зеркало из https://github.com/microsoft/UniSpeech.git
744 строки
27 KiB
Python
744 строки
27 KiB
Python
# --------------------------------------------------------
|
|
# WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing (https://arxiv.org/abs/2110.13900.pdf)
|
|
# Github source: https://github.com/microsoft/unilm/tree/master/wavlm
|
|
# Copyright (c) 2021 Microsoft
|
|
# Licensed under The MIT License [see LICENSE for details]
|
|
# Based on fairseq code bases
|
|
# https://github.com/pytorch/fairseq
|
|
# --------------------------------------------------------
|
|
|
|
import math
|
|
import logging
|
|
from typing import List, Optional, Tuple
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch.nn import LayerNorm
|
|
from modules import (
|
|
Fp32GroupNorm,
|
|
Fp32LayerNorm,
|
|
GradMultiply,
|
|
MultiheadAttention,
|
|
SamePad,
|
|
init_bert_params,
|
|
get_activation_fn,
|
|
TransposeLast,
|
|
GLU_Linear,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def compute_mask_indices(
|
|
shape: Tuple[int, int],
|
|
padding_mask: Optional[torch.Tensor],
|
|
mask_prob: float,
|
|
mask_length: int,
|
|
mask_type: str = "static",
|
|
mask_other: float = 0.0,
|
|
min_masks: int = 0,
|
|
no_overlap: bool = False,
|
|
min_space: int = 0,
|
|
) -> np.ndarray:
|
|
"""
|
|
Computes random mask spans for a given shape
|
|
|
|
Args:
|
|
shape: the the shape for which to compute masks.
|
|
should be of size 2 where first element is batch size and 2nd is timesteps
|
|
padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements
|
|
mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by
|
|
number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
|
|
however due to overlaps, the actual number will be smaller (unless no_overlap is True)
|
|
mask_type: how to compute mask lengths
|
|
static = fixed size
|
|
uniform = sample from uniform distribution [mask_other, mask_length*2]
|
|
normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element
|
|
poisson = sample from possion distribution with lambda = mask length
|
|
min_masks: minimum number of masked spans
|
|
no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping
|
|
min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans
|
|
"""
|
|
|
|
bsz, all_sz = shape
|
|
mask = np.full((bsz, all_sz), False)
|
|
|
|
all_num_mask = int(
|
|
# add a random number for probabilistic rounding
|
|
mask_prob * all_sz / float(mask_length)
|
|
+ np.random.rand()
|
|
)
|
|
|
|
all_num_mask = max(min_masks, all_num_mask)
|
|
|
|
mask_idcs = []
|
|
for i in range(bsz):
|
|
if padding_mask is not None:
|
|
sz = all_sz - padding_mask[i].long().sum().item()
|
|
num_mask = int(
|
|
# add a random number for probabilistic rounding
|
|
mask_prob * sz / float(mask_length)
|
|
+ np.random.rand()
|
|
)
|
|
num_mask = max(min_masks, num_mask)
|
|
else:
|
|
sz = all_sz
|
|
num_mask = all_num_mask
|
|
|
|
if mask_type == "static":
|
|
lengths = np.full(num_mask, mask_length)
|
|
elif mask_type == "uniform":
|
|
lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask)
|
|
elif mask_type == "normal":
|
|
lengths = np.random.normal(mask_length, mask_other, size=num_mask)
|
|
lengths = [max(1, int(round(x))) for x in lengths]
|
|
elif mask_type == "poisson":
|
|
lengths = np.random.poisson(mask_length, size=num_mask)
|
|
lengths = [int(round(x)) for x in lengths]
|
|
else:
|
|
raise Exception("unknown mask selection " + mask_type)
|
|
|
|
if sum(lengths) == 0:
|
|
lengths[0] = min(mask_length, sz - 1)
|
|
|
|
if no_overlap:
|
|
mask_idc = []
|
|
|
|
def arrange(s, e, length, keep_length):
|
|
span_start = np.random.randint(s, e - length)
|
|
mask_idc.extend(span_start + i for i in range(length))
|
|
|
|
new_parts = []
|
|
if span_start - s - min_space >= keep_length:
|
|
new_parts.append((s, span_start - min_space + 1))
|
|
if e - span_start - keep_length - min_space > keep_length:
|
|
new_parts.append((span_start + length + min_space, e))
|
|
return new_parts
|
|
|
|
parts = [(0, sz)]
|
|
min_length = min(lengths)
|
|
for length in sorted(lengths, reverse=True):
|
|
lens = np.fromiter(
|
|
(e - s if e - s >= length + min_space else 0 for s, e in parts),
|
|
np.int,
|
|
)
|
|
l_sum = np.sum(lens)
|
|
if l_sum == 0:
|
|
break
|
|
probs = lens / np.sum(lens)
|
|
c = np.random.choice(len(parts), p=probs)
|
|
s, e = parts.pop(c)
|
|
parts.extend(arrange(s, e, length, min_length))
|
|
mask_idc = np.asarray(mask_idc)
|
|
else:
|
|
min_len = min(lengths)
|
|
if sz - min_len <= num_mask:
|
|
min_len = sz - num_mask - 1
|
|
|
|
mask_idc = np.random.choice(sz - min_len, num_mask, replace=False)
|
|
|
|
mask_idc = np.asarray(
|
|
[
|
|
mask_idc[j] + offset
|
|
for j in range(len(mask_idc))
|
|
for offset in range(lengths[j])
|
|
]
|
|
)
|
|
|
|
mask_idcs.append(np.unique(mask_idc[mask_idc < sz]))
|
|
|
|
min_len = min([len(m) for m in mask_idcs])
|
|
for i, mask_idc in enumerate(mask_idcs):
|
|
if len(mask_idc) > min_len:
|
|
mask_idc = np.random.choice(mask_idc, min_len, replace=False)
|
|
mask[i, mask_idc] = True
|
|
|
|
return mask
|
|
|
|
|
|
class WavLMConfig:
|
|
def __init__(self, cfg=None):
|
|
self.extractor_mode: str = "default" # mode for feature extractor. default has a single group norm with d groups in the first conv block, whereas layer_norm has layer norms in every block (meant to use with normalize=True)
|
|
self.encoder_layers: int = 12 # num encoder layers in the transformer
|
|
|
|
self.encoder_embed_dim: int = 768 # encoder embedding dimension
|
|
self.encoder_ffn_embed_dim: int = 3072 # encoder embedding dimension for FFN
|
|
self.encoder_attention_heads: int = 12 # num encoder attention heads
|
|
self.activation_fn: str = "gelu" # activation function to use
|
|
|
|
self.layer_norm_first: bool = False # apply layernorm first in the transformer
|
|
self.conv_feature_layers: str = "[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2" # string describing convolutional feature extraction layers in form of a python list that contains [(dim, kernel_size, stride), ...]
|
|
self.conv_bias: bool = False # include bias in conv encoder
|
|
self.feature_grad_mult: float = 1.0 # multiply feature extractor var grads by this
|
|
|
|
self.normalize: bool = False # normalize input to have 0 mean and unit variance during training
|
|
|
|
# dropouts
|
|
self.dropout: float = 0.1 # dropout probability for the transformer
|
|
self.attention_dropout: float = 0.1 # dropout probability for attention weights
|
|
self.activation_dropout: float = 0.0 # dropout probability after activation in FFN
|
|
self.encoder_layerdrop: float = 0.0 # probability of dropping a tarnsformer layer
|
|
self.dropout_input: float = 0.0 # dropout to apply to the input (after feat extr)
|
|
self.dropout_features: float = 0.0 # dropout to apply to the features (after feat extr)
|
|
|
|
# masking
|
|
self.mask_length: int = 10 # mask length)
|
|
self.mask_prob: float = 0.65 # probability of replacing a token with mask
|
|
self.mask_selection: str = "static" # how to choose mask length
|
|
self.mask_other: float = 0 # secondary mask argument (used for more complex distributions), see help in compute_mask_indicesh
|
|
self.no_mask_overlap: bool = False # whether to allow masks to overlap
|
|
self.mask_min_space: int = 1 # min space between spans (if no overlap is enabled)
|
|
|
|
# channel masking
|
|
self.mask_channel_length: int = 10 # length of the mask for features (channels)
|
|
self.mask_channel_prob: float = 0.0 # probability of replacing a feature with 0
|
|
self.mask_channel_selection: str = "static" # how to choose mask length for channel masking
|
|
self.mask_channel_other: float = 0 # secondary mask argument (used for more complex distributions), see help in compute_mask_indices
|
|
self.no_mask_channel_overlap: bool = False # whether to allow channel masks to overlap
|
|
self.mask_channel_min_space: int = 1 # min space between spans (if no overlap is enabled)
|
|
|
|
# positional embeddings
|
|
self.conv_pos: int = 128 # number of filters for convolutional positional embeddings
|
|
self.conv_pos_groups: int = 16 # number of groups for convolutional positional embedding
|
|
|
|
# relative position embedding
|
|
self.relative_position_embedding: bool = False # apply relative position embedding
|
|
self.num_buckets: int = 320 # number of buckets for relative position embedding
|
|
self.max_distance: int = 1280 # maximum distance for relative position embedding
|
|
self.gru_rel_pos: bool = False # apply gated relative position embedding
|
|
|
|
if cfg is not None:
|
|
self.update(cfg)
|
|
|
|
def update(self, cfg: dict):
|
|
self.__dict__.update(cfg)
|
|
|
|
|
|
class WavLM(nn.Module):
|
|
def __init__(
|
|
self,
|
|
cfg: WavLMConfig,
|
|
) -> None:
|
|
super().__init__()
|
|
logger.info(f"WavLM Config: {cfg.__dict__}")
|
|
|
|
self.cfg = cfg
|
|
feature_enc_layers = eval(cfg.conv_feature_layers)
|
|
self.embed = feature_enc_layers[-1][0]
|
|
|
|
self.feature_extractor = ConvFeatureExtractionModel(
|
|
conv_layers=feature_enc_layers,
|
|
dropout=0.0,
|
|
mode=cfg.extractor_mode,
|
|
conv_bias=cfg.conv_bias,
|
|
)
|
|
|
|
self.post_extract_proj = (
|
|
nn.Linear(self.embed, cfg.encoder_embed_dim)
|
|
if self.embed != cfg.encoder_embed_dim
|
|
else None
|
|
)
|
|
|
|
self.mask_prob = cfg.mask_prob
|
|
self.mask_selection = cfg.mask_selection
|
|
self.mask_other = cfg.mask_other
|
|
self.mask_length = cfg.mask_length
|
|
self.no_mask_overlap = cfg.no_mask_overlap
|
|
self.mask_min_space = cfg.mask_min_space
|
|
|
|
self.mask_channel_prob = cfg.mask_channel_prob
|
|
self.mask_channel_selection = cfg.mask_channel_selection
|
|
self.mask_channel_other = cfg.mask_channel_other
|
|
self.mask_channel_length = cfg.mask_channel_length
|
|
self.no_mask_channel_overlap = cfg.no_mask_channel_overlap
|
|
self.mask_channel_min_space = cfg.mask_channel_min_space
|
|
|
|
self.dropout_input = nn.Dropout(cfg.dropout_input)
|
|
self.dropout_features = nn.Dropout(cfg.dropout_features)
|
|
|
|
self.feature_grad_mult = cfg.feature_grad_mult
|
|
|
|
self.mask_emb = nn.Parameter(
|
|
torch.FloatTensor(cfg.encoder_embed_dim).uniform_()
|
|
)
|
|
|
|
self.encoder = TransformerEncoder(cfg)
|
|
self.layer_norm = LayerNorm(self.embed)
|
|
|
|
def apply_mask(self, x, padding_mask):
|
|
B, T, C = x.shape
|
|
if self.mask_prob > 0:
|
|
mask_indices = compute_mask_indices(
|
|
(B, T),
|
|
padding_mask,
|
|
self.mask_prob,
|
|
self.mask_length,
|
|
self.mask_selection,
|
|
self.mask_other,
|
|
min_masks=2,
|
|
no_overlap=self.no_mask_overlap,
|
|
min_space=self.mask_min_space,
|
|
)
|
|
mask_indices = torch.from_numpy(mask_indices).to(x.device)
|
|
x[mask_indices] = self.mask_emb
|
|
else:
|
|
mask_indices = None
|
|
|
|
if self.mask_channel_prob > 0:
|
|
mask_channel_indices = compute_mask_indices(
|
|
(B, C),
|
|
None,
|
|
self.mask_channel_prob,
|
|
self.mask_channel_length,
|
|
self.mask_channel_selection,
|
|
self.mask_channel_other,
|
|
no_overlap=self.no_mask_channel_overlap,
|
|
min_space=self.mask_channel_min_space,
|
|
)
|
|
mask_channel_indices = (
|
|
torch.from_numpy(mask_channel_indices)
|
|
.to(x.device)
|
|
.unsqueeze(1)
|
|
.expand(-1, T, -1)
|
|
)
|
|
x[mask_channel_indices] = 0
|
|
|
|
return x, mask_indices
|
|
|
|
def forward_padding_mask(
|
|
self, features: torch.Tensor, padding_mask: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
extra = padding_mask.size(1) % features.size(1)
|
|
if extra > 0:
|
|
padding_mask = padding_mask[:, :-extra]
|
|
padding_mask = padding_mask.view(
|
|
padding_mask.size(0), features.size(1), -1
|
|
)
|
|
padding_mask = padding_mask.all(-1)
|
|
return padding_mask
|
|
|
|
def extract_features(
|
|
self,
|
|
source: torch.Tensor,
|
|
padding_mask: Optional[torch.Tensor] = None,
|
|
mask: bool = False,
|
|
ret_conv: bool = False,
|
|
output_layer: Optional[int] = None,
|
|
ret_layer_results: bool = False,
|
|
):
|
|
|
|
if self.feature_grad_mult > 0:
|
|
features = self.feature_extractor(source)
|
|
if self.feature_grad_mult != 1.0:
|
|
features = GradMultiply.apply(features, self.feature_grad_mult)
|
|
else:
|
|
with torch.no_grad():
|
|
features = self.feature_extractor(source)
|
|
|
|
features = features.transpose(1, 2)
|
|
features = self.layer_norm(features)
|
|
|
|
if padding_mask is not None:
|
|
padding_mask = self.forward_padding_mask(features, padding_mask)
|
|
|
|
if self.post_extract_proj is not None:
|
|
features = self.post_extract_proj(features)
|
|
|
|
features = self.dropout_input(features)
|
|
|
|
if mask:
|
|
x, mask_indices = self.apply_mask(
|
|
features, padding_mask
|
|
)
|
|
else:
|
|
x = features
|
|
|
|
# feature: (B, T, D), float
|
|
# target: (B, T), long
|
|
# x: (B, T, D), float
|
|
# padding_mask: (B, T), bool
|
|
# mask_indices: (B, T), bool
|
|
x, layer_results = self.encoder(
|
|
x,
|
|
padding_mask=padding_mask,
|
|
layer=None if output_layer is None else output_layer - 1
|
|
)
|
|
|
|
res = {"x": x, "padding_mask": padding_mask, "features": features, "layer_results": layer_results}
|
|
|
|
feature = res["features"] if ret_conv else res["x"]
|
|
if ret_layer_results:
|
|
feature = (feature, res["layer_results"])
|
|
return feature, res["padding_mask"]
|
|
|
|
|
|
class ConvFeatureExtractionModel(nn.Module):
|
|
def __init__(
|
|
self,
|
|
conv_layers: List[Tuple[int, int, int]],
|
|
dropout: float = 0.0,
|
|
mode: str = "default",
|
|
conv_bias: bool = False,
|
|
conv_type: str = "default"
|
|
):
|
|
super().__init__()
|
|
|
|
assert mode in {"default", "layer_norm"}
|
|
|
|
def block(
|
|
n_in,
|
|
n_out,
|
|
k,
|
|
stride,
|
|
is_layer_norm=False,
|
|
is_group_norm=False,
|
|
conv_bias=False,
|
|
):
|
|
def make_conv():
|
|
conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias)
|
|
nn.init.kaiming_normal_(conv.weight)
|
|
return conv
|
|
|
|
assert (
|
|
is_layer_norm and is_group_norm
|
|
) == False, "layer norm and group norm are exclusive"
|
|
|
|
if is_layer_norm:
|
|
return nn.Sequential(
|
|
make_conv(),
|
|
nn.Dropout(p=dropout),
|
|
nn.Sequential(
|
|
TransposeLast(),
|
|
Fp32LayerNorm(dim, elementwise_affine=True),
|
|
TransposeLast(),
|
|
),
|
|
nn.GELU(),
|
|
)
|
|
elif is_group_norm:
|
|
return nn.Sequential(
|
|
make_conv(),
|
|
nn.Dropout(p=dropout),
|
|
Fp32GroupNorm(dim, dim, affine=True),
|
|
nn.GELU(),
|
|
)
|
|
else:
|
|
return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU())
|
|
|
|
self.conv_type = conv_type
|
|
if self.conv_type == "default":
|
|
in_d = 1
|
|
self.conv_layers = nn.ModuleList()
|
|
for i, cl in enumerate(conv_layers):
|
|
assert len(cl) == 3, "invalid conv definition: " + str(cl)
|
|
(dim, k, stride) = cl
|
|
|
|
self.conv_layers.append(
|
|
block(
|
|
in_d,
|
|
dim,
|
|
k,
|
|
stride,
|
|
is_layer_norm=mode == "layer_norm",
|
|
is_group_norm=mode == "default" and i == 0,
|
|
conv_bias=conv_bias,
|
|
)
|
|
)
|
|
in_d = dim
|
|
elif self.conv_type == "conv2d":
|
|
in_d = 1
|
|
self.conv_layers = nn.ModuleList()
|
|
for i, cl in enumerate(conv_layers):
|
|
assert len(cl) == 3
|
|
(dim, k, stride) = cl
|
|
|
|
self.conv_layers.append(
|
|
torch.nn.Conv2d(in_d, dim, k, stride)
|
|
)
|
|
self.conv_layers.append(torch.nn.ReLU())
|
|
in_d = dim
|
|
elif self.conv_type == "custom":
|
|
in_d = 1
|
|
idim = 80
|
|
self.conv_layers = nn.ModuleList()
|
|
for i, cl in enumerate(conv_layers):
|
|
assert len(cl) == 3
|
|
(dim, k, stride) = cl
|
|
self.conv_layers.append(
|
|
torch.nn.Conv2d(in_d, dim, k, stride, padding=1)
|
|
)
|
|
self.conv_layers.append(
|
|
torch.nn.LayerNorm([dim, idim])
|
|
)
|
|
self.conv_layers.append(torch.nn.ReLU())
|
|
in_d = dim
|
|
if (i + 1) % 2 == 0:
|
|
self.conv_layers.append(
|
|
torch.nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
|
)
|
|
idim = int(math.ceil(idim / 2))
|
|
else:
|
|
pass
|
|
|
|
def forward(self, x, mask=None):
|
|
|
|
# BxT -> BxCxT
|
|
x = x.unsqueeze(1)
|
|
if self.conv_type == "custom":
|
|
for conv in self.conv_layers:
|
|
if isinstance(conv, nn.LayerNorm):
|
|
x = x.transpose(1, 2)
|
|
x = conv(x).transpose(1, 2)
|
|
else:
|
|
x = conv(x)
|
|
x = x.transpose(2, 3).contiguous()
|
|
x = x.view(x.size(0), -1, x.size(-1))
|
|
else:
|
|
for conv in self.conv_layers:
|
|
x = conv(x)
|
|
if self.conv_type == "conv2d":
|
|
b, c, t, f = x.size()
|
|
x = x.transpose(2, 3).contiguous().view(b, c * f, t)
|
|
return x
|
|
|
|
|
|
class TransformerEncoder(nn.Module):
|
|
def __init__(self, args):
|
|
super().__init__()
|
|
|
|
self.dropout = args.dropout
|
|
self.embedding_dim = args.encoder_embed_dim
|
|
|
|
self.pos_conv = nn.Conv1d(
|
|
self.embedding_dim,
|
|
self.embedding_dim,
|
|
kernel_size=args.conv_pos,
|
|
padding=args.conv_pos // 2,
|
|
groups=args.conv_pos_groups,
|
|
)
|
|
dropout = 0
|
|
std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim))
|
|
nn.init.normal_(self.pos_conv.weight, mean=0, std=std)
|
|
nn.init.constant_(self.pos_conv.bias, 0)
|
|
|
|
self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2)
|
|
self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU())
|
|
|
|
if hasattr(args, "relative_position_embedding"):
|
|
self.relative_position_embedding = args.relative_position_embedding
|
|
self.num_buckets = args.num_buckets
|
|
self.max_distance = args.max_distance
|
|
else:
|
|
self.relative_position_embedding = False
|
|
self.num_buckets = 0
|
|
self.max_distance = 0
|
|
|
|
self.layers = nn.ModuleList(
|
|
[
|
|
TransformerSentenceEncoderLayer(
|
|
embedding_dim=self.embedding_dim,
|
|
ffn_embedding_dim=args.encoder_ffn_embed_dim,
|
|
num_attention_heads=args.encoder_attention_heads,
|
|
dropout=self.dropout,
|
|
attention_dropout=args.attention_dropout,
|
|
activation_dropout=args.activation_dropout,
|
|
activation_fn=args.activation_fn,
|
|
layer_norm_first=args.layer_norm_first,
|
|
has_relative_attention_bias=(self.relative_position_embedding and i == 0),
|
|
num_buckets=self.num_buckets,
|
|
max_distance=self.max_distance,
|
|
gru_rel_pos=args.gru_rel_pos,
|
|
)
|
|
for i in range(args.encoder_layers)
|
|
]
|
|
)
|
|
|
|
self.layer_norm_first = args.layer_norm_first
|
|
self.layer_norm = LayerNorm(self.embedding_dim)
|
|
self.layerdrop = args.encoder_layerdrop
|
|
|
|
self.apply(init_bert_params)
|
|
|
|
def forward(self, x, padding_mask=None, streaming_mask=None, layer=None):
|
|
x, layer_results = self.extract_features(x, padding_mask, streaming_mask, layer)
|
|
|
|
if self.layer_norm_first and layer is None:
|
|
x = self.layer_norm(x)
|
|
|
|
return x, layer_results
|
|
|
|
def extract_features(self, x, padding_mask=None, streaming_mask=None, tgt_layer=None):
|
|
|
|
if padding_mask is not None:
|
|
x[padding_mask] = 0
|
|
|
|
x_conv = self.pos_conv(x.transpose(1, 2))
|
|
x_conv = x_conv.transpose(1, 2)
|
|
x += x_conv
|
|
|
|
if not self.layer_norm_first:
|
|
x = self.layer_norm(x)
|
|
|
|
x = F.dropout(x, p=self.dropout, training=self.training)
|
|
|
|
# B x T x C -> T x B x C
|
|
x = x.transpose(0, 1)
|
|
|
|
layer_results = []
|
|
z = None
|
|
if tgt_layer is not None:
|
|
layer_results.append((x, z))
|
|
r = None
|
|
pos_bias = None
|
|
for i, layer in enumerate(self.layers):
|
|
dropout_probability = np.random.random()
|
|
if not self.training or (dropout_probability > self.layerdrop):
|
|
x, z, pos_bias = layer(x, self_attn_padding_mask=padding_mask, need_weights=False,
|
|
self_attn_mask=streaming_mask, pos_bias=pos_bias)
|
|
if tgt_layer is not None:
|
|
layer_results.append((x, z))
|
|
if i == tgt_layer:
|
|
r = x
|
|
break
|
|
|
|
if r is not None:
|
|
x = r
|
|
|
|
# T x B x C -> B x T x C
|
|
x = x.transpose(0, 1)
|
|
|
|
return x, layer_results
|
|
|
|
|
|
class TransformerSentenceEncoderLayer(nn.Module):
|
|
"""
|
|
Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained
|
|
models.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
embedding_dim: float = 768,
|
|
ffn_embedding_dim: float = 3072,
|
|
num_attention_heads: float = 8,
|
|
dropout: float = 0.1,
|
|
attention_dropout: float = 0.1,
|
|
activation_dropout: float = 0.1,
|
|
activation_fn: str = "relu",
|
|
layer_norm_first: bool = False,
|
|
has_relative_attention_bias: bool = False,
|
|
num_buckets: int = 0,
|
|
max_distance: int = 0,
|
|
rescale_init: bool = False,
|
|
gru_rel_pos: bool = False,
|
|
) -> None:
|
|
|
|
super().__init__()
|
|
# Initialize parameters
|
|
self.embedding_dim = embedding_dim
|
|
self.dropout = dropout
|
|
self.activation_dropout = activation_dropout
|
|
|
|
# Initialize blocks
|
|
self.activation_name = activation_fn
|
|
self.activation_fn = get_activation_fn(activation_fn)
|
|
self.self_attn = MultiheadAttention(
|
|
self.embedding_dim,
|
|
num_attention_heads,
|
|
dropout=attention_dropout,
|
|
self_attention=True,
|
|
has_relative_attention_bias=has_relative_attention_bias,
|
|
num_buckets=num_buckets,
|
|
max_distance=max_distance,
|
|
rescale_init=rescale_init,
|
|
gru_rel_pos=gru_rel_pos,
|
|
)
|
|
|
|
self.dropout1 = nn.Dropout(dropout)
|
|
self.dropout2 = nn.Dropout(self.activation_dropout)
|
|
self.dropout3 = nn.Dropout(dropout)
|
|
|
|
self.layer_norm_first = layer_norm_first
|
|
|
|
# layer norm associated with the self attention layer
|
|
self.self_attn_layer_norm = LayerNorm(self.embedding_dim)
|
|
|
|
if self.activation_name == "glu":
|
|
self.fc1 = GLU_Linear(self.embedding_dim, ffn_embedding_dim, "swish")
|
|
else:
|
|
self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
|
|
self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)
|
|
|
|
# layer norm associated with the position wise feed-forward NN
|
|
self.final_layer_norm = LayerNorm(self.embedding_dim)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
self_attn_mask: torch.Tensor = None,
|
|
self_attn_padding_mask: torch.Tensor = None,
|
|
need_weights: bool = False,
|
|
pos_bias=None
|
|
):
|
|
"""
|
|
LayerNorm is applied either before or after the self-attention/ffn
|
|
modules similar to the original Transformer imlementation.
|
|
"""
|
|
residual = x
|
|
|
|
if self.layer_norm_first:
|
|
x = self.self_attn_layer_norm(x)
|
|
x, attn, pos_bias = self.self_attn(
|
|
query=x,
|
|
key=x,
|
|
value=x,
|
|
key_padding_mask=self_attn_padding_mask,
|
|
need_weights=False,
|
|
attn_mask=self_attn_mask,
|
|
position_bias=pos_bias
|
|
)
|
|
x = self.dropout1(x)
|
|
x = residual + x
|
|
|
|
residual = x
|
|
x = self.final_layer_norm(x)
|
|
if self.activation_name == "glu":
|
|
x = self.fc1(x)
|
|
else:
|
|
x = self.activation_fn(self.fc1(x))
|
|
x = self.dropout2(x)
|
|
x = self.fc2(x)
|
|
x = self.dropout3(x)
|
|
x = residual + x
|
|
else:
|
|
x, attn, pos_bias = self.self_attn(
|
|
query=x,
|
|
key=x,
|
|
value=x,
|
|
key_padding_mask=self_attn_padding_mask,
|
|
need_weights=need_weights,
|
|
attn_mask=self_attn_mask,
|
|
position_bias=pos_bias
|
|
)
|
|
|
|
x = self.dropout1(x)
|
|
x = residual + x
|
|
|
|
x = self.self_attn_layer_norm(x)
|
|
|
|
residual = x
|
|
if self.activation_name == "glu":
|
|
x = self.fc1(x)
|
|
else:
|
|
x = self.activation_fn(self.fc1(x))
|
|
x = self.dropout2(x)
|
|
x = self.fc2(x)
|
|
x = self.dropout3(x)
|
|
x = residual + x
|
|
x = self.final_layer_norm(x)
|
|
|
|
return x, attn, pos_bias
|
|
|