WSL2-Linux-Kernel/Documentation/dev-tools/kunit/faq.rst

104 строки
5.6 KiB
ReStructuredText
Исходник Постоянная ссылка Обычный вид История

.. SPDX-License-Identifier: GPL-2.0
==========================
Frequently Asked Questions
==========================
How is this different from Autotest, kselftest, etc?
====================================================
KUnit is a unit testing framework. Autotest, kselftest (and some others) are
not.
A `unit test <https://martinfowler.com/bliki/UnitTest.html>`_ is supposed to
test a single unit of code in isolation, hence the name. A unit test should be
the finest granularity of testing and as such should allow all possible code
paths to be tested in the code under test; this is only possible if the code
under test is very small and does not have any external dependencies outside of
the test's control like hardware.
There are no testing frameworks currently available for the kernel that do not
require installing the kernel on a test machine or in a VM and all require
tests to be written in userspace and run on the kernel under test; this is true
for Autotest, kselftest, and some others, disqualifying any of them from being
considered unit testing frameworks.
Does KUnit support running on architectures other than UML?
===========================================================
Yes, well, mostly.
For the most part, the KUnit core framework (what you use to write the tests)
can compile to any architecture; it compiles like just another part of the
kernel and runs when the kernel boots, or when built as a module, when the
module is loaded. However, there is some infrastructure,
like the KUnit Wrapper (``tools/testing/kunit/kunit.py``) that does not support
other architectures.
In short, this means that, yes, you can run KUnit on other architectures, but
it might require more work than using KUnit on UML.
For more information, see :ref:`kunit-on-non-uml`.
What is the difference between a unit test and these other kinds of tests?
==========================================================================
Most existing tests for the Linux kernel would be categorized as an integration
test, or an end-to-end test.
- A unit test is supposed to test a single unit of code in isolation, hence the
name. A unit test should be the finest granularity of testing and as such
should allow all possible code paths to be tested in the code under test; this
is only possible if the code under test is very small and does not have any
external dependencies outside of the test's control like hardware.
- An integration test tests the interaction between a minimal set of components,
usually just two or three. For example, someone might write an integration
test to test the interaction between a driver and a piece of hardware, or to
test the interaction between the userspace libraries the kernel provides and
the kernel itself; however, one of these tests would probably not test the
entire kernel along with hardware interactions and interactions with the
userspace.
- An end-to-end test usually tests the entire system from the perspective of the
code under test. For example, someone might write an end-to-end test for the
kernel by installing a production configuration of the kernel on production
hardware with a production userspace and then trying to exercise some behavior
that depends on interactions between the hardware, the kernel, and userspace.
KUnit isn't working, what should I do?
======================================
Unfortunately, there are a number of things which can break, but here are some
things to try.
1. Try running ``./tools/testing/kunit/kunit.py run`` with the ``--raw_output``
parameter. This might show details or error messages hidden by the kunit_tool
parser.
2. Instead of running ``kunit.py run``, try running ``kunit.py config``,
``kunit.py build``, and ``kunit.py exec`` independently. This can help track
down where an issue is occurring. (If you think the parser is at fault, you
can run it manually against stdin or a file with ``kunit.py parse``.)
3. Running the UML kernel directly can often reveal issues or error messages
kunit_tool ignores. This should be as simple as running ``./vmlinux`` after
building the UML kernel (e.g., by using ``kunit.py build``). Note that UML
has some unusual requirements (such as the host having a tmpfs filesystem
mounted), and has had issues in the past when built statically and the host
has KASLR enabled. (On older host kernels, you may need to run ``setarch
`uname -m` -R ./vmlinux`` to disable KASLR.)
4. Make sure the kernel .config has ``CONFIG_KUNIT=y`` and at least one test
(e.g. ``CONFIG_KUNIT_EXAMPLE_TEST=y``). kunit_tool will keep its .config
around, so you can see what config was used after running ``kunit.py run``.
It also preserves any config changes you might make, so you can
enable/disable things with ``make ARCH=um menuconfig`` or similar, and then
re-run kunit_tool.
5. Try to run ``make ARCH=um defconfig`` before running ``kunit.py run``. This
may help clean up any residual config items which could be causing problems.
6. Finally, try running KUnit outside UML. KUnit and KUnit tests can be
built into any kernel, or can be built as a module and loaded at runtime.
Doing so should allow you to determine if UML is causing the issue you're
seeing. When tests are built-in, they will execute when the kernel boots, and
modules will automatically execute associated tests when loaded. Test results
can be collected from ``/sys/kernel/debug/kunit/<test suite>/results``, and
can be parsed with ``kunit.py parse``. For more details, see "KUnit on
non-UML architectures" in Documentation/dev-tools/kunit/usage.rst.
If none of the above tricks help, you are always welcome to email any issues to
kunit-dev@googlegroups.com.