/). Note that this requires pasting an additional cell at the top of the notebook you just imported
3. Connect your notebook to a cluster and follow along, editing and rnnung the cells below.
## Step 3: Fill in your service information
Next, please edit the cell in the notebook to point to your service. In particular set the `service_name`, `deployment_name`, `location`, and `key` variables to match those for your OpenAI service:
```python
from synapse.ml.core.platform import find_secret
# Fill in the following lines with your service information
# Learn more about selecting which embedding model to choose: https://openai.com/blog/new-and-improved-embedding-model
service_name = "synapseml-openai-2"
deployment_name_embeddings = "text-embedding-ada-002"
key = find_secret(
secret_name="openai-api-key-2", keyvault="mmlspark-build-keys"
) # please replace this with your key as a string
assert key is not None and service_name is not None
```
## Step 4: Load Data
In this demo we will explore a dataset of fine food reviews
```python
import pyspark.sql.functions as F
df = (
spark.read.options(inferSchema="True", delimiter=",", header=True)
.csv("wasbs://publicwasb@mmlspark.blob.core.windows.net/fine_food_reviews_1k.csv")
.repartition(5)
)
df = df.withColumn(
"combined",
F.format_string("Title: %s; Content: %s", F.trim(df.Summary), F.trim(df.Text)),
)
display(df)
```
## Step 5: Generate Embeddings
We will first generate embeddings for the reviews using the SynapseML OpenAIEmbedding client.
```python
from synapse.ml.services.openai import OpenAIEmbedding
embedding = (
OpenAIEmbedding()
.setSubscriptionKey(key)
.setDeploymentName(deployment_name_embeddings)
.setCustomServiceName(service_name)
.setTextCol("combined")
.setErrorCol("error")
.setOutputCol("embeddings")
)
completed_df = embedding.transform(df).cache()
display(completed_df)
```
## Step 6: Reduce Embedding dimensionality for Visualization
We reduce the dimensionality to 2 dimensions using t-SNE decomposition.
```python
import pandas as pd
from sklearn.manifold import TSNE
import numpy as np
collected = list(completed_df.collect())
matrix = np.array([[r["embeddings"]] for r in collected])[:, 0, :].astype(np.float64)
scores = np.array([[r["Score"]] for r in collected]).reshape(-1)
tsne = TSNE(n_components=2, perplexity=15, random_state=42, init="pca")
vis_dims = tsne.fit_transform(matrix)
vis_dims.shape
```
## Step 7: Plot the embeddings
We now use t-SNE to reduce the dimensionality of the embeddings from 1536 to 2. Once the embeddings are reduced to two dimensions, we can plot them in a 2D scatter plot. We colour each review by its star rating, ranging from red for negative reviews, to green for positive reviews. We can observe a decent data separation even in the reduced 2 dimensions.
```python
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
colors = ["red", "darkorange", "gold", "turquoise", "darkgreen"]
x = [x for x, y in vis_dims]
y = [y for x, y in vis_dims]
color_indices = scores - 1
colormap = matplotlib.colors.ListedColormap(colors)
plt.scatter(x, y, c=color_indices, cmap=colormap, alpha=0.3)
for score in [0, 1, 2, 3, 4]:
avg_x = np.array(x)[scores - 1 == score].mean()
avg_y = np.array(y)[scores - 1 == score].mean()
color = colors[score]
plt.scatter(avg_x, avg_y, marker="x", color=color, s=100)
plt.title("Amazon ratings visualized in language using t-SNE")
```
## Step 8: Build a fast vector index to over review embeddings
We will use SynapseML's KNN estimator to build a fast cosine-similarity retrieval engine.
```python
from synapse.ml.nn import *
knn = (
KNN()
.setFeaturesCol("embeddings")
.setValuesCol("id")
.setOutputCol("output")
.setK(10)
)
knn_index = knn.fit(completed_df)
```
## Step 8: Build the retrieval model pipeline
Note: The data types of the ID columns in the document and query dataframes should be the same. For some OpenAI models, users should use separate models for embedding documents and queries. These models are denoted by the "-doc" and "-query" suffixes respectively.
```python
from pyspark.ml import PipelineModel
embedding_query = (
OpenAIEmbedding()
.setSubscriptionKey(key)
.setDeploymentName(deployment_name_embeddings)
.setCustomServiceName(service_name)
.setTextCol("query")
.setErrorCol("error")
.setOutputCol("embeddings")
)
retrieval_model = PipelineModel(stages=[embedding_query, knn_index])
```
## Step 9: Retrieve results
```python
query_df = (
spark.createDataFrame(
[
(
0,
"desserts",
),
(
1,
"disgusting",
),
]
)
.toDF("id", "query")
.withColumn("id", F.col("id").cast("int"))
)
df_matches = retrieval_model.transform(query_df).cache()
df_result = (
df_matches.withColumn("match", F.explode("output"))
.join(df, df["id"] == F.col("match.value"))
.select("query", F.col("combined"), "match.distance")
)
display(df_result)
```

Просмотреть файл

@ -0,0 +1,376 @@
---
title: Quickstart - Understand and Search Forms
hide_title: true
status: stable
---
# Tutorial: Create a custom search engine and question-answering system
In this tutorial, learn how to index and query large data loaded from a Spark cluster. You set up a Jupyter Notebook that performs the following actions:
> + Load various forms (invoices) into a data frame in an Apache Spark session
> + Analyze them to determine their features
> + Assemble the resulting output into a tabular data structure
> + Write the output to a search index hosted in Azure Cognitive Search
> + Explore and query over the content you created
## 1 - Set up dependencies
We start by importing packages and connecting to the Azure resources used in this workflow.
```python
%pip install openai==0.28.1
```
```python
from synapse.ml.core.platform import find_secret
cognitive_key = find_secret(
secret_name="ai-services-api-key", keyvault="mmlspark-build-keys"
) # Replace the call to find_secret with your key as a python string. e.g. cognitive_key="27snaiw..."
cognitive_location = "eastus"
translator_key = find_secret(
secret_name="translator-key", keyvault="mmlspark-build-keys"
) # Replace the call to find_secret with your key as a python string.
translator_location = "eastus"
search_key = find_secret(
secret_name="azure-search-key", keyvault="mmlspark-build-keys"
) # Replace the call to find_secret with your key as a python string.
search_service = "mmlspark-azure-search"
search_index = "form-demo-index-5"
openai_key = find_secret(
secret_name="openai-api-key-2", keyvault="mmlspark-build-keys"
) # Replace the call to find_secret with your key as a python string.
openai_service_name = "synapseml-openai-2"
openai_deployment_name = "gpt-35-turbo"
openai_url = f"https://{openai_service_name}.openai.azure.com/"
```
## 2 - Load data into Spark
This code loads a few external files from an Azure storage account that's used for demo purposes. The files are various invoices, and they're read into a data frame.
```python
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType
def blob_to_url(blob):
[prefix, postfix] = blob.split("@")
container = prefix.split("/")[-1]
split_postfix = postfix.split("/")
account = split_postfix[0]
filepath = "/".join(split_postfix[1:])
return "https://{}/{}/{}".format(account, container, filepath)
df2 = (
spark.read.format("binaryFile")
.load("wasbs://publicwasb@mmlspark.blob.core.windows.net/form_subset/*")
.select("path")
.limit(10)
.select(udf(blob_to_url, StringType())("path").alias("url"))
.cache()
)
display(df2)
```
<img src="https://mmlspark.blob.core.windows.net/graphics/Invoice11205.svg" width="40%"/>
## 3 - Apply form recognition
This code loads the [AnalyzeInvoices transformer](https://microsoft.github.io/SynapseML/docs/Explore%20Algorithms/AI%20Services/Overview/#form-recognizer) and passes a reference to the data frame containing the invoices. It calls the pre-built invoice model of Azure Forms Analyzer.
```python
from synapse.ml.services.form import AnalyzeInvoices
analyzed_df = (
AnalyzeInvoices()
.setSubscriptionKey(cognitive_key)
.setLocation(cognitive_location)
.setImageUrlCol("url")
.setOutputCol("invoices")
.setErrorCol("errors")
.setConcurrency(5)
.transform(df2)
.cache()
)
display(analyzed_df)
```
## 4 - Simplify form recognition output
This code uses the [FormOntologyLearner](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.services.form.html#module-synapse.ml.services.form.FormOntologyTransformer), a transformer that analyzes the output of Form Recognizer transformers (for Azure AI Document Intelligence) and infers a tabular data structure. The output of AnalyzeInvoices is dynamic and varies based on the features detected in your content.
FormOntologyLearner extends the utility of the AnalyzeInvoices transformer by looking for patterns that can be used to create a tabular data structure. Organizing the output into multiple columns and rows makes for simpler downstream analysis.
```python
from synapse.ml.services.form import FormOntologyLearner
organized_df = (
FormOntologyLearner()
.setInputCol("invoices")
.setOutputCol("extracted")
.fit(analyzed_df)
.transform(analyzed_df)
.select("url", "extracted.*")
.cache()
)
display(organized_df)
```
With our nice tabular dataframe, we can flatten the nested tables found in the forms with some SparkSQL
```python
from pyspark.sql.functions import explode, col
itemized_df = (
organized_df.select("*", explode(col("Items")).alias("Item"))
.drop("Items")
.select("Item.*", "*")
.drop("Item")
)
display(itemized_df)
```
## 5 - Add translations
This code loads [Translate](https://microsoft.github.io/SynapseML/docs/Explore%20Algorithms/AI%20Services/Overview/#translation), a transformer that calls the Azure AI Translator service in Azure AI services. The original text, which is in English in the "Description" column, is machine-translated into various languages. All of the output is consolidated into "output.translations" array.
```python
from synapse.ml.services.translate import Translate
translated_df = (
Translate()
.setSubscriptionKey(translator_key)
.setLocation(translator_location)
.setTextCol("Description")
.setErrorCol("TranslationError")
.setOutputCol("output")
.setToLanguage(["zh-Hans", "fr", "ru", "cy"])
.setConcurrency(5)
.transform(itemized_df)
.withColumn("Translations", col("output.translations")[0])
.drop("output", "TranslationError")
.cache()
)
display(translated_df)
```
## 6 - Translate products to emojis with OpenAI 🤯
```python
from synapse.ml.services.openai import OpenAIPrompt
from pyspark.sql.functions import trim, split
emoji_template = """
Your job is to translate item names into emoji. Do not add anything but the emoji and end the translation with a comma
Two Ducks: 🦆🦆,
Light Bulb: 💡,
Three Peaches: 🍑🍑🍑,
Two kitchen stoves: ♨️♨️,
A red car: 🚗,
A person and a cat: 🧍🐈,
A {Description}: """
prompter = (
OpenAIPrompt()
.setSubscriptionKey(openai_key)
.setDeploymentName(openai_deployment_name)
.setUrl(openai_url)
.setMaxTokens(5)
.setPromptTemplate(emoji_template)
.setErrorCol("error")
.setOutputCol("Emoji")
)
emoji_df = (
prompter.transform(translated_df)
.withColumn("Emoji", trim(split(col("Emoji"), ",").getItem(0)))
.drop("error", "prompt")
.cache()
)
```
```python
display(emoji_df.select("Description", "Emoji"))
```
## 7 - Infer vendor address continent with OpenAI
```python
continent_template = """
Which continent does the following address belong to?
Pick one value from Europe, Australia, North America, South America, Asia, Africa, Antarctica.
Dont respond with anything but one of the above. If you don't know the answer or cannot figure it out from the text, return None. End your answer with a comma.
Address: "6693 Ryan Rd, North Whales",
Continent: Europe,
Address: "6693 Ryan Rd",
Continent: None,
Address: "{VendorAddress}",
Continent:"""
continent_df = (
prompter.setOutputCol("Continent")
.setPromptTemplate(continent_template)
.transform(emoji_df)
.withColumn("Continent", trim(split(col("Continent"), ",").getItem(0)))
.drop("error", "prompt")
.cache()
)
```
```python
display(continent_df.select("VendorAddress", "Continent"))
```
## 8 - Create an Azure Search Index for the Forms
```python
from synapse.ml.services import *
from pyspark.sql.functions import monotonically_increasing_id, lit
(
continent_df.withColumn("DocID", monotonically_increasing_id().cast("string"))
.withColumn("SearchAction", lit("upload"))
.writeToAzureSearch(
subscriptionKey=search_key,
actionCol="SearchAction",
serviceName=search_service,
indexName=search_index,
keyCol="DocID",
)
)
```
## 9 - Try out a search query
```python
import requests
search_url = "https://{}.search.windows.net/indexes/{}/docs/search?api-version=2019-05-06".format(
search_service, search_index
)
requests.post(
search_url, json={"search": "door"}, headers={"api-key": search_key}
).json()
```
## 10 - Build a chatbot that can use Azure Search as a tool 🧠🔧
<img src="https://mmlspark.blob.core.windows.net/graphics/notebooks/chatbot_flow_2.svg" width="40%" />
```python
import json
import openai
openai.api_type = "azure"
openai.api_base = openai_url
openai.api_key = openai_key
openai.api_version = "2023-03-15-preview"
chat_context_prompt = f"""
You are a chatbot designed to answer questions with the help of a search engine that has the following information:
{continent_df.columns}
If you dont know the answer to a question say "I dont know". Do not lie or hallucinate information. Be brief. If you need to use the search engine to solve the please output a json in the form of {{"query": "example_query"}}
"""
def search_query_prompt(question):
return f"""
Given the search engine above, what would you search for to answer the following question?
Question: "{question}"
Please output a json in the form of {{"query": "example_query"}}
"""
def search_result_prompt(query):
search_results = requests.post(
search_url, json={"search": query}, headers={"api-key": search_key}
).json()
return f"""
You previously ran a search for "{query}" which returned the following results:
{search_results}
You should use the results to help you answer questions. If you dont know the answer to a question say "I dont know". Do not lie or hallucinate information. Be Brief and mention which query you used to solve the problem.
"""
def prompt_gpt(messages):
response = openai.ChatCompletion.create(
engine=openai_deployment_name, messages=messages, max_tokens=None, top_p=0.95
)
return response["choices"][0]["message"]["content"]
def custom_chatbot(question):
while True:
try:
query = json.loads(
prompt_gpt(
[
{"role": "system", "content": chat_context_prompt},
{"role": "user", "content": search_query_prompt(question)},
]
)
)["query"]
return prompt_gpt(
[
{"role": "system", "content": chat_context_prompt},
{"role": "system", "content": search_result_prompt(query)},
{"role": "user", "content": question},
]
)
except Exception as e:
raise e
```
## 11 - Asking our chatbot a question
```python
custom_chatbot("What did Luke Diaz buy?")
```
## 12 - A quick double check
```python
display(
continent_df.where(col("CustomerName") == "Luke Diaz")
.select("Description")
.distinct()
)
```

Просмотреть файл

@ -0,0 +1,119 @@
---
title: Image Transformations
hide_title: true
status: stable
---
## OpenCV - Pipeline Image Transformations
This example shows how to manipulate the collection of images.
First, the images are downloaded to the local directory.
Second, they are copied to your cluster's attached HDFS.
The images are loaded from the directory (for fast prototyping, consider loading a fraction of
images). Inside the dataframe, each image is a single field in the image column. The image has
sub-fields (path, height, width, OpenCV type and OpenCV bytes).
```python
from synapse.ml.opencv import toNDArray
from synapse.ml.io import *
imageDir = "wasbs://publicwasb@mmlspark.blob.core.windows.net/sampleImages"
images = spark.read.image().load(imageDir).cache()
images.printSchema()
print(images.count())
```
We can also alternatively stream the images with a similar api.
Check the [Structured Streaming Programming Guide](https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html)
for more details on streaming.
When collected from the *DataFrame*, the image data are stored in a *Row*, which is Spark's way
to represent structures (in the current example, each dataframe row has a single Image, which
itself is a Row). It is possible to address image fields by name and use `toNDArray()` helper
function to convert the image into numpy array for further manipulations.
```python
from synapse.ml.core.platform import running_on_binder
if running_on_binder():
from IPython import get_ipython
from PIL import Image
import matplotlib.pyplot as plt
data = images.take(3) # take first three rows of the dataframe
im = data[2][0] # the image is in the first column of a given row
print("image type: {}, number of fields: {}".format(type(im), len(im)))
print("image path: {}".format(im.origin))
print("height: {}, width: {}, OpenCV type: {}".format(im.height, im.width, im.mode))
arr = toNDArray(im) # convert to numpy array
print(images.count())
plt.imshow(Image.fromarray(arr, "RGB")) # display the image inside notebook
```
Use `ImageTransformer` for the basic image manipulation: resizing, cropping, etc.
Internally, operations are pipelined and backed by OpenCV implementation.
```python
from synapse.ml.opencv import ImageTransformer
tr = (
ImageTransformer() # images are resized and then cropped
.setOutputCol("transformed")
.resize(size=(200, 200))
.crop(0, 0, height=180, width=180)
)
small = tr.transform(images).select("transformed")
im = small.take(3)[2][0] # take third image
plt.imshow(Image.fromarray(toNDArray(im), "RGB")) # display the image inside notebook
```
For the advanced image manipulations, use Spark UDFs.
The SynapseML package provides conversion function between *Spark Row* and
*ndarray* image representations.
```python
from pyspark.sql.functions import udf
from synapse.ml.opencv import ImageSchema, toNDArray, toImage
def u(row):
array = toNDArray(row) # convert Image to numpy ndarray[height, width, 3]
array[:, :, 2] = 0
return toImage(array) # numpy array back to Spark Row structure
noBlueUDF = udf(u, ImageSchema)
noblue = small.withColumn("noblue", noBlueUDF(small["transformed"])).select("noblue")
im = noblue.take(3)[2][0] # take second image
plt.imshow(Image.fromarray(toNDArray(im), "RGB")) # display the image inside notebook
```
Images could be unrolled into the dense 1D vectors suitable for CNTK evaluation.
```python
from synapse.ml.image import UnrollImage
unroller = UnrollImage().setInputCol("noblue").setOutputCol("unrolled")
unrolled = unroller.transform(noblue).select("unrolled")
vector = unrolled.take(1)[0][0]
print(type(vector))
len(vector.toArray())
```
```python
```

Просмотреть файл

@ -0,0 +1,82 @@
---
title: CyberML
hide_title: true
sidebar_label: CyberML
---
# CyberML
## access anomalies: [complement_access.py](https://github.com/microsoft/SynapseML/blob/master/core/src/main/python/synapse/ml/cyber/anomaly/complement_access.py)
- [Talk at European Spark Conference 2019](https://databricks.com/session_eu19/cybermltoolkit-anomaly-detection-as-a-scalable-generic-service-over-apache-spark)
- [(Internal Microsoft) Talk at MLADS November 2018](https://resnet.microsoft.com/video/42395)
- [(Internal Microsoft) Talk at MLADS June 2019](https://resnet.microsoft.com/video/43618)
1. [ComplementAccessTransformer](https://github.com/microsoft/SynapseML/blob/master/core/src/main/python/synapse/ml/cyber/anomaly/complement_access.py)
is a SparkML [Transformer](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Transformer.html).
Given a dataframe, it returns a new dataframe comprised of access patterns sampled from
the set of possible access patterns not present in the original dataframe.
In other words, it returns a sample from the complement set.
## feature engineering: [indexers.py](https://github.com/microsoft/SynapseML/blob/master/core/src/main/python/synapse/ml/cyber/feature/indexers.py)
1. [IdIndexer](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.indexers.IdIndexer)
is a SparkML [Estimator](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Estimator.html).
Given a dataframe, it creates an IdIndexerModel (described next) for categorical features. The model
maps each partition and column seen in the given dataframe to an ID,
for each partition or one consecutive range for all partition and column values.
2. [IdIndexerModel](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.indexers.IdIndexerModel)
is a SparkML [Transformer](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Transformer.html).
Given a dataframe maps each partition and column field to a consecutive integer ID.
Partitions or column values not encountered in the estimator are mapped to 0.
The model can operate in two modes, either create consecutive integer ID independently
3. [MultiIndexer](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.indexers.MultiIndexer)
is a SparkML [Estimator](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Estimator.html).
Uses multiple IdIndexers to generate a MultiIndexerModel (described next) for categorical features. The model
contains multiple IdIndexers for multiple partitions and columns.
4. [MultiIndexerModel](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.indexers.MultiIndexerModel)
is a SparkML [Transformer](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Transformer.html).
Given a dataframe maps each partition and column field to a consecutive integer ID.
Partitions or column values not encountered in the estimator are mapped to 0.
The model can operate in two modes, either create consecutive integer ID independently
## feature engineering: [scalers.py](https://github.com/microsoft/SynapseML/blob/master/core/src/main/python/synapse/ml/cyber/feature/scalers.py)
1. [StandardScalarScaler](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.scalers.StandardScalarScaler)
is a SparkML [Estimator](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Estimator.html).
Given a dataframe it creates a StandardScalarScalerModel (described next) which normalizes
any given dataframe according to the mean and standard deviation calculated on the
dataframe given to the estimator.
2. [StandardScalarScalerModel](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.scalers.StandardScalarScalerModel)
is a SparkML [Transformer](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Transformer.html).
Given a dataframe with a value column x, the transformer changes its value as follows:
x'=(x-mean)/stddev. That is, if the transformer is given the same dataframe the estimator
was given then the value column will have a mean of 0.0 and a standard deviation of 1.0.
3. [LinearScalarScaler](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.scalers.LinearScalarScaler)
is a SparkML [Estimator](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Estimator.html).
Given a dataframe it creates a LinearScalarScalerModel (described next) which normalizes
any given dataframe according to the minimum and maximum values calculated on the
dataframe given to the estimator.
4. [LinearScalarScalerModel](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.scalers.LinearScalarScalerModel)
is a SparkML [Transformer](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Transformer.html).
Given a dataframe with a value column x, the transformer changes its value such that
if the transformer is given the same dataframe the estimator
was given then the value column will be scaled linearly to the given ranges.
## access anomalies: [collaborative_filtering.py](https://github.com/microsoft/SynapseML/blob/master/core/src/main/python/synapse/ml/cyber/anomaly/collaborative_filtering.py)
1. [AccessAnomaly](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.cyber.anomaly.html#synapse.ml.cyber.anomaly.collaborative_filtering.AccessAnomaly)
is a SparkML [Estimator](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Estimator.html).
Given a dataframe, the estimator generates an AccessAnomalyModel (described next). The model
can detect anomalous access of users to resources where the access
is outside of the user's or resources's profile. For instance, a user from HR accessing
a resource from Finance. This result is based solely on access patterns rather than explicit features.
Internally, the code is based on Collaborative Filtering as implemented in Spark, using
Matrix Factorization with Alternating Least Squares.
2. [AccessAnomalyModel](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.cyber.anomaly.html#synapse.ml.cyber.anomaly.collaborative_filtering.AccessAnomalyModel)
is a SparkML [Transformer](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Transformer.html).
Given a dataframe the transformer computes a value between (-inf, inf) where positive
values indicate an anomaly score. Anomaly scores are computed to have a mean of 1.0
and a standard deviation of 1.0 over the original dataframe given to the estimator.
3. [ModelNormalizeTransformer](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.cyber.anomaly.html#synapse.ml.cyber.anomaly.collaborative_filtering.ModelNormalizeTransformer)
is a SparkML [Transformer](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Transformer.html).
This transformer is used internally by AccessAnomaly to normalize a model to generate
anomaly scores with mean 0.0 and standard deviation of 1.0.
4. [AccessAnomalyConfig](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.cyber.anomaly.html#synapse.ml.cyber.anomaly.collaborative_filtering.AccessAnomalyConfig)
contains the default values for AccessAnomaly.

Просмотреть файл

@ -0,0 +1,348 @@
---
title: Quickstart - Anomalous Access Detection
hide_title: true
status: stable
---
# CyberML - Anomalous Access Detection
Here we demonstrate a novel CyberML model which can learn user access patterns and then automatically detect anomalous user access based on learned behavior.
The model internally uses Collaborative Filtering for Implicit Feedback as published here: http://yifanhu.net/PUB/cf.pdf
and is based on Apache Spark's implementation of this: https://spark.apache.org/docs/2.2.0/ml-collaborative-filtering.html.
This notebook demonstrates a usage example of Anomalous Resource Access model.
All the model requires is a dataset in which there are 'users' which access 'resources'.
The model is based on Collaborative Filtering and it uses Machine Learning to learn access patterns of users and resources.
When a user accesses a resource which is outside of the user's learned profile then this access receives a high anomaly score.
In this notebook we provide a usage example and a synthetic dataset in which there are 3 departments:
(1) Finance, (2) HR and (3) Engineering.
In the training data users access only a subset of resources from their own departments.
To evaluate the model we use two datasets.
The first contains access patterns unseen during training in which users access resources within their departments (again, resources they didn't access during training but within their department).
The latter contains users accessing resources from outside their department.
We then use the model to assign anomaly scores expecting that the first get low anomaly scores and the latter receive high anomaly scores.
This is what this example demonstrates.
Note: the data does NOT contain information about departments, this information is implicitly learned by the model by analyzing the access patterns.
# Create an Azure Databricks cluster and install the following libs
1. In Cluster Libraries install from library source Maven:
Coordinates: com.microsoft.azure:synapseml_2.12:1.0.5
Repository: https://mmlspark.azureedge.net/maven
2. In Cluster Libraries install from PyPI the library called plotly
# Setup & Initialization
```python
%pip install plotly
```
```python
# this is used to produce the synthetic dataset for this test
from synapse.ml.cyber.dataset import DataFactory
from synapse.ml.cyber.anomaly.collaborative_filtering import AccessAnomaly
from pyspark.sql import functions as f
```
# Load up datasets
```python
from synapse.ml.core.platform import running_on_databricks, running_on_synapse
if running_on_databricks():
spark.sparkContext.setCheckpointDir("dbfs:/checkpoint_path/")
else:
spark.sparkContext.setCheckpointDir("./tmp/checkpoint_path/")
factory = DataFactory(
num_hr_users=25,
num_hr_resources=50,
num_fin_users=35,
num_fin_resources=75,
num_eng_users=15,
num_eng_resources=25,
single_component=True,
)
training_pdf = factory.create_clustered_training_data(ratio=0.4)
# a tenant id is used when independent datasets originate from different tenants, in this example we set all tenants-ids to the same value
training_df = spark.createDataFrame(training_pdf).withColumn("tenant_id", f.lit(0))
ingroup_df = spark.createDataFrame(
factory.create_clustered_intra_test_data(training_pdf)
).withColumn("tenant_id", f.lit(0))
outgroup_df = spark.createDataFrame(
factory.create_clustered_inter_test_data()
).withColumn("tenant_id", f.lit(0))
```
```python
training_df.show()
```
```python
print(training_df.count())
print(ingroup_df.count())
print(outgroup_df.count())
```
# Model setup & training
```python
access_anomaly = AccessAnomaly(
tenantCol="tenant_id",
userCol="user",
resCol="res",
likelihoodCol="likelihood",
maxIter=200,
)
```
```python
model = access_anomaly.fit(training_df)
```
# Apply model & show result stats
```python
ingroup_scored_df = model.transform(ingroup_df)
```
```python
ingroup_scored_df.agg(
f.min("anomaly_score").alias("min_anomaly_score"),
f.max("anomaly_score").alias("max_anomaly_score"),
f.mean("anomaly_score").alias("mean_anomaly_score"),
f.stddev("anomaly_score").alias("stddev_anomaly_score"),
).show()
```
```python
outgroup_scored_df = model.transform(outgroup_df)
```
```python
outgroup_scored_df.agg(
f.min("anomaly_score").alias("min_anomaly_score"),
f.max("anomaly_score").alias("max_anomaly_score"),
f.mean("anomaly_score").alias("mean_anomaly_score"),
f.stddev("anomaly_score").alias("stddev_anomaly_score"),
).show()
```
# Examine results
```python
#
# Select a subset of results to send to Log Analytics
#
full_res_df = outgroup_scored_df.orderBy(f.desc("anomaly_score")).cache()
from pyspark.sql.window import Window
w = Window.partitionBy("tenant_id", "user", "res").orderBy(f.desc("anomaly_score"))
# select values above threshold
results_above_threshold = full_res_df.filter(full_res_df.anomaly_score > 1.0)
# get distinct resource/user and corresponding timestamp and highest score
results_to_la = (
results_above_threshold.withColumn("index", f.row_number().over(w))
.orderBy(f.desc("anomaly_score"))
.select("tenant_id", f.col("user"), f.col("res"), "anomaly_score")
.where("index == 1")
.limit(100)
.cache()
)
# add a fake timestamp to the results
results_to_la = results_to_la.withColumn("timestamp", f.current_timestamp())
display(results_to_la)
```
# Display all resource accesses by users with highest anomalous score
```python
from plotly import __version__
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot, offline
import numpy as np
import pandas as pd
print(__version__) # requires version >= 1.9.0
# run plotly in offline mode
offline.init_notebook_mode()
```
```python
# Find all server accesses of users with high predicted scores
# For display, limit to top 25 results
results_to_display = results_to_la.orderBy(f.desc("anomaly_score")).limit(25).cache()
interesting_records = full_res_df.join(results_to_display, ["user"], "left_semi")
non_anomalous_records = interesting_records.join(
results_to_display, ["user", "res"], "left_anti"
)
top_non_anomalous_records = (
non_anomalous_records.groupBy("tenant_id", "user", "res")
.agg(
f.count("*").alias("count"),
)
.select(f.col("tenant_id"), f.col("user"), f.col("res"), "count")
)
# pick only a subset of non-anomalous record for UI
w = Window.partitionBy(
"tenant_id",
"user",
).orderBy(f.desc("count"))
# pick top non-anomalous set
top_non_anomalous_accesses = (
top_non_anomalous_records.withColumn("index", f.row_number().over(w))
.orderBy(f.desc("count"))
.select("tenant_id", f.col("user"), f.col("res"), f.col("count"))
.where("index in (1,2,3,4,5)")
.limit(25)
)
# add back anomalous record
fileShare_accesses = (
top_non_anomalous_accesses.select("user", "res", "count")
.union(results_to_display.select("user", "res", f.lit(1).alias("count")))
.cache()
)
```
```python
# get unique users and file shares
high_scores_df = fileShare_accesses.toPandas()
unique_arr = np.append(high_scores_df.user.unique(), high_scores_df.res.unique())
unique_df = pd.DataFrame(data=unique_arr, columns=["name"])
unique_df["index"] = range(0, len(unique_df.index))
# create index for source & target and color for the normal accesses
normal_line_color = "rgba(211, 211, 211, 0.8)"
anomolous_color = "red"
x = (
pd.merge(high_scores_df, unique_df, how="left", left_on="user", right_on="name")
.drop(["name"], axis=1)
.rename(columns={"index": "userIndex"})
)
all_access_index_df = (
pd.merge(x, unique_df, how="left", left_on="res", right_on="name")
.drop(["name"], axis=1)
.rename(columns={"index": "resIndex"})
)
all_access_index_df["color"] = normal_line_color
# results_to_display index, color and
y = results_to_display.toPandas().drop(
["tenant_id", "timestamp", "anomaly_score"], axis=1
)
y = (
pd.merge(y, unique_df, how="left", left_on="user", right_on="name")
.drop(["name"], axis=1)
.rename(columns={"index": "userIndex"})
)
high_scores_index_df = (
pd.merge(y, unique_df, how="left", left_on="res", right_on="name")
.drop(["name"], axis=1)
.rename(columns={"index": "resIndex"})
)
high_scores_index_df["count"] = 1
high_scores_index_df["color"] = anomolous_color
# subtract 1 for the red entries in all_access df
hsi_df = high_scores_index_df[["user", "res", "count"]].rename(
columns={"count": "hsiCount"}
)
all_access_updated_count_df = pd.merge(
all_access_index_df,
hsi_df,
how="left",
left_on=["user", "res"],
right_on=["user", "res"],
)
all_access_updated_count_df["count"] = np.where(
all_access_updated_count_df["hsiCount"] == 1,
all_access_updated_count_df["count"] - 1,
all_access_updated_count_df["count"],
)
all_access_updated_count_df = all_access_updated_count_df.loc[
all_access_updated_count_df["count"] > 0
]
all_access_updated_count_df = all_access_updated_count_df[
["user", "res", "count", "userIndex", "resIndex", "color"]
]
# combine the two tables
frames = [all_access_updated_count_df, high_scores_index_df]
display_df = pd.concat(frames, sort=True)
# display_df.head()
```
```python
data_trace = dict(
type="sankey",
domain=dict(x=[0, 1], y=[0, 1]),
orientation="h",
valueformat=".0f",
node=dict(
pad=10,
thickness=30,
line=dict(color="black", width=0),
label=unique_df["name"].dropna(axis=0, how="any"),
),
link=dict(
source=display_df["userIndex"].dropna(axis=0, how="any"),
target=display_df["resIndex"].dropna(axis=0, how="any"),
value=display_df["count"].dropna(axis=0, how="any"),
color=display_df["color"].dropna(axis=0, how="any"),
),
)
layout = dict(
title="All resources accessed by users with highest anomalous scores",
height=772,
font=dict(size=10),
)
fig = dict(data=[data_trace], layout=layout)
p = plot(fig, output_type="div")
if running_on_databricks():
displayHTML(p)
else:
import IPython
IPython.display.HTML(p)
```
```python
```

Просмотреть файл

@ -0,0 +1,221 @@
---
title: Quickstart - Exploring Art Across Cultures
hide_title: true
status: stable
---
# Exploring Art across Culture and Medium with Fast, Conditional, k-Nearest Neighbors
This article serves as a guideline for match-finding via k-nearest-neighbors. You set up code that allows queries involving cultures and mediums of art amassed from the Metropolitan Museum of Art in NYC and the Rijksmuseum in Amsterdam.
<img src="https://mmlspark.blob.core.windows.net/graphics/art/cross_cultural_matches.jpg" width="600"/>
## Overview of the BallTree
The structure functioning behind the KNN model is a BallTree, which is a recursive binary tree where each node (or "ball") contains a partition of the points of data to be queried. Building a BallTree involves assigning data points to the "ball" whose center they're closest to (with respect to a certain specified feature), resulting in a structure that allows binary-tree-like traversal and lends itself to finding k-nearest neighbors at a BallTree leaf.
## Setup
Import necessary Python libraries and prepare dataset.
```python
from pyspark.sql.types import BooleanType
from pyspark.sql.types import *
from pyspark.sql.functions import lit, array, array_contains, udf, col, struct
from synapse.ml.nn import ConditionalKNN, ConditionalKNNModel
from PIL import Image
from io import BytesIO
import requests
import numpy as np
import matplotlib.pyplot as plt
```
Our dataset comes from a table containing artwork information from both the Met and Rijks museums. The schema is as follows:
- **id**: A unique identifier for a piece of art
- Sample Met id: *388395*
- Sample Rijks id: *SK-A-2344*
- **Title**: Art piece title, as written in the museum's database
- **Artist**: Art piece artist, as written in the museum's database
- **Thumbnail_Url**: Location of a JPEG thumbnail of the art piece
- **Image_Url** Location of an image of the art piece hosted on the Met/Rijks website
- **Culture**: Category of culture that the art piece falls under
- Sample culture categories: *latin american*, *egyptian*, etc.
- **Classification**: Category of medium that the art piece falls under
- Sample medium categories: *woodwork*, *paintings*, etc.
- **Museum_Page**: Link to the work of art on the Met/Rijks website
- **Norm_Features**: Embedding of the art piece image
- **Museum**: Specifies which museum the piece originated from
```python
# loads the dataset and the two trained CKNN models for querying by medium and culture
df = spark.read.parquet(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/met_and_rijks.parquet"
)
display(df.drop("Norm_Features"))
```
## Define categories to be queried on
Two KNN models are used: one for culture, and one for medium.
```python
# mediums = ['prints', 'drawings', 'ceramics', 'textiles', 'paintings', "musical instruments","glass", 'accessories', 'photographs', "metalwork",
# "sculptures", "weapons", "stone", "precious", "paper", "woodwork", "leatherwork", "uncategorized"]
mediums = ["paintings", "glass", "ceramics"]
# cultures = ['african (general)', 'american', 'ancient american', 'ancient asian', 'ancient european', 'ancient middle-eastern', 'asian (general)',
# 'austrian', 'belgian', 'british', 'chinese', 'czech', 'dutch', 'egyptian']#, 'european (general)', 'french', 'german', 'greek',
# 'iranian', 'italian', 'japanese', 'latin american', 'middle eastern', 'roman', 'russian', 'south asian', 'southeast asian',
# 'spanish', 'swiss', 'various']
cultures = ["japanese", "american", "african (general)"]
# Uncomment the above for more robust and large scale searches!
classes = cultures + mediums
medium_set = set(mediums)
culture_set = set(cultures)
selected_ids = {"AK-RBK-17525-2", "AK-MAK-1204", "AK-RAK-2015-2-9"}
small_df = df.where(
udf(
lambda medium, culture, id_val: (medium in medium_set)
or (culture in culture_set)
or (id_val in selected_ids),
BooleanType(),
)("Classification", "Culture", "id")
)
small_df.count()
```
## Define and fit ConditionalKNN models
Create ConditionalKNN models for both the medium and culture columns; each model takes in an output column, features column (feature vector), values column (cell values under the output column), and label column (the quality that the respective KNN is conditioned on).
```python
medium_cknn = (
ConditionalKNN()
.setOutputCol("Matches")
.setFeaturesCol("Norm_Features")
.setValuesCol("Thumbnail_Url")
.setLabelCol("Classification")
.fit(small_df)
)
```
```python
culture_cknn = (
ConditionalKNN()
.setOutputCol("Matches")
.setFeaturesCol("Norm_Features")
.setValuesCol("Thumbnail_Url")
.setLabelCol("Culture")
.fit(small_df)
)
```
## Define matching and visualizing methods
After the initial dataset and category setup, prepare methods that will query and visualize the conditional KNN's results.
`addMatches()` creates a Dataframe with a handful of matches per category.
```python
def add_matches(classes, cknn, df):
results = df
for label in classes:
results = cknn.transform(
results.withColumn("conditioner", array(lit(label)))
).withColumnRenamed("Matches", "Matches_{}".format(label))
return results
```
`plot_urls()` calls `plot_img` to visualize top matches for each category into a grid.
```python
def plot_img(axis, url, title):
try:
response = requests.get(url)
img = Image.open(BytesIO(response.content)).convert("RGB")
axis.imshow(img, aspect="equal")
except:
pass
if title is not None:
axis.set_title(title, fontsize=4)
axis.axis("off")
def plot_urls(url_arr, titles, filename):
nx, ny = url_arr.shape
plt.figure(figsize=(nx * 5, ny * 5), dpi=1600)
fig, axes = plt.subplots(ny, nx)
# reshape required in the case of 1 image query
if len(axes.shape) == 1:
axes = axes.reshape(1, -1)
for i in range(nx):
for j in range(ny):
if j == 0:
plot_img(axes[j, i], url_arr[i, j], titles[i])
else:
plot_img(axes[j, i], url_arr[i, j], None)
plt.savefig(filename, dpi=1600) # saves the results as a PNG
display(plt.show())
```
## Putting it all together
Define `test_all()` to take in the data, CKNN models, the art id values to query on, and the file path to save the output visualization to. The medium and culture models were previously trained and loaded.
```python
# main method to test a particular dataset with two CKNN models and a set of art IDs, saving the result to filename.png
def test_all(data, cknn_medium, cknn_culture, test_ids, root):
is_nice_obj = udf(lambda obj: obj in test_ids, BooleanType())
test_df = data.where(is_nice_obj("id"))
results_df_medium = add_matches(mediums, cknn_medium, test_df)
results_df_culture = add_matches(cultures, cknn_culture, results_df_medium)
results = results_df_culture.collect()
original_urls = [row["Thumbnail_Url"] for row in results]
culture_urls = [
[row["Matches_{}".format(label)][0]["value"] for row in results]
for label in cultures
]
culture_url_arr = np.array([original_urls] + culture_urls)[:, :]
plot_urls(culture_url_arr, ["Original"] + cultures, root + "matches_by_culture.png")
medium_urls = [
[row["Matches_{}".format(label)][0]["value"] for row in results]
for label in mediums
]
medium_url_arr = np.array([original_urls] + medium_urls)[:, :]
plot_urls(medium_url_arr, ["Original"] + mediums, root + "matches_by_medium.png")
return results_df_culture
```
## Demo
The following cell performs batched queries given desired image IDs and a filename to save the visualization.
<img src="https://mmlspark.blob.core.windows.net/graphics/art/cross_cultural_matches.jpg" width="600"/>
```python
# sample query
result_df = test_all(small_df, medium_cknn, culture_cknn, selected_ids, root=".")
```

Просмотреть файл

@ -0,0 +1,183 @@
---
title: Smart Adaptive Recommendations (SAR) Algorithm
hide_title: true
sidebar_label: SAR Algorithm
---
# Smart Adaptive Recommendations (SAR) Algorithm
The following document is a subset of the implemented logic. The original can be found [here](https://github.com/Microsoft/Product-Recommendations/blob/master/doc/sar.md)
**SAR** is a fast scalable adaptive algorithm for personalized recommendations based on user transactions history and items description. It produces easily explainable / interpretable recommendations.
The overall architecture of SAR is shown in the following diagram:
![SAR Diagram](https://i.imgur.com/AMPShWl.jpg)
## Input
The input to SAR consists of:
- transaction (usage) data
- catalog data
**Transaction data**, also called **usage data**, contains information on interactions between users and items and has the following schema:
`<User Id>,<Item Id>,<Time>`
Each row represents a single interaction between a user and an item, which we call a transaction. Here's an example of usage data (displayed as a table for readability, but note that it must be provided in comma-separated format):
| User ID | Item ID | Time |
| ------- | ------- | ------------------- |
| User 1 | Item 1 | 2015/06/20T10:00:00 |
| User 1 | Item 1 | 2015/06/28T11:00:00 |
| User 1 | Item 2 | 2015/08/28T11:01:00 |
| User 1 | Item 2 | 2015/08/28T12:00:01 |
Note that SAR doesn't require explicit user ratings, which are often noisy and unreliable. It also focuses on implicit events (transactions), which are more telling of user intent.
## Collaborative Filtering
SAR is based on a simple yet powerful collaborative filtering approach. In the heart of the algorithm is computation of two matrices:
- Item-to-Item similarity matrix
- User-to-Item affinity matrix
**Item-to-Item similarity matrix** contains for each pair of items a numerical value of similarity between these two items. A simple measure of item similarity is _co-occurrence_, which is the number of times two items appeared in a same transaction. Let's look at the following example:
| | Item 1 | Item 2 | Item 3 | Item 4 | Item 5 |
| ---------- | :----: | :----: | :----: | :----: | :----: |
| **Item 1** | 5 | 3 | 4 | 3 | 2 |
| **Item 2** | 3 | 4 | 3 | 2 | 1 |
| **Item 3** | 4 | 3 | 4 | 3 | 1 |
| **Item 4** | 3 | 2 | 3 | 4 | 2 |
| **Item 5** | 2 | 1 | 1 | 2 | 3 |
Here, for example, _cooccur(Item 1, Item 2) = 3_, meaning that items 1 and 2 were together in a transaction three times. The Item-to-Item similarity matrix is symmetric. Diagonal elements, _occ(Item i)_, represent the number of occurrences of each item.
The advantage of co-occurrence is that it's easy to update. However, it favors predictability, and the most popular items will be recommended most of the time. To alleviate that, two more similarity measures are used: _lift_ and _Jaccard_. They can be thought of as normalized co-occurrences.
_Lift_ measures how much the co-occurrence of two items is higher than it would be by chance, that is, what is the contribution of interaction of the two items. It is obtained as
_lift(Item i, Item j) = cooccur(Item i, Item j) / (occ(Item i) \* occ(Item j))_ .
Lift favors serendipity / discoverability. For example, items 2 and 5 have the same co-occurrence with item 4, but item 5 in general occurs less frequently than item 2 and will be favored by lift.
_Jaccard_ measure is defined as the number of transactions in which two items appear together divided by the number of transactions in which either of them appears:
_Jaccard(Item 1, Item 2) = cooccur(Item1, Item 2) / (occ(Item 1) + occ(Item 2) - cooccur(Item 1, Item 2))_ .
Jaccard measure is a tradeoff between co-occurrence and lift and is the default in SAR.
An item is _cold_ if it has no transactions yet or the number of transactions is low, that is, below the SupportThreshold, which is configurable. If one or both items is cold, their item-to-item similarity cannot be estimated from the transactions data and item features must be used. A linear learner is trained using warm items, where the features of the model are (partial) matches on corresponding features of a pair of items. The target is the computed similarity, based on normalized co-occurrences of those items.
The model is then used to predict similarities between cold and cold/warm items.
**User-to-Item affinity matrix** contains for each user-item pair an affinity score of the user towards the item. Affinity score is computed as a weighted number of transactions in which the user and the item appear together, where newer transactions are weighted more than the older transactions. Also, weights are adjusted for the event type. For example, "Purchase" event may be valued four times more than the "Click" event. Therefore, affinity score takes into account frequency, recency and the event type of transactions in which the user appears with the item.
<!---
**User-to-Item affinity matrix** contains for each user-item pair an affinity score of the user towards the item. Affinity score takes into account frequency, recency and the event type of transactions in which the user appears with the item. Each transaction contributes to the affinity score with some weight. Newer transactions are weighted more than the older transactions. Also, weights are adjusted for the event type. For example, "Purchase" event may be valued 4 times more than the "Click" event.
--->
An example User-to-Item affinity matrix is shown in the following table:
| | Item 1 | Item 2 | Item 3 | Item 4 | Item 5 | |
| ---------- | :----: | :----: | :----: | :----: | :----: | --- |
| **User 1** | 5.00 | 3.00 | 2.50 | | | |
| **User 2** | 2.00 | 2.50 | 5.00 | 2.00 | | |
| **User 3** | 2.50 | | | 4.00 | 4.50 | |
| **User 4** | 5.00 | | 3.00 | 4.50 | | |
| **User 5** | 4.00 | 3.00 | 2.00 | 4.00 | 3.50 | |
| **User 6** | | | | | 2.00 | |
| **User 7** | | 1.00 | | | | |
Here, we can see that User 1 has the highest affinity to Item 1, followed by items 2 and 3. This user didn't have a transaction that included items 4 and 5. On the other hand, User 2 has the highest affinity to Item 3, followed by Item 2 and then items 1 and 4.
## Making Recommendations
SAR can produce two types of recommendations:
- **User recommendations**, which recommend items to individual users based on their transaction history, and
### User Recommendations
Personalized recommendations for a single user are obtained by multiplying the Item-to-Item similarity matrix with a user affinity vector. The user affinity vector is simply a transposed row of the affinity matrix corresponding to that user. For example, User 1 affinity vector is
| | User 1 aff |
| ---------- | ---------- |
| **Item 1** | 5.00 |
| **Item 2** | 3.00 |
| **Item 3** | 2.50 |
| **Item 4** | |
| **Item 5** | |
By pre-multiplying this vector with the Item-to-Item similarity matrix, User 1 recommendation scores are obtained:
| | User 1 rec |
| ---------- | :--------: |
| **Item 1** | 44 |
| **Item 2** | 34.5 |
| **Item 3** | 39 |
| **Item 4** | **28.5** |
| **Item 5** | **15.5** |
In this case, the recommendation score of an item is purely based on its similarity to Item 5. Assuming that a same item isn't
recommended again, items 1 and 4 have the highest score and would be recommended before items 2 and 3.
Now, if this user adds Item 2 to the shopping cart, affinity vector (assuming weight 2 for this transaction) will be
| | New User aff |
| ---------- | :----------: |
| **Item 1** | 0 |
| **Item 2** | 0 |
| **Item 3** | 0 |
| **Item 4** | 0 |
| **Item 5** | 1 |
resulting in recommendation scores:
| | New User rec |
| ---------- | :----------: |
| **Item 1** | **2** |
| **Item 2** | **1** |
| **Item 3** | **1** |
| **Item 4** | **2** |
| **Item 5** | 3 |
The recommendation score of an item is purely based on its similarity to Item 5 in this case.
Assuming that a same item isn't recommended again, items 1 and 4 have the highest score and would be recommended before items 2 and 3.
Now, if this user adds Item 2 to the shopping cart, affinity vector (assuming weight 2 for this transaction) will be
| | New User aff |
| ---------- | :----------: |
| **Item 1** | 0 |
| **Item 2** | 2 |
| **Item 3** | 0 |
| **Item 4** | 0 |
| **Item 5** | 1 |
resulting in recommendation scores:
| | New User rec |
| ---------- | :----------: |
| **Item 1** | **8** |
| **Item 2** | 9 |
| **Item 3** | **7** |
| **Item 4** | **6** |
| **Item 5** | 5 |
Now, Item 1 has the highest score, followed by Item 3 and then Item 4. Note that the advantage of SAR is that the updated scores are obtained without any retraining, that is, without having to recompute Item-to-Item similarities.
#### Interpretability
SAR provides explainable recommendations. For example, let's look at the reasoning behind the recommendation score for User 1 and Item 4:
_rec(User 1, Item 4)_
\*= **sim(Item 4, Item 1) \* aff(User 1, Item 1)\***
_+ sim(Item 4, Item 2) \* aff(User 1, Item 2)_
_+ sim(Item 4, Item 3) \* aff(User 1, Item 3)_
_+ sim(Item 4, Item 4) \* aff(User 1, Item 4)_
_+ sim(Item 4, Item 5) \* aff(User 1, Item 5)_
_= **3 \* 5** + 2 \* 3 + 3 \* 2.5 + 4 \* 0 + 2 \* 0_
\*= **15** + 6 + 7.5 + 0 + 0 = **28.5\***
Clearly, the first term (highlighted) has the highest contribution to the score. We can say that "The algorithm recommends Item 4 to User 1 because it's similar to Item 1, to which User 1 has high affinity". A message like this can be displayed automatically for each recommendation.

Просмотреть файл

@ -0,0 +1,151 @@
---
title: Quickstart - Data Cleaning
hide_title: true
status: stable
---
## Regression - Flight Delays with DataCleaning
This example notebook is similar to
[Regression - Flight Delays](https://github.com/microsoft/SynapseML/blob/master/notebooks/Regression%20-%20Flight%20Delays.ipynb).
In this example, we will demonstrate the use of `DataConversion()` in two
ways. First, to convert the data type of several columns after the dataset
has been read in to the Spark DataFrame instead of specifying the data types
as the file is read in. Second, to convert columns to categorical columns
instead of iterating over the columns and applying the `StringIndexer`.
This sample demonstrates how to use the following APIs:
- [`TrainRegressor`
](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.train.html?#module-synapse.ml.train.TrainRegressor)
- [`ComputePerInstanceStatistics`
](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.train.html?#module-synapse.ml.train.ComputePerInstanceStatistics)
- [`DataConversion`
](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.featurize.html?#module-synapse.ml.featurize.DataConversion)
Next, import the CSV dataset: retrieve the file if needed, save it locally,
read the data into a pandas dataframe via `read_csv()`, then convert it to
a Spark dataframe.
Print the schema of the dataframe, and note the columns that are `long`.
```python
flightDelay = spark.read.parquet(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/On_Time_Performance_2012_9.parquet"
)
# print some basic info
print("records read: " + str(flightDelay.count()))
print("Schema: ")
flightDelay.printSchema()
flightDelay.limit(10).toPandas()
```
Use the `DataConversion` transform API to convert the columns listed to
double.
The `DataConversion` API accepts the following types for the `convertTo`
parameter:
* `boolean`
* `byte`
* `short`
* `integer`
* `long`
* `float`
* `double`
* `string`
* `toCategorical`
* `clearCategorical`
* `date` -- converts a string or long to a date of the format
"yyyy-MM-dd HH:mm:ss" unless another format is specified by
the `dateTimeFormat` parameter.
Again, print the schema and note that the columns are now `double`
instead of long.
```python
from synapse.ml.featurize import DataConversion
flightDelay = DataConversion(
cols=[
"Quarter",
"Month",
"DayofMonth",
"DayOfWeek",
"OriginAirportID",
"DestAirportID",
"CRSDepTime",
"CRSArrTime",
],
convertTo="double",
).transform(flightDelay)
flightDelay.printSchema()
flightDelay.limit(10).toPandas()
```
Split the dataset into train and test sets.
```python
train, test = flightDelay.randomSplit([0.75, 0.25])
```
Create a regressor model and train it on the dataset.
First, use `DataConversion` to convert the columns `Carrier`, `DepTimeBlk`,
and `ArrTimeBlk` to categorical data. Recall that in Notebook 102, this
was accomplished by iterating over the columns and converting the strings
to index values using the `StringIndexer` API. The `DataConversion` API
simplifies the task by allowing you to specify all columns that will have
the same end type in a single command.
Create a LinearRegression model using the Limited-memory BFGS solver
(`l-bfgs`), an `ElasticNet` mixing parameter of `0.3`, and a `Regularization`
of `0.1`.
Train the model with the `TrainRegressor` API fit on the training dataset.
```python
from synapse.ml.train import TrainRegressor, TrainedRegressorModel
from pyspark.ml.regression import LinearRegression
trainCat = DataConversion(
cols=["Carrier", "DepTimeBlk", "ArrTimeBlk"], convertTo="toCategorical"
).transform(train)
testCat = DataConversion(
cols=["Carrier", "DepTimeBlk", "ArrTimeBlk"], convertTo="toCategorical"
).transform(test)
lr = LinearRegression().setRegParam(0.1).setElasticNetParam(0.3)
model = TrainRegressor(model=lr, labelCol="ArrDelay").fit(trainCat)
```
Score the regressor on the test data.
```python
scoredData = model.transform(testCat)
scoredData.limit(10).toPandas()
```
Compute model metrics against the entire scored dataset
```python
from synapse.ml.train import ComputeModelStatistics
metrics = ComputeModelStatistics().transform(scoredData)
metrics.toPandas()
```
Finally, compute and show statistics on individual predictions in the test
dataset, demonstrating the usage of `ComputePerInstanceStatistics`
```python
from synapse.ml.train import ComputePerInstanceStatistics
evalPerInstance = ComputePerInstanceStatistics().transform(scoredData)
evalPerInstance.select("ArrDelay", "prediction", "L1_loss", "L2_loss").limit(
10
).toPandas()
```

Просмотреть файл

@ -0,0 +1,220 @@
---
title: Quickstart - Train Regressor
hide_title: true
status: stable
---
## Regression - Auto Imports
This sample notebook is based on the Gallery [Sample 6: Train, Test, Evaluate
for Regression: Auto Imports
Dataset](https://gallery.cortanaintelligence.com/Experiment/670fbfc40c4f44438bfe72e47432ae7a)
for AzureML Studio. This experiment demonstrates how to build a regression
model to predict the automobile's price. The process includes training, testing,
and evaluating the model on the Automobile Imports data set.
This sample demonstrates the use of several members of the synapseml library:
- [`TrainRegressor`
](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.train.html?#module-synapse.ml.train.TrainRegressor)
- [`SummarizeData`
](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.stages.html?#module-synapse.ml.stages.SummarizeData)
- [`CleanMissingData`
](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.featurize.html?#module-synapse.ml.featurize.CleanMissingData)
- [`ComputeModelStatistics`
](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.train.html?#module-synapse.ml.train.ComputeModelStatistics)
- [`FindBestModel`
](https://mmlspark.blob.core.windows.net/docs/1.0.5/pyspark/synapse.ml.automl.html?#module-synapse.ml.automl.FindBestModel)
First, import the pandas package so that we can read and parse the datafile
using `pandas.read_csv()`
```python
data = spark.read.parquet(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/AutomobilePriceRaw.parquet"
)
```
To learn more about the data that was just read into the DataFrame,
summarize the data using `SummarizeData` and print the summary. For each
column of the DataFrame, `SummarizeData` will report the summary statistics
in the following subcategories for each column:
* Feature name
* Counts
- Count
- Unique Value Count
- Missing Value Count
* Quantiles
- Min
- 1st Quartile
- Median
- 3rd Quartile
- Max
* Sample Statistics
- Sample Variance
- Sample Standard Deviation
- Sample Skewness
- Sample Kurtosis
* Percentiles
- P0.5
- P1
- P5
- P95
- P99
- P99.5
Note that several columns have missing values (`normalized-losses`, `bore`,
`stroke`, `horsepower`, `peak-rpm`, `price`). This summary can be very
useful during the initial phases of data discovery and characterization.
```python
from synapse.ml.stages import SummarizeData
summary = SummarizeData().transform(data)
summary.toPandas()
```
Split the dataset into train and test datasets.
```python
# split the data into training and testing datasets
train, test = data.randomSplit([0.6, 0.4], seed=123)
train.limit(10).toPandas()
```
Now use the `CleanMissingData` API to replace the missing values in the
dataset with something more useful or meaningful. Specify a list of columns
to be cleaned, and specify the corresponding output column names, which are
not required to be the same as the input column names. `CleanMissiongData`
offers the options of "Mean", "Median", or "Custom" for the replacement
value. In the case of "Custom" value, the user also specifies the value to
use via the "customValue" parameter. In this example, we will replace
missing values in numeric columns with the median value for the column. We
will define the model here, then use it as a Pipeline stage when we train our
regression models and make our predictions in the following steps.
```python
from synapse.ml.featurize import CleanMissingData
cols = ["normalized-losses", "stroke", "bore", "horsepower", "peak-rpm", "price"]
cleanModel = (
CleanMissingData().setCleaningMode("Median").setInputCols(cols).setOutputCols(cols)
)
```
Now we will create two Regressor models for comparison: Poisson Regression
and Random Forest. PySpark has several regressors implemented:
* `LinearRegression`
* `IsotonicRegression`
* `DecisionTreeRegressor`
* `RandomForestRegressor`
* `GBTRegressor` (Gradient-Boosted Trees)
* `AFTSurvivalRegression` (Accelerated Failure Time Model Survival)
* `GeneralizedLinearRegression` -- fit a generalized model by giving symbolic
description of the linear predictor (link function) and a description of the
error distribution (family). The following families are supported:
- `Gaussian`
- `Binomial`
- `Poisson`
- `Gamma`
- `Tweedie` -- power link function specified through `linkPower`
Refer to the
[Pyspark API Documentation](http://spark.apache.org/docs/latest/api/python/)
for more details.
`TrainRegressor` creates a model based on the regressor and other parameters
that are supplied to it, then trains data on the model.
In this next step, Create a Poisson Regression model using the
`GeneralizedLinearRegressor` API from Spark and create a Pipeline using the
`CleanMissingData` and `TrainRegressor` as pipeline stages to create and
train the model. Note that because `TrainRegressor` expects a `labelCol` to
be set, there is no need to set `linkPredictionCol` when setting up the
`GeneralizedLinearRegressor`. Fitting the pipe on the training dataset will
train the model. Applying the `transform()` of the pipe to the test dataset
creates the predictions.
```python
# train Poisson Regression Model
from pyspark.ml.regression import GeneralizedLinearRegression
from pyspark.ml import Pipeline
from synapse.ml.train import TrainRegressor
glr = GeneralizedLinearRegression(family="poisson", link="log")
poissonModel = TrainRegressor().setModel(glr).setLabelCol("price").setNumFeatures(256)
poissonPipe = Pipeline(stages=[cleanModel, poissonModel]).fit(train)
poissonPrediction = poissonPipe.transform(test)
```
Next, repeat these steps to create a Random Forest Regression model using the
`RandomRorestRegressor` API from Spark.
```python
# train Random Forest regression on the same training data:
from pyspark.ml.regression import RandomForestRegressor
rfr = RandomForestRegressor(maxDepth=30, maxBins=128, numTrees=8, minInstancesPerNode=1)
randomForestModel = TrainRegressor(model=rfr, labelCol="price", numFeatures=256).fit(
train
)
randomForestPipe = Pipeline(stages=[cleanModel, randomForestModel]).fit(train)
randomForestPrediction = randomForestPipe.transform(test)
```
After the models have been trained and scored, compute some basic statistics
to evaluate the predictions. The following statistics are calculated for
regression models to evaluate:
* Mean squared error
* Root mean squared error
* R^2
* Mean absolute error
Use the `ComputeModelStatistics` API to compute basic statistics for
the Poisson and the Random Forest models.
```python
from synapse.ml.train import ComputeModelStatistics
poissonMetrics = ComputeModelStatistics().transform(poissonPrediction)
print("Poisson Metrics")
poissonMetrics.toPandas()
```
```python
randomForestMetrics = ComputeModelStatistics().transform(randomForestPrediction)
print("Random Forest Metrics")
randomForestMetrics.toPandas()
```
We can also compute per instance statistics for `poissonPrediction`:
```python
from synapse.ml.train import ComputePerInstanceStatistics
def demonstrateEvalPerInstance(pred):
return (
ComputePerInstanceStatistics()
.transform(pred)
.select("price", "prediction", "L1_loss", "L2_loss")
.limit(10)
.toPandas()
)
demonstrateEvalPerInstance(poissonPrediction)
```
and with `randomForestPrediction`:
```python
demonstrateEvalPerInstance(randomForestPrediction)
```

Просмотреть файл

@ -0,0 +1,236 @@
---
title: Quickstart - Vowpal Wabbit and LightGBM
hide_title: true
status: stable
---
# Vowpal Wabbit and LightGBM for a Regression Problem
This notebook shows how to build simple regression models by using
[Vowpal Wabbit (VW)](https://github.com/VowpalWabbit/vowpal_wabbit) and
[LightGBM](https://github.com/microsoft/LightGBM) with SynapseML.
We also compare the results with
[Spark MLlib Linear Regression](https://spark.apache.org/docs/latest/ml-classification-regression.html#linear-regression).
```python
import math
from synapse.ml.train import ComputeModelStatistics
from synapse.ml.vw import VowpalWabbitRegressor, VowpalWabbitFeaturizer
from synapse.ml.lightgbm import LightGBMRegressor
import numpy as np
import pandas as pd
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.regression import LinearRegression
from sklearn.datasets import fetch_california_housing
```
## Prepare Dataset
We use [*California Housing* dataset](https://scikit-learn.org/stable/datasets/real_world.html#california-housing-dataset).
The data was derived from the 1990 U.S. census. It consists of 20640 entries with 8 features.
We use `sklearn.datasets` module to download it easily, then split the set into training and testing by 75/25.
```python
california = fetch_california_housing()
feature_cols = ["f" + str(i) for i in range(california.data.shape[1])]
header = ["target"] + feature_cols
df = spark.createDataFrame(
pd.DataFrame(
data=np.column_stack((california.target, california.data)), columns=header
)
).repartition(1)
print("Dataframe has {} rows".format(df.count()))
display(df.limit(10).toPandas())
```
```python
train_data, test_data = df.randomSplit([0.75, 0.25], seed=42)
```
Following is the summary of the training set.
```python
display(train_data.summary().toPandas())
```
Plot feature distributions over different target values (house prices in our case).
```python
features = train_data.columns[1:]
values = train_data.drop("target").toPandas()
ncols = 5
nrows = math.ceil(len(features) / ncols)
```
## Baseline - Spark MLlib Linear Regressor
First, we set a baseline performance by using Linear Regressor in Spark MLlib.
```python
featurizer = VectorAssembler(inputCols=feature_cols, outputCol="features")
lr_train_data = featurizer.transform(train_data)["target", "features"]
lr_test_data = featurizer.transform(test_data)["target", "features"]
display(lr_train_data.limit(10))
```
```python
# By default, `maxIter` is 100. Other params you may want to change include: `regParam`, `elasticNetParam`, etc.
lr = LinearRegression(labelCol="target")
lr_model = lr.fit(lr_train_data)
lr_predictions = lr_model.transform(lr_test_data)
display(lr_predictions.limit(10))
```
We evaluate the prediction result by using `synapse.ml.train.ComputeModelStatistics` which returns four metrics:
* [MSE (Mean Squared Error)](https://en.wikipedia.org/wiki/Mean_squared_error)
* [RMSE (Root Mean Squared Error)](https://en.wikipedia.org/wiki/Root-mean-square_deviation) = sqrt(MSE)
* [R Squared](https://en.wikipedia.org/wiki/Coefficient_of_determination)
* [MAE (Mean Absolute Error)](https://en.wikipedia.org/wiki/Mean_absolute_error)
```python
metrics = ComputeModelStatistics(
evaluationMetric="regression", labelCol="target", scoresCol="prediction"
).transform(lr_predictions)
results = metrics.toPandas()
results.insert(0, "model", ["Spark MLlib - Linear Regression"])
display(results)
```
## Vowpal Wabbit
Perform VW-style feature hashing. Many types (numbers, string, bool, map of string to (number, string)) are supported.
```python
vw_featurizer = VowpalWabbitFeaturizer(inputCols=feature_cols, outputCol="features")
vw_train_data = vw_featurizer.transform(train_data)["target", "features"]
vw_test_data = vw_featurizer.transform(test_data)["target", "features"]
display(vw_train_data.limit(10))
```
See [VW wiki](https://github.com/vowpalWabbit/vowpal_wabbit/wiki/Command-Line-Arguments) for command line arguments.
```python
# Use the same number of iterations as Spark MLlib's Linear Regression (=100)
args = "--holdout_off --loss_function quantile -l 0.004 -q :: --power_t 0.3"
vwr = VowpalWabbitRegressor(labelCol="target", passThroughArgs=args, numPasses=100)
# To reduce number of partitions (which will effect performance), use `vw_train_data.repartition(1)`
vw_train_data_2 = vw_train_data.repartition(1).cache()
print(vw_train_data_2.count())
vw_model = vwr.fit(vw_train_data_2.repartition(1))
vw_predictions = vw_model.transform(vw_test_data)
display(vw_predictions.limit(10))
```
```python
metrics = ComputeModelStatistics(
evaluationMetric="regression", labelCol="target", scoresCol="prediction"
).transform(vw_predictions)
vw_result = metrics.toPandas()
vw_result.insert(0, "model", ["Vowpal Wabbit"])
results = pd.concat([results, vw_result], ignore_index=True)
display(results)
```
## LightGBM
```python
lgr = LightGBMRegressor(
objective="quantile",
alpha=0.2,
learningRate=0.3,
numLeaves=31,
labelCol="target",
numIterations=100,
)
repartitioned_data = lr_train_data.repartition(1).cache()
print(repartitioned_data.count())
lg_model = lgr.fit(repartitioned_data)
lg_predictions = lg_model.transform(lr_test_data)
display(lg_predictions.limit(10))
```
```python
metrics = ComputeModelStatistics(
evaluationMetric="regression", labelCol="target", scoresCol="prediction"
).transform(lg_predictions)
lg_result = metrics.toPandas()
lg_result.insert(0, "model", ["LightGBM"])
results = pd.concat([results, lg_result], ignore_index=True)
display(results)
```
Following figure shows the actual-vs.-prediction graphs of the results:
<img width="1102" alt="lr-vw-lg" src="https://mmlspark.blob.core.windows.net/graphics/Documentation/regression_comparison.png" />
```python
from matplotlib.colors import ListedColormap, Normalize
from matplotlib.cm import get_cmap
import matplotlib.pyplot as plt
f, axes = plt.subplots(nrows, ncols, sharey=True, figsize=(30, 10))
f.tight_layout()
yy = [r["target"] for r in train_data.select("target").collect()]
for irow in range(nrows):
axes[irow][0].set_ylabel("target")
for icol in range(ncols):
try:
feat = features[irow * ncols + icol]
xx = values[feat]
axes[irow][icol].scatter(xx, yy, s=10, alpha=0.25)
axes[irow][icol].set_xlabel(feat)
axes[irow][icol].get_yaxis().set_ticks([])
except IndexError:
f.delaxes(axes[irow][icol])
cmap = get_cmap("YlOrRd")
target = np.array(test_data.select("target").collect()).flatten()
model_preds = [
("Spark MLlib Linear Regression", lr_predictions),
("Vowpal Wabbit", vw_predictions),
("LightGBM", lg_predictions),
]
f, axes = plt.subplots(1, len(model_preds), sharey=True, figsize=(18, 6))
f.tight_layout()
for i, (model_name, preds) in enumerate(model_preds):
preds = np.array(preds.select("prediction").collect()).flatten()
err = np.absolute(preds - target)
norm = Normalize()
clrs = cmap(np.asarray(norm(err)))[:, :-1]
axes[i].scatter(preds, target, s=60, c=clrs, edgecolors="#888888", alpha=0.75)
axes[i].plot((0, 60), (0, 60), line, color="#888888")
axes[i].set_xlabel("Predicted values")
if i == 0:
axes[i].set_ylabel("Actual values")
axes[i].set_title(model_name)
```

Просмотреть файл

@ -0,0 +1,215 @@
---
title: Data Balance Analysis on Spark
hide_title: true
sidebar_label: Data Balance Analysis
description: Learn how to do Data Balance Analysis on Spark to determine how well features and feature values are represented in your dataset.
---
# Data Balance Analysis on Spark
## Context
Data Balance Analysis is relevant for gaining an overall understanding of datasets, but it becomes essential when thinking about building AI systems in a responsible way, especially in terms of fairness.
AI systems can sometimes exhibit unwanted, unfair behaviors. These behaviors can cause fairness-related harms that affect various groups of people. They may amplify the marginalization of particular groups whose needs and contexts are often overlooked during AI development and deployment. Fairness-related harms can have varying severities, and the cumulative impact of even seemingly non-severe harms can be burdensome.
Fairness-related harms include:
* **Allocation harms**: When an AI system extends or withholds opportunities or resources in ways that negatively impact peoples lives.
* **Quality of service harms**: When an AI system does not work as well for one group of people as it does for another.
* **Stereotyping harms**: When an AI system makes unfair generalizations about groups of people and reinforces negative stereotypes.
* **Demeaning harms**: When an AI system is actively derogatory or offensive.
* **Over/underrepresentation harms**: When an AI system over/underrepresents some groups of people or may even erase some groups entirely.
**Note**: *Because fairness in AI is fundamentally a sociotechnical challenge, it's often impossible to fully “de-bias” an AI system. Instead, teams tasked with developing and deploying AI systems must work to identify, measure, and mitigate fairness-related harms as much as possible. Data Balance Analysis is a tool to help do so, in combination with others.*
Data Balance Analysis consists of a combination of three groups of measures: Feature Balance Measures, Distribution Balance Measures, and Aggregate Balance Measures.
In summary, Data Balance Analysis, when used as a step for building ML models, has the following benefits:
* It reduces the costs of building ML through the early identification of data representation gaps. Before proceeding to train their models, data scientists can seek mitigation steps such as collecting more data, following a specific sampling mechanism, creating synthetic data, and so on.
* It enables easy end-to-end debugging of ML systems in combination with the [RAI Toolbox](https://responsibleaitoolbox.ai/responsible-ai-toolbox-capabilities/) by providing a clear view of model-related issues versus data-related issues.
## Examples
* [Quickstart - Data Balance Analysis](../Quickstart%20-%20Data%20Balance%20Analysis)
## Usage
Data Balance Analysis currently supports three transformers in the `synapse.ml.exploratory` namespace:
* FeatureBalanceMeasure - supervised (requires label column)
* DistributionBalanceMeasure - unsupervised (doesn't require label column)
* AggregateBalanceMeasure - unsupervised (doesn't require label column)
1. Import all three transformers.
For example:
```python
from synapse.ml.exploratory import AggregateBalanceMeasure, DistributionBalanceMeasure, FeatureBalanceMeasure
```
2. Load your dataset, define features of interest, and ensure that the label column is binary. The `FeatureBalanceMeasure` transformer currently only supports binary labels, but support for numerical labels will be added soon.
For example:
```python
import pyspark.sql.functions as F
features = ["race", "sex"]
label = "income"
df = spark.read.parquet("wasbs://publicwasb@mmlspark.blob.core.windows.net/AdultCensusIncome.parquet")
# Convert the "income" column from {<=50K, >50K} to {0, 1} to represent our binary classification label column
df = df.withColumn(label, F.when(F.col(label).contains("<=50K"), F.lit(0)).otherwise(F.lit(1)))
```
3. Create a `FeatureBalanceMeasure` transformer and call `setSensitiveCols` to set the list of sensitive features and call `setLabelCol` to set the binary label column. Then, call the `transform` method with your dataset and visualize the resulting dataframe.
For example:
```python
feature_balance_measures = (
FeatureBalanceMeasure()
.setSensitiveCols(features)
.setLabelCol(label)
.transform(df)
)
feature_balance_measures.show(truncate=False)
```
4. Create a `DistributionBalanceMeasure` transformer and call `setSensitiveCols` to set the list of sensitive features. Then, call the `transform` method with your dataset and visualize the resulting dataframe.
For example:
```python
distribution_balance_measures = (
DistributionBalanceMeasure()
.setSensitiveCols(features)
.transform(df)
)
distribution_balance_measures.show(truncate=False)
```
5. Create a `AggregateBalanceMeasure` transformer and call `setSensitiveCols` to set the list of sensitive features. Then, call the `transform` method with your dataset and visualize the resulting dataframe.
For example:
```python
aggregate_balance_measures = (
AggregateBalanceMeasure()
.setSensitiveCols(features)
.transform(df)
)
aggregate_balance_measures.show(truncate=False)
```
Note: If you're running this notebook in a Spark environment such as Azure Synapse or Databricks, then you can easily visualize the imbalance measures by calling the built-in plotting features `display()`.
## Measure Explanations
### Feature Balance Measures
Feature Balance Measures allow us to see whether each combination of sensitive feature is receiving the positive outcome (true prediction) at balanced probability.
In this context, we define a feature balance measure, called the parity, for label y. It is the difference between the association metrics of two different sensitive classes $[x_A, x_B]$, with respect to the association metric $A(x_i, y)$. That is:
$parity(y \vert x_A, x_B, A(\cdot)) \coloneqq A(x_A, y) - A(x_B, y)$
Using the dataset, we can see if the various sexes and races are receiving >50k income at equal or unequal rates.
Note: Many of these metrics were influenced by this paper [Measuring Model Biases in the Absence of Ground Truth](https://arxiv.org/abs/2103.03417).
| Association Metric | Family | Description | Interpretation/Formula | Reference |
|----------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Statistical Parity | Fairness | Proportion of each segment of a protected class (gender, for example) that should receive the positive outcome at equal rates. | Closer to zero means better parity. $DP = P(Y \vert A = Male) - P(Y \vert A = Female)$. | [Link](https://en.wikipedia.org/wiki/Fairness_%28machine_learning%29) |
| Pointwise Mutual Information (PMI), normalized PMI | Entropy | The PMI of a pair of feature values (ex: Gender=Male and Gender=Female) quantifies the discrepancy between the probability of their coincidence given their joint distribution and their individual distributions (assuming independence). | Range (normalized) $[-1, 1]$. -1 for no co-occurrences. 0 for co-occurrences at random. 1 for complete co-occurrences. | [Link](https://en.wikipedia.org/wiki/Pointwise_mutual_information) |
| Sorensen-Dice Coefficient (SDC) | Intersection-over-Union | Used to gauge the similarity of two samples. Related to F1 score. | Equals twice the number of elements common to both sets divided by the sum of the number of elements in each set. | [Link](https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient) |
| Jaccard Index | Intersection-over-Union | Similar to SDC, gauges the similarity and diversity of sample sets. | Equals the size of the intersection divided by the size of the union of the sample sets. | [Link](https://en.wikipedia.org/wiki/Jaccard_index) |
| Kendall Rank Correlation | Correlation and Statistical Tests | Used to measure the ordinal association between two measured quantities. | High when observations have a similar rank and low when observations have a dissimilar rank between the two variables. | [Link](https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient) |
| Log-Likelihood Ratio | Correlation and Statistical Tests | Calculates the degree to which data supports one variable versus another. Log of the likelihood ratio, which gives the probability of correctly predicting the label in ratio to probability of incorrectly predicting label. | If likelihoods are similar, it should be close to 0. | [Link](https://en.wikipedia.org/wiki/Likelihood_function#Likelihood_ratio) |
| t-test | Correlation and Statistical Tests | Used to compare the means of two groups (pairwise). | Value looked up in t-Distribution tell if statistically significant or not. | [Link](https://en.wikipedia.org/wiki/Student's_t-test) |
### Distribution Balance Measures
Distribution Balance Measures allow us to compare our data with a reference distribution (currently only uniform distribution is supported as a reference distribution). They are calculated per sensitive column and don't depend on the label column.
For example, let's assume we have a dataset with nine rows and a Gender column, and we observe that:
* "Male" appears four times
* "Female" appears three times
* "Other" appears twice
Assuming the uniform distribution:
$$
ReferenceCount \coloneqq \frac{numRows}{numFeatureValues}
$$
$$
ReferenceProbability \coloneqq \frac{1}{numFeatureValues}
$$
Feature Value | Observed Count | Reference Count | Observed Probability | Reference Probabiliy
| - | - | - | - | -
Male | 4 | 9/3 = 3 | 4/9 = 0.44 | 3/9 = 0.33
Female | 3 | 9/3 = 3 | 3/9 = 0.33 | 3/9 = 0.33
Other | 2 | 9/3 = 3 | 2/9 = 0.22 | 3/9 = 0.33
We can use distance measures to find out how far our observed and reference distributions of these feature values are. Some of these distance measures include:
| Measure | Description | Interpretation | Reference |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| KL Divergence | Measure of how one probability distribution is different from a second, reference probability distribution. Measure of the information gained when one revises one's beliefs from the prior probability distribution Q to the posterior probability distribution P. In other words, it is the amount of information lost when Q is used to approximate P. | Non-negative. 0 means P = Q. | [Link](https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence) |
| JS Distance | Measuring the similarity between two probability distributions. Symmetrized and smoothed version of the Kullback–Leibler (KL) divergence. Square root of JS Divergence. | Range [0, 1]. 0 means perfectly same to balanced distribution. | [Link](https://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence) |
| Wasserstein Distance | This distance is also known as the earth movers distance, since it can be seen as the minimum amount of “work” required to transform u into v, where “work” is measured as the amount of distribution weight that must be moved multiplied by the distance it has to be moved. | Non-negative. 0 means P = Q. | [Link](https://en.wikipedia.org/wiki/Wasserstein_metric) |
| Infinity Norm Distance | Distance between two vectors is the greatest of their differences along any coordinate dimension. Also called Chebyshev distance or chessboard distance. | Non-negative. 0 means same distribution. | [Link](https://en.wikipedia.org/wiki/Chebyshev_distance) |
| Total Variation Distance | It is equal to half the L1 (Manhattan) distance between the two distributions. Take the difference between the two proportions in each category, add up the absolute values of all the differences, and then divide the sum by 2. | Non-negative. 0 means same distribution. | [Link](https://en.wikipedia.org/wiki/Total_variation_distance_of_probability_measures) |
| Chi-Squared Test | The chi-square test tests the null hypothesis that the categorical data has the given frequencies given expected frequencies in each category. | p-value gives evidence against null-hypothesis that difference in observed and expected frequencies is by random chance. | [Link](https://en.wikipedia.org/wiki/Chi-squared_test) |
### Aggregate Balance Measures
Aggregate Balance Measures allow us to obtain a higher notion of inequality. They're calculated on the set of all sensitive columns and don't depend on the label column.
These measures look at distribution of records across all combinations of sensitive columns. For example, if Sex and Race are specified as sensitive features, it then tries to quantify imbalance across all combinations of the two specified features - (Male, Black), (Female, White), (Male, Asian-Pac-Islander), etc.
| Measure | Description | Interpretation | Reference |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Atkinson Index | It presents the percentage of total income that a given society would have to forego in order to have more equal shares of income between its citizens. This measure depends on the degree of societal aversion to inequality (a theoretical parameter decided by the researcher). A higher value entails greater social utility or willingness by individuals to accept smaller incomes in exchange for a more equal distribution. An important feature of the Atkinson index is that it can be decomposed into within-group and between-group inequality. | Range $[0, 1]$. 0 if perfect equality. 1 means maximum inequality. In our case, it is the proportion of records for a sensitive columns combination. | [Link](https://en.wikipedia.org/wiki/Atkinson_index) |
| Theil T Index | GE(1) = Theil's T and is more sensitive to differences at the top of the distribution. The Theil index is a statistic used to measure economic inequality. The Theil index measures an entropic "distance" the population is away from the "ideal" egalitarian state of everyone having the same income. | If everyone has the same income, then T_T equals 0. If one person has all the income, then T_T gives the result $ln(N)$. 0 means equal income and larger values mean higher level of disproportion. | [Link](https://en.wikipedia.org/wiki/Theil_index) |
| Theil L Index | GE(0) = Theil's L and is more sensitive to differences at the lower end of the distribution. Logarithm of (mean income)/(income i), over all the incomes included in the summation. It is also referred to as the mean log deviation measure. Because a transfer from a larger income to a smaller one will change the smaller income's ratio more than it changes the larger income's ratio, the transfer-principle is satisfied by this index. | Same interpretation as Theil T Index. | [Link](https://en.wikipedia.org/wiki/Theil_index) |
## Mitigation
It will not be a stretch to say that every real-world dataset has caveats, biases, and imbalances. Data collection is costly. Data Imbalance mitigation or de-biasing data is an area of research. There are many techniques available at various stages of ML lifecycle: during pre-processing, in-processing, and post processing. Here we outline a couple of pre-processing techniques -
### Resampling
Resampling involves under-sampling from majority class and over-sampling from minority class. A naïve way to over-sample would be to duplicate records. Similarly, to under-sample one could remove records at random.
* Caveats:
1. Under-sampling may remove valuable information.
2. Over-sampling may cause overfitting and poor generalization on test set.
![Bar chart undersampling and oversampling](https://mmlspark.blob.core.windows.net/graphics/responsible_ai/DataBalanceAnalysis_SamplingBar.png)
There are smarter techniques to under-sample and over-sample in literature and implemented in Pythons [imbalanced-learn](https://imbalanced-learn.org/stable/) package.
For example, we can cluster the records of the majority class, and do the under-sampling by removing records from each cluster, thus seeking to preserve information.
One technique of under-sampling is use of Tomek Links. Tomek links are pairs of instances that are very close but of opposite classes. Removing the instances of the majority class of each pair increases the space between the two classes, facilitating the classification process. A similar way to under-sample majority class is using Near-Miss. It first calculates the distance between all the points in the larger class with the points in the smaller class. When two points belonging to different classes are very close to each other in the distribution, this algorithm eliminates the datapoint of the larger class thereby trying to balance the distribution.
![Tomek Links](https://mmlspark.blob.core.windows.net/graphics/responsible_ai/DataBalanceAnalysis_TomekLinks.png)
In over-sampling, instead of creating exact copies of the minority class records, we can introduce small variations into those copies, creating more diverse synthetic samples. This technique is called SMOTE (Synthetic Minority Oversampling Technique). It randomly picks a point from the minority class and computes the k-nearest neighbors for this point. The synthetic points are added between the chosen point and its neighbors.
![Synthetic Samples](https://mmlspark.blob.core.windows.net/graphics/responsible_ai/DataBalanceAnalysis_SyntheticSamples.png)
### Reweighting
There is an expected and observed value in each table cell. The weight is the value of expected / observed. Reweighting is easy to extend to multiple features with more than two groups. The weights are then incorporated in loss function of model training.
![Reweighting](https://mmlspark.blob.core.windows.net/graphics/responsible_ai/DataBalanceAnalysis_Reweight.png)

Просмотреть файл

@ -0,0 +1,222 @@
---
title: Explanation Dashboard
hide_title: true
status: stable
---
## Interpretability - Explanation Dashboard
In this example, similar to the "Interpretability - Tabular SHAP explainer" notebook, we use Kernel SHAP to explain a tabular classification model built from the Adults Census dataset and then visualize the explanation in the ExplanationDashboard from https://github.com/microsoft/responsible-ai-widgets.
First we import the packages and define some UDFs we will need later.
```python
%pip install raiwidgets itsdangerous==2.0.1 interpret-community
```
```python
from IPython.terminal.interactiveshell import TerminalInteractiveShell
from synapse.ml.explainers import *
from pyspark.ml import Pipeline
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.feature import StringIndexer, OneHotEncoder, VectorAssembler
from pyspark.ml.functions import vector_to_array
from pyspark.sql.types import *
from pyspark.sql.functions import *
import pandas as pd
vec_access = udf(lambda v, i: float(v[i]), FloatType())
```
Now let's read the data and train a simple binary classification model.
```python
df = spark.read.parquet(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/AdultCensusIncome.parquet"
).cache()
labelIndexer = StringIndexer(
inputCol="income", outputCol="label", stringOrderType="alphabetAsc"
).fit(df)
print("Label index assigment: " + str(set(zip(labelIndexer.labels, [0, 1]))))
training = labelIndexer.transform(df)
display(training)
categorical_features = [
"workclass",
"education",
"marital-status",
"occupation",
"relationship",
"race",
"sex",
"native-country",
]
categorical_features_idx = [col + "_idx" for col in categorical_features]
categorical_features_enc = [col + "_enc" for col in categorical_features]
numeric_features = [
"age",
"education-num",
"capital-gain",
"capital-loss",
"hours-per-week",
]
strIndexer = StringIndexer(
inputCols=categorical_features, outputCols=categorical_features_idx
)
onehotEnc = OneHotEncoder(
inputCols=categorical_features_idx, outputCols=categorical_features_enc
)
vectAssem = VectorAssembler(
inputCols=categorical_features_enc + numeric_features, outputCol="features"
)
lr = LogisticRegression(featuresCol="features", labelCol="label", weightCol="fnlwgt")
pipeline = Pipeline(stages=[strIndexer, onehotEnc, vectAssem, lr])
model = pipeline.fit(training)
```
After the model is trained, we randomly select some observations to be explained.
```python
explain_instances = (
model.transform(training).orderBy(rand()).limit(5).repartition(200).cache()
)
display(explain_instances)
```
We create a TabularSHAP explainer, set the input columns to all the features the model takes, specify the model and the target output column we are trying to explain. In this case, we are trying to explain the "probability" output which is a vector of length 2, and we are only looking at class 1 probability. Specify targetClasses to `[0, 1]` if you want to explain class 0 and 1 probability at the same time. Finally we sample 100 rows from the training data for background data, which is used for integrating out features in Kernel SHAP.
```python
shap = TabularSHAP(
inputCols=categorical_features + numeric_features,
outputCol="shapValues",
numSamples=5000,
model=model,
targetCol="probability",
targetClasses=[1],
backgroundData=broadcast(training.orderBy(rand()).limit(100).cache()),
)
shap_df = shap.transform(explain_instances)
```
Once we have the resulting dataframe, we extract the class 1 probability of the model output, the SHAP values for the target class, the original features and the true label. Then we convert it to a pandas dataframe for visualization.
For each observation, the first element in the SHAP values vector is the base value (the mean output of the background dataset), and each of the following element is the SHAP values for each feature.
```python
shaps = (
shap_df.withColumn("probability", vec_access(col("probability"), lit(1)))
.withColumn("shapValues", vector_to_array(col("shapValues").getItem(0)))
.select(
["shapValues", "probability", "label"] + categorical_features + numeric_features
)
)
shaps_local = shaps.toPandas()
shaps_local.sort_values("probability", ascending=False, inplace=True, ignore_index=True)
pd.set_option("display.max_colwidth", None)
shaps_local
```
We can visualize the explanation in the [interpret-community format](https://github.com/interpretml/interpret-community) in the ExplanationDashboard from https://github.com/microsoft/responsible-ai-widgets/
```python
import numpy as np
features = categorical_features + numeric_features
features_with_base = ["Base"] + features
rows = shaps_local.shape[0]
local_importance_values = shaps_local[["shapValues"]]
eval_data = shaps_local[features]
true_y = np.array(shaps_local[["label"]])
```
```python
list_local_importance_values = local_importance_values.values.tolist()
converted_importance_values = []
bias = []
for classarray in list_local_importance_values:
for rowarray in classarray:
converted_list = rowarray.tolist()
bias.append(converted_list[0])
# remove the bias from local importance values
del converted_list[0]
converted_importance_values.append(converted_list)
```
When running Synapse Analytics, please follow instructions here [Package management - Azure Synapse Analytics | Microsoft Docs](https://docs.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-azure-portal-add-libraries) to install ["raiwidgets"](https://pypi.org/project/raiwidgets/) and ["interpret-community"](https://pypi.org/project/interpret-community/) packages.
```python
from interpret_community.adapter import ExplanationAdapter
adapter = ExplanationAdapter(features, classification=True)
global_explanation = adapter.create_global(
converted_importance_values, eval_data, expected_values=bias
)
```
```python
# view the global importance values
global_explanation.global_importance_values
```
```python
# view the local importance values
global_explanation.local_importance_values
```
```python
class wrapper(object):
def __init__(self, model):
self.model = model
def predict(self, data):
sparkdata = spark.createDataFrame(data)
return (
model.transform(sparkdata)
.select("prediction")
.toPandas()
.values.flatten()
.tolist()
)
def predict_proba(self, data):
sparkdata = spark.createDataFrame(data)
prediction = (
model.transform(sparkdata)
.select("probability")
.toPandas()
.values.flatten()
.tolist()
)
proba_list = [vector.values.tolist() for vector in prediction]
return proba_list
```
```python
# view the explanation in the ExplanationDashboard
from raiwidgets import ExplanationDashboard
ExplanationDashboard(
global_explanation, wrapper(model), dataset=eval_data, true_y=true_y
)
```
Your results will look like:
<img src="https://mmlspark.blob.core.windows.net/graphics/rai-dashboard.png" />

Просмотреть файл

@ -0,0 +1,227 @@
---
title: Image Explainers
hide_title: true
status: stable
---
## Interpretability - Image Explainers
In this example, we use LIME and Kernel SHAP explainers to explain the ResNet50 model's multi-class output of an image.
First we import the packages and define some UDFs and a plotting function we will need later.
```python
from synapse.ml.explainers import *
from synapse.ml.onnx import ONNXModel
from synapse.ml.opencv import ImageTransformer
from synapse.ml.io import *
from pyspark.ml import Pipeline
from pyspark.sql.functions import *
from pyspark.sql.types import *
import numpy as np
import urllib.request
import matplotlib.pyplot as plt
from PIL import Image
from synapse.ml.core.platform import *
vec_slice = udf(
lambda vec, indices: (vec.toArray())[indices].tolist(), ArrayType(FloatType())
)
arg_top_k = udf(
lambda vec, k: (-vec.toArray()).argsort()[:k].tolist(), ArrayType(IntegerType())
)
def downloadBytes(url: str):
with urllib.request.urlopen(url) as url:
barr = url.read()
return barr
def rotate_color_channel(bgr_image_array, height, width, nChannels):
B, G, R, *_ = np.asarray(bgr_image_array).reshape(height, width, nChannels).T
rgb_image_array = np.array((R, G, B)).T
return rgb_image_array
def plot_superpixels(image_rgb_array, sp_clusters, weights, green_threshold=99):
superpixels = sp_clusters
green_value = np.percentile(weights, green_threshold)
img = Image.fromarray(image_rgb_array, mode="RGB").convert("RGBA")
image_array = np.asarray(img).copy()
for (sp, v) in zip(superpixels, weights):
if v > green_value:
for (x, y) in sp:
image_array[y, x, 1] = 255
image_array[y, x, 3] = 200
plt.clf()
plt.imshow(image_array)
plt.show()
```
Create a dataframe for a testing image, and use the ResNet50 ONNX model to infer the image.
The result shows 39.6% probability of "violin" (889), and 38.4% probability of "upright piano" (881).
```python
from synapse.ml.io import *
image_df = spark.read.image().load(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/explainers/images/david-lusvardi-dWcUncxocQY-unsplash.jpg"
)
display(image_df)
# Rotate the image array from BGR into RGB channels for visualization later.
row = image_df.select(
"image.height", "image.width", "image.nChannels", "image.data"
).head()
locals().update(row.asDict())
rgb_image_array = rotate_color_channel(data, height, width, nChannels)
# Download the ONNX model
modelPayload = downloadBytes(
"https://mmlspark.blob.core.windows.net/publicwasb/ONNXModels/resnet50-v2-7.onnx"
)
featurizer = (
ImageTransformer(inputCol="image", outputCol="features")
.resize(224, True)
.centerCrop(224, 224)
.normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
color_scale_factor=1 / 255,
)
.setTensorElementType(FloatType())
)
onnx = (
ONNXModel()
.setModelPayload(modelPayload)
.setFeedDict({"data": "features"})
.setFetchDict({"rawPrediction": "resnetv24_dense0_fwd"})
.setSoftMaxDict({"rawPrediction": "probability"})
.setMiniBatchSize(1)
)
model = Pipeline(stages=[featurizer, onnx]).fit(image_df)
```
```python
predicted = (
model.transform(image_df)
.withColumn("top2pred", arg_top_k(col("probability"), lit(2)))
.withColumn("top2prob", vec_slice(col("probability"), col("top2pred")))
)
display(predicted.select("top2pred", "top2prob"))
```
First we use the LIME image explainer to explain the model's top 2 classes' probabilities.
```python
lime = (
ImageLIME()
.setModel(model)
.setOutputCol("weights")
.setInputCol("image")
.setCellSize(150.0)
.setModifier(50.0)
.setNumSamples(500)
.setTargetCol("probability")
.setTargetClassesCol("top2pred")
.setSamplingFraction(0.7)
)
lime_result = (
lime.transform(predicted)
.withColumn("weights_violin", col("weights").getItem(0))
.withColumn("weights_piano", col("weights").getItem(1))
.cache()
)
display(lime_result.select(col("weights_violin"), col("weights_piano")))
lime_row = lime_result.head()
```
We plot the LIME weights for "violin" output and "upright piano" output.
Green areas are superpixels with LIME weights above 95 percentile.
```python
plot_superpixels(
rgb_image_array,
lime_row["superpixels"]["clusters"],
list(lime_row["weights_violin"]),
95,
)
plot_superpixels(
rgb_image_array,
lime_row["superpixels"]["clusters"],
list(lime_row["weights_piano"]),
95,
)
```
Your results will look like:
<img src="https://mmlspark.blob.core.windows.net/graphics/explainers/image-lime-20210811.png"/>
Then we use the Kernel SHAP image explainer to explain the model's top 2 classes' probabilities.
```python
shap = (
ImageSHAP()
.setModel(model)
.setOutputCol("shaps")
.setSuperpixelCol("superpixels")
.setInputCol("image")
.setCellSize(150.0)
.setModifier(50.0)
.setNumSamples(500)
.setTargetCol("probability")
.setTargetClassesCol("top2pred")
)
shap_result = (
shap.transform(predicted)
.withColumn("shaps_violin", col("shaps").getItem(0))
.withColumn("shaps_piano", col("shaps").getItem(1))
.cache()
)
display(shap_result.select(col("shaps_violin"), col("shaps_piano")))
shap_row = shap_result.head()
```
We plot the SHAP values for "piano" output and "cell" output.
Green areas are superpixels with SHAP values above 95 percentile.
> Notice that we drop the base value from the SHAP output before rendering the superpixels. The base value is the model output for the background (all black) image.
```python
plot_superpixels(
rgb_image_array,
shap_row["superpixels"]["clusters"],
list(shap_row["shaps_violin"][1:]),
95,
)
plot_superpixels(
rgb_image_array,
shap_row["superpixels"]["clusters"],
list(shap_row["shaps_piano"][1:]),
95,
)
```
Your results will look like:
<img src="https://mmlspark.blob.core.windows.net/graphics/explainers/image-shap-20210811.png"/>

Просмотреть файл

@ -0,0 +1,174 @@
---
title: Interpreting Model Predictions
hide_title: true
sidebar_label: Interpreting Model Predictions
---
# Model Interpretation on Spark
## Interpretable Machine Learning
Interpretable Machine Learning helps developers, data scientists and business stakeholders in the organization gain a comprehensive understanding of their machine learning models. It can also be used to debug models, explain predictions and enable auditing to meet compliance with regulatory requirements.
## Why run model interpretation on Spark
Model-agnostic interpretation methods can be computationally expensive due to the multiple evaluations needed to compute the explanations. Model interpretation on Spark enables users to interpret a black-box model at massive scales with the Apache Spark™ distributed computing ecosystem. Various components support local interpretation for tabular, vector, image and text classification models, with two popular model-agnostic interpretation methods: [LIME] and [Kernel SHAP].
[LIME]: https://arxiv.org/abs/1602.04938
[Kernel SHAP]: https://arxiv.org/abs/1705.07874
## Usage
Both LIME and Kernel SHAP are local interpretation methods. Local interpretation explains why does the model predict certain outcome for a given observation.
Both explainers extends from `org.apache.spark.ml.Transformer`. After setting up the explainer parameters, simply call the `transform` function on a `DataFrame` of observations to interpret the model behavior on these observations.
To see examples of model interpretability on Spark in action, take a look at these sample notebooks:
- [Tabular Explainers](../Tabular%20Explainers)
- [Image Explainers](../Image%20Explainers)
- [Text Explainers](../Text%20Explainers)
| | Tabular models | Vector models | Image models | Text models |
|------------------------|-----------------------------|---------------------------|-------------------------|-----------------------|
| LIME explainers | [TabularLIME](#tabularlime) | [VectorLIME](#vectorlime) | [ImageLIME](#imagelime) | [TextLIME](#textlime) |
| Kernel SHAP explainers | [TabularSHAP](#tabularshap) | [VectorSHAP](#vectorshap) | [ImageSHAP](#imageshap) | [TextSHAP](#textshap) |
### Common local explainer params
All local explainers support the following params:
| Param | Type | Default | Description |
|------------------|---------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| targetCol | `String` | "probability" | The column name of the prediction target to explain (i.e. the response variable). This is usually set to "prediction" for regression models and "probability" for probabilistic classification models. |
| targetClasses | `Array[Int]` | empty array | The indices of the classes for multinomial classification models. |
| targetClassesCol | `String` | | The name of the column that specifies the indices of the classes for multinomial classification models. |
| outputCol | `String` | | The name of the output column for interpretation results. |
| model | `Transformer` | | The model to be explained. |
### Common LIME explainer params
All LIME based explainers ([TabularLIME](#tabularlime), [VectorLIME](#vectorlime), [ImageLIME](#imagelime), [TextLIME](#textlime)) support the following params:
| Param | Type | Default | Description |
|----------------|----------|---------------------------------|-----------------------------------------------------------|
| regularization | `Double` | 0 | Regularization param for the underlying lasso regression. |
| kernelWidth | `Double` | sqrt(number of features) * 0.75 | Kernel width for the exponential kernel. |
| numSamples | `Int` | 1000 | Number of samples to generate. |
| metricsCol | `String` | "r2" | Column name for fitting metrics. |
### Common SHAP explainer params
All Kernel SHAP based explainers ([TabularSHAP](#tabularshap), [VectorSHAP](#vectorshap), [ImageSHAP](#imageshap), [TextSHAP](#textshap)) support the following params:
| Param | Type | Default | Description |
|------------|----------|---------------------------------|------------------------------------------------|
| infWeight | `Double` | 1E8 | The double value to represent infinite weight. |
| numSamples | `Int` | 2 * (number of features) + 2048 | Number of samples to generate. |
| metricsCol | `String` | "r2" | Column name for fitting metrics. |
### Tabular model explainer params
All tabular model explainers ([TabularLIME](#tabularlime), [TabularSHAP](#tabularshap)) support the following params:
| Param | Type | Default | Description |
|----------------|-----------------|---------|--------------------------------------------------------------------------------------------------------------|
| inputCols | `Array[String]` | | The names of input columns to the black-box model. |
| backgroundData | `DataFrame` | | A dataframe containing background data. It must contain all the input columns needed by the black-box model. |
### Vector model explainer params
All vector model explainers ([VectorLIME](#vectorlime), [VectorSHAP](#vectorshap)) support the following params:
| Param | Type | Default | Description |
|----------------|-------------|---------|----------------------------------------------------------------------------------------------------------------|
| inputCol | `String` | | The names of input vector column to the black-box model. |
| backgroundData | `DataFrame` | | A dataframe containing background data. It must contain the input vector column needed by the black-box model. |
### Image model explainer params
All image model explainers ([ImageLIME](#imagelime), [ImageSHAP](#imageshap)) support the following params:
| Param | Type | Default | Description |
|---------------|----------|---------------|--------------------------------------------------------------------|
| inputCol | `String` | | The names of input image column to the black-box model. |
| cellSize | `Double` | 16 | Number that controls the size of the super-pixels. |
| modifier | `Double` | 130 | Controls the trade-off spatial and color distance of super-pixels. |
| superpixelCol | `String` | "superpixels" | The column holding the super-pixel decompositions. |
### Text model explainer params
All text model explainers ([TextLIME](#textlime), [TextSHAP](#textshap)) support the following params:
| Param | Type | Default | Description |
|-----------|----------|----------|--------------------------------------------------------|
| inputCol | `String` | | The names of input text column to the black-box model. |
| tokensCol | `String` | "tokens" | The column holding the text tokens. |
### `TabularLIME`
| Param | Type | Default | Description |
|---------------------|-----------------|-------------|----------------------------------------------------------------------|
| categoricalFeatures | `Array[String]` | empty array | The name of columns that should be treated as categorical variables. |
> For categorical features, `TabularLIME` creates new samples by drawing samples based on the value distribution from the background dataset. For numerical features, it creates new samples by drawing from a normal distribution with mean taken from the target value to be explained, and standard deviation taken from the background dataset.
### `TabularSHAP`
No additional params are supported.
### `VectorLIME`
No additional params are supported.
> `VectorLIME` assumes all features are numerical, and categorical features are not supported in `VectorLIME`.
### `VectorSHAP`
No additional params are supported.
### `ImageLIME`
| Param | Type | Default | Description |
|------------------|----------|---------|----------------------------------------------------------|
| samplingFraction | `Double` | 0.7 | The fraction of super-pixels to keep on during sampling. |
> `ImageLIME` creates new samples by randomly turning super-pixels on or off with probability of keeping on set to `SamplingFraction`.
### `ImageSHAP`
No additional params are supported.
### `TextLIME`
| Param | Type | Default | Description |
|------------------|----------|---------|---------------------------------------------------------|
| samplingFraction | `Double` | 0.7 | The fraction of word tokens to keep on during sampling. |
> `TextLIME` creates new samples by randomly turning word tokens on or off with probability of keeping on set to `SamplingFraction`.
### `TextSHAP`
No additional params are supported.
## Result interpretation
### LIME explainers
LIME explainers return an array of vectors, and each vector maps to a class being explained. Each component of the vector is the coefficient for the corresponding feature, super-pixel, or word token from the local surrogate model.
- For categorical variables, super-pixels, or word tokens, the coefficient shows the average change in model outcome if this feature is unknown to the model, if the super-pixel is replaced with background color (black), or if the word token is replaced with empty string.
- For numeric variables, the coefficient shows the change in model outcome if the feature value is incremented by 1 unit.
### SHAP explainers
SHAP explainers return an array of vectors, and each vector maps to a class being explained. Each vector starts with the [base value](#base-value), and each following component of the vector is the Shapley value for each feature, super-pixel, or token.
The base value and Shapley values are additive, and they should add up to the model output for the target observation.
#### Base value
- For tabular and vector models, the base value represents the mean outcome of the model for the background dataset.
- For image models, the base value represents the model outcome for a background (all black) image.
- For text models, the base value represents the model outcome for an empty string.

Просмотреть файл

@ -0,0 +1,519 @@
---
title: PDP and ICE Explainers
hide_title: true
status: stable
---
## Partial Dependence (PDP) and Individual Conditional Expectation (ICE) plots
Partial Dependence Plot (PDP) and Individual Condition Expectation (ICE) are interpretation methods which describe the average behavior of a classification or regression model. They are particularly useful when the model developer wants to understand generally how the model depends on individual feature values, overall model behavior and do debugging.
To practice responsible AI, it is crucial to understand which features drive your model's predictions. This knowledge can facilitate the creation of Transparency Notes, facilitate auditing and compliance, help satisfy regulatory requirements, and improve both transparency and accountability.
The goal of this notebook is to show how these methods work for a pretrained model.
In this example, we train a classification model with the Adult Census Income dataset. Then we treat the model as an opaque-box model and calculate the PDP and ICE plots for some selected categorical and numeric features.
This dataset can be used to predict whether annual income exceeds $50,000/year or not based on demographic data from the 1994 U.S. Census. The dataset we're reading contains 32,561 rows and 14 columns/features.
[More info on the dataset here](https://archive.ics.uci.edu/ml/datasets/Adult)
We will train a classification model to predict >= 50K or < 50K based on our features.
---
Python dependencies:
matplotlib==3.2.2
```python
from pyspark.ml import Pipeline
from pyspark.ml.classification import GBTClassifier
from pyspark.ml.feature import VectorAssembler, StringIndexer, OneHotEncoder
import pyspark.sql.functions as F
from pyspark.ml.evaluation import BinaryClassificationEvaluator
from synapse.ml.explainers import ICETransformer
import matplotlib.pyplot as plt
from synapse.ml.core.platform import *
```
### Read and prepare the dataset
```python
df = spark.read.parquet(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/AdultCensusIncome.parquet"
)
display(df)
```
### Fit the model and view the predictions
```python
categorical_features = [
"race",
"workclass",
"marital-status",
"education",
"occupation",
"relationship",
"native-country",
"sex",
]
numeric_features = [
"age",
"education-num",
"capital-gain",
"capital-loss",
"hours-per-week",
]
```
```python
string_indexer_outputs = [feature + "_idx" for feature in categorical_features]
one_hot_encoder_outputs = [feature + "_enc" for feature in categorical_features]
pipeline = Pipeline(
stages=[
StringIndexer()
.setInputCol("income")
.setOutputCol("label")
.setStringOrderType("alphabetAsc"),
StringIndexer()
.setInputCols(categorical_features)
.setOutputCols(string_indexer_outputs),
OneHotEncoder()
.setInputCols(string_indexer_outputs)
.setOutputCols(one_hot_encoder_outputs),
VectorAssembler(
inputCols=one_hot_encoder_outputs + numeric_features, outputCol="features"
),
GBTClassifier(weightCol="fnlwgt", maxDepth=7, maxIter=100),
]
)
model = pipeline.fit(df)
```
Check that model makes sense and has reasonable output. For this, we will check the model performance by calculating the ROC-AUC score.
```python
data = model.transform(df)
display(data.select("income", "probability", "prediction"))
```
```python
eval_auc = BinaryClassificationEvaluator(
labelCol="label", rawPredictionCol="prediction"
)
eval_auc.evaluate(data)
```
## Partial Dependence Plots
Partial dependence plots (PDP) show the dependence between the target response and a set of input features of interest, marginalizing over the values of all other input features. It can show whether the relationship between the target response and the input feature is linear, smooth, monotonic, or more complex. This is relevant when you want to have an overall understanding of model behavior. E.g. Identifying specific age group has a favorable predictions vs other age groups.
If you want to learn more please check out the [scikit-learn page on partial dependence plots](https://scikit-learn.org/stable/modules/partial_dependence.html#partial-dependence-plots).
### Set up the transformer for PDP
To plot PDP we need to set up the instance of `ICETransformer` first and set the `kind` parameter to `average` and then call the `transform` function.
For the setup we need to pass the pretrained model, specify the target column ("probability" in our case), and pass categorical and numeric feature names.
Categorical and numeric features can be passed as a list of names. But we can specify parameters for the features by passing a list of dicts where each dict represents one feature.
For the numeric features a dictionary can look like this:
{"name": "capital-gain", "numSplits": 20, "rangeMin": 0.0, "rangeMax": 10000.0, "outputColName": "capital-gain_dependance"}
Where the required key-value pair is `name` - the name of the numeric feature. Next key-values pairs are optional: `numSplits` - the number of splits for the value range for the numeric feature, `rangeMin` - specifies the min value of the range for the numeric feature, `rangeMax` - specifies the max value of the range for the numeric feature, `outputColName` - the name for output column with explanations for the feature.
For the categorical features a dictionary can look like this:
{"name": "marital-status", "numTopValues": 10, "outputColName": "marital-status_dependance"}
Where the required key-value pair is `name` - the name of the numeric feature. Next key-values pairs are optional: `numTopValues` - the max number of top-occurring values to be included in the categorical feature, `outputColName` - the name for output column with explanations for the feature.
```python
pdp = ICETransformer(
model=model,
targetCol="probability",
kind="average",
targetClasses=[1],
categoricalFeatures=categorical_features,
numericFeatures=numeric_features,
)
```
PDP transformer returns a dataframe of 1 row * {number features to explain} columns. Each column contains a map between the feature's values and the model's average dependence for that feature value.
```python
output_pdp = pdp.transform(df)
display(output_pdp)
```
### Visualization
```python
# Helper functions for visualization
def get_pandas_df_from_column(df, col_name):
keys_df = df.select(F.explode(F.map_keys(F.col(col_name)))).distinct()
keys = list(map(lambda row: row[0], keys_df.collect()))
key_cols = list(map(lambda f: F.col(col_name).getItem(f).alias(str(f)), keys))
final_cols = key_cols
pandas_df = df.select(final_cols).toPandas()
return pandas_df
def plot_dependence_for_categorical(df, col, col_int=True, figsize=(20, 5)):
dict_values = {}
col_names = list(df.columns)
for col_name in col_names:
dict_values[col_name] = df[col_name][0].toArray()[0]
marklist = sorted(
dict_values.items(), key=lambda x: int(x[0]) if col_int else x[0]
)
sortdict = dict(marklist)
fig = plt.figure(figsize=figsize)
plt.bar(sortdict.keys(), sortdict.values())
plt.xlabel(col, size=13)
plt.ylabel("Dependence")
plt.show()
def plot_dependence_for_numeric(df, col, col_int=True, figsize=(20, 5)):
dict_values = {}
col_names = list(df.columns)
for col_name in col_names:
dict_values[col_name] = df[col_name][0].toArray()[0]
marklist = sorted(
dict_values.items(), key=lambda x: int(x[0]) if col_int else x[0]
)
sortdict = dict(marklist)
fig = plt.figure(figsize=figsize)
plt.plot(list(sortdict.keys()), list(sortdict.values()))
plt.xlabel(col, size=13)
plt.ylabel("Dependence")
plt.ylim(0.0)
plt.show()
```
#### Example 1: "age"
We can observe non-linear dependency. The model predicts that income rapidly grows from 24-46 y.o. age, after 46 y.o. model predictions slightly drops and from 68 y.o. remains stable.
```python
df_education_num = get_pandas_df_from_column(output_pdp, "age_dependence")
plot_dependence_for_numeric(df_education_num, "age")
```
Your results will look like:
![pdp_age](https://mmlspark.blob.core.windows.net/graphics/explainers/pdp_age.png)
#### Example 2: "marital-status"
The model seems to treat "married-cv-spouse" as one category and tend to give a higher average prediction, and all others as a second category with the lower average prediction.
```python
df_occupation = get_pandas_df_from_column(output_pdp, "marital-status_dependence")
plot_dependence_for_categorical(df_occupation, "marital-status", False, figsize=(30, 5))
```
Your results will look like:
![pdp_marital-status](https://mmlspark.blob.core.windows.net/graphics/explainers/pdp_marital-status.png)
#### Example 3: "capital-gain"
In the first graph, we run PDP with default parameters. We can see that this representation is not super useful because it is not granular enough. By default the range of numeric features are calculated dynamically from the data.
In the second graph, we set rangeMin = 0 and rangeMax = 10000 to visualize more granular interpretations for the feature of interest. Now we can see more clearly how the model made decisions in a smaller region.
```python
df_education_num = get_pandas_df_from_column(output_pdp, "capital-gain_dependence")
plot_dependence_for_numeric(df_education_num, "capital-gain_dependence")
```
Your results will look like:
![pdp_capital-gain-first](https://mmlspark.blob.core.windows.net/graphics/explainers/pdp_capital-gain-first.png)
```python
pdp_cap_gain = ICETransformer(
model=model,
targetCol="probability",
kind="average",
targetClasses=[1],
numericFeatures=[
{"name": "capital-gain", "numSplits": 20, "rangeMin": 0.0, "rangeMax": 10000.0}
],
numSamples=50,
)
output_pdp_cap_gain = pdp_cap_gain.transform(df)
df_education_num_gain = get_pandas_df_from_column(
output_pdp_cap_gain, "capital-gain_dependence"
)
plot_dependence_for_numeric(df_education_num_gain, "capital-gain_dependence")
```
Your results will look like:
![pdp_capital-gain-second](https://mmlspark.blob.core.windows.net/graphics/explainers/pdp_capital-gain-second.png)
### Conclusions
PDP can be used to show how features influence model predictions on average and help modeler catch unexpected behavior from the model.
## Individual Conditional Expectation
ICE plots display one line per instance that shows how the instances prediction changes when a feature values change. Each line represents the predictions for one instance if we vary the feature of interest. This is relevant when you want to observe model prediction for instances individually in more details.
If you want to learn more please check out the [scikit-learn page on ICE plots](https://scikit-learn.org/stable/modules/partial_dependence.html#individual-conditional-expectation-ice-plot).
### Set up the transformer for ICE
To plot ICE we need to set up the instance of `ICETransformer` first and set the `kind` parameter to `individual` and then call the `transform` function. For the setup we need to pass the pretrained model, specify the target column ("probability" in our case), and pass categorical and numeric feature names. For better visualization we set the number of samples to 50.
```python
ice = ICETransformer(
model=model,
targetCol="probability",
targetClasses=[1],
categoricalFeatures=categorical_features,
numericFeatures=numeric_features,
numSamples=50,
)
output = ice.transform(df)
```
### Visualization
```python
# Helper functions for visualization
from math import pi
from collections import defaultdict
def plot_ice_numeric(df, col, col_int=True, figsize=(20, 10)):
dict_values = defaultdict(list)
col_names = list(df.columns)
num_instances = df.shape[0]
instances_y = {}
i = 0
for col_name in col_names:
for i in range(num_instances):
dict_values[i].append(df[col_name][i].toArray()[0])
fig = plt.figure(figsize=figsize)
for i in range(num_instances):
plt.plot(col_names, dict_values[i], "k")
plt.xlabel(col, size=13)
plt.ylabel("Dependence")
plt.ylim(0.0)
def plot_ice_categorical(df, col, col_int=True, figsize=(20, 10)):
dict_values = defaultdict(list)
col_names = list(df.columns)
num_instances = df.shape[0]
angles = [n / float(df.shape[1]) * 2 * pi for n in range(df.shape[1])]
angles += angles[:1]
instances_y = {}
i = 0
for col_name in col_names:
for i in range(num_instances):
dict_values[i].append(df[col_name][i].toArray()[0])
fig = plt.figure(figsize=figsize)
ax = plt.subplot(111, polar=True)
plt.xticks(angles[:-1], col_names)
for i in range(num_instances):
values = dict_values[i]
values += values[:1]
ax.plot(angles, values, "k")
ax.fill(angles, values, "teal", alpha=0.1)
plt.xlabel(col, size=13)
plt.show()
def overlay_ice_with_pdp(df_ice, df_pdp, col, col_int=True, figsize=(20, 5)):
dict_values = defaultdict(list)
col_names_ice = list(df_ice.columns)
num_instances = df_ice.shape[0]
instances_y = {}
i = 0
for col_name in col_names_ice:
for i in range(num_instances):
dict_values[i].append(df_ice[col_name][i].toArray()[0])
fig = plt.figure(figsize=figsize)
for i in range(num_instances):
plt.plot(col_names_ice, dict_values[i], "k")
dict_values_pdp = {}
col_names = list(df_pdp.columns)
for col_name in col_names:
dict_values_pdp[col_name] = df_pdp[col_name][0].toArray()[0]
marklist = sorted(
dict_values_pdp.items(), key=lambda x: int(x[0]) if col_int else x[0]
)
sortdict = dict(marklist)
plt.plot(col_names_ice, list(sortdict.values()), "r", linewidth=5)
plt.xlabel(col, size=13)
plt.ylabel("Dependence")
plt.ylim(0.0)
plt.show()
```
#### Example 1: Numeric feature: "age"
We can overlay the PDP on top of ICE plots. In the graph, the red line shows the PDP plot for the "age" feature, and the black lines show ICE plots for 50 randomly selected observations.
The visualization shows that all curves in the ICE plot follow a similar course. This means that the PDP (red line) is already a good summary of the relationships between the displayed feature "age" and the model's average predictions of "income".
```python
age_df_ice = get_pandas_df_from_column(output, "age_dependence")
age_df_pdp = get_pandas_df_from_column(output_pdp, "age_dependence")
overlay_ice_with_pdp(age_df_ice, age_df_pdp, col="age_dependence", figsize=(30, 10))
```
Your results will look like:
![pdp_age_overlayed](https://mmlspark.blob.core.windows.net/graphics/explainers/pdp_age_overlayed.png)
#### Example 2: Categorical feature: "occupation"
For visualization of categorical features, we are using a star plot.
- The X-axis here is a circle which is split into equal parts, each representing a feature value.
- The Y-coordinate shows the dependence values. Each line represents a sample observation.
Here we can see that "Farming-fishing" drives the least predictions - because values accumulated near the lowest probabilities, but, for example, "Exec-managerial" seems to have one of the highest impacts for model predictions.
```python
occupation_dep = get_pandas_df_from_column(output, "occupation_dependence")
plot_ice_categorical(occupation_dep, "occupation_dependence", figsize=(30, 10))
```
Your results will look like:
![pdp_occupation-star-plot](https://mmlspark.blob.core.windows.net/graphics/explainers/pdp_occupation-star-plot.png)
### Conclusions
ICE plots show model behavior on individual observations. Each line represents the prediction from the model if we vary the feature of interest.
## PDP-based Feature Importance
Using PDP we can calculate a simple partial dependence-based feature importance measure. We note that a flat PDP indicates that varying the feature does not affect the prediction. The more the PDP varies, the more "important" the feature is.
If you want to learn more please check out [Christoph M's Interpretable ML Book](https://christophm.github.io/interpretable-ml-book/pdp.html#pdp-based-feature-importance).
### Set up the transformer for PDP-based Feature Importance
To plot PDP-based feature importance, we first need to set up the instance of `ICETransformer` by setting the `kind` parameter to `feature`. We can then call the `transform` function.
`transform` returns a two-column table where the first columns are feature importance values and the second are corresponding features names. The rows are sorted in descending order by feature importance values.
```python
pdp_based_imp = ICETransformer(
model=model,
targetCol="probability",
kind="feature",
targetClasses=[1],
categoricalFeatures=categorical_features,
numericFeatures=numeric_features,
)
output_pdp_based_imp = pdp_based_imp.transform(df)
display(output_pdp_based_imp)
```
### Visualization
```python
# Helper functions for visualization
def plot_pdp_based_imp(df, figsize=(35, 5)):
values_list = list(df.select("pdpBasedDependence").toPandas()["pdpBasedDependence"])
names = list(df.select("featureNames").toPandas()["featureNames"])
dependence_values = []
for vec in values_list:
dependence_values.append(vec.toArray()[0])
fig = plt.figure(figsize=figsize)
plt.bar(names, dependence_values)
plt.xlabel("Feature names", size=13)
plt.ylabel("PDP-based-feature-imporance")
plt.show()
```
This shows that the features `capital-gain` and `education-num` were the most important for the model, and `sex` and `education` were the least important.
```python
plot_pdp_based_imp(output_pdp_based_imp)
```
Your results will look like:
![pdp_based-importance](https://mmlspark.blob.core.windows.net/graphics/explainers/pdp-based-importance.png)
## Overall conclusions
Interpretation methods are very important responsible AI tools.
Partial dependence plots (PDP) and Individual Conditional Expectation (ICE) plots can be used to visualize and analyze interaction between the target response and a set of input features of interest.
PDPs show the dependence of the average prediction when varying each feature. In contrast, ICE shows the dependence for individual samples. The approaches can help give rough estimates of a function's deviation from a baseline. This is important not only to help debug and understand how a model behaves but is a useful step in building responsible AI systems. These methodologies can improve transparency and provide model consumers with an extra level of accountability by model creators.
Using examples above we showed how to calculate and visualize such plots at a scalable manner to understand how a classification or regression model makes predictions, which features heavily impact the model, and how model prediction changes when feature value changes.

Просмотреть файл

@ -0,0 +1,331 @@
---
title: Quickstart - Data Balance Analysis
hide_title: true
status: stable
---
## Data Balance Analysis using the Adult Census Income dataset
In this example, we will conduct Data Balance Analysis (which consists on running three groups of measures) on the Adult Census Income dataset to determine how well features and feature values are represented in the dataset.
This dataset can be used to predict whether annual income exceeds $50,000/year or not based on demographic data from the 1994 U.S. Census. The dataset we're reading contains 32,561 rows and 14 columns/features.
[More info on the dataset here](https://archive.ics.uci.edu/ml/datasets/Adult)
---
Data Balance Analysis consists of a combination of three groups of measures: Feature Balance Measures, Distribution Balance Measures, and Aggregate Balance Measures.
In summary, Data Balance Analysis, when used as a step for building ML models, has the following benefits:
* It reduces costs of ML building through the early identification of data representation gaps that prompt data scientists to seek mitigation steps (such as collecting more data, following a specific sampling mechanism, creating synthetic data, and so on) before proceeding to train their models.
* It enables easy end-to-end debugging of ML systems in combination with the [RAI Toolbox](https://responsibleaitoolbox.ai/responsible-ai-toolbox-capabilities/) by providing a clear view of model-related issues versus data-related issues.
---
Note: If you are running this notebook in a Spark environment such as Azure Synapse or Databricks, then you can easily visualize the imbalance measures using the built-in plotting features.
Python dependencies:
```text
matplotlib==3.2.2
numpy==1.19.2
```
```python
import matplotlib.pyplot as plt
import numpy as np
import pyspark.sql.functions as F
from synapse.ml.core.platform import *
```
```python
df = spark.read.parquet(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/AdultCensusIncome.parquet"
)
display(df)
```
```python
# Convert the "income" column from {<=50K, >50K} to {0, 1} to represent our binary classification label column
label_col = "income"
df = df.withColumn(
label_col, F.when(F.col(label_col).contains("<=50K"), F.lit(0)).otherwise(F.lit(1))
)
```
### Perform preliminary analysis on columns of interest
```python
display(df.groupBy("race").count())
```
```python
display(df.groupBy("sex").count())
```
```python
# Choose columns/features to do data balance analysis on
cols_of_interest = ["race", "sex"]
display(df.select(cols_of_interest + [label_col]))
```
### [Calculate Feature Balance Measures](../Data%20Balance%20Analysis)
Feature Balance Measures allow us to see whether each combination of sensitive feature is receiving the positive outcome (true prediction) at equal rates.
In this context, we define a feature balance measure, also referred to as the parity, for label y as the absolute difference between the association metrics of two different sensitive classes $[x_A, x_B]$, with respect to the association metric $A(x_i, y)$. That is:
$$parity(y \vert x_A, x_B, A(\cdot)) \coloneqq A(x_A, y) - A(x_B, y)$$
Using the dataset, we can see if the various sexes and races are receiving >50k income at equal or unequal rates.
Note: Many of these metrics were influenced by this paper [Measuring Model Biases in the Absence of Ground Truth](https://arxiv.org/abs/2103.03417).
```python
from synapse.ml.exploratory import FeatureBalanceMeasure
feature_balance_measures = (
FeatureBalanceMeasure()
.setSensitiveCols(cols_of_interest)
.setLabelCol(label_col)
.setVerbose(True)
.transform(df)
)
# Sort by Statistical Parity descending for all features
display(feature_balance_measures.sort(F.abs("FeatureBalanceMeasure.dp").desc()))
```
```python
# Drill down to feature == "sex"
display(
feature_balance_measures.filter(F.col("FeatureName") == "sex").sort(
F.abs("FeatureBalanceMeasure.dp").desc()
)
)
```
```python
# Drill down to feature == "race"
display(
feature_balance_measures.filter(F.col("FeatureName") == "race").sort(
F.abs("FeatureBalanceMeasure.dp").desc()
)
)
```
#### Visualize Feature Balance Measures
```python
races = [row["race"] for row in df.groupBy("race").count().select("race").collect()]
dp_rows = (
feature_balance_measures.filter(F.col("FeatureName") == "race")
.select("ClassA", "ClassB", "FeatureBalanceMeasure.dp")
.collect()
)
race_dp_values = [(row["ClassA"], row["ClassB"], row["dp"]) for row in dp_rows]
race_dp_array = np.zeros((len(races), len(races)))
for class_a, class_b, dp_value in race_dp_values:
i, j = races.index(class_a), races.index(class_b)
dp_value = round(dp_value, 2)
race_dp_array[i, j] = dp_value
race_dp_array[j, i] = -1 * dp_value
colormap = "RdBu"
dp_min, dp_max = -1.0, 1.0
fig, ax = plt.subplots()
im = ax.imshow(race_dp_array, vmin=dp_min, vmax=dp_max, cmap=colormap)
cbar = ax.figure.colorbar(im, ax=ax)
cbar.ax.set_ylabel("Statistical Parity", rotation=-90, va="bottom")
ax.set_xticks(np.arange(len(races)))
ax.set_yticks(np.arange(len(races)))
ax.set_xticklabels(races)
ax.set_yticklabels(races)
plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")
for i in range(len(races)):
for j in range(len(races)):
text = ax.text(j, i, race_dp_array[i, j], ha="center", va="center", color="k")
ax.set_title("Statistical Parity of Races in Adult Dataset")
fig.tight_layout()
plt.show()
```
![Statistical Parity of Races in Adult Dataset](https://mmlspark.blob.core.windows.net/graphics/responsible_ai/DataBalanceAnalysis_AdultCensusIncome_RacesDP.png)
#### Interpret Feature Balance Measures
Statistical Parity:
* When it is positive, it means that ClassA sees the positive outcome more than ClassB.
* When it is negative, it means that ClassB sees the positive outcome more than ClassA.
---
From the results, we can tell the following:
For Sex:
* SP(Male, Female) = 0.1963 shows "Male" observations are associated with ">50k" income label more often than "Female" observations.
For Race:
* SP(Other, Asian-Pac-Islander) = -0.1734 shows "Other" observations are associated with ">50k" income label less than "Asian-Pac-Islander" observations.
* SP(White, Other) = 0.1636 shows "White" observations are associated with ">50k" income label more often than "Other" observations.
* SP(Asian-Pac-Islander, Amer-Indian-Eskimo) = 0.1494 shows "Asian-Pac-Islander" observations are associated with ">50k" income label more often than "Amer-Indian-Eskimo" observations.
Again, you can take mitigation steps to upsample/downsample your data to be less biased towards certain features and feature values.
Built-in mitigation steps are coming soon.
### Calculate [Distribution Balance Measures](../Data%20Balance%20Analysis)
Distribution Balance Measures allow us to compare our data with a reference distribution (i.e. uniform distribution). They are calculated per sensitive column and don't use the label column. |
```python
from synapse.ml.exploratory import DistributionBalanceMeasure
distribution_balance_measures = (
DistributionBalanceMeasure().setSensitiveCols(cols_of_interest).transform(df)
)
# Sort by JS Distance descending
display(
distribution_balance_measures.sort(
F.abs("DistributionBalanceMeasure.js_dist").desc()
)
)
```
#### Visualize Distribution Balance Measures
```python
distribution_rows = distribution_balance_measures.collect()
race_row = [row for row in distribution_rows if row["FeatureName"] == "race"][0][
"DistributionBalanceMeasure"
]
sex_row = [row for row in distribution_rows if row["FeatureName"] == "sex"][0][
"DistributionBalanceMeasure"
]
measures_of_interest = [
"kl_divergence",
"js_dist",
"inf_norm_dist",
"total_variation_dist",
"wasserstein_dist",
]
race_measures = [round(race_row[measure], 4) for measure in measures_of_interest]
sex_measures = [round(sex_row[measure], 4) for measure in measures_of_interest]
x = np.arange(len(measures_of_interest))
width = 0.35
fig, ax = plt.subplots()
rects1 = ax.bar(x - width / 2, race_measures, width, label="Race")
rects2 = ax.bar(x + width / 2, sex_measures, width, label="Sex")
ax.set_xlabel("Measure")
ax.set_ylabel("Value")
ax.set_title("Distribution Balance Measures of Sex and Race in Adult Dataset")
ax.set_xticks(x)
ax.set_xticklabels(measures_of_interest)
ax.legend()
plt.setp(ax.get_xticklabels(), rotation=20, ha="right", rotation_mode="default")
def autolabel(rects):
for rect in rects:
height = rect.get_height()
ax.annotate(
"{}".format(height),
xy=(rect.get_x() + rect.get_width() / 2, height),
xytext=(0, 1), # 1 point vertical offset
textcoords="offset points",
ha="center",
va="bottom",
)
autolabel(rects1)
autolabel(rects2)
fig.tight_layout()
plt.show()
```
![Distribution Balance Measures of Sex and Race in Adult Dataset](https://mmlspark.blob.core.windows.net/graphics/responsible_ai/DataBalanceAnalysis_AdultCensusIncome_DistributionMeasures.png)
#### Interpret Distribution Balance Measures
Race has a JS Distance of 0.5104 while Sex has a JS Distance of 0.1217.
Knowing that JS Distance is between [0, 1] where 0 means perfectly balanced distribution, we can tell that:
* There is a larger disparity between various races than various sexes in our dataset.
* Race is nowhere close to a perfectly balanced distribution (i.e. some races are seen ALOT more than others in our dataset).
* Sex is fairly close to a perfectly balanced distribution.
### Calculate [Aggregate Balance Measures](../Data%20Balance%20Analysis)
Aggregate Balance Measures allow us to obtain a higher notion of inequality. They are calculated on the global set of sensitive columns and don't use the label column.
These measures look at distribution of records across all combinations of sensitive columns. For example, if Sex and Race are sensitive columns, it shall try to quantify imbalance across all combinations - (Male, Black), (Female, White), (Male, Asian-Pac-Islander), etc.
```python
from synapse.ml.exploratory import AggregateBalanceMeasure
aggregate_balance_measures = (
AggregateBalanceMeasure().setSensitiveCols(cols_of_interest).transform(df)
)
display(aggregate_balance_measures)
```
#### Interpret Aggregate Balance Measures
An Atkinson Index of 0.7779 lets us know that 77.79% of data points need to be foregone to have a more equal share among our features.
It lets us know that our dataset is leaning towards maximum inequality, and we should take actionable steps to:
* Upsample data points where the feature value is barely observed.
* Downsample data points where the feature value is observed much more than others.
### Summary
Throughout the course of this sample notebook, we have:
1. Chosen "Race" and "Sex" as columns of interest in the Adult Census Income dataset.
2. Done preliminary analysis on our dataset.
3. Ran the 3 groups of measures that compose our **Data Balance Analysis**:
* **Feature Balance Measures**
* Calculated Feature Balance Measures to see that the highest Statistical Parity is in "Sex": Males see >50k income much more than Females.
* Visualized Statistical Parity of Races to see that Asian-Pac-Islander sees >50k income much more than Other, in addition to other race combinations.
* **Distribution Balance Measures**
* Calculated Distribution Balance Measures to see that "Sex" is much closer to a perfectly balanced distribution than "Race".
* Visualized various distribution balance measures to compare their values for "Race" and "Sex".
* **Aggregate Balance Measures**
* Calculated Aggregate Balance Measures to see that we need to forego 77.79% of data points to have a perfectly balanced dataset. We identified that our dataset is leaning towards maximum inequality, and we should take actionable steps to:
* Upsample data points where the feature value is barely observed.
* Downsample data points where the feature value is observed much more than others.
**In conclusion:**
* These measures provide an indicator of disparity on the data, allowing for users to explore potential mitigations before proceeding to train.
* Users can use these measures to set thresholds on their level of "tolerance" for data representation.
* Production pipelines can use these measures as baseline for models that require frequent retraining on new data.
* These measures can also be saved as key metadata for the model/service built and added as part of model cards or transparency notes helping drive overall accountability for the ML service built and its performance across different demographics or sensitive attributes.

Просмотреть файл

@ -0,0 +1,260 @@
---
title: Quickstart - Snow Leopard Detection
hide_title: true
status: stable
---
## Automated Snow Leopard Detection with Synapse Machine Learning
<img src="https://mmlspark.blob.core.windows.net/graphics/SnowLeopardAD/SLTrust.PNG" width="900" />
```python
from synapse.ml.core.platform import *
bing_search_key = find_secret(
secret_name="bing-search-key", keyvault="mmlspark-build-keys"
)
# WARNING this notebook requires a lot of memory.
# If you get a heap space error, try dropping the number of images bing returns
# or by writing out the images to parquet first
```
```python
from synapse.ml.services import *
from synapse.ml.core.spark import FluentAPI
from pyspark.sql.functions import lit
def bingPhotoSearch(name, queries, pages):
offsets = [offset * 10 for offset in range(0, pages)]
parameters = [(query, offset) for offset in offsets for query in queries]
return (
spark.createDataFrame(parameters, ("queries", "offsets"))
.mlTransform(
BingImageSearch() # Apply Bing Image Search
.setSubscriptionKey(bing_search_key) # Set the API Key
.setOffsetCol("offsets") # Specify a column containing the offsets
.setQueryCol("queries") # Specify a column containing the query words
.setCount(10) # Specify the number of images to return per offset
.setImageType("photo") # Specify a filter to ensure we get photos
.setOutputCol("images")
)
.mlTransform(BingImageSearch.getUrlTransformer("images", "urls"))
.withColumn("labels", lit(name))
.limit(400)
)
```
<img src="https://mmlspark.blob.core.windows.net/graphics/SparkSummit2/cog_services.png" width="900" />
```python
def displayDF(df, n=5, image_cols=set(["urls"])):
rows = df.take(n)
cols = df.columns
header = "".join(["<th>" + c + "</th>" for c in cols])
style = """
<!DOCTYPE html>
<html>
<head>
</head>"""
table = []
for row in rows:
table.append("<tr>")
for col in cols:
if col in image_cols:
rep = '<img src="{}", width="100">'.format(row[col])
else:
rep = row[col]
table.append("<td>{}</td>".format(rep))
table.append("</tr>")
tableHTML = "".join(table)
body = """
<body>
<table>
<tr>
{}
</tr>
{}
</table>
</body>
</html>
""".format(
header, tableHTML
)
try:
if running_on_databricks():
displayHTML(style + body)
else:
import IPython
IPython.display.HTML(style + body)
except:
pass
```
```python
snowLeopardQueries = ["snow leopard"]
snowLeopardUrls = bingPhotoSearch("snow leopard", snowLeopardQueries, pages=100)
displayDF(snowLeopardUrls)
```
```python
randomWords = spark.read.parquet(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/random_words.parquet"
).cache()
randomWords.show()
```
```python
randomLinks = (
randomWords.mlTransform(
BingImageSearch()
.setSubscriptionKey(bing_search_key)
.setCount(10)
.setQueryCol("words")
.setOutputCol("images")
)
.mlTransform(BingImageSearch.getUrlTransformer("images", "urls"))
.withColumn("label", lit("other"))
.limit(400)
)
displayDF(randomLinks)
```
```python
images = (
snowLeopardUrls.union(randomLinks)
.distinct()
.repartition(100)
.mlTransform(
BingImageSearch.downloadFromUrls("urls", "image", concurrency=5, timeout=5000)
)
.dropna()
)
train, test = images.randomSplit([0.7, 0.3], seed=1)
```
```python
from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer
from pyspark.ml.classification import LogisticRegression
from pyspark.sql.functions import udf
from synapse.ml.onnx import ImageFeaturizer
from synapse.ml.stages import UDFTransformer
from pyspark.sql.types import *
def getIndex(row):
return float(row[1])
model = Pipeline(
stages=[
StringIndexer(inputCol="labels", outputCol="index"),
ImageFeaturizer(
inputCol="image",
outputCol="features",
autoConvertToColor=True,
ignoreDecodingErrors=True,
).setModel("ResNet50"),
LogisticRegression(maxIter=5, labelCol="index", regParam=10.0),
UDFTransformer()
.setUDF(udf(getIndex, DoubleType()))
.setInputCol("probability")
.setOutputCol("leopard_prob"),
]
)
fitModel = model.fit(train)
```
<img src="https://mmlspark.blob.core.windows.net/graphics/SnowLeopardAD/SLPipeline.PNG" width="900" />
```python
def plotConfusionMatrix(df, label, prediction, classLabels):
from synapse.ml.plot import confusionMatrix
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(4.5, 4.5))
confusionMatrix(df, label, prediction, classLabels)
display(fig)
if not running_on_synapse():
plotConfusionMatrix(
fitModel.transform(test), "index", "prediction", fitModel.stages[0].labels
)
```
```python
import urllib.request
from synapse.ml.explainers import ImageLIME
test_image_url = (
"https://mmlspark.blob.core.windows.net/graphics/SnowLeopardAD/snow_leopard1.jpg"
)
with urllib.request.urlopen(test_image_url) as url:
barr = url.read()
test_subsample = spark.createDataFrame([(bytearray(barr),)], ["image"])
lime = (
ImageLIME()
.setModel(fitModel)
.setTargetCol("leopard_prob")
.setOutputCol("weights")
.setInputCol("image")
.setCellSize(100.0)
.setModifier(50.0)
.setNumSamples(300)
)
result = lime.transform(test_subsample)
```
```python
import matplotlib.pyplot as plt
import PIL, io, numpy as np
def plot_superpixels(row):
image_bytes = row["image"]
superpixels = row["superpixels"]["clusters"]
weights = list(row["weights"][0])
mean_weight = np.percentile(weights, 90)
img = (PIL.Image.open(io.BytesIO(image_bytes))).convert("RGBA")
image_array = np.asarray(img).copy()
for (sp, w) in zip(superpixels, weights):
if w > mean_weight:
for (x, y) in sp:
image_array[y, x, 1] = 255
image_array[y, x, 3] = 200
plt.clf()
plt.imshow(image_array)
display()
# Gets first row from the LIME-transformed data frame
if not running_on_synapse():
plot_superpixels(result.take(1)[0])
```
### Your results will look like:
<img src="https://mmlspark.blob.core.windows.net/graphics/SnowLeopardAD/lime_results.png" width="900" />

Просмотреть файл

@ -0,0 +1,169 @@
---
title: Tabular Explainers
hide_title: true
status: stable
---
# Interpretability - Tabular SHAP explainer
In this example, we use Kernel SHAP to explain a tabular classification model built from the Adults Census dataset.
First we import the packages and define some UDFs we need later.
```python
from synapse.ml.explainers import *
from pyspark.ml import Pipeline
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.feature import StringIndexer, OneHotEncoder, VectorAssembler
from pyspark.ml.functions import vector_to_array
from pyspark.sql.types import *
from pyspark.sql.functions import *
import pandas as pd
from synapse.ml.core.platform import *
vec_access = udf(lambda v, i: float(v[i]), FloatType())
```
Now let's read the data and train a binary classification model.
```python
df = spark.read.parquet(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/AdultCensusIncome.parquet"
)
labelIndexer = StringIndexer(
inputCol="income", outputCol="label", stringOrderType="alphabetAsc"
).fit(df)
print("Label index assigment: " + str(set(zip(labelIndexer.labels, [0, 1]))))
training = labelIndexer.transform(df).cache()
display(training)
categorical_features = [
"workclass",
"education",
"marital-status",
"occupation",
"relationship",
"race",
"sex",
"native-country",
]
categorical_features_idx = [col + "_idx" for col in categorical_features]
categorical_features_enc = [col + "_enc" for col in categorical_features]
numeric_features = [
"age",
"education-num",
"capital-gain",
"capital-loss",
"hours-per-week",
]
strIndexer = StringIndexer(
inputCols=categorical_features, outputCols=categorical_features_idx
)
onehotEnc = OneHotEncoder(
inputCols=categorical_features_idx, outputCols=categorical_features_enc
)
vectAssem = VectorAssembler(
inputCols=categorical_features_enc + numeric_features, outputCol="features"
)
lr = LogisticRegression(featuresCol="features", labelCol="label", weightCol="fnlwgt")
pipeline = Pipeline(stages=[strIndexer, onehotEnc, vectAssem, lr])
model = pipeline.fit(training)
```
After the model is trained, we randomly select some observations to be explained.
```python
explain_instances = (
model.transform(training).orderBy(rand()).limit(5).repartition(200).cache()
)
display(explain_instances)
```
We create a TabularSHAP explainer, set the input columns to all the features the model takes, specify the model and the target output column we're trying to explain. In this case, we're trying to explain the "probability" output, which is a vector of length 2, and we're only looking at class 1 probability. Specify targetClasses to `[0, 1]` if you want to explain class 0 and 1 probability at the same time. Finally we sample 100 rows from the training data for background data, which is used for integrating out features in Kernel SHAP.
```python
shap = TabularSHAP(
inputCols=categorical_features + numeric_features,
outputCol="shapValues",
numSamples=5000,
model=model,
targetCol="probability",
targetClasses=[1],
backgroundData=broadcast(training.orderBy(rand()).limit(100).cache()),
)
shap_df = shap.transform(explain_instances)
```
Once we have the resulting dataframe, we extract the class 1 probability of the model output, the SHAP values for the target class, the original features and the true label. Then we convert it to a pandas dataframe for visualization.
For each observation, the first element in the SHAP values vector is the base value (the mean output of the background dataset), and each of the following element is the SHAP values for each feature.
```python
shaps = (
shap_df.withColumn("probability", vec_access(col("probability"), lit(1)))
.withColumn("shapValues", vector_to_array(col("shapValues").getItem(0)))
.select(
["shapValues", "probability", "label"] + categorical_features + numeric_features
)
)
shaps_local = shaps.toPandas()
shaps_local.sort_values("probability", ascending=False, inplace=True, ignore_index=True)
pd.set_option("display.max_colwidth", None)
shaps_local
```
We use plotly subplot to visualize the SHAP values.
```python
from plotly.subplots import make_subplots
import plotly.graph_objects as go
import pandas as pd
features = categorical_features + numeric_features
features_with_base = ["Base"] + features
rows = shaps_local.shape[0]
fig = make_subplots(
rows=rows,
cols=1,
subplot_titles="Probability: "
+ shaps_local["probability"].apply("{:.2%}".format)
+ "; Label: "
+ shaps_local["label"].astype(str),
)
for index, row in shaps_local.iterrows():
feature_values = [0] + [row[feature] for feature in features]
shap_values = row["shapValues"]
list_of_tuples = list(zip(features_with_base, feature_values, shap_values))
shap_pdf = pd.DataFrame(list_of_tuples, columns=["name", "value", "shap"])
fig.add_trace(
go.Bar(
x=shap_pdf["name"],
y=shap_pdf["shap"],
hovertext="value: " + shap_pdf["value"].astype(str),
),
row=index + 1,
col=1,
)
fig.update_yaxes(range=[-1, 1], fixedrange=True, zerolinecolor="black")
fig.update_xaxes(type="category", tickangle=45, fixedrange=True)
fig.update_layout(height=400 * rows, title_text="SHAP explanations")
if not running_on_synapse():
fig.show()
```
Your results should look like:
<img src="https://mmlspark.blob.core.windows.net/graphics/explainers/tabular-shap.png" />

Просмотреть файл

@ -0,0 +1,138 @@
---
title: Text Explainers
hide_title: true
status: stable
---
## Interpretability - Text Explainers
In this example, we use LIME and Kernel SHAP explainers to explain a text classification model.
First we import the packages and define some UDFs and a plotting function we will need later.
```
from pyspark.sql.functions import *
from pyspark.sql.types import *
from pyspark.ml import Pipeline
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.functions import vector_to_array
from synapse.ml.explainers import *
from synapse.ml.featurize.text import TextFeaturizer
from synapse.ml.core.platform import *
vec_access = udf(lambda v, i: float(v[i]), FloatType())
```
Load training data, and convert rating to binary label.
```
data = (
spark.read.parquet("wasbs://publicwasb@mmlspark.blob.core.windows.net/BookReviewsFromAmazon10K.parquet")
.withColumn("label", (col("rating") > 3).cast(LongType()))
.select("label", "text")
.cache()
)
display(data)
```
We train a text classification model, and randomly sample 10 rows to explain.
```
train, test = data.randomSplit([0.60, 0.40])
pipeline = Pipeline(
stages=[
TextFeaturizer(
inputCol="text",
outputCol="features",
useStopWordsRemover=True,
useIDF=True,
minDocFreq=20,
numFeatures=1 << 16,
),
LogisticRegression(maxIter=100, regParam=0.005, labelCol="label", featuresCol="features"),
]
)
model = pipeline.fit(train)
prediction = model.transform(test)
explain_instances = prediction.orderBy(rand()).limit(10)
```
```
def plotConfusionMatrix(df, label, prediction, classLabels):
from synapse.ml.plot import confusionMatrix
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(4.5, 4.5))
confusionMatrix(df, label, prediction, classLabels)
if running_on_synapse():
plt.show()
else:
display(fig)
plotConfusionMatrix(model.transform(test), "label", "prediction", [0, 1])
```
First we use the LIME text explainer to explain the model's predicted probability for a given observation.
```
lime = TextLIME(
model=model,
outputCol="weights",
inputCol="text",
targetCol="probability",
targetClasses=[1],
tokensCol="tokens",
samplingFraction=0.7,
numSamples=2000,
)
lime_results = (
lime.transform(explain_instances)
.select("tokens", "weights", "r2", "probability", "text")
.withColumn("probability", vec_access("probability", lit(1)))
.withColumn("weights", vector_to_array(col("weights").getItem(0)))
.withColumn("r2", vec_access("r2", lit(0)))
.withColumn("tokens_weights", arrays_zip("tokens", "weights"))
)
display(lime_results.select("probability", "r2", "tokens_weights", "text").orderBy(col("probability").desc()))
```
Then we use the Kernel SHAP text explainer to explain the model's predicted probability for a given observation.
> Notice that we drop the base value from the SHAP output before displaying the SHAP values. The base value is the model output for an empty string.
```
shap = TextSHAP(
model=model,
outputCol="shaps",
inputCol="text",
targetCol="probability",
targetClasses=[1],
tokensCol="tokens",
numSamples=5000,
)
shap_results = (
shap.transform(explain_instances)
.select("tokens", "shaps", "r2", "probability", "text")
.withColumn("probability", vec_access("probability", lit(1)))
.withColumn("shaps", vector_to_array(col("shaps").getItem(0)))
.withColumn("shaps", slice(col("shaps"), lit(2), size(col("shaps"))))
.withColumn("r2", vec_access("r2", lit(0)))
.withColumn("tokens_shaps", arrays_zip("tokens", "shaps"))
)
display(shap_results.select("probability", "r2", "tokens_shaps", "text").orderBy(col("probability").desc()))
```

Просмотреть файл

@ -0,0 +1,118 @@
---
title: Contextual Bandits
hide_title: true
status: stable
---
<img width="200" src="https://mmlspark.blob.core.windows.net/graphics/emails/vw-blue-dark-orange.svg" />
# Contextual-Bandits using Vowpal Wabbit
In the contextual bandit problem, a learner repeatedly observes a context, chooses an action, and observes a loss/cost/reward for the chosen action only. Contextual bandit algorithms use additional side information (or context) to aid real world decision-making. They work well for choosing actions in dynamic environments where options change rapidly, and the set of available actions is limited.
An in-depth tutorial can be found [here](https://vowpalwabbit.org/docs/vowpal_wabbit/python/latest/tutorials/python_Contextual_bandits_and_Vowpal_Wabbit.html)
[Azure Personalizer](https://azure.microsoft.com/en-us/products/cognitive-services/personalizer) emits logs in DSJSON-format. This example demonstrates how to perform off-policy evaluation.
## Step1: Read the dataset
```python
import pyspark.sql.types as T
from pyspark.sql import functions as F
schema = T.StructType(
[
T.StructField("input", T.StringType(), False),
]
)
df = (
spark.read.format("text")
.schema(schema)
.load("wasbs://publicwasb@mmlspark.blob.core.windows.net/decisionservice.json")
)
# print dataset basic info
print("records read: " + str(df.count()))
print("Schema: ")
df.printSchema()
```
```python
display(df)
```
## Step 2: Use VowpalWabbitFeaturizer to convert data features into vector
```python
from synapse.ml.vw import VowpalWabbitDSJsonTransformer
df_train = (
VowpalWabbitDSJsonTransformer()
.setDsJsonColumn("input")
.transform(df)
.withColumn("splitId", F.lit(0))
.repartition(2)
)
# Show structured nature of rewards
df_train.printSchema()
# exclude JSON to avoid overflow
display(df_train.drop("input"))
```
## Step 3: Train model
VowpalWabbitGeneric performs these steps:
* trains a model for each split (=group)
* synchronizes accross partitions after every split
* store the 1-step ahead predictions in the model
```python
from synapse.ml.vw import VowpalWabbitGeneric
model = (
VowpalWabbitGeneric()
.setPassThroughArgs(
"--cb_adf --cb_type mtr --clip_p 0.1 -q GT -q MS -q GR -q OT -q MT -q OS --dsjson --preserve_performance_counters"
)
.setInputCol("input")
.setSplitCol("splitId")
.setPredictionIdCol("EventId")
.fit(df_train)
)
```
## Step 4: Predict and evaluate
```python
df_predictions = model.getOneStepAheadPredictions() # .show(5, False)
df_headers = df_train.drop("input")
df_headers_predictions = df_headers.join(df_predictions, "EventId")
display(df_headers_predictions)
```
```python
from synapse.ml.vw import VowpalWabbitCSETransformer
metrics = VowpalWabbitCSETransformer().transform(df_headers_predictions)
display(metrics)
```
For each field of the reward column the metrics are calculated
```python
per_reward_metrics = metrics.select("reward.*")
display(per_reward_metrics)
```

Просмотреть файл

@ -0,0 +1,99 @@
---
title: Multi-class classification
hide_title: true
status: stable
---
<img width="200" src="https://mmlspark.blob.core.windows.net/graphics/emails/vw-blue-dark-orange.svg" />
# Multi-class Classification using Vowpal Wabbit
#### Read dataset
```python
import pyspark.sql.types as T
from pyspark.sql import functions as F
schema = T.StructType(
[
T.StructField("sepal_length", T.DoubleType(), False),
T.StructField("sepal_width", T.DoubleType(), False),
T.StructField("petal_length", T.DoubleType(), False),
T.StructField("petal_width", T.DoubleType(), False),
T.StructField("variety", T.StringType(), False),
]
)
df = (
spark.read.format("csv")
.option("header", True)
.schema(schema)
.load("wasbs://publicwasb@mmlspark.blob.core.windows.net/iris.txt")
)
# print dataset basic info
print("records read: " + str(df.count()))
print("Schema: ")
df.printSchema()
```
```python
display(df)
```
#### Use VowpalWabbitFeaturizer to convert data features into vector
```python
from pyspark.ml.feature import StringIndexer
from synapse.ml.vw import VowpalWabbitFeaturizer
indexer = StringIndexer(inputCol="variety", outputCol="label")
featurizer = VowpalWabbitFeaturizer(
inputCols=["sepal_length", "sepal_width", "petal_length", "petal_width"],
outputCol="features",
)
# label needs to be integer (0 to n)
df_label = indexer.fit(df).transform(df).withColumn("label", F.col("label").cast("int"))
# featurize data
df_featurized = featurizer.transform(df_label).select("label", "features")
display(df_featurized)
```
#### Split the dataset into train and test
```python
train, test = df_featurized.randomSplit([0.8, 0.2], seed=1)
```
#### Model Training
```python
from synapse.ml.vw import VowpalWabbitClassifier
model = (
VowpalWabbitClassifier(
numPasses=5,
passThroughArgs="--holdout_off --oaa 3 --holdout_off --loss_function=logistic --indexing 0 -q ::",
)
.setNumClasses(3)
.fit(train)
)
```
#### Model Prediction
```python
predictions = model.transform(test)
display(predictions)
```

Просмотреть файл

@ -0,0 +1,112 @@
---
title: VW
hide_title: true
sidebar_label: About
---
<img width="200" src="https://mmlspark.blob.core.windows.net/graphics/vw-blue-dark-orange.svg" />
# VowpalWabbit on Apache Spark
### Overview
[VowpalWabbit](https://github.com/VowpalWabbit/vowpal_wabbit) (VW) is a machine learning system that
pushes the frontier of machine learning with techniques such as online, hashing, allreduce,
reductions, learning2search, active, and interactive learning.
VowpalWabbit is a popular choice in ad-tech due to its speed and cost efficacy.
Furthermore it includes many advances in the area of reinforcement learning (for instance, contextual bandits).
### Advantages of VowpalWabbit
- **Composability**: VowpalWabbit models can be incorporated into existing
SparkML Pipelines, and used for batch, streaming, and serving workloads.
- **Small footprint**: VowpalWabbit memory consumption is rather small and can be controlled through '-b 18' or the setNumBits method.
This option determines the size of the model (2^18 * some_constant, in this example).
- **Feature Interactions**: Feature interactions (quadratic, cubic,... terms, for instance) are created on-the-fly within the most inner
learning loop in VW.
Interactions can be specified by using the -q parameter and passing the first character of the namespaces that should be _interacted_.
The VW namespace concept is mapped to Spark using columns. The column name is used as namespace name, thus one sparse or dense Spark ML vector corresponds to the features of a single namespace.
To allow passing of multiple namespaces, the VW estimator (classifier or regression) exposes a property called _additionalFeatures_. Users can pass an array of column names.
- **Simple deployment**: all native dependencies are packaged into a single jars (including boost and zlib).
- **VowpalWabbit command line arguments**: users can pass VW command line arguments to control the learning process.
- **VowpalWabbit binary models** To start the training, users can supply an initial VowpalWabbit model, which can be produced outside of
VW on Spark, by invoking _setInitialModel_ and passing the model as a byte array. Similarly, users can access the binary model by invoking
_getModel_ on the trained model object.
- **Java-based hashing** VW's version of murmur-hash was reimplemented in Java (praise to [JackDoe](https://github.com/jackdoe))
providing a major performance improvement compared to passing input strings through JNI and hashing in C++.
- **Cross language** VowpalWabbit on Spark is available on Spark, PySpark, and SparklyR.
### Limitations of VowpalWabbit on Spark
- **Linux and CentOS only** The native binaries included with the published jar are built Linux and CentOS only.
We're working on creating a more portable version by statically linking Boost and lib C++.
- **Limited Parsing** Features implemented in the native VW parser (ngrams, skips, ...) are not yet implemented in
VowpalWabbitFeaturizer.
### Usage
In PySpark, you can run the `VowpalWabbitClassifier` via:
```python
from synapse.ml.vw import VowpalWabbitClassifier
model = (VowpalWabbitClassifier(numPasses=5, args="--holdout_off --loss_function logistic")
.fit(train))
```
Similarly, you can run the `VowpalWabbitRegressor`:
```python
from synapse.ml.vw import VowpalWabbitRegressor
model = (VowpalWabbitRegressor(args="--holdout_off --loss_function quantile -q :: -l 0.1")
.fit(train))
```
You can pass command line parameters to VW via the args parameter, as documented in the [VW Wiki](https://github.com/vowpalWabbit/vowpal_wabbit/wiki/Command-Line-Arguments).
For an end to end application, check out the VowpalWabbit [notebook
example](../Quickstart%20-%20Classification,%20Quantile%20Regression,%20and%20Regression).
### Hyper-parameter tuning
- Common parameters can also be set through methods enabling the use of SparkMLs ParamGridBuilder and CrossValidator ([example](https://github.com/Azure/mmlspark/blob/master/src/test/scala/com/microsoft/azure/synapse/ml/vw/VerifyVowpalWabbitClassifier.scala#L29)). If
the same parameters are passed through the _args_ property (for instance, args="-l 0.2" and setLearningRate(0.5)) the _args_ value will
take precedence.
parameter
* learningRate
* numPasses
* numBits
* l1
* l2
* powerT
* interactions
* ignoreNamespaces
### Architecture
VowpalWabbit on Spark uses an optimized JNI layer to efficiently support Spark.
Java bindings can be found in the [VW GitHub repo](https://github.com/VowpalWabbit/vowpal_wabbit/blob/master/java/src/main/c%2B%2B/jni_spark_vw_generated.h).
VW's command line tool uses a two-thread architecture (1x parsing/hashing, 1x learning) for learning and inference.
To fluently embed VW into the Spark ML ecosystem, the following adaptions were made:
- VW classifier/regressor operates on Spark's dense/sparse vectors
- Pro: best composability with existing Spark ML components.
- Cons: due to type restrictions (for example, feature indices are Java integers), the maximum model size is limited to 30 bits. One could overcome this restriction by adding type support to the classifier/regressor to directly operate on input features (strings, int, double, ...).
- VW hashing is separated out into the [VowpalWabbitFeaturizer](https://github.com/Azure/mmlspark/blob/master/src/test/scala/com/microsoft/azure/synapse/ml/vw/VerifyVowpalWabbitFeaturizer.scala#L34) transformer. It supports mapping Spark Dataframe schema into VW's namespaces and sparse
features.
- Pro: featurization can be scaled to many nodes, scale independent of distributed learning.
- Pro: hashed features can be cached and efficiently reused when performing hyper-parameter sweeps.
- Pro: featurization can be used for other Spark ML learning algorithms.
- Cons: due to type restrictions (for instance, sparse indices are Java integers) the hash space is limited to 30 bits.
- VW multi-pass training can be enabled using '--passes 4' argument or setNumPasses method. Cache file is automatically named.
- Pro: simplified usage.
- Pro: certain algorithms (for example, l-bfgs) require a cache file when running in multi-pass node.
- Cons: Since the cache file resides in the Java temp directory, a bottleneck may arise, depending on your node's I/O performance and the location of the temp directory.
- VW distributed training is transparently set up and can be controlled through the input dataframes number of partitions.
Similar to LightGBM all training instances must be running at the same time, thus the maximum parallelism is restricted by the
number of executors available in the cluster. Under the hood, VW's built-in spanning tree functionality is used to coordinate _allreduce_.
Required parameters are automatically determined and supplied to VW. The spanning tree coordination process is run on the driver node.
- Pro: seamless parallelization.
- Cons: currently barrier execution mode isn't implemented and thus if one node crashes the complete job needs to be manually restarted.

Просмотреть файл

@ -0,0 +1,99 @@
---
title: Quickstart - Classification using SparkML Vectors
hide_title: true
status: stable
---
<img width="200" src="https://mmlspark.blob.core.windows.net/graphics/emails/vw-blue-dark-orange.svg" />
# Binary Classification with VowpalWabbit on Criteo Dataset
## SparkML Vector input
#### Read dataset
```python
import pyspark.sql.types as T
schema = T.StructType(
[
T.StructField("label", T.IntegerType(), True),
*[T.StructField("i" + str(i), T.IntegerType(), True) for i in range(1, 13)],
*[T.StructField("s" + str(i), T.StringType(), True) for i in range(26)],
]
)
df = (
spark.read.format("csv")
.option("header", False)
.option("delimiter", "\t")
.schema(schema)
.load("wasbs://publicwasb@mmlspark.blob.core.windows.net/criteo_day0_1k.csv.gz")
)
# print dataset basic info
print("records read: " + str(df.count()))
print("Schema: ")
df.printSchema()
```
```python
display(df)
```
#### Use VowpalWabbitFeaturizer to convert data features into vector
```python
from synapse.ml.vw import VowpalWabbitFeaturizer
featurizer = VowpalWabbitFeaturizer(
inputCols=[
*["i" + str(i) for i in range(1, 13)],
*["s" + str(i) for i in range(26)],
],
outputCol="features",
)
df = featurizer.transform(df).select("label", "features")
```
#### Split the dataset into train and test
```python
train, test = df.randomSplit([0.85, 0.15], seed=1)
```
#### Model Training
```python
from synapse.ml.vw import VowpalWabbitClassifier
model = VowpalWabbitClassifier(
numPasses=20,
labelCol="label",
featuresCol="features",
passThroughArgs="--holdout_off --loss_function logistic",
).fit(train)
```
#### Model Prediction
```python
predictions = model.transform(test)
display(predictions)
```
```python
from synapse.ml.train import ComputeModelStatistics
metrics = ComputeModelStatistics(
evaluationMetric="classification", labelCol="label", scoredLabelsCol="prediction"
).transform(predictions)
display(metrics)
```

Просмотреть файл

@ -0,0 +1,107 @@
---
title: Quickstart - Classification using VW-native Format
hide_title: true
status: stable
---
<img width="200" src="https://mmlspark.blob.core.windows.net/graphics/emails/vw-blue-dark-orange.svg" />
# Binary Classification with VowpalWabbit on Criteo Dataset
## SparkML Vector input
#### Read dataset
```python
import pyspark.sql.types as T
from pyspark.sql import functions as F
schema = T.StructType(
[
T.StructField("label", T.IntegerType(), True),
*[T.StructField("i" + str(i), T.IntegerType(), True) for i in range(1, 13)],
*[T.StructField("s" + str(i), T.StringType(), True) for i in range(26)],
]
)
df = (
spark.read.format("csv")
.option("header", False)
.option("delimiter", "\t")
.schema(schema)
.load("wasbs://publicwasb@mmlspark.blob.core.windows.net/criteo_day0_1k.csv.gz")
)
# print dataset basic info
print("records read: " + str(df.count()))
print("Schema: ")
df.printSchema()
```
```python
display(df)
```
#### Reformat into VW-native format
See VW [docs](https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Input-format) for format details
```python
# create VW string format
cols = [
F.col("label"),
F.lit("|"),
*[F.col("i" + str(i)) for i in range(1, 13)],
*[F.col("s" + str(i)) for i in range(26)],
]
df = df.select(F.concat_ws(" ", *cols).alias("value"))
display(df)
```
#### Split the dataset into train and test
```python
train, test = df.randomSplit([0.6, 0.4], seed=1)
```
#### Model Training
```python
from synapse.ml.vw import VowpalWabbitGeneric
# number of partitions determines data parallelism
train = train.repartition(2)
model = VowpalWabbitGeneric(
numPasses=5,
useBarrierExecutionMode=False,
passThroughArgs="--holdout_off --loss_function logistic --link logistic",
).fit(train)
```
#### Model Prediction
```python
predictions = model.transform(test)
predictions = predictions.withColumn(
"prediction", F.col("prediction").cast("double")
).withColumn("label", F.substring("value", 0, 1).cast("double"))
display(predictions)
```
```python
from synapse.ml.train import ComputeModelStatistics
metrics = ComputeModelStatistics(
evaluationMetric="classification", labelCol="label", scoredLabelsCol="prediction"
).transform(predictions)
display(metrics)
```

Просмотреть файл

@ -0,0 +1,568 @@
---
title: Quickstart - Classification, Quantile Regression, and Regression
hide_title: true
status: stable
---
<img width="200" src="https://mmlspark.blob.core.windows.net/graphics/emails/vw-blue-dark-orange.svg" />
# VowpalWabbit
[VowpalWabbit](https://github.com/VowpalWabbit/vowpal_wabbit) (VW) is a machine learning system which
pushes the frontier of machine learning with techniques such as online, hashing, allreduce,
reductions, learning2search, active, and interactive learning.
VowpalWabbit is a popular choice in ad-tech due to it's speed and cost efficacy.
Furthermore it includes many advances in the area of reinforcement learning (e.g. contextual bandits).
### Advantages of VowpalWabbit
- **Composability**: VowpalWabbit models can be incorporated into existing
SparkML Pipelines, and used for batch, streaming, and serving workloads.
- **Small footprint**: VowpalWabbit memory consumption is rather small and can be controlled through '-b 18' or setNumBits method.
This determines the size of the model (e.g. 2^18 * some_constant).
- **Feature Interactions**: Feature interactions (e.g. quadratic, cubic,... terms) are created on-the-fly within the most inner
learning loop in VW.
Interactions can be specified by using the -q parameter and passing the first character of the namespaces that should be _interacted_.
The VW namespace concept is mapped to Spark using columns. The column name is used as namespace name, thus one sparse or dense Spark ML vector corresponds to the features of a single namespace.
To allow passing of multiple namespaces the VW estimator (classifier or regression) expose an additional property called _additionalFeatures_. Users can pass an array of column names.
- **Simple deployment**: all native dependencies are packaged into a single jars (including boost and zlib).
- **VowpalWabbit command line arguments**: users can pass VW command line arguments to control the learning process.
- **VowpalWabbit binary models** Users can supply an initial VowpalWabbit model to start the training which can be produced outside of
VW on Spark by invoking _setInitialModel_ and pass the model as a byte array. Similarly users can access the binary model by invoking
_getModel_ on the trained model object.
- **Java-based hashing** VWs version of murmur-hash was re-implemented in Java (praise to [JackDoe](https://github.com/jackdoe))
providing a major performance improvement compared to passing input strings through JNI and hashing in C++.
- **Cross language** VowpalWabbit on Spark is available on Spark, PySpark, and SparklyR.
## Why use VowpalWabbit on Spark?
1. Large-scale distributed learning
1. Composability with Spark eco-system (SparkML and data processing)
## Operation modes
VW Spark-bindings cater to both SparkML and VW users by supporting different input and output format.
| Class | Input | Output | ML Type |
|--------------------------------|------------------|-------------------------|-------------|
| VowpalWabbitClassifier | SparkML Vector | Model | Multi-class |
| VowpalWabbitRegressor | SparkML Vector | Model | Regression |
| VowpalWabbitGeneric | VW-native format | Model | All |
| VowpalWabbitGenericProgressive | VW-native format | 1-step ahead prediction | All |
SparkML vectors can be created by standard Spark tools or using the VowpalWabbitFeaturizer.
[VWs native input format](https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Input-format) supports a wide variety of ML tasks: [classification](https://vowpalwabbit.org/docs/vowpal_wabbit/python/latest/tutorials/python_classification.html), [regression](https://vowpalwabbit.org/docs/vowpal_wabbit/python/latest/examples/poisson_regression.html), [cost-sensitive classification](https://towardsdatascience.com/multi-label-classification-using-vowpal-wabbit-from-why-to-how-c1451ca0ded5), [contextual bandits](https://vowpalwabbit.org/docs/vowpal_wabbit/python/latest/tutorials/python_Contextual_bandits_and_Vowpal_Wabbit.html), ...
### Limitations of VowpalWabbit on Spark
- **Linux and CentOS only** The native binaries included with the published jar are built Linux and CentOS only.
We're working on creating a more portable version by statically linking Boost and lib C++.
### VowpalWabbit Usage:
- VowpalWabbitClassifier: used to build classification models.
- VowpalWabbitRegressor: used to build regression models.
- VowpalWabbitFeaturizer: used for feature hashing and extraction. For details please visit [here](https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Feature-Hashing-and-Extraction).
- VowpalWabbitContextualBandit: used to solve contextual bandits problems. For algorithm details please visit [here](https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Contextual-Bandit-algorithms).
## Heart Disease Detection with VowpalWabbit Classifier
<img src="https://mmlspark.blob.core.windows.net/graphics/Documentation/heart disease.png" width="800" />
#### Read dataset
```python
df = (
spark.read.format("csv")
.option("header", True)
.option("inferSchema", True)
.load(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/heart_disease_prediction_data.csv"
)
)
# print dataset basic info
print("records read: " + str(df.count()))
print("Schema: ")
df.printSchema()
```
```python
display(df)
```
#### Split the dataset into train and test
```python
train, test = df.randomSplit([0.85, 0.15], seed=1)
```
#### Use VowpalWabbitFeaturizer to convert data features into vector
```python
from synapse.ml.vw import VowpalWabbitFeaturizer
featurizer = VowpalWabbitFeaturizer(inputCols=df.columns[:-1], outputCol="features")
train_data = featurizer.transform(train)["target", "features"]
test_data = featurizer.transform(test)["target", "features"]
```
```python
display(train_data.groupBy("target").count())
```
#### Model Training
```python
from synapse.ml.vw import VowpalWabbitClassifier
model = VowpalWabbitClassifier(
numPasses=20, labelCol="target", featuresCol="features"
).fit(train_data)
```
#### Model Prediction
```python
predictions = model.transform(test_data)
display(predictions)
```
```python
from synapse.ml.train import ComputeModelStatistics
metrics = ComputeModelStatistics(
evaluationMetric="classification", labelCol="target", scoredLabelsCol="prediction"
).transform(predictions)
display(metrics)
```
## Adult Census with VowpalWabbitClassifier
In this example, we predict incomes from the Adult Census dataset using Vowpal Wabbit (VW) Classifier in SynapseML.
#### Read dataset and split them into train & test
```python
data = spark.read.parquet(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/AdultCensusIncome.parquet"
)
data = data.select(["education", "marital-status", "hours-per-week", "income"])
train, test = data.randomSplit([0.75, 0.25], seed=123)
display(train)
```
#### Model Training
We define a pipeline that includes feature engineering and training of a VW classifier. We use a featurizer provided by VW that hashes the feature names. Note that VW expects classification labels being -1 or 1. Thus, the income category is mapped to this space before feeding training data into the pipeline.
Note: VW supports distributed learning, and it's controlled by number of partitions of dataset.
```python
from pyspark.sql.functions import when, col
from pyspark.ml import Pipeline
from synapse.ml.vw import VowpalWabbitFeaturizer, VowpalWabbitClassifier
# Define classification label
train = train.withColumn(
"label", when(col("income").contains("<"), 0.0).otherwise(1.0)
).repartition(1)
print(train.count())
# Specify featurizer
vw_featurizer = VowpalWabbitFeaturizer(
inputCols=["education", "marital-status", "hours-per-week"], outputCol="features"
)
```
Note: "passThroughArgs" parameter lets you pass in any params not exposed through our API. Full command line argument docs can be found [here](https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Command-Line-Arguments).
```python
# Define VW classification model
args = "--loss_function=logistic --quiet --holdout_off"
vw_model = VowpalWabbitClassifier(
featuresCol="features", labelCol="label", passThroughArgs=args, numPasses=10
)
# Create a pipeline
vw_pipeline = Pipeline(stages=[vw_featurizer, vw_model])
```
```python
vw_trained = vw_pipeline.fit(train)
```
#### Model Prediction
After the model is trained, we apply it to predict the income of each sample in the test set.
```python
# Making predictions
test = test.withColumn("label", when(col("income").contains("<"), 0.0).otherwise(1.0))
prediction = vw_trained.transform(test)
display(prediction)
```
Finally, we evaluate the model performance using ComputeModelStatistics function which will compute confusion matrix, accuracy, precision, recall, and AUC by default for classification models.
```python
from synapse.ml.train import ComputeModelStatistics
metrics = ComputeModelStatistics(
evaluationMetric="classification", labelCol="label", scoredLabelsCol="prediction"
).transform(prediction)
display(metrics)
```
## California house price prediction with VowpalWabbitRegressor - Quantile Regression
In this example, we show how to build regression model with VW using California housing dataset
#### Read dataset
We use [*California Housing* dataset](https://scikit-learn.org/stable/datasets/real_world.html#california-housing-dataset).
The data was derived from the 1990 U.S. census. It consists of 20640 entries with 8 features.
We use `sklearn.datasets` module to download it easily, then split the set into training and testing by 75/25.
```python
import math
from matplotlib.colors import ListedColormap, Normalize
from matplotlib.cm import get_cmap
import matplotlib.pyplot as plt
from synapse.ml.train import ComputeModelStatistics
from synapse.ml.vw import VowpalWabbitRegressor, VowpalWabbitFeaturizer
import numpy as np
import pandas as pd
from sklearn.datasets import fetch_california_housing
```
```python
california = fetch_california_housing()
feature_cols = ["f" + str(i) for i in range(california.data.shape[1])]
header = ["target"] + feature_cols
df = spark.createDataFrame(
pd.DataFrame(
data=np.column_stack((california.target, california.data)), columns=header
)
).repartition(1)
print("Dataframe has {} rows".format(df.count()))
display(df.limit(10))
```
```python
train_data, test_data = df.randomSplit([0.75, 0.25], seed=42)
```
```python
display(train_data.summary().toPandas())
```
```python
train_data.show(10)
```
Exploratory analysis: plot feature distributions over different target values.
```python
features = train_data.columns[1:]
values = train_data.drop("target").toPandas()
ncols = 5
nrows = math.ceil(len(features) / ncols)
yy = [r["target"] for r in train_data.select("target").collect()]
f, axes = plt.subplots(nrows, ncols, sharey=True, figsize=(30, 10))
f.tight_layout()
for irow in range(nrows):
axes[irow][0].set_ylabel("target")
for icol in range(ncols):
try:
feat = features[irow * ncols + icol]
xx = values[feat]
axes[irow][icol].scatter(xx, yy, s=10, alpha=0.25)
axes[irow][icol].set_xlabel(feat)
axes[irow][icol].get_yaxis().set_ticks([])
except IndexError:
f.delaxes(axes[irow][icol])
```
#### VW-style feature hashing
```python
vw_featurizer = VowpalWabbitFeaturizer(
inputCols=feature_cols,
outputCol="features",
)
vw_train_data = vw_featurizer.transform(train_data)["target", "features"]
vw_test_data = vw_featurizer.transform(test_data)["target", "features"]
display(vw_train_data)
```
#### Model training & Prediction
See [VW wiki](https://github.com/vowpalWabbit/vowpal_wabbit/wiki/Command-Line-Arguments) for command line arguments.
```python
args = "--holdout_off --loss_function quantile -l 0.004 -q :: --power_t 0.3"
vwr = VowpalWabbitRegressor(
labelCol="target",
featuresCol="features",
passThroughArgs=args,
numPasses=200,
)
# To reduce number of partitions (which will effect performance), use `vw_train_data.repartition(1)`
vw_model = vwr.fit(vw_train_data.repartition(1))
vw_predictions = vw_model.transform(vw_test_data)
display(vw_predictions)
```
#### Compute Statistics & Visualization
```python
metrics = ComputeModelStatistics(
evaluationMetric="regression", labelCol="target", scoresCol="prediction"
).transform(vw_predictions)
vw_result = metrics.toPandas()
vw_result.insert(0, "model", ["Vowpal Wabbit"])
display(vw_result)
```
```python
cmap = get_cmap("YlOrRd")
target = np.array(test_data.select("target").collect()).flatten()
model_preds = [("Vowpal Wabbit", vw_predictions)]
f, axe = plt.subplots(figsize=(6, 6))
f.tight_layout()
preds = np.array(vw_predictions.select("prediction").collect()).flatten()
err = np.absolute(preds - target)
norm = Normalize()
clrs = cmap(np.asarray(norm(err)))[:, :-1]
plt.scatter(preds, target, s=60, c=clrs, edgecolors="#888888", alpha=0.75)
plt.plot((0, 6), (0, 6), line, color="#888888")
axe.set_xlabel("Predicted values")
axe.set_ylabel("Actual values")
axe.set_title("Vowpal Wabbit")
```
## Quantile Regression for Drug Discovery with VowpalWabbitRegressor
<img src="https://mmlspark.blob.core.windows.net/graphics/Documentation/drug.png" width="800" />
#### Read dataset
```python
triazines = spark.read.format("libsvm").load(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/triazines.scale.svmlight"
)
```
```python
# print some basic info
print("records read: " + str(triazines.count()))
print("Schema: ")
triazines.printSchema()
display(triazines.limit(10))
```
#### Split dataset into train and test
```python
train, test = triazines.randomSplit([0.85, 0.15], seed=1)
```
#### Model Training
```python
from synapse.ml.vw import VowpalWabbitRegressor
model = VowpalWabbitRegressor(
numPasses=20, passThroughArgs="--holdout_off --loss_function quantile -q :: -l 0.1"
).fit(train)
```
#### Model Prediction
```python
scoredData = model.transform(test)
display(scoredData.limit(10))
```
```python
from synapse.ml.train import ComputeModelStatistics
metrics = ComputeModelStatistics(
evaluationMetric="regression", labelCol="label", scoresCol="prediction"
).transform(scoredData)
display(metrics)
```
## VW Contextual Bandit
#### Read dataset
```python
data = spark.read.format("json").load(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/vwcb_input.dsjson"
)
```
Note: Actions are all five TAction_x_topic columns.
```python
from pyspark.sql.functions import col
from pyspark.sql.types import IntegerType, DoubleType
data = (
data.withColumn("GUser_id", col("c.GUser.id"))
.withColumn("GUser_major", col("c.GUser.major"))
.withColumn("GUser_hobby", col("c.GUser.hobby"))
.withColumn("GUser_favorite_character", col("c.GUser.favorite_character"))
.withColumn("TAction_0_topic", col("c._multi.TAction.topic")[0])
.withColumn("TAction_1_topic", col("c._multi.TAction.topic")[1])
.withColumn("TAction_2_topic", col("c._multi.TAction.topic")[2])
.withColumn("TAction_3_topic", col("c._multi.TAction.topic")[3])
.withColumn("TAction_4_topic", col("c._multi.TAction.topic")[4])
.withColumn("chosenAction", col("_label_Action").cast(IntegerType()))
.withColumn("label", col("_labelIndex").cast(DoubleType()))
.withColumn("probability", col("_label_probability"))
.select(
"GUser_id",
"GUser_major",
"GUser_hobby",
"GUser_favorite_character",
"TAction_0_topic",
"TAction_1_topic",
"TAction_2_topic",
"TAction_3_topic",
"TAction_4_topic",
"chosenAction",
"label",
"probability",
)
)
print("Schema: ")
data.printSchema()
```
Add pipeline to add featurizer, convert all feature columns into vector.
```python
from synapse.ml.vw import (
VowpalWabbitFeaturizer,
VowpalWabbitContextualBandit,
VectorZipper,
)
from pyspark.ml import Pipeline
pipeline = Pipeline(
stages=[
VowpalWabbitFeaturizer(inputCols=["GUser_id"], outputCol="GUser_id_feature"),
VowpalWabbitFeaturizer(
inputCols=["GUser_major"], outputCol="GUser_major_feature"
),
VowpalWabbitFeaturizer(
inputCols=["GUser_hobby"], outputCol="GUser_hobby_feature"
),
VowpalWabbitFeaturizer(
inputCols=["GUser_favorite_character"],
outputCol="GUser_favorite_character_feature",
),
VowpalWabbitFeaturizer(
inputCols=["TAction_0_topic"], outputCol="TAction_0_topic_feature"
),
VowpalWabbitFeaturizer(
inputCols=["TAction_1_topic"], outputCol="TAction_1_topic_feature"
),
VowpalWabbitFeaturizer(
inputCols=["TAction_2_topic"], outputCol="TAction_2_topic_feature"
),
VowpalWabbitFeaturizer(
inputCols=["TAction_3_topic"], outputCol="TAction_3_topic_feature"
),
VowpalWabbitFeaturizer(
inputCols=["TAction_4_topic"], outputCol="TAction_4_topic_feature"
),
VectorZipper(
inputCols=[
"TAction_0_topic_feature",
"TAction_1_topic_feature",
"TAction_2_topic_feature",
"TAction_3_topic_feature",
"TAction_4_topic_feature",
],
outputCol="features",
),
]
)
tranformation_pipeline = pipeline.fit(data)
transformed_data = tranformation_pipeline.transform(data)
display(transformed_data)
```
Build VowpalWabbit Contextual Bandit model and compute performance statistics.
```python
estimator = (
VowpalWabbitContextualBandit()
.setPassThroughArgs("--cb_explore_adf --epsilon 0.2 --quiet")
.setSharedCol("GUser_id_feature")
.setAdditionalSharedFeatures(
[
"GUser_major_feature",
"GUser_hobby_feature",
"GUser_favorite_character_feature",
]
)
.setFeaturesCol("features")
.setUseBarrierExecutionMode(False)
.setChosenActionCol("chosenAction")
.setLabelCol("label")
.setProbabilityCol("probability")
)
model = estimator.fit(transformed_data)
display(model.getPerformanceStatistics())
```

Просмотреть файл

@ -0,0 +1,32 @@
---
title: Create a Spark Cluster
hide_title: true
status: stable
---
# Setting up your computing platform for SynapseML
SynapseML is preinstalled on Microsoft Fabric and Synapse Analytics. Follow the instructions to get started with these platforms.
## Microsoft Fabric
[Microsoft Fabric](https://www.microsoft.com/microsoft-fabric/) is an all-in-one analytics solution for enterprises that covers everything from data movement to data science, Real-Time Analytics, and business intelligence. It offers a comprehensive suite of services, including data lake, data engineering, and data integration, all in one place.
SynapseML is preinstalled on Fabric, and this guide will walk you through getting access to fabric.
* [Get a Microsoft Fabric license](https://learn.microsoft.com/fabric/enterprise/licenses) or sign-up for a free [Microsoft Fabric (Preview) trial](https://learn.microsoft.com/fabric/get-started/fabric-trial).
* Sign in to [Microsoft Fabric](https://fabric.microsoft.com/)
* Go to the Data Science experience.
* [Create a new notebook](https://learn.microsoft.com/en-us/fabric/data-engineering/how-to-use-notebook#create-notebooks) or attach your notebook to a lakehouse. On the left side, select **Add** to add an existing lakehouse or [create a lakehouse](https://learn.microsoft.com/en-us/fabric/data-engineering/how-to-use-notebook#connect-lakehouses-and-notebooks).
SynapseML is preinstalled on Fabric, but if you want to use another version of SynapseML, follow [this guide on updating SynapseML](https://learn.microsoft.com/en-us/fabric/data-science/install-synapseml).
## Synapse Analytics
[Azure Synapse Analytics](https://azure.microsoft.com/products/synapse-analytics) is an enterprise analytics service that accelerates time to insight across data warehouses and big data systems.
SynapseML is preinstalled on Synapse Analytics. To start with Synapse Analytics, you need:
* A valid Azure subscription - [Create one for free](https://azure.microsoft.com/free/cognitive-services/).
* [Create a Synapse workspace and launch Synapse studio](https://docs.microsoft.com/en-us/azure/synapse-analytics/get-started-create-workspace)
* [Create a serverless Apache Spark pool](https://docs.microsoft.com/en-us/azure/synapse-analytics/get-started-analyze-spark#create-a-serverless-apache-spark-pool)
* Once Synapse Studio has launched, select **Develop**. Then, select the **"+"** icon to add a new resource. From there, select **Notebook**. A new notebook is created and opened. Alternatively, you can select **Import** to upload your notebook.
SynapseML is preinstalled on Azure Synapse Analytics, but if you want to use another version of SynapseML, follow [this guide on updating SynapseML](../Install%20SynapseML).

Просмотреть файл

@ -0,0 +1,186 @@
---
title: Install SynapseML
description: Install SynapseML
---
## Microsoft Fabric
SynapseML is already installed in Microsoft Fabric notebooks. To change the version please place the following in the first cell of your notebook:
```bash
%%configure -f
{
"name": "synapseml",
"conf": {
"spark.jars.packages": "com.microsoft.azure:synapseml_2.12:<THE_SYNAPSEML_VERSION_YOU_WANT>",
"spark.jars.repositories": "https://mmlspark.azureedge.net/maven",
"spark.jars.excludes": "org.scala-lang:scala-reflect,org.apache.spark:spark-tags_2.12,org.scalactic:scalactic_2.12,org.scalatest:scalatest_2.12,com.fasterxml.jackson.core:jackson-databind",
"spark.yarn.user.classpath.first": "true",
"spark.sql.parquet.enableVectorizedReader": "false"
}
}
```
## Synapse
SynapseML is already installed in Synapse Analytics notebooks. To change the version please place the following in the first cell of your notebook:
For Spark3.4 pools
```python
%%configure -f
{
"name": "synapseml",
"conf": {
"spark.jars.packages": "com.microsoft.azure:synapseml_2.12:1.0.5",
"spark.jars.repositories": "https://mmlspark.azureedge.net/maven",
"spark.jars.excludes": "org.scala-lang:scala-reflect,org.apache.spark:spark-tags_2.12,org.scalactic:scalactic_2.12,org.scalatest:scalatest_2.12,com.fasterxml.jackson.core:jackson-databind",
"spark.yarn.user.classpath.first": "true",
"spark.sql.parquet.enableVectorizedReader": "false"
}
}
```
For Spark3.3 pools:
```python
%%configure -f
{
"name": "synapseml",
"conf": {
"spark.jars.packages": "com.microsoft.azure:synapseml_2.12:0.11.4-spark3.3",
"spark.jars.repositories": "https://mmlspark.azureedge.net/maven",
"spark.jars.excludes": "org.scala-lang:scala-reflect,org.apache.spark:spark-tags_2.12,org.scalactic:scalactic_2.12,org.scalatest:scalatest_2.12,com.fasterxml.jackson.core:jackson-databind",
"spark.yarn.user.classpath.first": "true",
"spark.sql.parquet.enableVectorizedReader": "false"
}
}
```
## Python
To try out SynapseML on a Python (or Conda) installation, you can get Spark
installed via pip with `pip install pyspark`.
```python
import pyspark
spark = pyspark.sql.SparkSession.builder.appName("MyApp") \
# Use 0.11.4-spark3.3 version for Spark3.3 and 1.0.5 version for Spark3.4
.config("spark.jars.packages", "com.microsoft.azure:synapseml_2.12:1.0.5") \
.config("spark.jars.repositories", "https://mmlspark.azureedge.net/maven") \
.getOrCreate()
import synapse.ml
```
## SBT
If you're building a Spark application in Scala, add the following lines to
your `build.sbt`:
```scala
resolvers += "SynapseML" at "https://mmlspark.azureedge.net/maven"
// Use 0.11.4-spark3.3 version for Spark3.3 and 1.0.5 version for Spark3.4
libraryDependencies += "com.microsoft.azure" % "synapseml_2.12" % "1.0.5"
```
## Spark package
SynapseML can be conveniently installed on existing Spark clusters via the
`--packages` option, examples:
```bash
# Use 0.11.4-spark3.3 version for Spark3.3 and 1.0.5 version for Spark3.4
spark-shell --packages com.microsoft.azure:synapseml_2.12:1.0.5
pyspark --packages com.microsoft.azure:synapseml_2.12:1.0.5
spark-submit --packages com.microsoft.azure:synapseml_2.12:1.0.5 MyApp.jar
```
A similar technique can be used in other Spark contexts too. For example, you can use SynapseML
in [AZTK](https://github.com/Azure/aztk/) by [adding it to the
`.aztk/spark-defaults.conf`
file](https://github.com/Azure/aztk/wiki/PySpark-on-Azure-with-AZTK#optional-set-up-mmlspark).
## Databricks
To install SynapseML on the [Databricks
cloud](http://community.cloud.databricks.com), create a new [library from Maven
coordinates](https://docs.databricks.com/user-guide/libraries.html#libraries-from-maven-pypi-or-spark-packages)
in your workspace.
For the coordinates use: `com.microsoft.azure:synapseml_2.12:1.0.5` for Spark3.4 Cluster and
`com.microsoft.azure:synapseml_2.12:0.11.4-spark3.3` for Spark3.3 Cluster;
Add the resolver: `https://mmlspark.azureedge.net/maven`. Ensure this library is
attached to your target cluster(s).
Finally, ensure that your Spark cluster has at least Spark 3.2 and Scala 2.12.
You can use SynapseML in both your Scala and PySpark notebooks. To get started with our example notebooks, import the following databricks archive:
`https://mmlspark.blob.core.windows.net/dbcs/SynapseMLExamplesv1.0.5.dbc`
## Apache Livy and HDInsight
To install SynapseML from within a Jupyter notebook served by Apache Livy, the following configure magic can be used. You'll need to start a new session after this configure cell is executed.
Excluding certain packages from the library may be necessary due to current issues with Livy 0.5
```
%%configure -f
{
"name": "synapseml",
"conf": {
# Use 0.11.4-spark3.3 version for Spark3.3 and 1.0.5 version for Spark3.4
"spark.jars.packages": "com.microsoft.azure:synapseml_2.12:1.0.5",
"spark.jars.excludes": "org.scala-lang:scala-reflect,org.apache.spark:spark-tags_2.12,org.scalactic:scalactic_2.12,org.scalatest:scalatest_2.12,com.fasterxml.jackson.core:jackson-databind"
}
}
```
In Azure Synapse, "spark.yarn.user.classpath.first" should be set to "true" to override the existing SynapseML packages
```
%%configure -f
{
"name": "synapseml",
"conf": {
# Use 0.11.4-spark3.3 version for Spark3.3 and 1.0.5 version for Spark3.4
"spark.jars.packages": "com.microsoft.azure:synapseml_2.12:1.0.5",
"spark.jars.excludes": "org.scala-lang:scala-reflect,org.apache.spark:spark-tags_2.12,org.scalactic:scalactic_2.12,org.scalatest:scalatest_2.12,com.fasterxml.jackson.core:jackson-databind",
"spark.yarn.user.classpath.first": "true"
}
}
```
## Docker
The easiest way to evaluate SynapseML is via our pre-built Docker container. To
do so, run the following command:
```bash
docker run -it -p 8888:8888 -e ACCEPT_EULA=yes mcr.microsoft.com/mmlspark/release
```
Navigate to <http://localhost:8888/> in your web browser to run the sample
notebooks. See the [documentation](../../Reference/Docker Setup.md) for more on Docker use.
> To read the EULA for using the docker image, run
``` bash
docker run -it -p 8888:8888 mcr.microsoft.com/mmlspark/release eula
```
## Building from source
SynapseML has recently transitioned to a new build infrastructure.
For detailed developer docs, see the [Developer Readme](../../Reference/Docker%20Setup)
If you're an existing SynapseML developer, you'll need to reconfigure your
development setup. We now support platform independent development and
better integrate with intellij and SBT.
If you encounter issues, reach out to our support email!
## R (Beta)
To try out SynapseML using the R autogenerated wrappers, [see our
instructions](../../Reference/R%20Setup). Note: This feature is still under development
and some necessary custom wrappers may be missing.

Просмотреть файл

@ -0,0 +1,70 @@
---
title: Quickstart - Your First Models
hide_title: true
status: stable
---
# Build your first SynapseML models
This tutorial provides a brief introduction to SynapseML. In particular, we use SynapseML to create two different pipelines for sentiment analysis. The first pipeline combines a text featurization stage with LightGBM regression to predict ratings based on review text from a dataset containing book reviews from Amazon. The second pipeline shows how to use prebuilt models through the Azure AI Services to solve this problem without training data.
## Load a dataset
Load your dataset and split it into train and test sets.
```python
train, test = (
spark.read.parquet(
"wasbs://publicwasb@mmlspark.blob.core.windows.net/BookReviewsFromAmazon10K.parquet"
)
.limit(1000)
.cache()
.randomSplit([0.8, 0.2])
)
display(train)
```
## Create the training pipeline
Create a pipeline that featurizes data using `TextFeaturizer` from the `synapse.ml.featurize.text` library and derives a rating using the `LightGBMRegressor` function.
```python
from pyspark.ml import Pipeline
from synapse.ml.featurize.text import TextFeaturizer
from synapse.ml.lightgbm import LightGBMRegressor
model = Pipeline(
stages=[
TextFeaturizer(inputCol="text", outputCol="features"),
LightGBMRegressor(featuresCol="features", labelCol="rating"),
]
).fit(train)
```
## Predict the output of the test data
Call the `transform` function on the model to predict and display the output of the test data as a dataframe.
```python
display(model.transform(test))
```
## Use Azure AI services to transform data in one step
Alternatively, for these kinds of tasks that have a prebuilt solution, you can use SynapseML's integration with Azure AI services to transform your data in one step.
```python
from synapse.ml.services.language import AnalyzeText
from synapse.ml.core.platform import find_secret
model = AnalyzeText(
textCol="text",
outputCol="sentiment",
kind="SentimentAnalysis",
subscriptionKey=find_secret(
secret_name="ai-services-api-key", keyvault="mmlspark-build-keys"
), # Replace the call to find_secret with your key as a python string.
).setLocation("eastus")
display(model.transform(test))
```

Просмотреть файл

@ -0,0 +1,129 @@
---
title: Set up Cognitive Services
hide_title: true
status: stable
---
# Setting up Azure AI Services and Azure OpenAI resources for SynapseML
In order to use SynapseML's OpenAI or Azure AI Services features, specific Azure resources are required. This documentation walks you through the process of setting up these resources and acquiring the necessary credentials.
First, create an Azure subscription to create resources.
* A valid Azure subscription - [Create one for free](https://azure.microsoft.com/free/cognitive-services/).
## Azure OpenAI
The [Azure OpenAI service](https://azure.microsoft.com/products/cognitive-services/openai-service/) can be used to solve a large number of natural language tasks through prompting the completion API. To make it easier to scale your prompting workflows from a few examples to large datasets of examples, we have integrated the Azure OpenAI service with the distributed machine learning library SynapseML. This integration makes it easy to use the Apache Spark distributed computing framework to process millions of prompts with the OpenAI service.
To set up your Azure OpenAI Resource for SynapseML usage you need to:
* [Apply for access to Azure OpenAI](https://aka.ms/oai/access) if you do not already have access.
* [Create an Azure OpenAI resource](https://docs.microsoft.com/azure/cognitive-services/openai/how-to/create-resource?pivots=web-portal#create-a-resource)
* Get your Azure OpenAI resource's key. After your resource is successfully deployed, select **Next Steps** > **Go to resource**. Once at the resource, you can get the key from **Resource Management** > **Keys and Endpoint**. Copy the key and paste it into the notebook. Store keys securely and do not share them.
## Azure AI Services
To set up [Azure AI Services](https://azure.microsoft.com/en-us/products/ai-services) for use with SynapseML you first need to:
* [Assign yourself the Azure AI Services Contributor role](https://learn.microsoft.com/azure/role-based-access-control/role-assignments-steps) to agree to the responsible AI terms and create a resource.
* [Create Azure AI service (Decision, Language, Speech, Vision) resource](https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesAllInOne). You can follow the steps at [Create a multi-service resource for Azure AI services](https://learn.microsoft.com/en-us/azure/ai-services/multi-service-resource?tabs=windows&pivots=azportal#create-a-new-azure-cognitive-services-resource).
* Get your Azure AI Services resource's key. After your resource is successfully deployed, select **Next Steps** > **Go to resource**. Once at the resource, you can get the key from **Resource Management** > **Keys and Endpoint**. Copy the key and paste it into the notebook. Store keys securely and do not share them.
## Manage secrets with Azure Key Vault and access the secrets with find_secret
After you create an Azure AI resource, you will obtain a resource key. You can use this resource key directly in our notebooks as a string, but we recommend to manage secrets with Azure Key Vault. Azure Key Vault is a cloud-based service that allows you to store and manage cryptographic keys, certificates, and secrets used by cloud applications and services.
You can skip the following content if you want to use a secret string instead of Azure Key Vault. This is not recommended for production workloads.
### Create Azure Key Vault
Refer to [this article](https://learn.microsoft.com/azure/key-vault/general/quick-create-portal) to create a key vault using Azure Portal
### Save secret to Azure Key Vault
- Go to Access control (IAM) and assign **Key Vault Administrator Role** to yourself.
- Go to Secrets and choose **+ Generate/Import**, create a key with the secret value obtained from Azure AI service.
- Choose **Create**.
### Use find_secret on Microsoft Fabric / Power BI
- Go to Azure Key Vault, Select Access control (IAM), Select **+ Add**, Add role assignment.
- Granted the Fabric or Power BI Service Account Get permissions in the Azure Key Vault.
### Use find_secret on Azure Databricks
- In the Azure Portal, find and select the Azure Key Vault Instance. Select the **Access configuration** tab under Settings. Set Permission model to Vault access policy.
- On Databricks, go to `https://<databricks-instance>#secrets/createScope`. This URL is case sensitive.
<img src="https://mmlspark.blob.core.windows.net/graphics/adb_create_secret_scope.png" width="600" />
- Enter the name of the secret scope and choose desired Manage Principal.
- Go to your Azure Key Vault -> Properties and find the **DNS Name** (Vault URI on Azure Key Vault) and **Resource ID**. Enter the DNS Name and Resource ID on Databricks createScope page.
<img src="https://mmlspark.blob.core.windows.net/graphics/adb_find_resource_id.png" width="600" />
- Click the **Create** Button.
Refer to [this article](https://learn.microsoft.com/azure/databricks/security/secrets/secret-scopes#--create-an-azure-key-vault-backed-secret-scope) for more details.
### Use find_secret on Synapse
- Open the Synapse Studio and go to the Manage tab.
- Under External connections, select Linked services.
- To add a linked service, select New.
- Select the Azure Key Vault tile from the list and select Continue.
- Enter a linked service name and choose the key vault you want to connect to.
- Select Create
- Click Publish
- Go to Azure Key Vault, Select Access control (IAM), Select **+ Add**, Add role assignment.
- Choose **Key Vault Administrator** in Role blade, select Next.
- In Members blade, choose Assign access to **Managed identity**. Select members, choose the subscription your Synapse Workspace in. For Managed identity, select Synapse workspace, choose your workspace.
- Select **Review + assign**.
### Quick Test
```python
from synapse.ml.services.language import AnalyzeText
from synapse.ml.core.platform import find_secret
ai_service_key = find_secret(
secret_name="ai-services-api-key", keyvault="mmlspark-build-keys"
) # use your own key vault name and api name
ai_service_location = "eastus" # use your own AI service location
df = spark.createDataFrame(
data=[
["en", "Dr. Smith has a very modern medical office, and she has great staff."],
["en", "I had a wonderful trip to Seattle last week."],
],
schema=["language", "text"],
)
entity_recognition = (
AnalyzeText()
.setKind("EntityRecognition")
.setLocation(ai_service_location)
.setSubscriptionKey(ai_service_key)
.setTextCol("text")
.setOutputCol("entities")
.setErrorCol("error")
.setLanguageCol("language")
)
df_results = entity_recognition.transform(df)
display(df_results.select("language", "text", "entities.documents.entities"))
```
Your result should looks like
| language | text | entities |
|--------------|-----------|------------|
| en | Dr. Smith has a very modern medical office, and she has great staff. | [{"category": "Person", "confidenceScore": 0.98, "length": 5, "offset": 4, "subcategory": null, "text": "Smith"}, {"category": "Location", "confidenceScore": 0.79, "length": 14, "offset": 28, "subcategory": "Structural", "text": "medical office"}, {"category": "PersonType", "confidenceScore": 0.85, "length": 5, "offset": 62, "subcategory": null, "text": "staff"}] |
| en | I had a wonderful trip to Seattle last week. | [{"category": "Event", "confidenceScore": 0.74, "length": 4, "offset": 18, "subcategory": null, "text": "trip"}, {"category": "Location", "confidenceScore": 1, "length": 7, "offset": 26, "subcategory": "GPE", "text": "Seattle"}, {"category": "DateTime", "confidenceScore": 0.8, "length": 9, "offset": 34, "subcategory": "DateRange", "text": "last week"}] |

Просмотреть файл

@ -0,0 +1,29 @@
---
title: What is SynapseML?
sidebar_label: What is SynapseML?
hide_title: true
---
import useBaseUrl from "@docusaurus/useBaseUrl";
# What is SynapseML?
SynapseML (previously known as MMLSpark), is an open-source library that simplifies the creation of massively scalable machine learning (ML) pipelines. SynapseML provides simple, composable, and distributed APIs for a wide variety of different machine learning tasks such as text analytics, vision, anomaly detection, and many others. SynapseML is built on the [Apache Spark distributed computing framework](https://spark.apache.org/) and shares the same API as the [SparkML/MLLib library](https://spark.apache.org/mllib/), allowing you to seamlessly embed SynapseML models into existing Apache Spark workflows.
With SynapseML, you can build scalable and intelligent systems to solve challenges in domains such as anomaly detection, computer vision, deep learning, text analytics, and others. SynapseML can train and evaluate models on single-node, multi-node, and elastically resizable clusters of computers. This lets you scale your work without wasting resources. SynapseML is usable across Python, R, Scala, Java, and .NET. Furthermore, its API abstracts over a wide variety of databases, file systems, and cloud data stores to simplify experiments no matter where data is located.
SynapseML requires Scala 2.12, Spark 3.2+, and Python 3.8+.
import Link from '@docusaurus/Link';
<Link to="/docs/Get Started/Install SynapseML" className="button button--lg button--outline button--block button--primary">Get Started</Link>
## Papers
- [Large Scale Intelligent Microservices](https://arxiv.org/abs/2009.08044)
- [Conditional Image Retrieval](https://arxiv.org/abs/2007.07177)
- [SynapseML: Unifying Machine Learning Ecosystems at Massive Scales](https://arxiv.org/abs/1810.08744)
- [Flexible and Scalable Deep Learning with MMLSpark](https://arxiv.org/abs/1804.04031)

Просмотреть файл

@ -0,0 +1,164 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
import DocTable from "@theme/DocumentationTable";
## LightGBMClassifier
<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">
<!--pytest-codeblocks:cont-->
```python
from synapse.ml.lightgbm import *
lgbmClassifier = (LightGBMClassifier()
.setFeaturesCol("features")
.setRawPredictionCol("rawPrediction")
.setDefaultListenPort(12402)
.setNumLeaves(5)
.setNumIterations(10)
.setObjective("binary")
.setLabelCol("labels")
.setLeafPredictionCol("leafPrediction")
.setFeaturesShapCol("featuresShap"))
```
</TabItem>
<TabItem value="scala">
```scala
import com.microsoft.azure.synapse.ml.lightgbm._
val lgbmClassifier = (new LightGBMClassifier()
.setFeaturesCol("features")
.setRawPredictionCol("rawPrediction")
.setDefaultListenPort(12402)
.setNumLeaves(5)
.setNumIterations(10)
.setObjective("binary")
.setLabelCol("labels")
.setLeafPredictionCol("leafPrediction")
.setFeaturesShapCol("featuresShap"))
```
</TabItem>
</Tabs>
<DocTable className="LightGBMClassifier"
py="synapse.ml.lightgbm.html#module-synapse.ml.lightgbm.LightGBMClassifier"
scala="com/microsoft/azure/synapse/ml/lightgbm/LightGBMClassifier.html"
csharp="classSynapse_1_1ML_1_1Lightgbm_1_1LightGBMClassifier.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/lightgbm/src/main/scala/com/microsoft/azure/synapse/ml/lightgbm/LightGBMClassifier.scala" />
## LightGBMRanker
<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">
<!--pytest-codeblocks:cont-->
```python
from synapse.ml.lightgbm import *
lgbmRanker = (LightGBMRanker()
.setLabelCol("labels")
.setFeaturesCol("features")
.setGroupCol("query")
.setDefaultListenPort(12402)
.setRepartitionByGroupingColumn(False)
.setNumLeaves(5)
.setNumIterations(10))
```
</TabItem>
<TabItem value="scala">
```scala
import com.microsoft.azure.synapse.ml.lightgbm._
val lgbmRanker = (new LightGBMRanker()
.setLabelCol("labels")
.setFeaturesCol("features")
.setGroupCol("query")
.setDefaultListenPort(12402)
.setRepartitionByGroupingColumn(false)
.setNumLeaves(5)
.setNumIterations(10))
```
</TabItem>
</Tabs>
<DocTable className="LightGBMRanker"
py="synapse.ml.lightgbm.html#module-synapse.ml.lightgbm.LightGBMRanker"
scala="com/microsoft/azure/synapse/ml/lightgbm/LightGBMRanker.html"
csharp="classSynapse_1_1ML_1_1Lightgbm_1_1LightGBMRanker.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/lightgbm/src/main/scala/com/microsoft/azure/synapse/ml/lightgbm/LightGBMRanker.scala" />
## LightGBMRegressor
<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">
<!--pytest-codeblocks:cont-->
```python
from synapse.ml.lightgbm import *
lgbmRegressor = (LightGBMRegressor()
.setLabelCol("labels")
.setFeaturesCol("features")
.setDefaultListenPort(12402)
.setNumLeaves(5)
.setNumIterations(10))
```
</TabItem>
<TabItem value="scala">
```scala
import com.microsoft.azure.synapse.ml.lightgbm._
val lgbmRegressor = (new LightGBMRegressor()
.setLabelCol("labels")
.setFeaturesCol("features")
.setDefaultListenPort(12402)
.setNumLeaves(5)
.setNumIterations(10))
```
</TabItem>
</Tabs>
<DocTable className="LightGBMRegressor"
py="synapse.ml.lightgbm.html#module-synapse.ml.lightgbm.LightGBMRegressor"
scala="com/microsoft/azure/synapse/ml/lightgbm/LightGBMRegressor.html"
csharp="classSynapse_1_1ML_1_1Lightgbm_1_1LightGBMRegressor.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/lightgbm/src/main/scala/com/microsoft/azure/synapse/ml/lightgbm/LightGBMRegressor.scala" />

Просмотреть файл

@ -0,0 +1,112 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
import DocTable from "@theme/DocumentationTable";
## VowpalWabbitRegressor
<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">
<!--pytest-codeblocks:cont-->
```python
from synapse.ml.vw import *
vw = (VowpalWabbitRegressor()
.setLabelCol("Y1")
.setFeaturesCol("features")
.setPredictionCol("pred"))
vwRegressor = (VowpalWabbitRegressor()
.setNumPasses(20)
.setPassThroughArgs("--holdout_off --loss_function quantile -q :: -l 0.1"))
```
</TabItem>
<TabItem value="scala">
```scala
import com.microsoft.azure.synapse.ml.vw._
val vw = (new VowpalWabbitRegressor()
.setLabelCol("Y1")
.setFeaturesCol("features")
.setPredictionCol("pred"))
val vwRegressor = (new VowpalWabbitRegressor()
.setNumPasses(20)
.setPassThroughArgs("--holdout_off --loss_function quantile -q :: -l 0.1"))
```
</TabItem>
</Tabs>
<DocTable className="VowpalWabbitRegressor"
py="synapse.ml.vw.html#module-synapse.ml.vw.VowpalWabbitRegressor"
scala="com/microsoft/azure/synapse/ml/vw/VowpalWabbitRegressor.html"
csharp="classSynapse_1_1ML_1_1Vw_1_1VowpalWabbitRegressor.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/vw/src/main/scala/com/microsoft/azure/synapse/ml/vw/VowpalWabbitRegressor.scala" />
## VowpalWabbitContextualBandit
<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">
<!--pytest-codeblocks:cont-->
```python
from synapse.ml.vw import *
cb = (VowpalWabbitContextualBandit()
.setPassThroughArgs("--cb_explore_adf --epsilon 0.2 --quiet")
.setLabelCol("cost")
.setProbabilityCol("prob")
.setChosenActionCol("chosen_action")
.setSharedCol("shared_features")
.setFeaturesCol("action_features")
.setUseBarrierExecutionMode(False))
```
</TabItem>
<TabItem value="scala">
```scala
import com.microsoft.azure.synapse.ml.vw._
val cb = (new VowpalWabbitContextualBandit()
.setPassThroughArgs("--cb_explore_adf --epsilon 0.2 --quiet")
.setLabelCol("cost")
.setProbabilityCol("prob")
.setChosenActionCol("chosen_action")
.setSharedCol("shared_features")
.setFeaturesCol("action_features")
.setUseBarrierExecutionMode(false))
```
</TabItem>
</Tabs>
<DocTable className="VowpalWabbitContextualBandit"
py="synapse.ml.vw.html#module-synapse.ml.vw.VowpalWabbitContextualBandit"
scala="com/microsoft/azure/synapse/ml/vw/VowpalWabbitContextualBandit.html"
csharp="classSynapse_1_1ML_1_1Vw_1_1VowpalWabbitContextualBandit.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/vw/src/main/scala/com/microsoft/azure/synapse/ml/vw/VowpalWabbitContextualBandit.scala" />

Просмотреть файл

@ -0,0 +1,100 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
import DocTable from "@theme/DocumentationTable";
## DoubleMLEstimator
<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">
<!--pytest-codeblocks:cont-->
```python
from synapse.ml.causal import *
from pyspark.ml.classification import LogisticRegression
from pyspark.sql.types import StructType, StructField, DoubleType, IntegerType, BooleanType
schema = StructType([
StructField("Treatment", BooleanType()),
StructField("Outcome", BooleanType()),
StructField("col2", DoubleType()),
StructField("col3", DoubleType()),
StructField("col4", DoubleType())
])
df = spark.createDataFrame([
(False, True, 0.30, 0.66, 0.2),
(True, False, 0.38, 0.53, 1.5),
(False, True, 0.68, 0.98, 3.2),
(True, False, 0.15, 0.32, 6.6),
(False, True, 0.50, 0.65, 2.8),
(True, True, 0.40, 0.54, 3.7),
(False, True, 0.78, 0.97, 8.1),
(True, False, 0.12, 0.32, 10.2),
(False, True, 0.35, 0.63, 1.8),
(True, False, 0.45, 0.57, 4.3),
(False, True, 0.75, 0.97, 7.2),
(True, True, 0.16, 0.32, 11.7)], schema
)
dml = (DoubleMLEstimator()
.setTreatmentCol("Treatment")
.setTreatmentModel(LogisticRegression())
.setOutcomeCol("Outcome")
.setOutcomeModel(LogisticRegression())
.setMaxIter(20))
dmlModel = dml.fit(df)
dmlModel.getAvgTreatmentEffect()
dmlModel.getConfidenceInterval()
```
</TabItem>
<TabItem value="scala">
```scala
import com.microsoft.azure.synapse.ml.causal._
import org.apache.spark.ml.classification.LogisticRegression
val df = (Seq(
(false, true, 0.50, 0.60, 0),
(true, false, 0.40, 0.50, 1),
(false, true, 0.78, 0.99, 2),
(true, false, 0.12, 0.34, 3),
(false, true, 0.50, 0.60, 0),
(true, false, 0.40, 0.50, 1),
(false, true, 0.78, 0.99, 2),
(true, false, 0.12, 0.34, 3),
(false, false, 0.50, 0.60, 0),
(true, true, 0.40, 0.50, 1),
(false, true, 0.78, 0.99, 2),
(true, false, 0.12, 0.34, 3))
.toDF("Treatment", "Outcome", "col2", "col3", "col4"))
val dml = (new DoubleMLEstimator()
.setTreatmentCol("Treatment")
.setTreatmentModel(new LogisticRegression())
.setOutcomeCol("Outcome")
.setOutcomeModel(new LogisticRegression())
.setMaxIter(20))
val dmlModel = dml.fit(df)
dmlModel.getAvgTreatmentEffect
dmlModel.getConfidenceInterval
```
</TabItem>
</Tabs>
<DocTable className="DoubleMLEstimator"
py="synapse.ml.causal.html#module-synapse.ml.causal.DoubleMLEstimator"
scala="com/microsoft/azure/synapse/ml/causal/DoubleMLEstimator.html"
csharp="classSynapse_1_1ML_1_1Causal_1_1DoubleMLEstimator.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/core/src/main/scala/com/microsoft/azure/synapse/ml/causal/DoubleMLEstimator.scala" />

Просмотреть файл

@ -0,0 +1,97 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
import DocTable from "@theme/DocumentationTable";
## SimpleFitMultivariateAnomaly
<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">
<!--pytest-codeblocks:cont-->
```python
from synapse.ml.services import *
anomalyKey = os.environ.get("ANOMALY_API_KEY", getSecret("anomaly-api-key"))
startTime = "2021-01-01T00:00:00Z"
endTime = "2021-01-03T01:59:00Z"
timestampColumn = "timestamp"
inputColumns = ["feature0", "feature1", "feature2"]
intermediateSaveDir = "wasbs://madtest@anomalydetectiontest.blob.core.windows.net/intermediateData"
simpleFitMultivariateAnomaly = (SimpleFitMultivariateAnomaly()
.setSubscriptionKey(anomalyKey)
.setLocation("westus2")
.setOutputCol("result")
.setStartTime(startTime)
.setEndTime(endTime)
.setIntermediateSaveDir(intermediateSaveDir)
.setTimestampCol(timestampColumn)
.setInputCols(inputColumns)
.setSlidingWindow(50))
# uncomment below for fitting your own dataframe
# model = simpleFitMultivariateAnomaly.fit(df)
# simpleFitMultivariateAnomaly.cleanUpIntermediateData()
```
</TabItem>
<TabItem value="scala">
```scala
import com.microsoft.azure.synapse.ml.services.anomaly.FitMultivariateAnomaly
val startTime: String = "2021-01-01T00:00:00Z"
val endTime: String = "2021-01-02T12:00:00Z"
val timestampColumn: String = "timestamp"
val inputColumns: Array[String] = Array("feature0", "feature1", "feature2")
val intermediateSaveDir: String = "wasbs://madtest@anomalydetectiontest.blob.core.windows.net/intermediateData"
val anomalyKey = sys.env.getOrElse("ANOMALY_API_KEY", None)
val simpleFitMultivariateAnomaly = (new SimpleFitMultivariateAnomaly()
.setSubscriptionKey(anomalyKey)
.setLocation("westus2")
.setOutputCol("result")
.setStartTime(startTime)
.setEndTime(endTime)
.setIntermediateSaveDir(intermediateSaveDir)
.setTimestampCol(timestampColumn)
.setInputCols(inputColumns)
.setSlidingWindow(50))
val df = (spark.read.format("csv")
.option("header", True)
.load("wasbs://datasets@mmlspark.blob.core.windows.net/MAD/mad_example.csv"))
val model = simpleFitMultivariateAnomaly.fit(df)
val result = (model
.setStartTime(startTime)
.setEndTime(endTime)
.setOutputCol("result")
.setTimestampCol(timestampColumn)
.setInputCols(inputColumns)
.transform(df))
result.show()
simpleFitMultivariateAnomaly.cleanUpIntermediateData()
model.cleanUpIntermediateData()
```
</TabItem>
</Tabs>
<DocTable className="SimpleFitMultivariateAnomaly"
py="synapse.ml.cognitive.html#module-synapse.ml.cognitive.SimpleFitMultivariateAnomaly"
scala="com/microsoft/azure/synapse/ml/cognitive/SimpleFitMultivariateAnomaly.html"
csharp="classSynapse_1_1ML_1_1Cognitive_1_1SimpleFitMultivariateAnomaly.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/cognitive/src/main/scala/com/microsoft/azure/synapse/ml/cognitive/MultivariateAnomalyDetection.scala" />

Просмотреть файл

@ -0,0 +1,214 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
import DocTable from "@theme/DocumentationTable";
## AutoML
### FindBestModel
<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">
<!--pytest-codeblocks:cont-->
```python
from synapse.ml.automl import *
from synapse.ml.train import *
from pyspark.ml.classification import RandomForestClassifier
df = (spark.createDataFrame([
(0, 2, 0.50, 0.60, 0),
(1, 3, 0.40, 0.50, 1),
(0, 4, 0.78, 0.99, 2),
(1, 5, 0.12, 0.34, 3),
(0, 1, 0.50, 0.60, 0),
(1, 3, 0.40, 0.50, 1),
(0, 3, 0.78, 0.99, 2),
(1, 4, 0.12, 0.34, 3),
(0, 0, 0.50, 0.60, 0),
(1, 2, 0.40, 0.50, 1),
(0, 3, 0.78, 0.99, 2),
(1, 4, 0.12, 0.34, 3)
], ["Label", "col1", "col2", "col3", "col4"]))
# mocking models
randomForestClassifier = (TrainClassifier()
.setModel(RandomForestClassifier()
.setMaxBins(32)
.setMaxDepth(5)
.setMinInfoGain(0.0)
.setMinInstancesPerNode(1)
.setNumTrees(20)
.setSubsamplingRate(1.0)
.setSeed(0))
.setFeaturesCol("mlfeatures")
.setLabelCol("Label"))
model = randomForestClassifier.fit(df)
findBestModel = (FindBestModel()
.setModels([model, model])
.setEvaluationMetric("accuracy"))
bestModel = findBestModel.fit(df)
bestModel.transform(df).show()
```
</TabItem>
<TabItem value="scala">
```scala
import com.microsoft.azure.synapse.ml.automl._
import com.microsoft.azure.synapse.ml.train._
import spark.implicits._
import org.apache.spark.ml.Transformer
val df = (Seq(
(0, 2, 0.50, 0.60, 0),
(1, 3, 0.40, 0.50, 1),
(0, 4, 0.78, 0.99, 2),
(1, 5, 0.12, 0.34, 3),
(0, 1, 0.50, 0.60, 0),
(1, 3, 0.40, 0.50, 1),
(0, 3, 0.78, 0.99, 2),
(1, 4, 0.12, 0.34, 3),
(0, 0, 0.50, 0.60, 0),
(1, 2, 0.40, 0.50, 1),
(0, 3, 0.78, 0.99, 2),
(1, 4, 0.12, 0.34, 3)
).toDF("Label", "col1", "col2", "col3", "col4"))
// mocking models
val randomForestClassifier = (new TrainClassifier()
.setModel(
new RandomForestClassifier()
.setMaxBins(32)
.setMaxDepth(5)
.setMinInfoGain(0.0)
.setMinInstancesPerNode(1)
.setNumTrees(20)
.setSubsamplingRate(1.0)
.setSeed(0L))
.setFeaturesCol("mlfeatures")
.setLabelCol("Label"))
val model = randomForestClassifier.fit(df)
val findBestModel = (new FindBestModel()
.setModels(Array(model.asInstanceOf[Transformer], model.asInstanceOf[Transformer]))
.setEvaluationMetric("accuracy"))
val bestModel = findBestModel.fit(df)
bestModel.transform(df).show()
```
</TabItem>
</Tabs>
<DocTable className="FindBestModel"
py="synapse.ml.automl.html#module-synapse.ml.automl.FindBestModel"
scala="com/microsoft/azure/synapse/ml/automl/FindBestModel.html"
csharp="classSynapse_1_1ML_1_1Automl_1_1FindBestModel.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/core/src/main/scala/com/microsoft/azure/synapse/ml/automl/FindBestModel.scala" />
### TuneHyperparameters
<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">
<!--pytest-codeblocks:cont-->
```python
from synapse.ml.automl import *
from synapse.ml.train import *
from pyspark.ml.classification import LogisticRegression, RandomForestClassifier, GBTClassifier
df = (spark.createDataFrame([
(0, 1, 1, 1, 1, 1, 1.0, 3, 1, 1),
(0, 1, 1, 1, 1, 2, 1.0, 1, 1, 1),
(0, 1, 1, 1, 1, 2, 1.0, 2, 1, 1),
(0, 1, 2, 3, 1, 2, 1.0, 3, 1, 1),
(0, 3, 1, 1, 1, 2, 1.0, 3, 1, 1)
], ["Label", "Clump_Thickness", "Uniformity_of_Cell_Size",
"Uniformity_of_Cell_Shape", "Marginal_Adhesion", "Single_Epithelial_Cell_Size",
"Bare_Nuclei", "Bland_Chromatin", "Normal_Nucleoli", "Mitoses"]))
logReg = LogisticRegression()
randForest = RandomForestClassifier()
gbt = GBTClassifier()
smlmodels = [logReg, randForest, gbt]
mmlmodels = [TrainClassifier(model=model, labelCol="Label") for model in smlmodels]
paramBuilder = (HyperparamBuilder()
.addHyperparam(logReg, logReg.regParam, RangeHyperParam(0.1, 0.3))
.addHyperparam(randForest, randForest.numTrees, DiscreteHyperParam([5,10]))
.addHyperparam(randForest, randForest.maxDepth, DiscreteHyperParam([3,5]))
.addHyperparam(gbt, gbt.maxBins, RangeHyperParam(8,16))
.addHyperparam(gbt, gbt.maxDepth, DiscreteHyperParam([3,5])))
searchSpace = paramBuilder.build()
# The search space is a list of params to tuples of estimator and hyperparam
randomSpace = RandomSpace(searchSpace)
bestModel = TuneHyperparameters(
evaluationMetric="accuracy", models=mmlmodels, numFolds=2,
numRuns=len(mmlmodels) * 2, parallelism=2,
paramSpace=randomSpace.space(), seed=0).fit(df)
```
</TabItem>
<TabItem value="scala">
```scala
import com.microsoft.azure.synapse.ml.automl._
import com.microsoft.azure.synapse.ml.train._
import spark.implicits._
val logReg = new LogisticRegression()
val randForest = new RandomForestClassifier()
val gbt = new GBTClassifier()
val smlmodels = Seq(logReg, randForest, gbt)
val mmlmodels = smlmodels.map(model => new TrainClassifier().setModel(model).setLabelCol("Label"))
val paramBuilder = new HyperparamBuilder()
.addHyperparam(logReg.regParam, new DoubleRangeHyperParam(0.1, 0.3))
.addHyperparam(randForest.numTrees, new DiscreteHyperParam(List(5,10)))
.addHyperparam(randForest.maxDepth, new DiscreteHyperParam(List(3,5)))
.addHyperparam(gbt.maxBins, new IntRangeHyperParam(8,16))
.addHyperparam(gbt.maxDepth, new DiscreteHyperParam(List(3,5)))
val searchSpace = paramBuilder.build()
val randomSpace = new RandomSpace(searchSpace)
val dataset: DataFrame = Seq(
(0, 1, 1, 1, 1, 1, 1.0, 3, 1, 1),
(0, 1, 1, 1, 1, 2, 1.0, 1, 1, 1),
(0, 1, 1, 1, 1, 2, 1.0, 2, 1, 1),
(0, 1, 2, 3, 1, 2, 1.0, 3, 1, 1),
(0, 3, 1, 1, 1, 2, 1.0, 3, 1, 1))
.toDF("Label", "Clump_Thickness", "Uniformity_of_Cell_Size",
"Uniformity_of_Cell_Shape", "Marginal_Adhesion", "Single_Epithelial_Cell_Size",
"Bare_Nuclei", "Bland_Chromatin", "Normal_Nucleoli", "Mitoses")
val tuneHyperparameters = new TuneHyperparameters().setEvaluationMetric("accuracy")
.setModels(mmlmodels.toArray).setNumFolds(2).setNumRuns(mmlmodels.length * 2)
.setParallelism(1).setParamSpace(randomSpace).setSeed(0)
tuneHyperparameters.fit(dataset).show()
```
</TabItem>
</Tabs>
<DocTable className="TuneHyperparameters"
py="synapse.ml.automl.html#module-synapse.ml.automl.TuneHyperparameters"
scala="com/microsoft/azure/synapse/ml/automl/TuneHyperparameters.html"
csharp="classSynapse_1_1ML_1_1Automl_1_1TuneHyperparameters.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/core/src/main/scala/com/microsoft/azure/synapse/ml/automl/TuneHyperparameters.scala" />

Просмотреть файл

@ -0,0 +1,332 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
import DocTable from "@theme/DocumentationTable";
## Featurize
### CleanMissingData
<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">
<!--pytest-codeblocks:cont-->
```python
from synapse.ml.featurize import *
dataset = spark.createDataFrame([
(0, 2, 0.50, 0.60, 0),
(1, 3, 0.40, None, None),
(0, 4, 0.78, 0.99, 2),
(1, 5, 0.12, 0.34, 3),
(0, 1, 0.50, 0.60, 0),
(None, None, None, None, None),
(0, 3, 0.78, 0.99, 2),
(1, 4, 0.12, 0.34, 3),
(0, None, 0.50, 0.60, 0),
(1, 2, 0.40, 0.50, None),
(0, 3, None, 0.99, 2),
(1, 4, 0.12, 0.34, 3)
], ["col1", "col2", "col3", "col4", "col5"])
cmd = (CleanMissingData()
.setInputCols(dataset.columns)
.setOutputCols(dataset.columns)
.setCleaningMode("Mean"))
```
</TabItem>
<TabItem value="scala">
```scala
import com.microsoft.azure.synapse.ml.featurize._
import java.lang.{Boolean => JBoolean, Double => JDouble, Integer => JInt}
import spark.implicits._
def createMockDataset: DataFrame = {
Seq[(JInt, JInt, JDouble, JDouble, JInt)](
(0, 2, 0.50, 0.60, 0),
(1, 3, 0.40, null, null),
(0, 4, 0.78, 0.99, 2),
(1, 5, 0.12, 0.34, 3),
(0, 1, 0.50, 0.60, 0),
(null, null, null, null, null),
(0, 3, 0.78, 0.99, 2),
(1, 4, 0.12, 0.34, 3),
(0, null, 0.50, 0.60, 0),
(1, 2, 0.40, 0.50, null),
(0, 3, null, 0.99, 2),
(1, 4, 0.12, 0.34, 3))
.toDF("col1", "col2", "col3", "col4", "col5")
}
val dataset = createMockDataset
val cmd = (new CleanMissingData()
.setInputCols(dataset.columns)
.setOutputCols(dataset.columns)
.setCleaningMode("Mean"))
```
</TabItem>
</Tabs>
<DocTable className="CleanMissingData"
py="synapse.ml.featurize.html#module-synapse.ml.featurize.CleanMissingData"
scala="com/microsoft/azure/synapse/ml/featurize/CleanMissingData.html"
csharp="classSynapse_1_1ML_1_1Featurize_1_1CleanMissingData.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/core/src/main/scala/com/microsoft/azure/synapse/ml/featurize/CleanMissingData.scala" />
### CountSelector
<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">
<!--pytest-codeblocks:cont-->
```python
from synapse.ml.featurize import *
from pyspark.ml.linalg import Vectors
df = spark.createDataFrame([
(Vectors.sparse(3, [(0, 1.0), (2, 2.0)]), Vectors.dense(1.0, 0.1, 0)),
(Vectors.sparse(3, [(0, 1.0), (2, 2.0)]), Vectors.dense(1.0, 0.1, 0))
], ["col1", "col2"])
cs = CountSelector().setInputCol("col1").setOutputCol("col3")
cs.fit(df).transform(df).show()
```
</TabItem>
<TabItem value="scala">
```scala
import com.microsoft.azure.synapse.ml.featurize._
import org.apache.spark.ml.linalg.Vectors
import spark.implicits._
val df = Seq(
(Vectors.sparse(3, Seq((0, 1.0), (2, 2.0))), Vectors.dense(1.0, 0.1, 0)),
(Vectors.sparse(3, Seq((0, 1.0), (2, 2.0))), Vectors.dense(1.0, 0.1, 0))
).toDF("col1", "col2")
val cs = (new CountSelector()
.setInputCol("col1")
.setOutputCol("col3"))
cs.fit(df).transform(df).show()
```
</TabItem>
</Tabs>
<DocTable className="CountSelector"
py="synapse.ml.featurize.html#module-synapse.ml.featurize.CountSelector"
scala="com/microsoft/azure/synapse/ml/featurize/CountSelector.html"
csharp="classSynapse_1_1ML_1_1Featurize_1_1CountSelector.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/core/src/main/scala/com/microsoft/azure/synapse/ml/featurize/CountSelector.scala" />
### Featurize
<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">
<!--pytest-codeblocks:cont-->
```python
from synapse.ml.featurize import *
dataset = spark.createDataFrame([
(0, 2, 0.50, 0.60, "pokemon are everywhere"),
(1, 3, 0.40, 0.50, "they are in the woods"),
(0, 4, 0.78, 0.99, "they are in the water"),
(1, 5, 0.12, 0.34, "they are in the fields"),
(0, 3, 0.78, 0.99, "pokemon - gotta catch em all")
], ["Label", "col1", "col2", "col3"])
feat = (Featurize()
.setNumFeatures(10)
.setOutputCol("testColumn")
.setInputCols(["col1", "col2", "col3"])
.setOneHotEncodeCategoricals(False))
feat.fit(dataset).transform(dataset).show()
```
</TabItem>
<TabItem value="scala">
```scala
import com.microsoft.azure.synapse.ml.featurize._
import spark.implicits._
val dataset = Seq(
(0, 2, 0.50, 0.60, "pokemon are everywhere"),
(1, 3, 0.40, 0.50, "they are in the woods"),
(0, 4, 0.78, 0.99, "they are in the water"),
(1, 5, 0.12, 0.34, "they are in the fields"),
(0, 3, 0.78, 0.99, "pokemon - gotta catch em all")).toDF("Label", "col1", "col2", "col3")
val featureColumns = dataset.columns.filter(_ != "Label")
val feat = (new Featurize()
.setNumFeatures(10)
.setOutputCol("testColumn")
.setInputCols(featureColumns)
.setOneHotEncodeCategoricals(false))
feat.fit(dataset).transform(dataset).show()
```
</TabItem>
</Tabs>
<DocTable className="Featurize"
py="synapse.ml.featurize.html#module-synapse.ml.featurize.Featurize"
scala="com/microsoft/azure/synapse/ml/featurize/Featurize.html"
csharp="classSynapse_1_1ML_1_1Featurize_1_1Featurize.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/core/src/main/scala/com/microsoft/azure/synapse/ml/featurize/Featurize.scala" />
### ValueIndexer
<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">
<!--pytest-codeblocks:cont-->
```python
from synapse.ml.featurize import *
df = spark.createDataFrame([
(-3, 24, 0.32534, True, "piano"),
(1, 5, 5.67, False, "piano"),
(-3, 5, 0.32534, False, "guitar")
], ["int", "long", "double", "bool", "string"])
vi = ValueIndexer().setInputCol("string").setOutputCol("string_cat")
vi.fit(df).transform(df).show()
```
</TabItem>
<TabItem value="scala">
```scala
import com.microsoft.azure.synapse.ml.featurize._
import spark.implicits._
val df = Seq[(Int, Long, Double, Boolean, String)](
(-3, 24L, 0.32534, true, "piano"),
(1, 5L, 5.67, false, "piano"),
(-3, 5L, 0.32534, false, "guitar")).toDF("int", "long", "double", "bool", "string")
val vi = new ValueIndexer().setInputCol("string").setOutputCol("string_cat")
vi.fit(df).transform(df).show()
```
</TabItem>
</Tabs>
<DocTable className="ValueIndexer"
py="synapse.ml.featurize.html#module-synapse.ml.featurize.ValueIndexer"
scala="com/microsoft/azure/synapse/ml/featurize/ValueIndexer.html"
csharp="classSynapse_1_1ML_1_1Featurize_1_1ValueIndexer.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/core/src/main/scala/com/microsoft/azure/synapse/ml/featurize/ValueIndexer.scala" />
## Featurize Text
### TextFeaturizer
<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">
<!--pytest-codeblocks:cont-->
```python
from synapse.ml.featurize.text import *
dfRaw = spark.createDataFrame([
(0, "Hi I"),
(1, "I wish for snow today"),
(2, "we Cant go to the park, because of the snow!"),
(3, "")
], ["label", "sentence"])
tfRaw = (TextFeaturizer()
.setInputCol("sentence")
.setOutputCol("features")
.setNumFeatures(20))
tfRaw.fit(dfRaw).transform(dfRaw).show()
```
</TabItem>
<TabItem value="scala">
```scala
import com.microsoft.azure.synapse.ml.featurize.text._
import spark.implicits._
val dfRaw = Seq((0, "Hi I"),
(1, "I wish for snow today"),
(2, "we Cant go to the park, because of the snow!"),
(3, "")).toDF("label", "sentence")
val tfRaw = (new TextFeaturizer()
.setInputCol("sentence")
.setOutputCol("features")
.setNumFeatures(20))
tfRaw.fit(dfRaw).transform(dfRaw).show()
```
</TabItem>
</Tabs>
<DocTable className="TextFeaturizer"
py="synapse.ml.featurize.text.html#module-synapse.ml.featurize.text.TextFeaturizer"
scala="com/microsoft/azure/synapse/ml/featurize/text/TextFeaturizer.html"
csharp="classSynapse_1_1ML_1_1Featurize_1_1Text_1_1TextFeaturizer.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/core/src/main/scala/com/microsoft/azure/synapse/ml/featurize/text/TextFeaturizer.scala" />

Просмотреть файл

@ -0,0 +1,65 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
import DocTable from "@theme/DocumentationTable";
## Isolation Forest
### IsolationForest
<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">
<!--pytest-codeblocks:cont-->
```python
from synapse.ml.isolationforest import *
isolationForest = (IsolationForest()
.setNumEstimators(100)
.setBootstrap(False)
.setMaxSamples(256)
.setMaxFeatures(1.0)
.setFeaturesCol("features")
.setPredictionCol("predictedLabel")
.setScoreCol("outlierScore")
.setContamination(0.02)
.setContaminationError(0.02 * 0.01)
.setRandomSeed(1))
```
</TabItem>
<TabItem value="scala">
```scala
import com.microsoft.azure.synapse.ml.isolationforest._
import spark.implicits._
val isolationForest = (new IsolationForest()
.setNumEstimators(100)
.setBootstrap(false)
.setMaxSamples(256)
.setMaxFeatures(1.0)
.setFeaturesCol("features")
.setPredictionCol("predictedLabel")
.setScoreCol("outlierScore")
.setContamination(0.02)
.setContaminationError(0.02 * 0.01)
.setRandomSeed(1))
```
</TabItem>
</Tabs>
<DocTable className="IsolationForest"
py="synapse.ml.isolationforest.html#module-synapse.ml.isolationforest.IsolationForest"
scala="com/microsoft/azure/synapse/ml/isolationforest/IsolationForest.html"
csharp="classSynapse_1_1ML_1_1Isolationforest_1_1IsolationForest.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/core/src/main/scala/com/microsoft/azure/synapse/ml/isolationforest/IsolationForest.scala" />

Просмотреть файл

@ -0,0 +1,92 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
import DocTable from "@theme/DocumentationTable";
## NN
### ConditionalKNN
<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">
<!--pytest-codeblocks:cont-->
```python
from synapse.ml.nn import *
cknn = (ConditionalKNN()
.setOutputCol("matches")
.setFeaturesCol("features"))
```
</TabItem>
<TabItem value="scala">
```scala
import com.microsoft.azure.synapse.ml.nn._
import spark.implicits._
val cknn = (new ConditionalKNN()
.setOutputCol("matches")
.setFeaturesCol("features"))
```
</TabItem>
</Tabs>
<DocTable className="ConditionalKNN"
py="synapse.ml.nn.html#module-synapse.ml.nn.ConditionalKNN"
scala="com/microsoft/azure/synapse/ml/nn/ConditionalKNN.html"
csharp="classSynapse_1_1ML_1_1Nn_1_1ConditionalKNN.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/core/src/main/scala/com/microsoft/azure/synapse/ml/nn/ConditionalKNN.scala" />
### KNN
<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">
<!--pytest-codeblocks:cont-->
```python
from synapse.ml.nn import *
knn = (KNN()
.setOutputCol("matches"))
```
</TabItem>
<TabItem value="scala">
```scala
import com.microsoft.azure.synapse.ml.nn._
import spark.implicits._
val knn = (new KNN()
.setOutputCol("matches"))
```
</TabItem>
</Tabs>
<DocTable className="KNN"
py="synapse.ml.nn.html#module-synapse.ml.nn.KNN"
scala="com/microsoft/azure/synapse/ml/nn/KNN.html"
csharp="classSynapse_1_1ML_1_1Nn_1_1KNN.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/core/src/main/scala/com/microsoft/azure/synapse/ml/nn/KNN.scala" />

Просмотреть файл

@ -0,0 +1,379 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
import DocTable from "@theme/DocumentationTable";
## Recommendation
### RecommendationIndexer, RankingEvaluator, RankingAdapter and RankingTrainValidationSplit
<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">
<!--pytest-codeblocks:cont-->
```python
from synapse.ml.recommendation import *
from pyspark.ml.recommendation import ALS
from pyspark.ml.tuning import *
ratings = (spark.createDataFrame([
("11", "Movie 01", 2),
("11", "Movie 03", 1),
("11", "Movie 04", 5),
("11", "Movie 05", 3),
("11", "Movie 06", 4),
("11", "Movie 07", 1),
("11", "Movie 08", 5),
("11", "Movie 09", 3),
("22", "Movie 01", 4),
("22", "Movie 02", 5),
("22", "Movie 03", 1),
("22", "Movie 05", 3),
("22", "Movie 06", 3),
("22", "Movie 07", 5),
("22", "Movie 08", 1),
("22", "Movie 10", 3),
("33", "Movie 01", 4),
("33", "Movie 03", 1),
("33", "Movie 04", 5),
("33", "Movie 05", 3),
("33", "Movie 06", 4),
("33", "Movie 08", 1),
("33", "Movie 09", 5),
("33", "Movie 10", 3),
("44", "Movie 01", 4),
("44", "Movie 02", 5),
("44", "Movie 03", 1),
("44", "Movie 05", 3),
("44", "Movie 06", 4),
("44", "Movie 07", 5),
("44", "Movie 08", 1),
("44", "Movie 10", 3)
], ["customerIDOrg", "itemIDOrg", "rating"])
.dropDuplicates()
.cache())
recommendationIndexer = (RecommendationIndexer()
.setUserInputCol("customerIDOrg")
.setUserOutputCol("customerID")
.setItemInputCol("itemIDOrg")
.setItemOutputCol("itemID")
.setRatingCol("rating"))
transformedDf = (recommendationIndexer.fit(ratings)
.transform(ratings).cache())
als = (ALS()
.setNumUserBlocks(1)
.setNumItemBlocks(1)
.setUserCol("customerID")
.setItemCol("itemID")
.setRatingCol("rating")
.setSeed(0))
evaluator = (RankingEvaluator()
.setK(3)
.setNItems(10))
adapter = (RankingAdapter()
.setK(evaluator.getK())
.setRecommender(als))
adapter.fit(transformedDf).transform(transformedDf).show()
paramGrid = (ParamGridBuilder()
.addGrid(als.regParam, [1.0])
.build())
tvRecommendationSplit = (RankingTrainValidationSplit()
.setEstimator(als)
.setEvaluator(evaluator)
.setEstimatorParamMaps(paramGrid)
.setTrainRatio(0.8)
.setUserCol(recommendationIndexer.getUserOutputCol())
.setItemCol(recommendationIndexer.getItemOutputCol())
.setRatingCol("rating"))
tvRecommendationSplit.fit(transformedDf).transform(transformedDf).show()
```
</TabItem>
<TabItem value="scala">
```scala
import com.microsoft.azure.synapse.ml.recommendation._
import org.apache.spark.ml.recommendation.ALS
import org.apache.spark.ml.tuning._
import spark.implicits._
val ratings = (Seq(
("11", "Movie 01", 2),
("11", "Movie 03", 1),
("11", "Movie 04", 5),
("11", "Movie 05", 3),
("11", "Movie 06", 4),
("11", "Movie 07", 1),
("11", "Movie 08", 5),
("11", "Movie 09", 3),
("22", "Movie 01", 4),
("22", "Movie 02", 5),
("22", "Movie 03", 1),
("22", "Movie 05", 3),
("22", "Movie 06", 3),
("22", "Movie 07", 5),
("22", "Movie 08", 1),
("22", "Movie 10", 3),
("33", "Movie 01", 4),
("33", "Movie 03", 1),
("33", "Movie 04", 5),
("33", "Movie 05", 3),
("33", "Movie 06", 4),
("33", "Movie 08", 1),
("33", "Movie 09", 5),
("33", "Movie 10", 3),
("44", "Movie 01", 4),
("44", "Movie 02", 5),
("44", "Movie 03", 1),
("44", "Movie 05", 3),
("44", "Movie 06", 4),
("44", "Movie 07", 5),
("44", "Movie 08", 1),
("44", "Movie 10", 3))
.toDF("customerIDOrg", "itemIDOrg", "rating")
.dropDuplicates()
.cache())
val recommendationIndexer = (new RecommendationIndexer()
.setUserInputCol("customerIDOrg")
.setUserOutputCol("customerID")
.setItemInputCol("itemIDOrg")
.setItemOutputCol("itemID")
.setRatingCol("rating"))
val transformedDf = (recommendationIndexer.fit(ratings)
.transform(ratings).cache())
val als = (new ALS()
.setNumUserBlocks(1)
.setNumItemBlocks(1)
.setUserCol("customerID")
.setItemCol("itemID")
.setRatingCol("rating")
.setSeed(0))
val evaluator = (new RankingEvaluator()
.setK(3)
.setNItems(10))
val adapter = (new RankingAdapter()
.setK(evaluator.getK)
.setRecommender(als))
adapter.fit(transformedDf).transform(transformedDf).show()
val paramGrid = (new ParamGridBuilder()
.addGrid(als.regParam, Array(1.0))
.build())
val tvRecommendationSplit = (new RankingTrainValidationSplit()
.setEstimator(als)
.setEvaluator(evaluator)
.setEstimatorParamMaps(paramGrid)
.setTrainRatio(0.8)
.setUserCol(recommendationIndexer.getUserOutputCol)
.setItemCol(recommendationIndexer.getItemOutputCol)
.setRatingCol("rating"))
tvRecommendationSplit.fit(transformedDf).transform(transformedDf).show()
```
</TabItem>
</Tabs>
<DocTable className="RecommendationIndexer"
py="synapse.ml.recommendation.html#module-synapse.ml.recommendation.RecommendationIndexer"
scala="com/microsoft/azure/synapse/ml/recommendation/RecommendationIndexer.html"
csharp="classSynapse_1_1ML_1_1Recommendation_1_1RecommendationIndexer.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/core/src/main/scala/com/microsoft/azure/synapse/ml/recommendation/RecommendationIndexer.scala" />
<DocTable className="RankingEvaluator"
py="synapse.ml.recommendation.html#module-synapse.ml.recommendation.RankingEvaluator"
scala="com/microsoft/azure/synapse/ml/recommendation/RankingEvaluator.html"
csharp="classSynapse_1_1ML_1_1Recommendation_1_1RankingEvaluator.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/core/src/main/scala/com/microsoft/azure/synapse/ml/recommendation/RankingEvaluator.scala" />
<DocTable className="RankingAdapter"
py="synapse.ml.recommendation.html#module-synapse.ml.recommendation.RankingAdapter"
scala="com/microsoft/azure/synapse/ml/recommendation/RankingAdapter.html"
csharp="classSynapse_1_1ML_1_1Recommendation_1_1RankingAdapter.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/core/src/main/scala/com/microsoft/azure/synapse/ml/recommendation/RankingAdapter.scala" />
<DocTable className="RankingTrainValidationSplit"
py="synapse.ml.recommendation.html#module-synapse.ml.recommendation.RankingTrainValidationSplit"
scala="com/microsoft/azure/synapse/ml/recommendation/RankingTrainValidationSplit.html"
csharp="classSynapse_1_1ML_1_1Recommendation_1_1RankingTrainValidationSplit.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/core/src/main/scala/com/microsoft/azure/synapse/ml/recommendation/RankingTrainValidationSplit.scala" />
### SAR
<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">
<!--pytest-codeblocks:cont-->
```python
from synapse.ml.recommendation import *
ratings = (spark.createDataFrame([
("11", "Movie 01", 2),
("11", "Movie 03", 1),
("11", "Movie 04", 5),
("11", "Movie 05", 3),
("11", "Movie 06", 4),
("11", "Movie 07", 1),
("11", "Movie 08", 5),
("11", "Movie 09", 3),
("22", "Movie 01", 4),
("22", "Movie 02", 5),
("22", "Movie 03", 1),
("22", "Movie 05", 3),
("22", "Movie 06", 3),
("22", "Movie 07", 5),
("22", "Movie 08", 1),
("22", "Movie 10", 3),
("33", "Movie 01", 4),
("33", "Movie 03", 1),
("33", "Movie 04", 5),
("33", "Movie 05", 3),
("33", "Movie 06", 4),
("33", "Movie 08", 1),
("33", "Movie 09", 5),
("33", "Movie 10", 3),
("44", "Movie 01", 4),
("44", "Movie 02", 5),
("44", "Movie 03", 1),
("44", "Movie 05", 3),
("44", "Movie 06", 4),
("44", "Movie 07", 5),
("44", "Movie 08", 1),
("44", "Movie 10", 3)
], ["customerIDOrg", "itemIDOrg", "rating"])
.dropDuplicates()
.cache())
recommendationIndexer = (RecommendationIndexer()
.setUserInputCol("customerIDOrg")
.setUserOutputCol("customerID")
.setItemInputCol("itemIDOrg")
.setItemOutputCol("itemID")
.setRatingCol("rating"))
algo = (SAR()
.setUserCol("customerID")
.setItemCol("itemID")
.setRatingCol("rating")
.setTimeCol("timestamp")
.setSupportThreshold(1)
.setSimilarityFunction("jacccard")
.setActivityTimeFormat("EEE MMM dd HH:mm:ss Z yyyy"))
adapter = (RankingAdapter()
.setK(5)
.setRecommender(algo))
res1 = recommendationIndexer.fit(ratings).transform(ratings).cache()
adapter.fit(res1).transform(res1).show()
```
</TabItem>
<TabItem value="scala">
```scala
import com.microsoft.azure.synapse.ml.recommendation._
import spark.implicits._
val ratings = (Seq(
("11", "Movie 01", 2),
("11", "Movie 03", 1),
("11", "Movie 04", 5),
("11", "Movie 05", 3),
("11", "Movie 06", 4),
("11", "Movie 07", 1),
("11", "Movie 08", 5),
("11", "Movie 09", 3),
("22", "Movie 01", 4),
("22", "Movie 02", 5),
("22", "Movie 03", 1),
("22", "Movie 05", 3),
("22", "Movie 06", 3),
("22", "Movie 07", 5),
("22", "Movie 08", 1),
("22", "Movie 10", 3),
("33", "Movie 01", 4),
("33", "Movie 03", 1),
("33", "Movie 04", 5),
("33", "Movie 05", 3),
("33", "Movie 06", 4),
("33", "Movie 08", 1),
("33", "Movie 09", 5),
("33", "Movie 10", 3),
("44", "Movie 01", 4),
("44", "Movie 02", 5),
("44", "Movie 03", 1),
("44", "Movie 05", 3),
("44", "Movie 06", 4),
("44", "Movie 07", 5),
("44", "Movie 08", 1),
("44", "Movie 10", 3))
.toDF("customerIDOrg", "itemIDOrg", "rating")
.dropDuplicates()
.cache())
val recommendationIndexer = (new RecommendationIndexer()
.setUserInputCol("customerIDOrg")
.setUserOutputCol("customerID")
.setItemInputCol("itemIDOrg")
.setItemOutputCol("itemID")
.setRatingCol("rating"))
val algo = (new SAR()
.setUserCol("customerID")
.setItemCol("itemID")
.setRatingCol("rating")
.setTimeCol("timestamp")
.setSupportThreshold(1)
.setSimilarityFunction("jacccard")
.setActivityTimeFormat("EEE MMM dd HH:mm:ss Z yyyy"))
val adapter = (new RankingAdapter()
.setK(5)
.setRecommender(algo))
val res1 = recommendationIndexer.fit(ratings).transform(ratings).cache()
adapter.fit(res1).transform(res1).show()
```
</TabItem>
</Tabs>
<DocTable className="SAR"
py="synapse.ml.recommendation.html#module-synapse.ml.recommendation.SAR"
scala="com/microsoft/azure/synapse/ml/recommendation/SAR.html"
csharp="classSynapse_1_1ML_1_1Recommendation_1_1SAR.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/core/src/main/scala/com/microsoft/azure/synapse/ml/recommendation/SAR.scala" />

Просмотреть файл

@ -0,0 +1,219 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
import DocTable from "@theme/DocumentationTable";
## Stages
### ClassBalancer
<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">
<!--pytest-codeblocks:cont-->
```python
from synapse.ml.stages import *
df = (spark.createDataFrame([
(0, 1.0, "Hi I"),
(1, 1.0, "I wish for snow today"),
(2, 2.0, "I wish for snow today"),
(3, 2.0, "I wish for snow today"),
(4, 2.0, "I wish for snow today"),
(5, 2.0, "I wish for snow today"),
(6, 0.0, "I wish for snow today"),
(7, 1.0, "I wish for snow today"),
(8, 0.0, "we Cant go to the park, because of the snow!"),
(9, 2.0, "")
], ["index", "label", "sentence"]))
cb = ClassBalancer().setInputCol("label")
cb.fit(df).transform(df).show()
```
</TabItem>
<TabItem value="scala">
```scala
import com.microsoft.azure.synapse.ml.stages._
val df = Seq(
(0, 1.0, "Hi I"),
(1, 1.0, "I wish for snow today"),
(2, 2.0, "I wish for snow today"),
(3, 2.0, "I wish for snow today"),
(4, 2.0, "I wish for snow today"),
(5, 2.0, "I wish for snow today"),
(6, 0.0, "I wish for snow today"),
(7, 1.0, "I wish for snow today"),
(8, 0.0, "we Cant go to the park, because of the snow!"),
(9, 2.0, "")).toDF("index", "label", "sentence")
val cb = new ClassBalancer().setInputCol("label")
cb.fit(df).transform(df).show()
```
</TabItem>
</Tabs>
<DocTable className="ClassBalancer"
py="synapse.ml.stages.html#module-synapse.ml.stages.ClassBalancer"
scala="com/microsoft/azure/synapse/ml/stages/ClassBalancer.html"
csharp="classSynapse_1_1ML_1_1Stages_1_1ClassBalancer.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/core/src/main/scala/com/microsoft/azure/synapse/ml/stages/ClassBalancer.scala" />
### MultiColumnAdapter
<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">
<!--pytest-codeblocks:cont-->
```python
from synapse.ml.stages import *
from pyspark.ml.feature import Tokenizer
df = (spark.createDataFrame([
(0, "This is a test", "this is one too"),
(1, "could be a test", "bar"),
(2, "foo", "bar"),
(3, "foo", "maybe not")
], ["label", "words1", "words2"]))
stage1 = Tokenizer()
mca = (MultiColumnAdapter()
.setBaseStage(stage1)
.setInputCols(["words1", "words2"])
.setOutputCols(["output1", "output2"]))
mca.fit(df).transform(df).show()
```
</TabItem>
<TabItem value="scala">
```scala
import com.microsoft.azure.synapse.ml.stages._
import org.apache.spark.ml.feature.Tokenizer
val df = (Seq(
(0, "This is a test", "this is one too"),
(1, "could be a test", "bar"),
(2, "foo", "bar"),
(3, "foo", "maybe not"))
.toDF("label", "words1", "words2"))
val stage1 = new Tokenizer()
val mca = (new MultiColumnAdapter()
.setBaseStage(stage1)
.setInputCols(Array[String]("words1", "words2"))
.setOutputCols(Array[String]("output1", "output2")))
mca.fit(df).transform(df).show()
```
</TabItem>
</Tabs>
<DocTable className="MultiColumnAdapter"
py="synapse.ml.stages.html#module-synapse.ml.stages.MultiColumnAdapter"
scala="com/microsoft/azure/synapse/ml/stages/MultiColumnAdapter.html"
csharp="classSynapse_1_1ML_1_1Stages_1_1MultiColumnAdapter.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/core/src/main/scala/com/microsoft/azure/synapse/ml/stages/MultiColumnAdapter.scala" />
### Timer
<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">
<!--pytest-codeblocks:cont-->
```python
from synapse.ml.stages import *
from pyspark.ml.feature import *
df = (spark.createDataFrame([
(0, "Hi I"),
(1, "I wish for snow today"),
(2, "we Cant go to the park, because of the snow!"),
(3, "")
], ["label", "sentence"]))
tok = (Tokenizer()
.setInputCol("sentence")
.setOutputCol("tokens"))
df2 = Timer().setStage(tok).fit(df).transform(df)
df3 = HashingTF().setInputCol("tokens").setOutputCol("hash").transform(df2)
idf = IDF().setInputCol("hash").setOutputCol("idf")
timer = Timer().setStage(idf)
timer.fit(df3).transform(df3).show()
```
</TabItem>
<TabItem value="scala">
```scala
import com.microsoft.azure.synapse.ml.stages._
import org.apache.spark.ml.feature._
val df = (Seq(
(0, "Hi I"),
(1, "I wish for snow today"),
(2, "we Cant go to the park, because of the snow!"),
(3, "")
).toDF("label", "sentence"))
val tok = (new Tokenizer()
.setInputCol("sentence")
.setOutputCol("tokens"))
val df2 = new Timer().setStage(tok).fit(df).transform(df)
val df3 = new HashingTF().setInputCol("tokens").setOutputCol("hash").transform(df2)
val idf = new IDF().setInputCol("hash").setOutputCol("idf")
val timer = new Timer().setStage(idf)
timer.fit(df3).transform(df3).show()
```
</TabItem>
</Tabs>
<DocTable className="Timer"
py="synapse.ml.stages.html#module-synapse.ml.stages.Timer"
scala="com/microsoft/azure/synapse/ml/stages/Timer.html"
csharp="classSynapse_1_1ML_1_1Stages_1_1Timer.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/core/src/main/scala/com/microsoft/azure/synapse/ml/stages/Timer.scala" />

Просмотреть файл

@ -0,0 +1,171 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
import DocTable from "@theme/DocumentationTable";
## Train
### TrainClassifier
<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">
<!--pytest-codeblocks:cont-->
```python
from synapse.ml.train import *
from pyspark.ml.classification import LogisticRegression
df = spark.createDataFrame([
(0, 2, 0.50, 0.60, 0),
(1, 3, 0.40, 0.50, 1),
(0, 4, 0.78, 0.99, 2),
(1, 5, 0.12, 0.34, 3),
(0, 1, 0.50, 0.60, 0),
(1, 3, 0.40, 0.50, 1),
(0, 3, 0.78, 0.99, 2),
(1, 4, 0.12, 0.34, 3),
(0, 0, 0.50, 0.60, 0),
(1, 2, 0.40, 0.50, 1),
(0, 3, 0.78, 0.99, 2),
(1, 4, 0.12, 0.34, 3)],
["Label", "col1", "col2", "col3", "col4"]
)
tc = (TrainClassifier()
.setModel(LogisticRegression())
.setLabelCol("Label"))
tc.fit(df).transform(df).show()
```
</TabItem>
<TabItem value="scala">
```scala
import com.microsoft.azure.synapse.ml.train._
import org.apache.spark.ml.classification.LogisticRegression
val df = (Seq(
(0, 2, 0.50, 0.60, 0),
(1, 3, 0.40, 0.50, 1),
(0, 4, 0.78, 0.99, 2),
(1, 5, 0.12, 0.34, 3),
(0, 1, 0.50, 0.60, 0),
(1, 3, 0.40, 0.50, 1),
(0, 3, 0.78, 0.99, 2),
(1, 4, 0.12, 0.34, 3),
(0, 0, 0.50, 0.60, 0),
(1, 2, 0.40, 0.50, 1),
(0, 3, 0.78, 0.99, 2),
(1, 4, 0.12, 0.34, 3))
.toDF("Label", "col1", "col2", "col3", "col4"))
val tc = (new TrainClassifier()
.setModel(new LogisticRegression())
.setLabelCol("Label"))
tc.fit(df).transform(df).show()
```
</TabItem>
</Tabs>
<DocTable className="TrainClassifier"
py="synapse.ml.train.html#module-synapse.ml.train.TrainClassifier"
scala="com/microsoft/azure/synapse/ml/train/TrainClassifier.html"
csharp="classSynapse_1_1ML_1_1Train_1_1TrainClassifier.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/core/src/main/scala/com/microsoft/azure/synapse/ml/train/TrainClassifier.scala" />
### TrainRegressor
<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">
<!--pytest-codeblocks:cont-->
```python
from synapse.ml.train import *
from pyspark.ml.regression import LinearRegression
dataset = (spark.createDataFrame([
(0.0, 2, 0.50, 0.60, 0.0),
(1.0, 3, 0.40, 0.50, 1.0),
(2.0, 4, 0.78, 0.99, 2.0),
(3.0, 5, 0.12, 0.34, 3.0),
(0.0, 1, 0.50, 0.60, 0.0),
(1.0, 3, 0.40, 0.50, 1.0),
(2.0, 3, 0.78, 0.99, 2.0),
(3.0, 4, 0.12, 0.34, 3.0),
(0.0, 0, 0.50, 0.60, 0.0),
(1.0, 2, 0.40, 0.50, 1.0),
(2.0, 3, 0.78, 0.99, 2.0),
(3.0, 4, 0.12, 0.34, 3.0)],
["label", "col1", "col2", "col3", "col4"]))
linearRegressor = (LinearRegression()
.setRegParam(0.3)
.setElasticNetParam(0.8))
trainRegressor = (TrainRegressor()
.setModel(linearRegressor)
.setLabelCol("label"))
trainRegressor.fit(dataset).transform(dataset).show()
```
</TabItem>
<TabItem value="scala">
```scala
import com.microsoft.azure.synapse.ml.train._
import org.apache.spark.ml.regression.LinearRegression
val dataset = (spark.createDataFrame(Seq(
(0.0, 2, 0.50, 0.60, 0.0),
(1.0, 3, 0.40, 0.50, 1.0),
(2.0, 4, 0.78, 0.99, 2.0),
(3.0, 5, 0.12, 0.34, 3.0),
(0.0, 1, 0.50, 0.60, 0.0),
(1.0, 3, 0.40, 0.50, 1.0),
(2.0, 3, 0.78, 0.99, 2.0),
(3.0, 4, 0.12, 0.34, 3.0),
(0.0, 0, 0.50, 0.60, 0.0),
(1.0, 2, 0.40, 0.50, 1.0),
(2.0, 3, 0.78, 0.99, 2.0),
(3.0, 4, 0.12, 0.34, 3.0)))
.toDF("label", "col1", "col2", "col3", "col4"))
val linearRegressor = (new LinearRegression()
.setRegParam(0.3)
.setElasticNetParam(0.8))
val trainRegressor = (new TrainRegressor()
.setModel(linearRegressor)
.setLabelCol("label"))
trainRegressor.fit(dataset).transform(dataset).show()
```
</TabItem>
</Tabs>
<DocTable className="TrainRegressor"
py="synapse.ml.train.html#module-synapse.ml.train.TrainRegressor"
scala="com/microsoft/azure/synapse/ml/train/TrainRegressor.html"
csharp="classSynapse_1_1ML_1_1Train_1_1TrainRegressor.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/core/src/main/scala/com/microsoft/azure/synapse/ml/train/TrainRegressor.scala" />

Просмотреть файл

@ -0,0 +1,13 @@
---
title: Estimators - Causal
sidebar_label: Causal Inference
hide_title: true
---
# Causal Inference
import DoubleMLEstimator, {toc as DoubleMLEstimatorTOC} from './causal/_causalInferenceDML.md';
<DoubleMLEstimator/>
export const toc = [...DoubleMLEstimatorTOC]

Некоторые файлы не были показаны из-за слишком большого количества измененных файлов Показать больше