зеркало из https://github.com/microsoft/UniSpeech.git
add speaker verification demo
This commit is contained in:
Родитель
c983d09fd7
Коммит
fab3b6909c
|
@ -0,0 +1,45 @@
|
|||
## Pre-training Representations for Speaker Verification
|
||||
|
||||
### Pre-trained models
|
||||
|
||||
| Model | Fix pre-train | Vox1-O | Vox1-E | Vox1-H |
|
||||
| ------------------------------------------------------------ | ------------- | --------- | --------- | -------- |
|
||||
| [ECAPA-TDNN](https://drive.google.com/file/d/1kWmLyTGkBExTdxtwmrXoP4DhWz_7ZAv3/view?usp=sharing) | - | 1.080 | 1.200 | 2.127 |
|
||||
| [HuBERT large](https://drive.google.com/file/d/1cQAPIzg8DJASZyAYdaBN0gRa8piPQTMo/view?usp=sharing) | Yes | 0.888 | 0.912 | 1.853 |
|
||||
| [Wav2Vec2.0 (XLSR)](https://drive.google.com/file/d/1FiGokGtF2d7rkD9OpqLiQxKSqppTSXbl/view?usp=sharing) | Yes | 0.915 | 0.945 | 1.895 |
|
||||
| [**UniSpeech-SAT large**](https://drive.google.com/file/d/1W6KRt5Ci2T7_xPVdlE3JGdQG2KTrZ750/view?usp=sharing) | Yes | 0.771 | 0.781 | 1.669 |
|
||||
| [HuBERT large](https://drive.google.com/file/d/1nit9Z6RyM8Sdb3n8ccaglOQVNnqsjnui/view?usp=sharing) | No | 0.585 | 0.654 | 1.342 |
|
||||
| [Wav2Vec2.0 (XLSR)](https://drive.google.com/file/d/1TgKro9pp197TCgIF__IlE_rMVQOk50Eb/view?usp=sharing) | No | 0.564 | 0.605 | 1.23 |
|
||||
| [**UniSpeech-SAT large**](https://drive.google.com/file/d/10o6NHZsPXJn2k8n57e8Z_FkKh3V4TC3g/view?usp=sharing) | No | **0.564** | **0.561** | **1.23** |
|
||||
|
||||
### How to use?
|
||||
|
||||
#### Environment Setup
|
||||
|
||||
1. `pip install -r requirements.txt`
|
||||
2. Install fairseq code
|
||||
- For HuBERT_Large and Wav2Vec2.0 (XLSR), we should install the official [fairseq](https://github.com/pytorch/fairseq).
|
||||
- For UniSpeech-SAT large, we should install the [Unispeech-SAT](https://github.com/microsoft/UniSpeech/tree/main/UniSpeech-SAT) fairseq code.
|
||||
|
||||
#### Example
|
||||
|
||||
Take `unispeech_sat ` and `ecapa_tdnn` for example:
|
||||
|
||||
1. First, you should download the pre-trained model in the above table to `checkpoint_path`.
|
||||
2. Then, run the following codes:
|
||||
- The wav files are sampled from [voxceleb1](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html).
|
||||
|
||||
```bash
|
||||
python verification.py --model_name unispeech_sat --wav1 vox1_data/David_Faustino/hn8GyCJIfLM_0000012.wav --wav2 vox1_data/Josh_Gad/HXUqYaOwrxA_0000015.wav --checkpoint $checkpoint_path
|
||||
# output: The similarity score between two audios is 0.0317 (-1.0, 1.0).
|
||||
|
||||
python verification.py --model_name unispeech_sat --wav1 vox1_data/David_Faustino/hn8GyCJIfLM_0000012.wav --wav2 vox1_data/David_Faustino/xTOk1Jz-F_g_0000015.wav --checkpoint --checkpoint $checkpoint_path
|
||||
# output: The similarity score between two audios is 0.5389 (-1.0, 1.0).
|
||||
|
||||
python verification.py --model_name ecapa_tdnn --wav1 vox1_data/David_Faustino/hn8GyCJIfLM_0000012.wav --wav2 vox1_data/Josh_Gad/HXUqYaOwrxA_0000015.wav --checkpoint $checkpoint_path
|
||||
# output: The similarity score between two audios is 0.2053 (-1.0, 1.0).
|
||||
|
||||
python verification.py --model_name ecapa_tdnn --wav1 vox1_data/David_Faustino/hn8GyCJIfLM_0000012.wav --wav2 vox1_data/David_Faustino/xTOk1Jz-F_g_0000015.wav --checkpoint --checkpoint $checkpoint_path
|
||||
# output: he similarity score between two audios is 0.5302 (-1.0, 1.0).
|
||||
```
|
||||
|
Двоичный файл не отображается.
|
@ -0,0 +1,301 @@
|
|||
# part of the code is borrowed from https://github.com/lawlict/ECAPA-TDNN
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torchaudio.transforms as trans
|
||||
from .utils import UpstreamExpert
|
||||
|
||||
|
||||
''' Res2Conv1d + BatchNorm1d + ReLU
|
||||
'''
|
||||
|
||||
|
||||
class Res2Conv1dReluBn(nn.Module):
|
||||
'''
|
||||
in_channels == out_channels == channels
|
||||
'''
|
||||
|
||||
def __init__(self, channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True, scale=4):
|
||||
super().__init__()
|
||||
assert channels % scale == 0, "{} % {} != 0".format(channels, scale)
|
||||
self.scale = scale
|
||||
self.width = channels // scale
|
||||
self.nums = scale if scale == 1 else scale - 1
|
||||
|
||||
self.convs = []
|
||||
self.bns = []
|
||||
for i in range(self.nums):
|
||||
self.convs.append(nn.Conv1d(self.width, self.width, kernel_size, stride, padding, dilation, bias=bias))
|
||||
self.bns.append(nn.BatchNorm1d(self.width))
|
||||
self.convs = nn.ModuleList(self.convs)
|
||||
self.bns = nn.ModuleList(self.bns)
|
||||
|
||||
def forward(self, x):
|
||||
out = []
|
||||
spx = torch.split(x, self.width, 1)
|
||||
for i in range(self.nums):
|
||||
if i == 0:
|
||||
sp = spx[i]
|
||||
else:
|
||||
sp = sp + spx[i]
|
||||
# Order: conv -> relu -> bn
|
||||
sp = self.convs[i](sp)
|
||||
sp = self.bns[i](F.relu(sp))
|
||||
out.append(sp)
|
||||
if self.scale != 1:
|
||||
out.append(spx[self.nums])
|
||||
out = torch.cat(out, dim=1)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
''' Conv1d + BatchNorm1d + ReLU
|
||||
'''
|
||||
|
||||
|
||||
class Conv1dReluBn(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True):
|
||||
super().__init__()
|
||||
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias)
|
||||
self.bn = nn.BatchNorm1d(out_channels)
|
||||
|
||||
def forward(self, x):
|
||||
return self.bn(F.relu(self.conv(x)))
|
||||
|
||||
|
||||
''' The SE connection of 1D case.
|
||||
'''
|
||||
|
||||
|
||||
class SE_Connect(nn.Module):
|
||||
def __init__(self, channels, se_bottleneck_dim=128):
|
||||
super().__init__()
|
||||
self.linear1 = nn.Linear(channels, se_bottleneck_dim)
|
||||
self.linear2 = nn.Linear(se_bottleneck_dim, channels)
|
||||
|
||||
def forward(self, x):
|
||||
out = x.mean(dim=2)
|
||||
out = F.relu(self.linear1(out))
|
||||
out = torch.sigmoid(self.linear2(out))
|
||||
out = x * out.unsqueeze(2)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
''' SE-Res2Block of the ECAPA-TDNN architecture.
|
||||
'''
|
||||
|
||||
|
||||
# def SE_Res2Block(channels, kernel_size, stride, padding, dilation, scale):
|
||||
# return nn.Sequential(
|
||||
# Conv1dReluBn(channels, 512, kernel_size=1, stride=1, padding=0),
|
||||
# Res2Conv1dReluBn(512, kernel_size, stride, padding, dilation, scale=scale),
|
||||
# Conv1dReluBn(512, channels, kernel_size=1, stride=1, padding=0),
|
||||
# SE_Connect(channels)
|
||||
# )
|
||||
|
||||
|
||||
class SE_Res2Block(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, scale, se_bottleneck_dim):
|
||||
super().__init__()
|
||||
self.Conv1dReluBn1 = Conv1dReluBn(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
||||
self.Res2Conv1dReluBn = Res2Conv1dReluBn(out_channels, kernel_size, stride, padding, dilation, scale=scale)
|
||||
self.Conv1dReluBn2 = Conv1dReluBn(out_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
||||
self.SE_Connect = SE_Connect(out_channels, se_bottleneck_dim)
|
||||
|
||||
self.shortcut = None
|
||||
if in_channels != out_channels:
|
||||
self.shortcut = nn.Conv1d(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=1,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
if self.shortcut:
|
||||
residual = self.shortcut(x)
|
||||
|
||||
x = self.Conv1dReluBn1(x)
|
||||
x = self.Res2Conv1dReluBn(x)
|
||||
x = self.Conv1dReluBn2(x)
|
||||
x = self.SE_Connect(x)
|
||||
|
||||
return x + residual
|
||||
|
||||
|
||||
''' Attentive weighted mean and standard deviation pooling.
|
||||
'''
|
||||
|
||||
|
||||
class AttentiveStatsPool(nn.Module):
|
||||
def __init__(self, in_dim, attention_channels=128, global_context_att=False):
|
||||
super().__init__()
|
||||
self.global_context_att = global_context_att
|
||||
|
||||
# Use Conv1d with stride == 1 rather than Linear, then we don't need to transpose inputs.
|
||||
if global_context_att:
|
||||
self.linear1 = nn.Conv1d(in_dim * 3, attention_channels, kernel_size=1) # equals W and b in the paper
|
||||
else:
|
||||
self.linear1 = nn.Conv1d(in_dim, attention_channels, kernel_size=1) # equals W and b in the paper
|
||||
self.linear2 = nn.Conv1d(attention_channels, in_dim, kernel_size=1) # equals V and k in the paper
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
if self.global_context_att:
|
||||
context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x)
|
||||
context_std = torch.sqrt(torch.var(x, dim=-1, keepdim=True) + 1e-10).expand_as(x)
|
||||
x_in = torch.cat((x, context_mean, context_std), dim=1)
|
||||
else:
|
||||
x_in = x
|
||||
|
||||
# DON'T use ReLU here! In experiments, I find ReLU hard to converge.
|
||||
alpha = torch.tanh(self.linear1(x_in))
|
||||
# alpha = F.relu(self.linear1(x_in))
|
||||
alpha = torch.softmax(self.linear2(alpha), dim=2)
|
||||
mean = torch.sum(alpha * x, dim=2)
|
||||
residuals = torch.sum(alpha * (x ** 2), dim=2) - mean ** 2
|
||||
std = torch.sqrt(residuals.clamp(min=1e-9))
|
||||
return torch.cat([mean, std], dim=1)
|
||||
|
||||
|
||||
class ECAPA_TDNN(nn.Module):
|
||||
def __init__(self, feat_dim=80, channels=512, emb_dim=192, global_context_att=False,
|
||||
feat_type='fbank', sr=16000, feature_selection="hidden_states", update_extract=False, config_path=None):
|
||||
super().__init__()
|
||||
|
||||
self.feat_type = feat_type
|
||||
self.feature_selection = feature_selection
|
||||
self.update_extract = update_extract
|
||||
self.sr = sr
|
||||
|
||||
if feat_type == "fbank" or feat_type == "mfcc":
|
||||
self.update_extract = False
|
||||
|
||||
win_len = int(sr * 0.025)
|
||||
hop_len = int(sr * 0.01)
|
||||
|
||||
if feat_type == 'fbank':
|
||||
self.feature_extract = trans.MelSpectrogram(sample_rate=sr, n_fft=512, win_length=win_len,
|
||||
hop_length=hop_len, f_min=0.0, f_max=sr // 2,
|
||||
pad=0, n_mels=feat_dim)
|
||||
elif feat_type == 'mfcc':
|
||||
melkwargs = {
|
||||
'n_fft': 512,
|
||||
'win_length': win_len,
|
||||
'hop_length': hop_len,
|
||||
'f_min': 0.0,
|
||||
'f_max': sr // 2,
|
||||
'pad': 0
|
||||
}
|
||||
self.feature_extract = trans.MFCC(sample_rate=sr, n_mfcc=feat_dim, log_mels=False,
|
||||
melkwargs=melkwargs)
|
||||
else:
|
||||
if config_path is None:
|
||||
self.feature_extract = torch.hub.load('s3prl/s3prl', feat_type)
|
||||
else:
|
||||
self.feature_extract = UpstreamExpert(config_path)
|
||||
if len(self.feature_extract.model.encoder.layers) == 24 and hasattr(self.feature_extract.model.encoder.layers[23].self_attn, "fp32_attention"):
|
||||
self.feature_extract.model.encoder.layers[23].self_attn.fp32_attention = False
|
||||
if len(self.feature_extract.model.encoder.layers) == 24 and hasattr(self.feature_extract.model.encoder.layers[11].self_attn, "fp32_attention"):
|
||||
self.feature_extract.model.encoder.layers[11].self_attn.fp32_attention = False
|
||||
|
||||
self.feat_num = self.get_feat_num()
|
||||
self.feature_weight = nn.Parameter(torch.zeros(self.feat_num))
|
||||
|
||||
if feat_type != 'fbank' and feat_type != 'mfcc':
|
||||
freeze_list = ['final_proj', 'label_embs_concat', 'mask_emb', 'project_q', 'quantizer']
|
||||
for name, param in self.feature_extract.named_parameters():
|
||||
for freeze_val in freeze_list:
|
||||
if freeze_val in name:
|
||||
param.requires_grad = False
|
||||
break
|
||||
|
||||
if not self.update_extract:
|
||||
for param in self.feature_extract.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
self.instance_norm = nn.InstanceNorm1d(feat_dim)
|
||||
# self.channels = [channels] * 4 + [channels * 3]
|
||||
self.channels = [channels] * 4 + [1536]
|
||||
|
||||
self.layer1 = Conv1dReluBn(feat_dim, self.channels[0], kernel_size=5, padding=2)
|
||||
self.layer2 = SE_Res2Block(self.channels[0], self.channels[1], kernel_size=3, stride=1, padding=2, dilation=2, scale=8, se_bottleneck_dim=128)
|
||||
self.layer3 = SE_Res2Block(self.channels[1], self.channels[2], kernel_size=3, stride=1, padding=3, dilation=3, scale=8, se_bottleneck_dim=128)
|
||||
self.layer4 = SE_Res2Block(self.channels[2], self.channels[3], kernel_size=3, stride=1, padding=4, dilation=4, scale=8, se_bottleneck_dim=128)
|
||||
|
||||
# self.conv = nn.Conv1d(self.channels[-1], self.channels[-1], kernel_size=1)
|
||||
cat_channels = channels * 3
|
||||
self.conv = nn.Conv1d(cat_channels, self.channels[-1], kernel_size=1)
|
||||
self.pooling = AttentiveStatsPool(self.channels[-1], attention_channels=128, global_context_att=global_context_att)
|
||||
self.bn = nn.BatchNorm1d(self.channels[-1] * 2)
|
||||
self.linear = nn.Linear(self.channels[-1] * 2, emb_dim)
|
||||
|
||||
|
||||
def get_feat_num(self):
|
||||
self.feature_extract.eval()
|
||||
wav = [torch.randn(self.sr).to(next(self.feature_extract.parameters()).device)]
|
||||
with torch.no_grad():
|
||||
features = self.feature_extract(wav)
|
||||
select_feature = features[self.feature_selection]
|
||||
if isinstance(select_feature, (list, tuple)):
|
||||
return len(select_feature)
|
||||
else:
|
||||
return 1
|
||||
|
||||
def get_feat(self, x):
|
||||
if self.update_extract:
|
||||
x = self.feature_extract([sample for sample in x])
|
||||
else:
|
||||
with torch.no_grad():
|
||||
if self.feat_type == 'fbank' or self.feat_type == 'mfcc':
|
||||
x = self.feature_extract(x) + 1e-6 # B x feat_dim x time_len
|
||||
else:
|
||||
x = self.feature_extract([sample for sample in x])
|
||||
|
||||
if self.feat_type == 'fbank':
|
||||
x = x.log()
|
||||
|
||||
if self.feat_type != "fbank" and self.feat_type != "mfcc":
|
||||
x = x[self.feature_selection]
|
||||
if isinstance(x, (list, tuple)):
|
||||
x = torch.stack(x, dim=0)
|
||||
else:
|
||||
x = x.unsqueeze(0)
|
||||
norm_weights = F.softmax(self.feature_weight, dim=-1).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
|
||||
x = (norm_weights * x).sum(dim=0)
|
||||
x = torch.transpose(x, 1, 2) + 1e-6
|
||||
|
||||
x = self.instance_norm(x)
|
||||
return x
|
||||
|
||||
def forward(self, x):
|
||||
x = self.get_feat(x)
|
||||
|
||||
out1 = self.layer1(x)
|
||||
out2 = self.layer2(out1)
|
||||
out3 = self.layer3(out2)
|
||||
out4 = self.layer4(out3)
|
||||
|
||||
out = torch.cat([out2, out3, out4], dim=1)
|
||||
out = F.relu(self.conv(out))
|
||||
out = self.bn(self.pooling(out))
|
||||
out = self.linear(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def ECAPA_TDNN_SMALL(feat_dim, emb_dim=256, feat_type='fbank', sr=16000, feature_selection="hidden_states", update_extract=False, config_path=None):
|
||||
return ECAPA_TDNN(feat_dim=feat_dim, channels=512, emb_dim=emb_dim,
|
||||
feat_type=feat_type, sr=sr, feature_selection=feature_selection, update_extract=update_extract, config_path=config_path)
|
||||
|
||||
if __name__ == '__main__':
|
||||
x = torch.zeros(2, 32000)
|
||||
model = ECAPA_TDNN_SMALL(feat_dim=768, emb_dim=256, feat_type='hubert_base', feature_selection="hidden_states",
|
||||
update_extract=False)
|
||||
|
||||
out = model(x)
|
||||
# print(model)
|
||||
print(out.shape)
|
||||
|
|
@ -0,0 +1,78 @@
|
|||
import torch
|
||||
import fairseq
|
||||
from packaging import version
|
||||
import torch.nn.functional as F
|
||||
from fairseq import tasks
|
||||
from fairseq.checkpoint_utils import load_checkpoint_to_cpu
|
||||
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
|
||||
from omegaconf import OmegaConf
|
||||
from s3prl.upstream.interfaces import UpstreamBase
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
def load_model(filepath):
|
||||
state = torch.load(filepath, map_location=lambda storage, loc: storage)
|
||||
# state = load_checkpoint_to_cpu(filepath)
|
||||
state["cfg"] = OmegaConf.create(state["cfg"])
|
||||
|
||||
if "args" in state and state["args"] is not None:
|
||||
cfg = convert_namespace_to_omegaconf(state["args"])
|
||||
elif "cfg" in state and state["cfg"] is not None:
|
||||
cfg = state["cfg"]
|
||||
else:
|
||||
raise RuntimeError(
|
||||
f"Neither args nor cfg exist in state keys = {state.keys()}"
|
||||
)
|
||||
|
||||
task = tasks.setup_task(cfg.task)
|
||||
if "task_state" in state:
|
||||
task.load_state_dict(state["task_state"])
|
||||
|
||||
model = task.build_model(cfg.model)
|
||||
|
||||
return model, cfg, task
|
||||
|
||||
|
||||
###################
|
||||
# UPSTREAM EXPERT #
|
||||
###################
|
||||
class UpstreamExpert(UpstreamBase):
|
||||
def __init__(self, ckpt, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
assert version.parse(fairseq.__version__) > version.parse(
|
||||
"0.10.2"
|
||||
), "Please install the fairseq master branch."
|
||||
|
||||
model, cfg, task = load_model(ckpt)
|
||||
self.model = model
|
||||
self.task = task
|
||||
|
||||
if len(self.hooks) == 0:
|
||||
module_name = "self.model.encoder.layers"
|
||||
for module_id in range(len(eval(module_name))):
|
||||
self.add_hook(
|
||||
f"{module_name}[{module_id}]",
|
||||
lambda input, output: input[0].transpose(0, 1),
|
||||
)
|
||||
self.add_hook("self.model.encoder", lambda input, output: output[0])
|
||||
|
||||
def forward(self, wavs):
|
||||
if self.task.cfg.normalize:
|
||||
wavs = [F.layer_norm(wav, wav.shape) for wav in wavs]
|
||||
|
||||
device = wavs[0].device
|
||||
wav_lengths = torch.LongTensor([len(wav) for wav in wavs]).to(device)
|
||||
wav_padding_mask = ~torch.lt(
|
||||
torch.arange(max(wav_lengths)).unsqueeze(0).to(device),
|
||||
wav_lengths.unsqueeze(1),
|
||||
)
|
||||
padded_wav = pad_sequence(wavs, batch_first=True)
|
||||
|
||||
features, feat_padding_mask = self.model.extract_features(
|
||||
padded_wav,
|
||||
padding_mask=wav_padding_mask,
|
||||
mask=None,
|
||||
)
|
||||
return {
|
||||
"default": features,
|
||||
}
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
scipy
|
||||
fire
|
||||
sklearn
|
||||
s3prl
|
||||
torchaudio==0.9.0
|
||||
sentencepiece
|
|
@ -0,0 +1,59 @@
|
|||
import soundfile as sf
|
||||
import torch
|
||||
import fire
|
||||
import torch.nn.functional as F
|
||||
from torchaudio.functional import resample
|
||||
from models.ecapa_tdnn import ECAPA_TDNN_SMALL
|
||||
|
||||
MODEL_LIST = ['ecapa_tdnn', 'hubert_large', 'wav2vec2_xlsr', 'unispeech_sat']
|
||||
|
||||
|
||||
def init_model(model_name, checkpoint=None):
|
||||
if model_name == 'unispeech_sat':
|
||||
config_path = 'config/unispeech_sat.th'
|
||||
model = ECAPA_TDNN_SMALL(feat_dim=1024, feat_type='unispeech_sat', config_path=config_path)
|
||||
elif model_name == 'hubert_large':
|
||||
config_path = None
|
||||
model = ECAPA_TDNN_SMALL(feat_dim=1024, feat_type='hubert_large_ll60k', config_path=config_path)
|
||||
elif model_name == 'wav2vec2_xlsr':
|
||||
config_path = None
|
||||
model = ECAPA_TDNN_SMALL(feat_dim=1024, feat_type='wav2vec2_xlsr', config_path=config_path)
|
||||
else:
|
||||
model = ECAPA_TDNN_SMALL(feat_dim=40, feat_type='fbank')
|
||||
|
||||
if checkpoint is not None:
|
||||
state_dict = torch.load(checkpoint, map_location=lambda storage, loc: storage)
|
||||
model.load_state_dict(state_dict['model'], strict=False)
|
||||
return model
|
||||
|
||||
|
||||
def verification(model_name, wav1, wav2, use_gpu=True, checkpoint=None):
|
||||
|
||||
assert model_name in MODEL_LIST, 'The model_name should be in {}'.format(MODEL_LIST)
|
||||
model = init_model(model_name, checkpoint)
|
||||
|
||||
wav1, sr1 = sf.read(wav1)
|
||||
wav2, sr2 = sf.read(wav2)
|
||||
|
||||
wav1 = torch.from_numpy(wav1).unsqueeze(0).float()
|
||||
wav2 = torch.from_numpy(wav2).unsqueeze(0).float()
|
||||
wav1 = resample(wav1, orig_freq=sr1, new_freq=16000)
|
||||
wav2 = resample(wav2, orig_freq=sr2, new_freq=16000)
|
||||
|
||||
if use_gpu:
|
||||
model = model.cuda()
|
||||
wav1 = wav1.cuda()
|
||||
wav2 = wav2.cuda()
|
||||
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
emb1 = model(wav1)
|
||||
emb2 = model(wav2)
|
||||
|
||||
sim = F.cosine_similarity(emb1, emb2)
|
||||
print("The similarity score between two audios is {:.4f} (-1.0, 1.0).".format(sim[0].item()))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(verification)
|
||||
|
Двоичные данные
UniSpeech-SAT/speaker_verification/vox1_data/David_Faustino/hn8GyCJIfLM_0000012.wav
Normal file
Двоичные данные
UniSpeech-SAT/speaker_verification/vox1_data/David_Faustino/hn8GyCJIfLM_0000012.wav
Normal file
Двоичный файл не отображается.
Двоичные данные
UniSpeech-SAT/speaker_verification/vox1_data/David_Faustino/xTOk1Jz-F_g_0000015.wav
Normal file
Двоичные данные
UniSpeech-SAT/speaker_verification/vox1_data/David_Faustino/xTOk1Jz-F_g_0000015.wav
Normal file
Двоичный файл не отображается.
Двоичные данные
UniSpeech-SAT/speaker_verification/vox1_data/Josh_Gad/HXUqYaOwrxA_0000015.wav
Normal file
Двоичные данные
UniSpeech-SAT/speaker_verification/vox1_data/Josh_Gad/HXUqYaOwrxA_0000015.wav
Normal file
Двоичный файл не отображается.
Двоичные данные
UniSpeech-SAT/speaker_verification/vox1_data/Josh_Gad/RFyw7V3SOnQ_0000001.wav
Normal file
Двоичные данные
UniSpeech-SAT/speaker_verification/vox1_data/Josh_Gad/RFyw7V3SOnQ_0000001.wav
Normal file
Двоичный файл не отображается.
Двоичные данные
UniSpeech-SAT/speaker_verification/vox1_data/Lea_Thompson/HladKGyKTLM_0000006.wav
Normal file
Двоичные данные
UniSpeech-SAT/speaker_verification/vox1_data/Lea_Thompson/HladKGyKTLM_0000006.wav
Normal file
Двоичный файл не отображается.
Двоичные данные
UniSpeech-SAT/speaker_verification/vox1_data/Lea_Thompson/mHTAr5dlAgc_0000004.wav
Normal file
Двоичные данные
UniSpeech-SAT/speaker_verification/vox1_data/Lea_Thompson/mHTAr5dlAgc_0000004.wav
Normal file
Двоичный файл не отображается.
Двоичные данные
UniSpeech-SAT/speaker_verification/vox1_data/Zulay_Henao/WbB8m9-wlIQ_0000001.wav
Normal file
Двоичные данные
UniSpeech-SAT/speaker_verification/vox1_data/Zulay_Henao/WbB8m9-wlIQ_0000001.wav
Normal file
Двоичный файл не отображается.
Двоичные данные
UniSpeech-SAT/speaker_verification/vox1_data/Zulay_Henao/gFfcgOVmiO0_0000002.wav
Normal file
Двоичные данные
UniSpeech-SAT/speaker_verification/vox1_data/Zulay_Henao/gFfcgOVmiO0_0000002.wav
Normal file
Двоичный файл не отображается.
Загрузка…
Ссылка в новой задаче