509 строки
24 KiB
Python
509 строки
24 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
Data loader for semi-processed table inputs, do MLM & CLC & TCR dynamically.
|
|
"""
|
|
|
|
import torch
|
|
import random
|
|
import pickle
|
|
from utils import UNZIPS
|
|
from tokenizer import PAD_ID
|
|
|
|
|
|
class DynamicDataLoader(object):
|
|
def __init__(self, args, proc_id, proc_num, do_shuffle=True):
|
|
self.proc_id = proc_id
|
|
self.do_shuffle = do_shuffle
|
|
self.proc_num = proc_num
|
|
self.batch_size = args.batch_size
|
|
self.buffer_size = args.buffer_size
|
|
self.chunk_size = args.chunk_size # less than the minimum file size
|
|
# load private data sets
|
|
self.f_reads, self.private_datasets, self.dataset_progress = [], [], []
|
|
for ipath, dataset_path in enumerate(args.dataset_paths):
|
|
if ipath % proc_num == proc_id:
|
|
self.f_reads.append( open(dataset_path, "rb") )
|
|
self.private_datasets.append( dataset_path )
|
|
self.dataset_progress.append( 0 )
|
|
self.set_count = len(self.private_datasets)
|
|
print("DataLoader #{} assigned {} sets: {}".format(proc_id, self.set_count, self.private_datasets))
|
|
|
|
# only need to read dataset once when buffer is big enough to load the entire dataset
|
|
self.repeat_read_dataset = True
|
|
self.start = 0
|
|
self.end = 0
|
|
self.buffer = []
|
|
|
|
self.min_cell_len = 16
|
|
self.max_cell_num = args.max_cell_num
|
|
self.max_seq_len = args.max_seq_len
|
|
self.max_cell_length = args.max_cell_length
|
|
self.magnitude_size = args.magnitude_size
|
|
self.precision_size = args.precision_size
|
|
self.top_digit_size = args.top_digit_size
|
|
self.low_digit_size = args.low_digit_size
|
|
self.row_size = args.row_size
|
|
self.column_size = args.column_size
|
|
self.tree_depth = args.tree_depth
|
|
self.node_degree = args.node_degree
|
|
self.total_node = sum(self.node_degree)
|
|
self.default_pos = [self.total_node] * self.tree_depth
|
|
|
|
self.num_format_feature = args.num_format_feature
|
|
self.default_format = [0.25, 0.25, 0., 0., 0., 0., 0., 0., 0., 1., 1.]
|
|
|
|
self.tokenizer = args.tokenizer
|
|
self.max_disturb_num = args.max_disturb_num
|
|
self.disturb_prob = args.disturb_prob
|
|
self.clc_rate = args.clc_rate
|
|
self.add_separate = args.add_separate
|
|
self.hier_or_flat = args.hier_or_flat
|
|
self.target = args.target
|
|
|
|
def _fill_buf(self):
|
|
if len(self.buffer) > 0 and not self.repeat_read_dataset:
|
|
if self.do_shuffle:
|
|
random.shuffle(self.buffer)
|
|
self.start = 0
|
|
self.end = len(self.buffer)
|
|
else: # load new buffer anyway
|
|
self.buffer = []
|
|
while len(self.buffer) < self.buffer_size:
|
|
set_index = random.randint(0, self.set_count - 1)
|
|
chunk = [] # a chunk from a random data set
|
|
while len(chunk) < self.chunk_size:
|
|
try:
|
|
tables = pickle.load(self.f_reads[set_index])
|
|
chunk.extend(tables)
|
|
except EOFError:
|
|
if not self.repeat_read_dataset:
|
|
break
|
|
self.f_reads[set_index].seek(0)
|
|
tables = pickle.load(self.f_reads[set_index])
|
|
chunk.extend(tables)
|
|
print("DataLoader #{}, pickle loaded chunk of size {} from {}".format(self.proc_id, len(chunk), self.private_datasets[set_index]))
|
|
semi_input = self.sift_and_prep(chunk)
|
|
print("DataLoader #{}, tokenier resulted {} inputs from {} tables".format(self.proc_id, len(semi_input), len(chunk)))
|
|
self.buffer.extend( semi_input )
|
|
self.dataset_progress[set_index] += len(semi_input)
|
|
|
|
if self.do_shuffle:
|
|
random.shuffle(self.buffer)
|
|
self.start = 0
|
|
self.end = len(self.buffer)
|
|
data_step_msg = ["{} ({})".format(dataset.split('/')[-1], steps) for dataset, steps in zip(self.private_datasets, self.dataset_progress)]
|
|
print("DataLoader #{} dataset steps: {}".format(self.proc_id, data_step_msg))
|
|
|
|
def sift_and_prep(self, instances):
|
|
semi_input = []
|
|
for ins in instances:
|
|
token_matrix, number_matrix, position_lists, header_info, format_or_text = ins
|
|
format_matrix, context = None, None
|
|
if isinstance(format_or_text, str): # wiki, title
|
|
context = (format_or_text, )
|
|
elif isinstance(format_or_text, list): # sheet, format_matrix
|
|
format_matrix = format_or_text
|
|
elif isinstance(format_or_text, tuple): # wdc, context = (title, page_title, text_before, text_after)
|
|
context = format_or_text
|
|
else:
|
|
print("Unsupported data type at last position: ", type(format_or_text))
|
|
|
|
if self.hier_or_flat == "hier":
|
|
header_rows, header_columns = header_info
|
|
if (header_rows <= 1) and (header_columns <= 1):
|
|
continue
|
|
elif self.hier_or_flat == "flat":
|
|
header_rows, header_columns = header_info
|
|
if (header_rows > 1) or (header_columns > 1):
|
|
continue
|
|
sampling_matrix = self.tokenizer.sampling(
|
|
token_matrix=token_matrix,
|
|
number_matrix=number_matrix,
|
|
header_info=header_info,
|
|
max_disturb_num=self.max_disturb_num,
|
|
disturb_prob=self.disturb_prob,
|
|
clc_rate=self.clc_rate
|
|
)
|
|
results = self.tokenizer.objective_preprocess(
|
|
sampling_matrix=sampling_matrix,
|
|
token_matrix=token_matrix,
|
|
number_matrix=number_matrix,
|
|
position_lists=position_lists,
|
|
format_matrix=format_matrix,
|
|
context=context,
|
|
add_sep=self.add_separate
|
|
)
|
|
if (results is None) or (len(results[0]) > self.max_cell_num):
|
|
continue
|
|
token_seq = [tok for cell in results[0] for tok in cell]
|
|
if len(token_seq) > self.max_seq_len:
|
|
continue
|
|
semi_input.append(results)
|
|
return semi_input
|
|
|
|
def _empty(self):
|
|
return self.start + self.batch_size >= self.end
|
|
|
|
def __del__(self):
|
|
for fr in self.f_reads:
|
|
fr.close()
|
|
|
|
def __iter__(self):
|
|
while True:
|
|
if self._empty():
|
|
self._fill_buf()
|
|
if not self.buffer:
|
|
print("Warning: worker {}'s data buffer is empty".format(self.proc_id))
|
|
|
|
semi_input = self.buffer[self.start: self.start+self.batch_size]
|
|
self.start += self.batch_size
|
|
batch_max_seq_len = 0
|
|
|
|
all_token_id, all_num_mag, all_num_pre, all_num_top, all_num_low = [], [], [], [], []
|
|
all_token_order, all_pos_row, all_pos_col, all_pos_top, all_pos_left = [], [], [], [], []
|
|
all_format_vec, all_indicator = [], []
|
|
all_mlm_label, all_clc_label, all_tcr_label = [], [], []
|
|
|
|
for (tok_list, num_list, pos_list, fmt_list, cell_ind, cell_mlm, cell_clc, cell_tcr) in semi_input:
|
|
token_id, num_mag, num_pre, num_top, num_low = [], [], [], [], []
|
|
token_order, pos_row, pos_col, pos_top, pos_left = [], [], [], [], []
|
|
format_vec, indicator = [], []
|
|
mlm_label, clc_label, tcr_label = [], [], []
|
|
|
|
cell_num = len(tok_list)
|
|
for icell in range(cell_num):
|
|
tokens = tok_list[icell]
|
|
cell_len = len(tokens)
|
|
token_id.extend(tokens)
|
|
token_order.extend([ii for ii in range(cell_len)])
|
|
mlm_label.extend(cell_mlm[icell])
|
|
|
|
num_feats = num_list[icell]
|
|
num_mag.extend([f[0] for f in num_feats])
|
|
num_pre.extend([f[1] for f in num_feats])
|
|
num_top.extend([f[2] for f in num_feats])
|
|
num_low.extend([f[3] for f in num_feats])
|
|
|
|
row, col, ttop, tleft = pos_list[icell]
|
|
pos_row.extend([row for _ in range(cell_len)])
|
|
pos_col.extend([col for _ in range(cell_len)])
|
|
entire_top = UNZIPS[self.target](ttop, self.node_degree, self.total_node)
|
|
pos_top.extend([entire_top for _ in range(cell_len)])
|
|
entire_left = UNZIPS[self.target](tleft, self.node_degree, self.total_node)
|
|
pos_left.extend([entire_left for _ in range(cell_len)])
|
|
|
|
format_vec.extend( [fmt_list[icell] for _ in range(cell_len)] )
|
|
indicator.extend(cell_ind[icell])
|
|
clc_label.extend(cell_clc[icell])
|
|
tcr_label.extend(cell_tcr[icell])
|
|
|
|
seq_len = len(token_id)
|
|
if seq_len > self.max_seq_len: # stop if exceed seq_len bound
|
|
continue
|
|
batch_max_seq_len = max(batch_max_seq_len, seq_len)
|
|
|
|
# append to overall instance set
|
|
all_token_id.append(token_id)
|
|
all_num_mag.append(num_mag)
|
|
all_num_pre.append(num_pre)
|
|
all_num_top.append(num_top)
|
|
all_num_low.append(num_low)
|
|
all_token_order.append(token_order)
|
|
all_pos_row.append(pos_row)
|
|
all_pos_col.append(pos_col)
|
|
all_pos_top.append(pos_top)
|
|
all_pos_left.append(pos_left)
|
|
all_format_vec.append(format_vec)
|
|
all_indicator.append(indicator)
|
|
all_mlm_label.append(mlm_label)
|
|
all_clc_label.append(clc_label)
|
|
all_tcr_label.append(tcr_label)
|
|
|
|
# pad things to batch_max_seq_len
|
|
batch_max_seq_len = ((batch_max_seq_len + 7) // 8) * 8
|
|
for isample in range(self.batch_size):
|
|
all_token_id[isample].extend( [PAD_ID] * (batch_max_seq_len - len(all_token_id[isample])) )
|
|
all_num_mag[isample].extend( [self.magnitude_size + 1] * (batch_max_seq_len - len(all_num_mag[isample])) )
|
|
all_num_pre[isample].extend( [self.precision_size + 1] * (batch_max_seq_len - len(all_num_pre[isample])) )
|
|
all_num_top[isample].extend( [self.top_digit_size + 1] * (batch_max_seq_len - len(all_num_top[isample])) )
|
|
all_num_low[isample].extend( [self.low_digit_size + 1] * (batch_max_seq_len - len(all_num_low[isample])) )
|
|
|
|
all_token_order[isample].extend([0] * (batch_max_seq_len - len(all_token_order[isample])))
|
|
all_pos_row[isample].extend( [self.row_size] * (batch_max_seq_len - len(all_pos_row[isample])) )
|
|
all_pos_col[isample].extend( [self.column_size] * (batch_max_seq_len - len(all_pos_col[isample])) )
|
|
all_pos_top[isample].extend( [self.default_pos] * (batch_max_seq_len - len(all_pos_top[isample])) )
|
|
all_pos_left[isample].extend( [self.default_pos] * (batch_max_seq_len - len(all_pos_left[isample])) )
|
|
|
|
all_format_vec[isample].extend( [self.default_format] * (batch_max_seq_len - len(all_format_vec[isample])) )
|
|
all_indicator[isample].extend([0] * (batch_max_seq_len - len(all_indicator[isample])))
|
|
all_mlm_label[isample].extend([-1] * (batch_max_seq_len - len(all_mlm_label[isample])))
|
|
all_clc_label[isample].extend([0] * (batch_max_seq_len - len(all_clc_label[isample])))
|
|
all_tcr_label[isample].extend([-1] * (batch_max_seq_len - len(all_tcr_label[isample])))
|
|
|
|
yield (
|
|
torch.LongTensor(all_token_id),
|
|
torch.LongTensor(all_num_mag),
|
|
torch.LongTensor(all_num_pre),
|
|
torch.LongTensor(all_num_top),
|
|
torch.LongTensor(all_num_low),
|
|
torch.LongTensor(all_token_order),
|
|
torch.LongTensor(all_pos_row),
|
|
torch.LongTensor(all_pos_col),
|
|
torch.LongTensor(all_pos_top),
|
|
torch.LongTensor(all_pos_left),
|
|
torch.FloatTensor(all_format_vec),
|
|
torch.LongTensor(all_indicator),
|
|
torch.LongTensor(all_mlm_label),
|
|
torch.LongTensor(all_clc_label),
|
|
torch.LongTensor(all_tcr_label)
|
|
)
|
|
|
|
|
|
|
|
class DynamicDataLoaderBase(object):
|
|
def __init__(self, args, proc_id, proc_num, do_shuffle=True):
|
|
self.proc_id = proc_id
|
|
self.do_shuffle = do_shuffle
|
|
self.proc_num = proc_num
|
|
self.batch_size = args.batch_size
|
|
self.buffer_size = args.buffer_size
|
|
self.chunk_size = args.chunk_size
|
|
# load private data sets
|
|
self.f_reads, self.private_datasets, self.dataset_progress = [], [], []
|
|
for ipath, dataset_path in enumerate(args.dataset_paths):
|
|
if ipath % proc_num == proc_id:
|
|
self.f_reads.append( open(dataset_path, "rb") )
|
|
self.private_datasets.append( dataset_path )
|
|
self.dataset_progress.append( 0 )
|
|
self.set_count = len(self.private_datasets)
|
|
print("DataLoader #{} assigned {} sets: {}".format(proc_id, self.set_count, self.private_datasets))
|
|
|
|
self.repeat_read_dataset = True
|
|
self.start = 0
|
|
self.end = 0
|
|
self.buffer = []
|
|
|
|
self.min_cell_len = 16
|
|
self.max_cell_num = args.max_cell_num
|
|
self.max_seq_len = args.max_seq_len
|
|
self.max_cell_length = args.max_cell_length
|
|
self.magnitude_size = args.magnitude_size
|
|
self.precision_size = args.precision_size
|
|
self.top_digit_size = args.top_digit_size
|
|
self.low_digit_size = args.low_digit_size
|
|
self.row_size = args.row_size
|
|
self.column_size = args.column_size
|
|
self.tree_depth = args.tree_depth
|
|
self.node_degree = args.node_degree
|
|
self.total_node = sum(self.node_degree)
|
|
self.default_pos = [self.total_node] * self.tree_depth
|
|
|
|
self.num_format_feature = args.num_format_feature
|
|
self.default_format = [0.25, 0.25, 0., 0., 0., 0., 0., 0., 0., 1., 1.]
|
|
|
|
self.tokenizer = args.tokenizer
|
|
self.max_disturb_num = args.max_disturb_num
|
|
self.disturb_prob = args.disturb_prob
|
|
self.add_separate = args.add_separate
|
|
self.hier_or_flat = args.hier_or_flat
|
|
self.clc_rate = args.clc_rate
|
|
|
|
self.target = args.target
|
|
|
|
def _fill_buf(self):
|
|
if len(self.buffer) > 0 and not self.repeat_read_dataset:
|
|
if self.do_shuffle:
|
|
random.shuffle(self.buffer)
|
|
self.start = 0
|
|
self.end = len(self.buffer)
|
|
else:
|
|
self.buffer = []
|
|
while len(self.buffer) < self.buffer_size:
|
|
set_index = random.randint(0, self.set_count - 1)
|
|
chunk = []
|
|
while len(chunk) < self.chunk_size:
|
|
try:
|
|
tables = pickle.load(self.f_reads[set_index])
|
|
chunk.extend(tables)
|
|
except EOFError:
|
|
if not self.repeat_read_dataset:
|
|
break
|
|
self.f_reads[set_index].seek(0)
|
|
tables = pickle.load(self.f_reads[set_index])
|
|
chunk.extend(tables)
|
|
print("DataLoader #{}, pickle loaded chunk of size {} from {}".format(self.proc_id, len(chunk), self.private_datasets[set_index]))
|
|
semi_input = self.sift_and_prep(chunk)
|
|
print("DataLoader #{}, tokenier resulted {} inputs from {} tables".format(self.proc_id, len(semi_input), len(chunk)))
|
|
self.buffer.extend( semi_input )
|
|
self.dataset_progress[set_index] += len(semi_input)
|
|
|
|
if self.do_shuffle:
|
|
random.shuffle(self.buffer)
|
|
self.start = 0
|
|
self.end = len(self.buffer)
|
|
data_step_msg = ["{} ({})".format(dataset.split('/')[-1], steps) for dataset, steps in zip(self.private_datasets, self.dataset_progress)]
|
|
print("DataLoader #{} dataset steps: {}".format(self.proc_id, data_step_msg))
|
|
|
|
def sift_and_prep(self, instances):
|
|
semi_input = []
|
|
for ins in instances:
|
|
token_matrix, number_matrix, position_lists, header_info, format_or_text = ins
|
|
format_matrix, context = None, None
|
|
if isinstance(format_or_text, str): # wiki, title
|
|
context = (format_or_text, )
|
|
elif isinstance(format_or_text, list): # sheet, format_matrix
|
|
format_matrix = format_or_text
|
|
elif isinstance(format_or_text, tuple): # wdc, context = (title, page_title, text_before, text_after)
|
|
context = format_or_text
|
|
else:
|
|
print("Unsupported data type at last position: ", type(format_or_text))
|
|
|
|
if self.hier_or_flat == "hier":
|
|
header_rows, header_columns = header_info
|
|
if (header_rows <= 1) and (header_columns <= 1):
|
|
continue
|
|
elif self.hier_or_flat == "flat":
|
|
header_rows, header_columns = header_info
|
|
if (header_rows > 1) or (header_columns > 1):
|
|
continue
|
|
sampling_matrix = self.tokenizer.sampling(
|
|
token_matrix=token_matrix,
|
|
number_matrix=number_matrix,
|
|
header_info=header_info,
|
|
max_disturb_num=self.max_disturb_num,
|
|
disturb_prob=self.disturb_prob,
|
|
clc_rate=self.clc_rate
|
|
)
|
|
results = self.tokenizer.objective_preprocess(
|
|
sampling_matrix=sampling_matrix,
|
|
token_matrix=token_matrix,
|
|
number_matrix=number_matrix,
|
|
position_lists=position_lists,
|
|
format_matrix=format_matrix,
|
|
context=context,
|
|
add_sep=self.add_separate
|
|
)
|
|
if (results is None) or (len(results[0]) > self.max_cell_num):
|
|
continue
|
|
token_seq = [tok for cell in results[0] for tok in cell]
|
|
if len(token_seq) > self.max_seq_len:
|
|
continue
|
|
semi_input.append(results)
|
|
return semi_input
|
|
|
|
def _empty(self):
|
|
return self.start + self.batch_size >= self.end
|
|
|
|
def __del__(self):
|
|
for fr in self.f_reads:
|
|
fr.close()
|
|
|
|
def __iter__(self):
|
|
while True:
|
|
if self._empty():
|
|
self._fill_buf()
|
|
if not self.buffer:
|
|
print("Warning: worker {}'s data buffer is empty".format(self.proc_id))
|
|
|
|
semi_input = self.buffer[self.start: self.start+self.batch_size]
|
|
self.start += self.batch_size
|
|
batch_max_seq_len = 0
|
|
|
|
all_token_id, all_num_mag, all_num_pre, all_num_top, all_num_low = [], [], [], [], []
|
|
all_token_order, all_pos_top, all_pos_left, all_format_vec, all_indicator = [], [], [], [], []
|
|
all_mlm_label, all_clc_label, all_tcr_label = [], [], []
|
|
|
|
for (tok_list, num_list, pos_list, fmt_list, cell_ind, cell_mlm, cell_clc, cell_tcr) in semi_input:
|
|
token_id, num_mag, num_pre, num_top, num_low = [], [], [], [], []
|
|
token_order, pos_top, pos_left, format_vec, indicator = [], [], [], [], []
|
|
mlm_label, clc_label, tcr_label = [], [], []
|
|
|
|
cell_num = len(tok_list)
|
|
for icell in range(cell_num):
|
|
tokens = tok_list[icell]
|
|
cell_len = len(tokens)
|
|
token_id.extend(tokens)
|
|
token_order.extend([ii for ii in range(cell_len)])
|
|
mlm_label.extend(cell_mlm[icell])
|
|
|
|
num_feats = num_list[icell]
|
|
num_mag.extend([f[0] for f in num_feats])
|
|
num_pre.extend([f[1] for f in num_feats])
|
|
num_top.extend([f[2] for f in num_feats])
|
|
num_low.extend([f[3] for f in num_feats])
|
|
|
|
row, col, ttop, tleft = pos_list[icell]
|
|
entire_top = UNZIPS[self.target](ttop, self.node_degree, self.total_node)
|
|
pos_top.extend([entire_top for _ in range(cell_len)])
|
|
entire_left = UNZIPS[self.target](tleft, self.node_degree, self.total_node)
|
|
pos_left.extend([entire_left for _ in range(cell_len)])
|
|
|
|
format_vec.extend( [fmt_list[icell] for _ in range(cell_len)] )
|
|
indicator.extend(cell_ind[icell])
|
|
clc_label.extend(cell_clc[icell])
|
|
tcr_label.extend(cell_tcr[icell])
|
|
|
|
seq_len = len(token_id)
|
|
if seq_len > self.max_seq_len: # stop if exceed seq_len bound
|
|
continue
|
|
batch_max_seq_len = max(batch_max_seq_len, seq_len)
|
|
|
|
# append to overall instance set
|
|
all_token_id.append(token_id)
|
|
all_num_mag.append(num_mag)
|
|
all_num_pre.append(num_pre)
|
|
all_num_top.append(num_top)
|
|
all_num_low.append(num_low)
|
|
all_token_order.append(token_order)
|
|
all_pos_top.append(pos_top)
|
|
all_pos_left.append(pos_left)
|
|
all_format_vec.append(format_vec)
|
|
all_indicator.append(indicator)
|
|
all_mlm_label.append(mlm_label)
|
|
all_clc_label.append(clc_label)
|
|
all_tcr_label.append(tcr_label)
|
|
|
|
# pad things to batch_max_seq_len
|
|
batch_max_seq_len = ((batch_max_seq_len + 7) // 8) * 8
|
|
for isample in range(self.batch_size):
|
|
all_token_id[isample].extend( [PAD_ID] * (batch_max_seq_len - len(all_token_id[isample])) )
|
|
all_num_mag[isample].extend( [self.magnitude_size + 1] * (batch_max_seq_len - len(all_num_mag[isample])) )
|
|
all_num_pre[isample].extend( [self.precision_size + 1] * (batch_max_seq_len - len(all_num_pre[isample])) )
|
|
all_num_top[isample].extend( [self.top_digit_size + 1] * (batch_max_seq_len - len(all_num_top[isample])) )
|
|
all_num_low[isample].extend( [self.low_digit_size + 1] * (batch_max_seq_len - len(all_num_low[isample])) )
|
|
|
|
all_token_order[isample].extend([0] * (batch_max_seq_len - len(all_token_order[isample])))
|
|
all_pos_top[isample].extend( [self.default_pos] * (batch_max_seq_len - len(all_pos_top[isample])) )
|
|
all_pos_left[isample].extend( [self.default_pos] * (batch_max_seq_len - len(all_pos_left[isample])) )
|
|
|
|
all_format_vec[isample].extend( [self.default_format] * (batch_max_seq_len - len(all_format_vec[isample])) )
|
|
all_indicator[isample].extend([0] * (batch_max_seq_len - len(all_indicator[isample])))
|
|
all_mlm_label[isample].extend([-1] * (batch_max_seq_len - len(all_mlm_label[isample])))
|
|
all_clc_label[isample].extend([0] * (batch_max_seq_len - len(all_clc_label[isample])))
|
|
all_tcr_label[isample].extend([-1] * (batch_max_seq_len - len(all_tcr_label[isample])))
|
|
|
|
yield (
|
|
torch.LongTensor(all_token_id),
|
|
torch.LongTensor(all_num_mag),
|
|
torch.LongTensor(all_num_pre),
|
|
torch.LongTensor(all_num_top),
|
|
torch.LongTensor(all_num_low),
|
|
torch.LongTensor(all_token_order),
|
|
torch.LongTensor(all_pos_top),
|
|
torch.LongTensor(all_pos_left),
|
|
torch.FloatTensor(all_format_vec),
|
|
torch.LongTensor(all_indicator),
|
|
torch.LongTensor(all_mlm_label),
|
|
torch.LongTensor(all_clc_label),
|
|
torch.LongTensor(all_tcr_label)
|
|
)
|
|
|
|
|
|
|
|
DataLoaders = {
|
|
"base": DynamicDataLoaderBase,
|
|
"tuta": DynamicDataLoader,
|
|
"tuta_explicit": DynamicDataLoader
|
|
}
|