WSL2-Linux-Kernel/drivers/md/persistent-data/dm-btree.c

1626 строки
38 KiB
C
Исходник Постоянная ссылка Обычный вид История

/*
* Copyright (C) 2011 Red Hat, Inc.
*
* This file is released under the GPL.
*/
#include "dm-btree-internal.h"
#include "dm-space-map.h"
#include "dm-transaction-manager.h"
#include <linux/export.h>
#include <linux/device-mapper.h>
#define DM_MSG_PREFIX "btree"
/*----------------------------------------------------------------
* Array manipulation
*--------------------------------------------------------------*/
static void memcpy_disk(void *dest, const void *src, size_t len)
__dm_written_to_disk(src)
{
memcpy(dest, src, len);
__dm_unbless_for_disk(src);
}
static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
unsigned index, void *elt)
__dm_written_to_disk(elt)
{
if (index < nr_elts)
memmove(base + (elt_size * (index + 1)),
base + (elt_size * index),
(nr_elts - index) * elt_size);
memcpy_disk(base + (elt_size * index), elt, elt_size);
}
/*----------------------------------------------------------------*/
/* makes the assumption that no two keys are the same. */
static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
{
int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
while (hi - lo > 1) {
int mid = lo + ((hi - lo) / 2);
uint64_t mid_key = le64_to_cpu(n->keys[mid]);
if (mid_key == key)
return mid;
if (mid_key < key)
lo = mid;
else
hi = mid;
}
return want_hi ? hi : lo;
}
int lower_bound(struct btree_node *n, uint64_t key)
{
return bsearch(n, key, 0);
}
static int upper_bound(struct btree_node *n, uint64_t key)
{
return bsearch(n, key, 1);
}
void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
struct dm_btree_value_type *vt)
{
uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
dm_tm_with_runs(tm, value_ptr(n, 0), nr_entries, dm_tm_inc_range);
else if (vt->inc)
vt->inc(vt->context, value_ptr(n, 0), nr_entries);
}
static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
uint64_t key, void *value)
__dm_written_to_disk(value)
{
uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
uint32_t max_entries = le32_to_cpu(node->header.max_entries);
__le64 key_le = cpu_to_le64(key);
if (index > nr_entries ||
index >= max_entries ||
nr_entries >= max_entries) {
DMERR("too many entries in btree node for insert");
__dm_unbless_for_disk(value);
return -ENOMEM;
}
__dm_bless_for_disk(&key_le);
array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
array_insert(value_base(node), value_size, nr_entries, index, value);
node->header.nr_entries = cpu_to_le32(nr_entries + 1);
return 0;
}
/*----------------------------------------------------------------*/
/*
* We want 3n entries (for some n). This works more nicely for repeated
* insert remove loops than (2n + 1).
*/
static uint32_t calc_max_entries(size_t value_size, size_t block_size)
{
uint32_t total, n;
size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
block_size -= sizeof(struct node_header);
total = block_size / elt_size;
n = total / 3; /* rounds down */
return 3 * n;
}
int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
{
int r;
struct dm_block *b;
struct btree_node *n;
size_t block_size;
uint32_t max_entries;
r = new_block(info, &b);
if (r < 0)
return r;
block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
max_entries = calc_max_entries(info->value_type.size, block_size);
n = dm_block_data(b);
memset(n, 0, block_size);
n->header.flags = cpu_to_le32(LEAF_NODE);
n->header.nr_entries = cpu_to_le32(0);
n->header.max_entries = cpu_to_le32(max_entries);
n->header.value_size = cpu_to_le32(info->value_type.size);
*root = dm_block_location(b);
unlock_block(info, b);
return 0;
}
EXPORT_SYMBOL_GPL(dm_btree_empty);
/*----------------------------------------------------------------*/
/*
* Deletion uses a recursive algorithm, since we have limited stack space
* we explicitly manage our own stack on the heap.
*/
#define MAX_SPINE_DEPTH 64
struct frame {
struct dm_block *b;
struct btree_node *n;
unsigned level;
unsigned nr_children;
unsigned current_child;
};
struct del_stack {
struct dm_btree_info *info;
struct dm_transaction_manager *tm;
int top;
struct frame spine[MAX_SPINE_DEPTH];
};
static int top_frame(struct del_stack *s, struct frame **f)
{
if (s->top < 0) {
DMERR("btree deletion stack empty");
return -EINVAL;
}
*f = s->spine + s->top;
return 0;
}
static int unprocessed_frames(struct del_stack *s)
{
return s->top >= 0;
}
static void prefetch_children(struct del_stack *s, struct frame *f)
{
unsigned i;
struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
for (i = 0; i < f->nr_children; i++)
dm_bm_prefetch(bm, value64(f->n, i));
}
static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
{
return f->level < (info->levels - 1);
}
static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
{
int r;
uint32_t ref_count;
if (s->top >= MAX_SPINE_DEPTH - 1) {
DMERR("btree deletion stack out of memory");
return -ENOMEM;
}
r = dm_tm_ref(s->tm, b, &ref_count);
if (r)
return r;
if (ref_count > 1)
/*
* This is a shared node, so we can just decrement it's
* reference counter and leave the children.
*/
dm_tm_dec(s->tm, b);
else {
uint32_t flags;
struct frame *f = s->spine + ++s->top;
r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
if (r) {
s->top--;
return r;
}
f->n = dm_block_data(f->b);
f->level = level;
f->nr_children = le32_to_cpu(f->n->header.nr_entries);
f->current_child = 0;
flags = le32_to_cpu(f->n->header.flags);
if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
prefetch_children(s, f);
}
return 0;
}
static void pop_frame(struct del_stack *s)
{
struct frame *f = s->spine + s->top--;
dm_tm_dec(s->tm, dm_block_location(f->b));
dm_tm_unlock(s->tm, f->b);
}
static void unlock_all_frames(struct del_stack *s)
{
struct frame *f;
while (unprocessed_frames(s)) {
f = s->spine + s->top--;
dm_tm_unlock(s->tm, f->b);
}
}
int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
{
int r;
struct del_stack *s;
/*
* dm_btree_del() is called via an ioctl, as such should be
* considered an FS op. We can't recurse back into the FS, so we
* allocate GFP_NOFS.
*/
s = kmalloc(sizeof(*s), GFP_NOFS);
if (!s)
return -ENOMEM;
s->info = info;
s->tm = info->tm;
s->top = -1;
r = push_frame(s, root, 0);
if (r)
goto out;
while (unprocessed_frames(s)) {
uint32_t flags;
struct frame *f;
dm_block_t b;
r = top_frame(s, &f);
if (r)
goto out;
if (f->current_child >= f->nr_children) {
pop_frame(s);
continue;
}
flags = le32_to_cpu(f->n->header.flags);
if (flags & INTERNAL_NODE) {
b = value64(f->n, f->current_child);
f->current_child++;
r = push_frame(s, b, f->level);
if (r)
goto out;
} else if (is_internal_level(info, f)) {
b = value64(f->n, f->current_child);
f->current_child++;
r = push_frame(s, b, f->level + 1);
if (r)
goto out;
} else {
if (info->value_type.dec)
info->value_type.dec(info->value_type.context,
value_ptr(f->n, 0), f->nr_children);
pop_frame(s);
}
}
out:
if (r) {
/* cleanup all frames of del_stack */
unlock_all_frames(s);
}
kfree(s);
return r;
}
EXPORT_SYMBOL_GPL(dm_btree_del);
/*----------------------------------------------------------------*/
static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
int (*search_fn)(struct btree_node *, uint64_t),
uint64_t *result_key, void *v, size_t value_size)
{
int i, r;
uint32_t flags, nr_entries;
do {
r = ro_step(s, block);
if (r < 0)
return r;
i = search_fn(ro_node(s), key);
flags = le32_to_cpu(ro_node(s)->header.flags);
nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
if (i < 0 || i >= nr_entries)
return -ENODATA;
if (flags & INTERNAL_NODE)
block = value64(ro_node(s), i);
} while (!(flags & LEAF_NODE));
*result_key = le64_to_cpu(ro_node(s)->keys[i]);
if (v)
memcpy(v, value_ptr(ro_node(s), i), value_size);
return 0;
}
int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
uint64_t *keys, void *value_le)
{
unsigned level, last_level = info->levels - 1;
int r = -ENODATA;
uint64_t rkey;
__le64 internal_value_le;
struct ro_spine spine;
init_ro_spine(&spine, info);
for (level = 0; level < info->levels; level++) {
size_t size;
void *value_p;
if (level == last_level) {
value_p = value_le;
size = info->value_type.size;
} else {
value_p = &internal_value_le;
size = sizeof(uint64_t);
}
r = btree_lookup_raw(&spine, root, keys[level],
lower_bound, &rkey,
value_p, size);
if (!r) {
if (rkey != keys[level]) {
exit_ro_spine(&spine);
return -ENODATA;
}
} else {
exit_ro_spine(&spine);
return r;
}
root = le64_to_cpu(internal_value_le);
}
exit_ro_spine(&spine);
return r;
}
EXPORT_SYMBOL_GPL(dm_btree_lookup);
static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
uint64_t key, uint64_t *rkey, void *value_le)
{
int r, i;
uint32_t flags, nr_entries;
struct dm_block *node;
struct btree_node *n;
r = bn_read_lock(info, root, &node);
if (r)
return r;
n = dm_block_data(node);
flags = le32_to_cpu(n->header.flags);
nr_entries = le32_to_cpu(n->header.nr_entries);
if (flags & INTERNAL_NODE) {
i = lower_bound(n, key);
if (i < 0) {
/*
* avoid early -ENODATA return when all entries are
* higher than the search @key.
*/
i = 0;
}
if (i >= nr_entries) {
r = -ENODATA;
goto out;
}
r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
if (r == -ENODATA && i < (nr_entries - 1)) {
i++;
r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
}
} else {
i = upper_bound(n, key);
if (i < 0 || i >= nr_entries) {
r = -ENODATA;
goto out;
}
*rkey = le64_to_cpu(n->keys[i]);
memcpy(value_le, value_ptr(n, i), info->value_type.size);
}
out:
dm_tm_unlock(info->tm, node);
return r;
}
int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
uint64_t *keys, uint64_t *rkey, void *value_le)
{
unsigned level;
int r = -ENODATA;
__le64 internal_value_le;
struct ro_spine spine;
init_ro_spine(&spine, info);
for (level = 0; level < info->levels - 1u; level++) {
r = btree_lookup_raw(&spine, root, keys[level],
lower_bound, rkey,
&internal_value_le, sizeof(uint64_t));
if (r)
goto out;
if (*rkey != keys[level]) {
r = -ENODATA;
goto out;
}
root = le64_to_cpu(internal_value_le);
}
r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
out:
exit_ro_spine(&spine);
return r;
}
EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
dm btree: improve btree residency This commit improves the residency of btrees built in the metadata for dm-thin and dm-cache. When inserting a new entry into a full btree node the current code splits the node into two. This can result in very many half full nodes, particularly if the insertions are occurring in an ascending order (as happens in dm-thin with large writes). With this commit, when we insert into a full node we first try and move some entries to a neighbouring node that has space, failing that it tries to split two neighbouring nodes into three. Results are given below. 'Residency' is how full nodes are on average as a percentage. Average instruction counts for the operations are given to show the extra processing has little overhead. +--------------------------+--------------------------+ | Before | After | +------------+-----------+-----------+--------------+-----------+--------------+ | Test | Phase | Residency | Instructions | Residency | Instructions | +------------+-----------+-----------+--------------+-----------+--------------+ | Ascending | insert | 50 | 1876 | 96 | 1930 | | | overwrite | 50 | 1789 | 96 | 1746 | | | lookup | 50 | 778 | 96 | 778 | | Descending | insert | 50 | 3024 | 96 | 3181 | | | overwrite | 50 | 1789 | 96 | 1746 | | | lookup | 50 | 778 | 96 | 778 | | Random | insert | 68 | 3800 | 84 | 3736 | | | overwrite | 68 | 4254 | 84 | 3911 | | | lookup | 68 | 779 | 84 | 779 | | Runs | insert | 63 | 2546 | 82 | 2815 | | | overwrite | 63 | 2013 | 82 | 1986 | | | lookup | 63 | 778 | 82 | 779 | +------------+-----------+-----------+--------------+-----------+--------------+ Ascending - keys are inserted in ascending order. Descending - keys are inserted in descending order. Random - keys are inserted in random order. Runs - keys are split into ascending runs of ~20 length. Then the runs are shuffled. Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Colin Ian King <colin.king@canonical.com> # contains_key() fix Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-04-08 15:47:08 +03:00
/*----------------------------------------------------------------*/
/*
* Copies entries from one region of a btree node to another. The regions
* must not overlap.
*/
static void copy_entries(struct btree_node *dest, unsigned dest_offset,
struct btree_node *src, unsigned src_offset,
unsigned count)
{
size_t value_size = le32_to_cpu(dest->header.value_size);
memcpy(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t));
memcpy(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size);
}
/*
* Moves entries from one region fo a btree node to another. The regions
* may overlap.
*/
static void move_entries(struct btree_node *dest, unsigned dest_offset,
struct btree_node *src, unsigned src_offset,
unsigned count)
{
size_t value_size = le32_to_cpu(dest->header.value_size);
memmove(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t));
memmove(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size);
}
/*
* Erases the first 'count' entries of a btree node, shifting following
* entries down into their place.
*/
static void shift_down(struct btree_node *n, unsigned count)
{
move_entries(n, 0, n, count, le32_to_cpu(n->header.nr_entries) - count);
}
/*
* Moves entries in a btree node up 'count' places, making space for
* new entries at the start of the node.
*/
static void shift_up(struct btree_node *n, unsigned count)
{
move_entries(n, count, n, 0, le32_to_cpu(n->header.nr_entries));
}
/*
* Redistributes entries between two btree nodes to make them
* have similar numbers of entries.
*/
static void redistribute2(struct btree_node *left, struct btree_node *right)
{
unsigned nr_left = le32_to_cpu(left->header.nr_entries);
unsigned nr_right = le32_to_cpu(right->header.nr_entries);
unsigned total = nr_left + nr_right;
unsigned target_left = total / 2;
unsigned target_right = total - target_left;
if (nr_left < target_left) {
unsigned delta = target_left - nr_left;
copy_entries(left, nr_left, right, 0, delta);
shift_down(right, delta);
} else if (nr_left > target_left) {
unsigned delta = nr_left - target_left;
if (nr_right)
shift_up(right, delta);
copy_entries(right, 0, left, target_left, delta);
}
left->header.nr_entries = cpu_to_le32(target_left);
right->header.nr_entries = cpu_to_le32(target_right);
}
/*
* Redistribute entries between three nodes. Assumes the central
* node is empty.
*/
static void redistribute3(struct btree_node *left, struct btree_node *center,
struct btree_node *right)
{
unsigned nr_left = le32_to_cpu(left->header.nr_entries);
unsigned nr_center = le32_to_cpu(center->header.nr_entries);
unsigned nr_right = le32_to_cpu(right->header.nr_entries);
unsigned total, target_left, target_center, target_right;
BUG_ON(nr_center);
total = nr_left + nr_right;
target_left = total / 3;
target_center = (total - target_left) / 2;
target_right = (total - target_left - target_center);
if (nr_left < target_left) {
unsigned left_short = target_left - nr_left;
copy_entries(left, nr_left, right, 0, left_short);
copy_entries(center, 0, right, left_short, target_center);
shift_down(right, nr_right - target_right);
} else if (nr_left < (target_left + target_center)) {
unsigned left_to_center = nr_left - target_left;
copy_entries(center, 0, left, target_left, left_to_center);
copy_entries(center, left_to_center, right, 0, target_center - left_to_center);
shift_down(right, nr_right - target_right);
} else {
unsigned right_short = target_right - nr_right;
shift_up(right, right_short);
copy_entries(right, 0, left, nr_left - right_short, right_short);
copy_entries(center, 0, left, target_left, nr_left - target_left);
}
left->header.nr_entries = cpu_to_le32(target_left);
center->header.nr_entries = cpu_to_le32(target_center);
right->header.nr_entries = cpu_to_le32(target_right);
}
/*
* Splits a node by creating a sibling node and shifting half the nodes
* contents across. Assumes there is a parent node, and it has room for
* another child.
*
* Before:
* +--------+
* | Parent |
* +--------+
* |
* v
* +----------+
* | A ++++++ |
* +----------+
*
*
* After:
* +--------+
* | Parent |
* +--------+
* | |
* v +------+
* +---------+ |
* | A* +++ | v
* +---------+ +-------+
* | B +++ |
* +-------+
*
* Where A* is a shadow of A.
*/
dm btree: improve btree residency This commit improves the residency of btrees built in the metadata for dm-thin and dm-cache. When inserting a new entry into a full btree node the current code splits the node into two. This can result in very many half full nodes, particularly if the insertions are occurring in an ascending order (as happens in dm-thin with large writes). With this commit, when we insert into a full node we first try and move some entries to a neighbouring node that has space, failing that it tries to split two neighbouring nodes into three. Results are given below. 'Residency' is how full nodes are on average as a percentage. Average instruction counts for the operations are given to show the extra processing has little overhead. +--------------------------+--------------------------+ | Before | After | +------------+-----------+-----------+--------------+-----------+--------------+ | Test | Phase | Residency | Instructions | Residency | Instructions | +------------+-----------+-----------+--------------+-----------+--------------+ | Ascending | insert | 50 | 1876 | 96 | 1930 | | | overwrite | 50 | 1789 | 96 | 1746 | | | lookup | 50 | 778 | 96 | 778 | | Descending | insert | 50 | 3024 | 96 | 3181 | | | overwrite | 50 | 1789 | 96 | 1746 | | | lookup | 50 | 778 | 96 | 778 | | Random | insert | 68 | 3800 | 84 | 3736 | | | overwrite | 68 | 4254 | 84 | 3911 | | | lookup | 68 | 779 | 84 | 779 | | Runs | insert | 63 | 2546 | 82 | 2815 | | | overwrite | 63 | 2013 | 82 | 1986 | | | lookup | 63 | 778 | 82 | 779 | +------------+-----------+-----------+--------------+-----------+--------------+ Ascending - keys are inserted in ascending order. Descending - keys are inserted in descending order. Random - keys are inserted in random order. Runs - keys are split into ascending runs of ~20 length. Then the runs are shuffled. Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Colin Ian King <colin.king@canonical.com> # contains_key() fix Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-04-08 15:47:08 +03:00
static int split_one_into_two(struct shadow_spine *s, unsigned parent_index,
struct dm_btree_value_type *vt, uint64_t key)
{
int r;
struct dm_block *left, *right, *parent;
struct btree_node *ln, *rn, *pn;
__le64 location;
left = shadow_current(s);
r = new_block(s->info, &right);
if (r < 0)
return r;
ln = dm_block_data(left);
rn = dm_block_data(right);
rn->header.flags = ln->header.flags;
dm btree: improve btree residency This commit improves the residency of btrees built in the metadata for dm-thin and dm-cache. When inserting a new entry into a full btree node the current code splits the node into two. This can result in very many half full nodes, particularly if the insertions are occurring in an ascending order (as happens in dm-thin with large writes). With this commit, when we insert into a full node we first try and move some entries to a neighbouring node that has space, failing that it tries to split two neighbouring nodes into three. Results are given below. 'Residency' is how full nodes are on average as a percentage. Average instruction counts for the operations are given to show the extra processing has little overhead. +--------------------------+--------------------------+ | Before | After | +------------+-----------+-----------+--------------+-----------+--------------+ | Test | Phase | Residency | Instructions | Residency | Instructions | +------------+-----------+-----------+--------------+-----------+--------------+ | Ascending | insert | 50 | 1876 | 96 | 1930 | | | overwrite | 50 | 1789 | 96 | 1746 | | | lookup | 50 | 778 | 96 | 778 | | Descending | insert | 50 | 3024 | 96 | 3181 | | | overwrite | 50 | 1789 | 96 | 1746 | | | lookup | 50 | 778 | 96 | 778 | | Random | insert | 68 | 3800 | 84 | 3736 | | | overwrite | 68 | 4254 | 84 | 3911 | | | lookup | 68 | 779 | 84 | 779 | | Runs | insert | 63 | 2546 | 82 | 2815 | | | overwrite | 63 | 2013 | 82 | 1986 | | | lookup | 63 | 778 | 82 | 779 | +------------+-----------+-----------+--------------+-----------+--------------+ Ascending - keys are inserted in ascending order. Descending - keys are inserted in descending order. Random - keys are inserted in random order. Runs - keys are split into ascending runs of ~20 length. Then the runs are shuffled. Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Colin Ian King <colin.king@canonical.com> # contains_key() fix Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-04-08 15:47:08 +03:00
rn->header.nr_entries = cpu_to_le32(0);
rn->header.max_entries = ln->header.max_entries;
rn->header.value_size = ln->header.value_size;
dm btree: improve btree residency This commit improves the residency of btrees built in the metadata for dm-thin and dm-cache. When inserting a new entry into a full btree node the current code splits the node into two. This can result in very many half full nodes, particularly if the insertions are occurring in an ascending order (as happens in dm-thin with large writes). With this commit, when we insert into a full node we first try and move some entries to a neighbouring node that has space, failing that it tries to split two neighbouring nodes into three. Results are given below. 'Residency' is how full nodes are on average as a percentage. Average instruction counts for the operations are given to show the extra processing has little overhead. +--------------------------+--------------------------+ | Before | After | +------------+-----------+-----------+--------------+-----------+--------------+ | Test | Phase | Residency | Instructions | Residency | Instructions | +------------+-----------+-----------+--------------+-----------+--------------+ | Ascending | insert | 50 | 1876 | 96 | 1930 | | | overwrite | 50 | 1789 | 96 | 1746 | | | lookup | 50 | 778 | 96 | 778 | | Descending | insert | 50 | 3024 | 96 | 3181 | | | overwrite | 50 | 1789 | 96 | 1746 | | | lookup | 50 | 778 | 96 | 778 | | Random | insert | 68 | 3800 | 84 | 3736 | | | overwrite | 68 | 4254 | 84 | 3911 | | | lookup | 68 | 779 | 84 | 779 | | Runs | insert | 63 | 2546 | 82 | 2815 | | | overwrite | 63 | 2013 | 82 | 1986 | | | lookup | 63 | 778 | 82 | 779 | +------------+-----------+-----------+--------------+-----------+--------------+ Ascending - keys are inserted in ascending order. Descending - keys are inserted in descending order. Random - keys are inserted in random order. Runs - keys are split into ascending runs of ~20 length. Then the runs are shuffled. Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Colin Ian King <colin.king@canonical.com> # contains_key() fix Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-04-08 15:47:08 +03:00
redistribute2(ln, rn);
dm btree: improve btree residency This commit improves the residency of btrees built in the metadata for dm-thin and dm-cache. When inserting a new entry into a full btree node the current code splits the node into two. This can result in very many half full nodes, particularly if the insertions are occurring in an ascending order (as happens in dm-thin with large writes). With this commit, when we insert into a full node we first try and move some entries to a neighbouring node that has space, failing that it tries to split two neighbouring nodes into three. Results are given below. 'Residency' is how full nodes are on average as a percentage. Average instruction counts for the operations are given to show the extra processing has little overhead. +--------------------------+--------------------------+ | Before | After | +------------+-----------+-----------+--------------+-----------+--------------+ | Test | Phase | Residency | Instructions | Residency | Instructions | +------------+-----------+-----------+--------------+-----------+--------------+ | Ascending | insert | 50 | 1876 | 96 | 1930 | | | overwrite | 50 | 1789 | 96 | 1746 | | | lookup | 50 | 778 | 96 | 778 | | Descending | insert | 50 | 3024 | 96 | 3181 | | | overwrite | 50 | 1789 | 96 | 1746 | | | lookup | 50 | 778 | 96 | 778 | | Random | insert | 68 | 3800 | 84 | 3736 | | | overwrite | 68 | 4254 | 84 | 3911 | | | lookup | 68 | 779 | 84 | 779 | | Runs | insert | 63 | 2546 | 82 | 2815 | | | overwrite | 63 | 2013 | 82 | 1986 | | | lookup | 63 | 778 | 82 | 779 | +------------+-----------+-----------+--------------+-----------+--------------+ Ascending - keys are inserted in ascending order. Descending - keys are inserted in descending order. Random - keys are inserted in random order. Runs - keys are split into ascending runs of ~20 length. Then the runs are shuffled. Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Colin Ian King <colin.king@canonical.com> # contains_key() fix Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-04-08 15:47:08 +03:00
/* patch up the parent */
parent = shadow_parent(s);
pn = dm_block_data(parent);
location = cpu_to_le64(dm_block_location(right));
__dm_bless_for_disk(&location);
r = insert_at(sizeof(__le64), pn, parent_index + 1,
le64_to_cpu(rn->keys[0]), &location);
if (r) {
unlock_block(s->info, right);
return r;
}
dm btree: improve btree residency This commit improves the residency of btrees built in the metadata for dm-thin and dm-cache. When inserting a new entry into a full btree node the current code splits the node into two. This can result in very many half full nodes, particularly if the insertions are occurring in an ascending order (as happens in dm-thin with large writes). With this commit, when we insert into a full node we first try and move some entries to a neighbouring node that has space, failing that it tries to split two neighbouring nodes into three. Results are given below. 'Residency' is how full nodes are on average as a percentage. Average instruction counts for the operations are given to show the extra processing has little overhead. +--------------------------+--------------------------+ | Before | After | +------------+-----------+-----------+--------------+-----------+--------------+ | Test | Phase | Residency | Instructions | Residency | Instructions | +------------+-----------+-----------+--------------+-----------+--------------+ | Ascending | insert | 50 | 1876 | 96 | 1930 | | | overwrite | 50 | 1789 | 96 | 1746 | | | lookup | 50 | 778 | 96 | 778 | | Descending | insert | 50 | 3024 | 96 | 3181 | | | overwrite | 50 | 1789 | 96 | 1746 | | | lookup | 50 | 778 | 96 | 778 | | Random | insert | 68 | 3800 | 84 | 3736 | | | overwrite | 68 | 4254 | 84 | 3911 | | | lookup | 68 | 779 | 84 | 779 | | Runs | insert | 63 | 2546 | 82 | 2815 | | | overwrite | 63 | 2013 | 82 | 1986 | | | lookup | 63 | 778 | 82 | 779 | +------------+-----------+-----------+--------------+-----------+--------------+ Ascending - keys are inserted in ascending order. Descending - keys are inserted in descending order. Random - keys are inserted in random order. Runs - keys are split into ascending runs of ~20 length. Then the runs are shuffled. Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Colin Ian King <colin.king@canonical.com> # contains_key() fix Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-04-08 15:47:08 +03:00
/* patch up the spine */
if (key < le64_to_cpu(rn->keys[0])) {
unlock_block(s->info, right);
s->nodes[1] = left;
} else {
unlock_block(s->info, left);
s->nodes[1] = right;
}
return 0;
}
dm btree: improve btree residency This commit improves the residency of btrees built in the metadata for dm-thin and dm-cache. When inserting a new entry into a full btree node the current code splits the node into two. This can result in very many half full nodes, particularly if the insertions are occurring in an ascending order (as happens in dm-thin with large writes). With this commit, when we insert into a full node we first try and move some entries to a neighbouring node that has space, failing that it tries to split two neighbouring nodes into three. Results are given below. 'Residency' is how full nodes are on average as a percentage. Average instruction counts for the operations are given to show the extra processing has little overhead. +--------------------------+--------------------------+ | Before | After | +------------+-----------+-----------+--------------+-----------+--------------+ | Test | Phase | Residency | Instructions | Residency | Instructions | +------------+-----------+-----------+--------------+-----------+--------------+ | Ascending | insert | 50 | 1876 | 96 | 1930 | | | overwrite | 50 | 1789 | 96 | 1746 | | | lookup | 50 | 778 | 96 | 778 | | Descending | insert | 50 | 3024 | 96 | 3181 | | | overwrite | 50 | 1789 | 96 | 1746 | | | lookup | 50 | 778 | 96 | 778 | | Random | insert | 68 | 3800 | 84 | 3736 | | | overwrite | 68 | 4254 | 84 | 3911 | | | lookup | 68 | 779 | 84 | 779 | | Runs | insert | 63 | 2546 | 82 | 2815 | | | overwrite | 63 | 2013 | 82 | 1986 | | | lookup | 63 | 778 | 82 | 779 | +------------+-----------+-----------+--------------+-----------+--------------+ Ascending - keys are inserted in ascending order. Descending - keys are inserted in descending order. Random - keys are inserted in random order. Runs - keys are split into ascending runs of ~20 length. Then the runs are shuffled. Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Colin Ian King <colin.king@canonical.com> # contains_key() fix Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-04-08 15:47:08 +03:00
/*
* We often need to modify a sibling node. This function shadows a particular
* child of the given parent node. Making sure to update the parent to point
* to the new shadow.
*/
static int shadow_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
struct btree_node *parent, unsigned index,
struct dm_block **result)
{
int r, inc;
dm_block_t root;
struct btree_node *node;
root = value64(parent, index);
r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
result, &inc);
if (r)
return r;
node = dm_block_data(*result);
if (inc)
inc_children(info->tm, node, vt);
*((__le64 *) value_ptr(parent, index)) =
cpu_to_le64(dm_block_location(*result));
return 0;
}
/*
* Splits two nodes into three. This is more work, but results in fuller
* nodes, so saves metadata space.
*/
static int split_two_into_three(struct shadow_spine *s, unsigned parent_index,
struct dm_btree_value_type *vt, uint64_t key)
{
int r;
unsigned middle_index;
struct dm_block *left, *middle, *right, *parent;
struct btree_node *ln, *rn, *mn, *pn;
__le64 location;
parent = shadow_parent(s);
pn = dm_block_data(parent);
if (parent_index == 0) {
middle_index = 1;
left = shadow_current(s);
r = shadow_child(s->info, vt, pn, parent_index + 1, &right);
if (r)
return r;
} else {
middle_index = parent_index;
right = shadow_current(s);
r = shadow_child(s->info, vt, pn, parent_index - 1, &left);
if (r)
return r;
}
r = new_block(s->info, &middle);
if (r < 0)
return r;
ln = dm_block_data(left);
mn = dm_block_data(middle);
rn = dm_block_data(right);
mn->header.nr_entries = cpu_to_le32(0);
mn->header.flags = ln->header.flags;
mn->header.max_entries = ln->header.max_entries;
mn->header.value_size = ln->header.value_size;
redistribute3(ln, mn, rn);
/* patch up the parent */
pn->keys[middle_index] = rn->keys[0];
location = cpu_to_le64(dm_block_location(middle));
__dm_bless_for_disk(&location);
r = insert_at(sizeof(__le64), pn, middle_index,
le64_to_cpu(mn->keys[0]), &location);
if (r) {
if (shadow_current(s) != left)
unlock_block(s->info, left);
unlock_block(s->info, middle);
if (shadow_current(s) != right)
unlock_block(s->info, right);
return r;
}
/* patch up the spine */
if (key < le64_to_cpu(mn->keys[0])) {
unlock_block(s->info, middle);
unlock_block(s->info, right);
s->nodes[1] = left;
} else if (key < le64_to_cpu(rn->keys[0])) {
unlock_block(s->info, left);
unlock_block(s->info, right);
s->nodes[1] = middle;
} else {
unlock_block(s->info, left);
unlock_block(s->info, middle);
s->nodes[1] = right;
}
return 0;
}
/*----------------------------------------------------------------*/
/*
* Splits a node by creating two new children beneath the given node.
*
* Before:
* +----------+
* | A ++++++ |
* +----------+
*
*
* After:
* +------------+
* | A (shadow) |
* +------------+
* | |
* +------+ +----+
* | |
* v v
* +-------+ +-------+
* | B +++ | | C +++ |
* +-------+ +-------+
*/
static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
{
int r;
size_t size;
unsigned nr_left, nr_right;
struct dm_block *left, *right, *new_parent;
struct btree_node *pn, *ln, *rn;
__le64 val;
new_parent = shadow_current(s);
pn = dm_block_data(new_parent);
size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
sizeof(__le64) : s->info->value_type.size;
/* create & init the left block */
r = new_block(s->info, &left);
if (r < 0)
return r;
ln = dm_block_data(left);
nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
ln->header.flags = pn->header.flags;
ln->header.nr_entries = cpu_to_le32(nr_left);
ln->header.max_entries = pn->header.max_entries;
ln->header.value_size = pn->header.value_size;
memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
/* create & init the right block */
r = new_block(s->info, &right);
if (r < 0) {
unlock_block(s->info, left);
return r;
}
rn = dm_block_data(right);
nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
rn->header.flags = pn->header.flags;
rn->header.nr_entries = cpu_to_le32(nr_right);
rn->header.max_entries = pn->header.max_entries;
rn->header.value_size = pn->header.value_size;
memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
nr_right * size);
/* new_parent should just point to l and r now */
pn->header.flags = cpu_to_le32(INTERNAL_NODE);
pn->header.nr_entries = cpu_to_le32(2);
pn->header.max_entries = cpu_to_le32(
calc_max_entries(sizeof(__le64),
dm_bm_block_size(
dm_tm_get_bm(s->info->tm))));
pn->header.value_size = cpu_to_le32(sizeof(__le64));
val = cpu_to_le64(dm_block_location(left));
__dm_bless_for_disk(&val);
pn->keys[0] = ln->keys[0];
memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
val = cpu_to_le64(dm_block_location(right));
__dm_bless_for_disk(&val);
pn->keys[1] = rn->keys[0];
memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
dm btree: fix serious bug in btree_split_beneath() When inserting a new key/value pair into a btree we walk down the spine of btree nodes performing the following 2 operations: i) space for a new entry ii) adjusting the first key entry if the new key is lower than any in the node. If the _root_ node is full, the function btree_split_beneath() allocates 2 new nodes, and redistibutes the root nodes entries between them. The root node is left with 2 entries corresponding to the 2 new nodes. btree_split_beneath() then adjusts the spine to point to one of the two new children. This means the first key is never adjusted if the new key was lower, ie. operation (ii) gets missed out. This can result in the new key being 'lost' for a period; until another low valued key is inserted that will uncover it. This is a serious bug, and quite hard to make trigger in normal use. A reproducing test case ("thin create devices-in-reverse-order") is available as part of the thin-provision-tools project: https://github.com/jthornber/thin-provisioning-tools/blob/master/functional-tests/device-mapper/dm-tests.scm#L593 Fix the issue by changing btree_split_beneath() so it no longer adjusts the spine. Instead it unlocks both the new nodes, and lets the main loop in btree_insert_raw() relock the appropriate one and make any neccessary adjustments. Cc: stable@vger.kernel.org Reported-by: Monty Pavel <monty_pavel@sina.com> Signed-off-by: Joe Thornber <thornber@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2017-12-20 12:56:06 +03:00
unlock_block(s->info, left);
unlock_block(s->info, right);
return 0;
}
dm btree: improve btree residency This commit improves the residency of btrees built in the metadata for dm-thin and dm-cache. When inserting a new entry into a full btree node the current code splits the node into two. This can result in very many half full nodes, particularly if the insertions are occurring in an ascending order (as happens in dm-thin with large writes). With this commit, when we insert into a full node we first try and move some entries to a neighbouring node that has space, failing that it tries to split two neighbouring nodes into three. Results are given below. 'Residency' is how full nodes are on average as a percentage. Average instruction counts for the operations are given to show the extra processing has little overhead. +--------------------------+--------------------------+ | Before | After | +------------+-----------+-----------+--------------+-----------+--------------+ | Test | Phase | Residency | Instructions | Residency | Instructions | +------------+-----------+-----------+--------------+-----------+--------------+ | Ascending | insert | 50 | 1876 | 96 | 1930 | | | overwrite | 50 | 1789 | 96 | 1746 | | | lookup | 50 | 778 | 96 | 778 | | Descending | insert | 50 | 3024 | 96 | 3181 | | | overwrite | 50 | 1789 | 96 | 1746 | | | lookup | 50 | 778 | 96 | 778 | | Random | insert | 68 | 3800 | 84 | 3736 | | | overwrite | 68 | 4254 | 84 | 3911 | | | lookup | 68 | 779 | 84 | 779 | | Runs | insert | 63 | 2546 | 82 | 2815 | | | overwrite | 63 | 2013 | 82 | 1986 | | | lookup | 63 | 778 | 82 | 779 | +------------+-----------+-----------+--------------+-----------+--------------+ Ascending - keys are inserted in ascending order. Descending - keys are inserted in descending order. Random - keys are inserted in random order. Runs - keys are split into ascending runs of ~20 length. Then the runs are shuffled. Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Colin Ian King <colin.king@canonical.com> # contains_key() fix Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-04-08 15:47:08 +03:00
/*----------------------------------------------------------------*/
/*
* Redistributes a node's entries with its left sibling.
*/
static int rebalance_left(struct shadow_spine *s, struct dm_btree_value_type *vt,
unsigned parent_index, uint64_t key)
{
int r;
struct dm_block *sib;
struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s));
r = shadow_child(s->info, vt, parent, parent_index - 1, &sib);
if (r)
return r;
left = dm_block_data(sib);
right = dm_block_data(shadow_current(s));
redistribute2(left, right);
*key_ptr(parent, parent_index) = right->keys[0];
if (key < le64_to_cpu(right->keys[0])) {
unlock_block(s->info, s->nodes[1]);
s->nodes[1] = sib;
} else {
unlock_block(s->info, sib);
}
return 0;
}
/*
* Redistributes a nodes entries with its right sibling.
*/
static int rebalance_right(struct shadow_spine *s, struct dm_btree_value_type *vt,
unsigned parent_index, uint64_t key)
{
int r;
struct dm_block *sib;
struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s));
r = shadow_child(s->info, vt, parent, parent_index + 1, &sib);
if (r)
return r;
left = dm_block_data(shadow_current(s));
right = dm_block_data(sib);
redistribute2(left, right);
*key_ptr(parent, parent_index + 1) = right->keys[0];
if (key < le64_to_cpu(right->keys[0])) {
unlock_block(s->info, sib);
} else {
unlock_block(s->info, s->nodes[1]);
s->nodes[1] = sib;
}
return 0;
}
/*
* Returns the number of spare entries in a node.
*/
static int get_node_free_space(struct dm_btree_info *info, dm_block_t b, unsigned *space)
{
int r;
unsigned nr_entries;
struct dm_block *block;
struct btree_node *node;
r = bn_read_lock(info, b, &block);
if (r)
return r;
node = dm_block_data(block);
nr_entries = le32_to_cpu(node->header.nr_entries);
*space = le32_to_cpu(node->header.max_entries) - nr_entries;
unlock_block(info, block);
return 0;
}
/*
* Make space in a node, either by moving some entries to a sibling,
* or creating a new sibling node. SPACE_THRESHOLD defines the minimum
* number of free entries that must be in the sibling to make the move
* worth while. If the siblings are shared (eg, part of a snapshot),
* then they are not touched, since this break sharing and so consume
* more space than we save.
*/
#define SPACE_THRESHOLD 8
static int rebalance_or_split(struct shadow_spine *s, struct dm_btree_value_type *vt,
unsigned parent_index, uint64_t key)
{
int r;
struct btree_node *parent = dm_block_data(shadow_parent(s));
unsigned nr_parent = le32_to_cpu(parent->header.nr_entries);
unsigned free_space;
int left_shared = 0, right_shared = 0;
/* Should we move entries to the left sibling? */
if (parent_index > 0) {
dm_block_t left_b = value64(parent, parent_index - 1);
r = dm_tm_block_is_shared(s->info->tm, left_b, &left_shared);
if (r)
return r;
if (!left_shared) {
r = get_node_free_space(s->info, left_b, &free_space);
if (r)
return r;
if (free_space >= SPACE_THRESHOLD)
return rebalance_left(s, vt, parent_index, key);
}
}
/* Should we move entries to the right sibling? */
if (parent_index < (nr_parent - 1)) {
dm_block_t right_b = value64(parent, parent_index + 1);
r = dm_tm_block_is_shared(s->info->tm, right_b, &right_shared);
if (r)
return r;
if (!right_shared) {
r = get_node_free_space(s->info, right_b, &free_space);
if (r)
return r;
if (free_space >= SPACE_THRESHOLD)
return rebalance_right(s, vt, parent_index, key);
}
}
/*
* We need to split the node, normally we split two nodes
* into three. But when inserting a sequence that is either
* monotonically increasing or decreasing it's better to split
* a single node into two.
*/
if (left_shared || right_shared || (nr_parent <= 2) ||
(parent_index == 0) || (parent_index + 1 == nr_parent)) {
return split_one_into_two(s, parent_index, vt, key);
} else {
return split_two_into_three(s, parent_index, vt, key);
}
}
/*
* Does the node contain a particular key?
*/
static bool contains_key(struct btree_node *node, uint64_t key)
{
int i = lower_bound(node, key);
if (i >= 0 && le64_to_cpu(node->keys[i]) == key)
return true;
return false;
}
/*
* In general we preemptively make sure there's a free entry in every
* node on the spine when doing an insert. But we can avoid that with
* leaf nodes if we know it's an overwrite.
*/
static bool has_space_for_insert(struct btree_node *node, uint64_t key)
{
if (node->header.nr_entries == node->header.max_entries) {
if (le32_to_cpu(node->header.flags) & LEAF_NODE) {
/* we don't need space if it's an overwrite */
return contains_key(node, key);
}
return false;
}
return true;
}
static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
struct dm_btree_value_type *vt,
uint64_t key, unsigned *index)
{
int r, i = *index, top = 1;
struct btree_node *node;
for (;;) {
r = shadow_step(s, root, vt);
if (r < 0)
return r;
node = dm_block_data(shadow_current(s));
/*
* We have to patch up the parent node, ugly, but I don't
* see a way to do this automatically as part of the spine
* op.
*/
if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
__dm_bless_for_disk(&location);
memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
&location, sizeof(__le64));
}
node = dm_block_data(shadow_current(s));
dm btree: improve btree residency This commit improves the residency of btrees built in the metadata for dm-thin and dm-cache. When inserting a new entry into a full btree node the current code splits the node into two. This can result in very many half full nodes, particularly if the insertions are occurring in an ascending order (as happens in dm-thin with large writes). With this commit, when we insert into a full node we first try and move some entries to a neighbouring node that has space, failing that it tries to split two neighbouring nodes into three. Results are given below. 'Residency' is how full nodes are on average as a percentage. Average instruction counts for the operations are given to show the extra processing has little overhead. +--------------------------+--------------------------+ | Before | After | +------------+-----------+-----------+--------------+-----------+--------------+ | Test | Phase | Residency | Instructions | Residency | Instructions | +------------+-----------+-----------+--------------+-----------+--------------+ | Ascending | insert | 50 | 1876 | 96 | 1930 | | | overwrite | 50 | 1789 | 96 | 1746 | | | lookup | 50 | 778 | 96 | 778 | | Descending | insert | 50 | 3024 | 96 | 3181 | | | overwrite | 50 | 1789 | 96 | 1746 | | | lookup | 50 | 778 | 96 | 778 | | Random | insert | 68 | 3800 | 84 | 3736 | | | overwrite | 68 | 4254 | 84 | 3911 | | | lookup | 68 | 779 | 84 | 779 | | Runs | insert | 63 | 2546 | 82 | 2815 | | | overwrite | 63 | 2013 | 82 | 1986 | | | lookup | 63 | 778 | 82 | 779 | +------------+-----------+-----------+--------------+-----------+--------------+ Ascending - keys are inserted in ascending order. Descending - keys are inserted in descending order. Random - keys are inserted in random order. Runs - keys are split into ascending runs of ~20 length. Then the runs are shuffled. Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Colin Ian King <colin.king@canonical.com> # contains_key() fix Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-04-08 15:47:08 +03:00
if (!has_space_for_insert(node, key)) {
if (top)
r = btree_split_beneath(s, key);
else
dm btree: improve btree residency This commit improves the residency of btrees built in the metadata for dm-thin and dm-cache. When inserting a new entry into a full btree node the current code splits the node into two. This can result in very many half full nodes, particularly if the insertions are occurring in an ascending order (as happens in dm-thin with large writes). With this commit, when we insert into a full node we first try and move some entries to a neighbouring node that has space, failing that it tries to split two neighbouring nodes into three. Results are given below. 'Residency' is how full nodes are on average as a percentage. Average instruction counts for the operations are given to show the extra processing has little overhead. +--------------------------+--------------------------+ | Before | After | +------------+-----------+-----------+--------------+-----------+--------------+ | Test | Phase | Residency | Instructions | Residency | Instructions | +------------+-----------+-----------+--------------+-----------+--------------+ | Ascending | insert | 50 | 1876 | 96 | 1930 | | | overwrite | 50 | 1789 | 96 | 1746 | | | lookup | 50 | 778 | 96 | 778 | | Descending | insert | 50 | 3024 | 96 | 3181 | | | overwrite | 50 | 1789 | 96 | 1746 | | | lookup | 50 | 778 | 96 | 778 | | Random | insert | 68 | 3800 | 84 | 3736 | | | overwrite | 68 | 4254 | 84 | 3911 | | | lookup | 68 | 779 | 84 | 779 | | Runs | insert | 63 | 2546 | 82 | 2815 | | | overwrite | 63 | 2013 | 82 | 1986 | | | lookup | 63 | 778 | 82 | 779 | +------------+-----------+-----------+--------------+-----------+--------------+ Ascending - keys are inserted in ascending order. Descending - keys are inserted in descending order. Random - keys are inserted in random order. Runs - keys are split into ascending runs of ~20 length. Then the runs are shuffled. Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Colin Ian King <colin.king@canonical.com> # contains_key() fix Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-04-08 15:47:08 +03:00
r = rebalance_or_split(s, vt, i, key);
if (r < 0)
return r;
dm btree: improve btree residency This commit improves the residency of btrees built in the metadata for dm-thin and dm-cache. When inserting a new entry into a full btree node the current code splits the node into two. This can result in very many half full nodes, particularly if the insertions are occurring in an ascending order (as happens in dm-thin with large writes). With this commit, when we insert into a full node we first try and move some entries to a neighbouring node that has space, failing that it tries to split two neighbouring nodes into three. Results are given below. 'Residency' is how full nodes are on average as a percentage. Average instruction counts for the operations are given to show the extra processing has little overhead. +--------------------------+--------------------------+ | Before | After | +------------+-----------+-----------+--------------+-----------+--------------+ | Test | Phase | Residency | Instructions | Residency | Instructions | +------------+-----------+-----------+--------------+-----------+--------------+ | Ascending | insert | 50 | 1876 | 96 | 1930 | | | overwrite | 50 | 1789 | 96 | 1746 | | | lookup | 50 | 778 | 96 | 778 | | Descending | insert | 50 | 3024 | 96 | 3181 | | | overwrite | 50 | 1789 | 96 | 1746 | | | lookup | 50 | 778 | 96 | 778 | | Random | insert | 68 | 3800 | 84 | 3736 | | | overwrite | 68 | 4254 | 84 | 3911 | | | lookup | 68 | 779 | 84 | 779 | | Runs | insert | 63 | 2546 | 82 | 2815 | | | overwrite | 63 | 2013 | 82 | 1986 | | | lookup | 63 | 778 | 82 | 779 | +------------+-----------+-----------+--------------+-----------+--------------+ Ascending - keys are inserted in ascending order. Descending - keys are inserted in descending order. Random - keys are inserted in random order. Runs - keys are split into ascending runs of ~20 length. Then the runs are shuffled. Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Colin Ian King <colin.king@canonical.com> # contains_key() fix Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-04-08 15:47:08 +03:00
/* making space can cause the current node to change */
node = dm_block_data(shadow_current(s));
}
i = lower_bound(node, key);
if (le32_to_cpu(node->header.flags) & LEAF_NODE)
break;
if (i < 0) {
/* change the bounds on the lowest key */
node->keys[0] = cpu_to_le64(key);
i = 0;
}
root = value64(node, i);
top = 0;
}
if (i < 0 || le64_to_cpu(node->keys[i]) != key)
i++;
*index = i;
return 0;
}
static int __btree_get_overwrite_leaf(struct shadow_spine *s, dm_block_t root,
uint64_t key, int *index)
{
int r, i = -1;
struct btree_node *node;
*index = 0;
for (;;) {
r = shadow_step(s, root, &s->info->value_type);
if (r < 0)
return r;
node = dm_block_data(shadow_current(s));
/*
* We have to patch up the parent node, ugly, but I don't
* see a way to do this automatically as part of the spine
* op.
*/
if (shadow_has_parent(s) && i >= 0) {
__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
__dm_bless_for_disk(&location);
memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
&location, sizeof(__le64));
}
node = dm_block_data(shadow_current(s));
i = lower_bound(node, key);
BUG_ON(i < 0);
BUG_ON(i >= le32_to_cpu(node->header.nr_entries));
if (le32_to_cpu(node->header.flags) & LEAF_NODE) {
if (key != le64_to_cpu(node->keys[i]))
return -EINVAL;
break;
}
root = value64(node, i);
}
*index = i;
return 0;
}
int btree_get_overwrite_leaf(struct dm_btree_info *info, dm_block_t root,
uint64_t key, int *index,
dm_block_t *new_root, struct dm_block **leaf)
{
int r;
struct shadow_spine spine;
BUG_ON(info->levels > 1);
init_shadow_spine(&spine, info);
r = __btree_get_overwrite_leaf(&spine, root, key, index);
if (!r) {
*new_root = shadow_root(&spine);
*leaf = shadow_current(&spine);
/*
* Decrement the count so exit_shadow_spine() doesn't
* unlock the leaf.
*/
spine.count--;
}
exit_shadow_spine(&spine);
return r;
}
static bool need_insert(struct btree_node *node, uint64_t *keys,
unsigned level, unsigned index)
{
return ((index >= le32_to_cpu(node->header.nr_entries)) ||
(le64_to_cpu(node->keys[index]) != keys[level]));
}
static int insert(struct dm_btree_info *info, dm_block_t root,
uint64_t *keys, void *value, dm_block_t *new_root,
int *inserted)
__dm_written_to_disk(value)
{
int r;
unsigned level, index = -1, last_level = info->levels - 1;
dm_block_t block = root;
struct shadow_spine spine;
struct btree_node *n;
struct dm_btree_value_type le64_type;
init_le64_type(info->tm, &le64_type);
init_shadow_spine(&spine, info);
for (level = 0; level < (info->levels - 1); level++) {
r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
if (r < 0)
goto bad;
n = dm_block_data(shadow_current(&spine));
if (need_insert(n, keys, level, index)) {
dm_block_t new_tree;
__le64 new_le;
r = dm_btree_empty(info, &new_tree);
if (r < 0)
goto bad;
new_le = cpu_to_le64(new_tree);
__dm_bless_for_disk(&new_le);
r = insert_at(sizeof(uint64_t), n, index,
keys[level], &new_le);
if (r)
goto bad;
}
if (level < last_level)
block = value64(n, index);
}
r = btree_insert_raw(&spine, block, &info->value_type,
keys[level], &index);
if (r < 0)
goto bad;
n = dm_block_data(shadow_current(&spine));
if (need_insert(n, keys, level, index)) {
if (inserted)
*inserted = 1;
r = insert_at(info->value_type.size, n, index,
keys[level], value);
if (r)
goto bad_unblessed;
} else {
if (inserted)
*inserted = 0;
if (info->value_type.dec &&
(!info->value_type.equal ||
!info->value_type.equal(
info->value_type.context,
value_ptr(n, index),
value))) {
info->value_type.dec(info->value_type.context,
value_ptr(n, index), 1);
}
memcpy_disk(value_ptr(n, index),
value, info->value_type.size);
}
*new_root = shadow_root(&spine);
exit_shadow_spine(&spine);
return 0;
bad:
__dm_unbless_for_disk(value);
bad_unblessed:
exit_shadow_spine(&spine);
return r;
}
int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
uint64_t *keys, void *value, dm_block_t *new_root)
__dm_written_to_disk(value)
{
return insert(info, root, keys, value, new_root, NULL);
}
EXPORT_SYMBOL_GPL(dm_btree_insert);
int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
uint64_t *keys, void *value, dm_block_t *new_root,
int *inserted)
__dm_written_to_disk(value)
{
return insert(info, root, keys, value, new_root, inserted);
}
EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
/*----------------------------------------------------------------*/
static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
uint64_t *result_key, dm_block_t *next_block)
{
int i, r;
uint32_t flags;
do {
r = ro_step(s, block);
if (r < 0)
return r;
flags = le32_to_cpu(ro_node(s)->header.flags);
i = le32_to_cpu(ro_node(s)->header.nr_entries);
if (!i)
return -ENODATA;
else
i--;
if (find_highest)
*result_key = le64_to_cpu(ro_node(s)->keys[i]);
else
*result_key = le64_to_cpu(ro_node(s)->keys[0]);
if (next_block || flags & INTERNAL_NODE) {
if (find_highest)
block = value64(ro_node(s), i);
else
block = value64(ro_node(s), 0);
}
} while (flags & INTERNAL_NODE);
if (next_block)
*next_block = block;
return 0;
}
static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
bool find_highest, uint64_t *result_keys)
{
int r = 0, count = 0, level;
struct ro_spine spine;
init_ro_spine(&spine, info);
for (level = 0; level < info->levels; level++) {
r = find_key(&spine, root, find_highest, result_keys + level,
level == info->levels - 1 ? NULL : &root);
if (r == -ENODATA) {
r = 0;
break;
} else if (r)
break;
count++;
}
exit_ro_spine(&spine);
return r ? r : count;
}
int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
uint64_t *result_keys)
{
return dm_btree_find_key(info, root, true, result_keys);
}
EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
uint64_t *result_keys)
{
return dm_btree_find_key(info, root, false, result_keys);
}
EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
/*----------------------------------------------------------------*/
/*
* FIXME: We shouldn't use a recursive algorithm when we have limited stack
* space. Also this only works for single level trees.
*/
static int walk_node(struct dm_btree_info *info, dm_block_t block,
int (*fn)(void *context, uint64_t *keys, void *leaf),
void *context)
{
int r;
unsigned i, nr;
struct dm_block *node;
struct btree_node *n;
uint64_t keys;
r = bn_read_lock(info, block, &node);
if (r)
return r;
n = dm_block_data(node);
nr = le32_to_cpu(n->header.nr_entries);
for (i = 0; i < nr; i++) {
if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
r = walk_node(info, value64(n, i), fn, context);
if (r)
goto out;
} else {
keys = le64_to_cpu(*key_ptr(n, i));
r = fn(context, &keys, value_ptr(n, i));
if (r)
goto out;
}
}
out:
dm_tm_unlock(info->tm, node);
return r;
}
int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
int (*fn)(void *context, uint64_t *keys, void *leaf),
void *context)
{
BUG_ON(info->levels > 1);
return walk_node(info, root, fn, context);
}
EXPORT_SYMBOL_GPL(dm_btree_walk);
/*----------------------------------------------------------------*/
static void prefetch_values(struct dm_btree_cursor *c)
{
unsigned i, nr;
__le64 value_le;
struct cursor_node *n = c->nodes + c->depth - 1;
struct btree_node *bn = dm_block_data(n->b);
struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);
BUG_ON(c->info->value_type.size != sizeof(value_le));
nr = le32_to_cpu(bn->header.nr_entries);
for (i = 0; i < nr; i++) {
memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
dm_bm_prefetch(bm, le64_to_cpu(value_le));
}
}
static bool leaf_node(struct dm_btree_cursor *c)
{
struct cursor_node *n = c->nodes + c->depth - 1;
struct btree_node *bn = dm_block_data(n->b);
return le32_to_cpu(bn->header.flags) & LEAF_NODE;
}
static int push_node(struct dm_btree_cursor *c, dm_block_t b)
{
int r;
struct cursor_node *n = c->nodes + c->depth;
if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
DMERR("couldn't push cursor node, stack depth too high");
return -EINVAL;
}
r = bn_read_lock(c->info, b, &n->b);
if (r)
return r;
n->index = 0;
c->depth++;
if (c->prefetch_leaves || !leaf_node(c))
prefetch_values(c);
return 0;
}
static void pop_node(struct dm_btree_cursor *c)
{
c->depth--;
unlock_block(c->info, c->nodes[c->depth].b);
}
static int inc_or_backtrack(struct dm_btree_cursor *c)
{
struct cursor_node *n;
struct btree_node *bn;
for (;;) {
if (!c->depth)
return -ENODATA;
n = c->nodes + c->depth - 1;
bn = dm_block_data(n->b);
n->index++;
if (n->index < le32_to_cpu(bn->header.nr_entries))
break;
pop_node(c);
}
return 0;
}
static int find_leaf(struct dm_btree_cursor *c)
{
int r = 0;
struct cursor_node *n;
struct btree_node *bn;
__le64 value_le;
for (;;) {
n = c->nodes + c->depth - 1;
bn = dm_block_data(n->b);
if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
break;
memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
r = push_node(c, le64_to_cpu(value_le));
if (r) {
DMERR("push_node failed");
break;
}
}
if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
return -ENODATA;
return r;
}
int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
bool prefetch_leaves, struct dm_btree_cursor *c)
{
int r;
c->info = info;
c->root = root;
c->depth = 0;
c->prefetch_leaves = prefetch_leaves;
r = push_node(c, root);
if (r)
return r;
return find_leaf(c);
}
EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);
void dm_btree_cursor_end(struct dm_btree_cursor *c)
{
while (c->depth)
pop_node(c);
}
EXPORT_SYMBOL_GPL(dm_btree_cursor_end);
int dm_btree_cursor_next(struct dm_btree_cursor *c)
{
int r = inc_or_backtrack(c);
if (!r) {
r = find_leaf(c);
if (r)
DMERR("find_leaf failed");
}
return r;
}
EXPORT_SYMBOL_GPL(dm_btree_cursor_next);
int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count)
{
int r = 0;
while (count-- && !r)
r = dm_btree_cursor_next(c);
return r;
}
EXPORT_SYMBOL_GPL(dm_btree_cursor_skip);
int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
{
if (c->depth) {
struct cursor_node *n = c->nodes + c->depth - 1;
struct btree_node *bn = dm_block_data(n->b);
if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
return -EINVAL;
*key = le64_to_cpu(*key_ptr(bn, n->index));
memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
return 0;
} else
return -ENODATA;
}
EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);