WSL2-Linux-Kernel/fs/btrfs/free-space-tree.c

1606 строки
40 KiB
C
Исходник Обычный вид История

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2015 Facebook. All rights reserved.
*/
#include <linux/kernel.h>
#include <linux/sched/mm.h>
#include "ctree.h"
#include "disk-io.h"
#include "locking.h"
#include "free-space-tree.h"
#include "transaction.h"
#include "block-group.h"
static int __add_block_group_free_space(struct btrfs_trans_handle *trans,
struct btrfs_block_group *block_group,
struct btrfs_path *path);
static struct btrfs_root *btrfs_free_space_root(
struct btrfs_block_group *block_group)
{
struct btrfs_key key = {
.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID,
.type = BTRFS_ROOT_ITEM_KEY,
.offset = 0,
};
if (btrfs_fs_incompat(block_group->fs_info, EXTENT_TREE_V2))
key.offset = block_group->global_root_id;
return btrfs_global_root(block_group->fs_info, &key);
}
void set_free_space_tree_thresholds(struct btrfs_block_group *cache)
{
u32 bitmap_range;
size_t bitmap_size;
u64 num_bitmaps, total_bitmap_size;
if (WARN_ON(cache->length == 0))
btrfs_warn(cache->fs_info, "block group %llu length is zero",
cache->start);
/*
* We convert to bitmaps when the disk space required for using extents
* exceeds that required for using bitmaps.
*/
bitmap_range = cache->fs_info->sectorsize * BTRFS_FREE_SPACE_BITMAP_BITS;
num_bitmaps = div_u64(cache->length + bitmap_range - 1, bitmap_range);
bitmap_size = sizeof(struct btrfs_item) + BTRFS_FREE_SPACE_BITMAP_SIZE;
total_bitmap_size = num_bitmaps * bitmap_size;
cache->bitmap_high_thresh = div_u64(total_bitmap_size,
sizeof(struct btrfs_item));
/*
* We allow for a small buffer between the high threshold and low
* threshold to avoid thrashing back and forth between the two formats.
*/
if (cache->bitmap_high_thresh > 100)
cache->bitmap_low_thresh = cache->bitmap_high_thresh - 100;
else
cache->bitmap_low_thresh = 0;
}
static int add_new_free_space_info(struct btrfs_trans_handle *trans,
struct btrfs_block_group *block_group,
struct btrfs_path *path)
{
struct btrfs_root *root = btrfs_free_space_root(block_group);
struct btrfs_free_space_info *info;
struct btrfs_key key;
struct extent_buffer *leaf;
int ret;
key.objectid = block_group->start;
key.type = BTRFS_FREE_SPACE_INFO_KEY;
key.offset = block_group->length;
ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*info));
if (ret)
goto out;
leaf = path->nodes[0];
info = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_free_space_info);
btrfs_set_free_space_extent_count(leaf, info, 0);
btrfs_set_free_space_flags(leaf, info, 0);
btrfs_mark_buffer_dirty(leaf);
ret = 0;
out:
btrfs_release_path(path);
return ret;
}
EXPORT_FOR_TESTS
struct btrfs_free_space_info *search_free_space_info(
struct btrfs_trans_handle *trans,
struct btrfs_block_group *block_group,
struct btrfs_path *path, int cow)
{
struct btrfs_fs_info *fs_info = block_group->fs_info;
struct btrfs_root *root = btrfs_free_space_root(block_group);
struct btrfs_key key;
int ret;
key.objectid = block_group->start;
key.type = BTRFS_FREE_SPACE_INFO_KEY;
key.offset = block_group->length;
ret = btrfs_search_slot(trans, root, &key, path, 0, cow);
if (ret < 0)
return ERR_PTR(ret);
if (ret != 0) {
btrfs_warn(fs_info, "missing free space info for %llu",
block_group->start);
ASSERT(0);
return ERR_PTR(-ENOENT);
}
return btrfs_item_ptr(path->nodes[0], path->slots[0],
struct btrfs_free_space_info);
}
/*
* btrfs_search_slot() but we're looking for the greatest key less than the
* passed key.
*/
static int btrfs_search_prev_slot(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_key *key, struct btrfs_path *p,
int ins_len, int cow)
{
int ret;
ret = btrfs_search_slot(trans, root, key, p, ins_len, cow);
if (ret < 0)
return ret;
if (ret == 0) {
ASSERT(0);
return -EIO;
}
if (p->slots[0] == 0) {
ASSERT(0);
return -EIO;
}
p->slots[0]--;
return 0;
}
static inline u32 free_space_bitmap_size(const struct btrfs_fs_info *fs_info,
u64 size)
{
return DIV_ROUND_UP(size >> fs_info->sectorsize_bits, BITS_PER_BYTE);
}
static unsigned long *alloc_bitmap(u32 bitmap_size)
{
unsigned long *ret;
unsigned int nofs_flag;
u32 bitmap_rounded_size = round_up(bitmap_size, sizeof(unsigned long));
/*
* GFP_NOFS doesn't work with kvmalloc(), but we really can't recurse
* into the filesystem as the free space bitmap can be modified in the
* critical section of a transaction commit.
*
* TODO: push the memalloc_nofs_{save,restore}() to the caller where we
* know that recursion is unsafe.
*/
nofs_flag = memalloc_nofs_save();
ret = kvzalloc(bitmap_rounded_size, GFP_KERNEL);
memalloc_nofs_restore(nofs_flag);
return ret;
}
static void le_bitmap_set(unsigned long *map, unsigned int start, int len)
{
u8 *p = ((u8 *)map) + BIT_BYTE(start);
const unsigned int size = start + len;
int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
while (len - bits_to_set >= 0) {
*p |= mask_to_set;
len -= bits_to_set;
bits_to_set = BITS_PER_BYTE;
mask_to_set = ~0;
p++;
}
if (len) {
mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
*p |= mask_to_set;
}
}
EXPORT_FOR_TESTS
int convert_free_space_to_bitmaps(struct btrfs_trans_handle *trans,
struct btrfs_block_group *block_group,
struct btrfs_path *path)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_root *root = btrfs_free_space_root(block_group);
struct btrfs_free_space_info *info;
struct btrfs_key key, found_key;
struct extent_buffer *leaf;
unsigned long *bitmap;
char *bitmap_cursor;
u64 start, end;
u64 bitmap_range, i;
u32 bitmap_size, flags, expected_extent_count;
u32 extent_count = 0;
int done = 0, nr;
int ret;
bitmap_size = free_space_bitmap_size(fs_info, block_group->length);
bitmap = alloc_bitmap(bitmap_size);
if (!bitmap) {
ret = -ENOMEM;
goto out;
}
start = block_group->start;
end = block_group->start + block_group->length;
key.objectid = end - 1;
key.type = (u8)-1;
key.offset = (u64)-1;
while (!done) {
ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1);
if (ret)
goto out;
leaf = path->nodes[0];
nr = 0;
path->slots[0]++;
while (path->slots[0] > 0) {
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0] - 1);
if (found_key.type == BTRFS_FREE_SPACE_INFO_KEY) {
ASSERT(found_key.objectid == block_group->start);
ASSERT(found_key.offset == block_group->length);
done = 1;
break;
} else if (found_key.type == BTRFS_FREE_SPACE_EXTENT_KEY) {
u64 first, last;
ASSERT(found_key.objectid >= start);
ASSERT(found_key.objectid < end);
ASSERT(found_key.objectid + found_key.offset <= end);
first = div_u64(found_key.objectid - start,
fs_info->sectorsize);
last = div_u64(found_key.objectid + found_key.offset - start,
fs_info->sectorsize);
le_bitmap_set(bitmap, first, last - first);
extent_count++;
nr++;
path->slots[0]--;
} else {
ASSERT(0);
}
}
ret = btrfs_del_items(trans, root, path, path->slots[0], nr);
if (ret)
goto out;
btrfs_release_path(path);
}
info = search_free_space_info(trans, block_group, path, 1);
if (IS_ERR(info)) {
ret = PTR_ERR(info);
goto out;
}
leaf = path->nodes[0];
flags = btrfs_free_space_flags(leaf, info);
flags |= BTRFS_FREE_SPACE_USING_BITMAPS;
btrfs_set_free_space_flags(leaf, info, flags);
expected_extent_count = btrfs_free_space_extent_count(leaf, info);
btrfs_mark_buffer_dirty(leaf);
btrfs_release_path(path);
if (extent_count != expected_extent_count) {
btrfs_err(fs_info,
"incorrect extent count for %llu; counted %u, expected %u",
block_group->start, extent_count,
expected_extent_count);
ASSERT(0);
ret = -EIO;
goto out;
}
bitmap_cursor = (char *)bitmap;
bitmap_range = fs_info->sectorsize * BTRFS_FREE_SPACE_BITMAP_BITS;
i = start;
while (i < end) {
unsigned long ptr;
u64 extent_size;
u32 data_size;
extent_size = min(end - i, bitmap_range);
data_size = free_space_bitmap_size(fs_info, extent_size);
key.objectid = i;
key.type = BTRFS_FREE_SPACE_BITMAP_KEY;
key.offset = extent_size;
ret = btrfs_insert_empty_item(trans, root, path, &key,
data_size);
if (ret)
goto out;
leaf = path->nodes[0];
ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
write_extent_buffer(leaf, bitmap_cursor, ptr,
data_size);
btrfs_mark_buffer_dirty(leaf);
btrfs_release_path(path);
i += extent_size;
bitmap_cursor += data_size;
}
ret = 0;
out:
kvfree(bitmap);
if (ret)
btrfs_abort_transaction(trans, ret);
return ret;
}
EXPORT_FOR_TESTS
int convert_free_space_to_extents(struct btrfs_trans_handle *trans,
struct btrfs_block_group *block_group,
struct btrfs_path *path)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_root *root = btrfs_free_space_root(block_group);
struct btrfs_free_space_info *info;
struct btrfs_key key, found_key;
struct extent_buffer *leaf;
unsigned long *bitmap;
u64 start, end;
u32 bitmap_size, flags, expected_extent_count;
unsigned long nrbits, start_bit, end_bit;
u32 extent_count = 0;
int done = 0, nr;
int ret;
bitmap_size = free_space_bitmap_size(fs_info, block_group->length);
bitmap = alloc_bitmap(bitmap_size);
if (!bitmap) {
ret = -ENOMEM;
goto out;
}
start = block_group->start;
end = block_group->start + block_group->length;
key.objectid = end - 1;
key.type = (u8)-1;
key.offset = (u64)-1;
while (!done) {
ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1);
if (ret)
goto out;
leaf = path->nodes[0];
nr = 0;
path->slots[0]++;
while (path->slots[0] > 0) {
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0] - 1);
if (found_key.type == BTRFS_FREE_SPACE_INFO_KEY) {
ASSERT(found_key.objectid == block_group->start);
ASSERT(found_key.offset == block_group->length);
done = 1;
break;
} else if (found_key.type == BTRFS_FREE_SPACE_BITMAP_KEY) {
unsigned long ptr;
char *bitmap_cursor;
u32 bitmap_pos, data_size;
ASSERT(found_key.objectid >= start);
ASSERT(found_key.objectid < end);
ASSERT(found_key.objectid + found_key.offset <= end);
bitmap_pos = div_u64(found_key.objectid - start,
fs_info->sectorsize *
BITS_PER_BYTE);
bitmap_cursor = ((char *)bitmap) + bitmap_pos;
data_size = free_space_bitmap_size(fs_info,
found_key.offset);
ptr = btrfs_item_ptr_offset(leaf, path->slots[0] - 1);
read_extent_buffer(leaf, bitmap_cursor, ptr,
data_size);
nr++;
path->slots[0]--;
} else {
ASSERT(0);
}
}
ret = btrfs_del_items(trans, root, path, path->slots[0], nr);
if (ret)
goto out;
btrfs_release_path(path);
}
info = search_free_space_info(trans, block_group, path, 1);
if (IS_ERR(info)) {
ret = PTR_ERR(info);
goto out;
}
leaf = path->nodes[0];
flags = btrfs_free_space_flags(leaf, info);
flags &= ~BTRFS_FREE_SPACE_USING_BITMAPS;
btrfs_set_free_space_flags(leaf, info, flags);
expected_extent_count = btrfs_free_space_extent_count(leaf, info);
btrfs_mark_buffer_dirty(leaf);
btrfs_release_path(path);
nrbits = block_group->length >> block_group->fs_info->sectorsize_bits;
start_bit = find_next_bit_le(bitmap, nrbits, 0);
while (start_bit < nrbits) {
end_bit = find_next_zero_bit_le(bitmap, nrbits, start_bit);
ASSERT(start_bit < end_bit);
key.objectid = start + start_bit * block_group->fs_info->sectorsize;
key.type = BTRFS_FREE_SPACE_EXTENT_KEY;
key.offset = (end_bit - start_bit) * block_group->fs_info->sectorsize;
ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
if (ret)
goto out;
btrfs_release_path(path);
extent_count++;
start_bit = find_next_bit_le(bitmap, nrbits, end_bit);
}
if (extent_count != expected_extent_count) {
btrfs_err(fs_info,
"incorrect extent count for %llu; counted %u, expected %u",
block_group->start, extent_count,
expected_extent_count);
ASSERT(0);
ret = -EIO;
goto out;
}
ret = 0;
out:
kvfree(bitmap);
if (ret)
btrfs_abort_transaction(trans, ret);
return ret;
}
static int update_free_space_extent_count(struct btrfs_trans_handle *trans,
struct btrfs_block_group *block_group,
struct btrfs_path *path,
int new_extents)
{
struct btrfs_free_space_info *info;
u32 flags;
u32 extent_count;
int ret = 0;
if (new_extents == 0)
return 0;
info = search_free_space_info(trans, block_group, path, 1);
if (IS_ERR(info)) {
ret = PTR_ERR(info);
goto out;
}
flags = btrfs_free_space_flags(path->nodes[0], info);
extent_count = btrfs_free_space_extent_count(path->nodes[0], info);
extent_count += new_extents;
btrfs_set_free_space_extent_count(path->nodes[0], info, extent_count);
btrfs_mark_buffer_dirty(path->nodes[0]);
btrfs_release_path(path);
if (!(flags & BTRFS_FREE_SPACE_USING_BITMAPS) &&
extent_count > block_group->bitmap_high_thresh) {
ret = convert_free_space_to_bitmaps(trans, block_group, path);
} else if ((flags & BTRFS_FREE_SPACE_USING_BITMAPS) &&
extent_count < block_group->bitmap_low_thresh) {
ret = convert_free_space_to_extents(trans, block_group, path);
}
out:
return ret;
}
EXPORT_FOR_TESTS
int free_space_test_bit(struct btrfs_block_group *block_group,
struct btrfs_path *path, u64 offset)
{
struct extent_buffer *leaf;
struct btrfs_key key;
u64 found_start, found_end;
unsigned long ptr, i;
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
ASSERT(key.type == BTRFS_FREE_SPACE_BITMAP_KEY);
found_start = key.objectid;
found_end = key.objectid + key.offset;
ASSERT(offset >= found_start && offset < found_end);
ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
i = div_u64(offset - found_start,
block_group->fs_info->sectorsize);
return !!extent_buffer_test_bit(leaf, ptr, i);
}
static void free_space_set_bits(struct btrfs_block_group *block_group,
struct btrfs_path *path, u64 *start, u64 *size,
int bit)
{
struct btrfs_fs_info *fs_info = block_group->fs_info;
struct extent_buffer *leaf;
struct btrfs_key key;
u64 end = *start + *size;
u64 found_start, found_end;
unsigned long ptr, first, last;
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
ASSERT(key.type == BTRFS_FREE_SPACE_BITMAP_KEY);
found_start = key.objectid;
found_end = key.objectid + key.offset;
ASSERT(*start >= found_start && *start < found_end);
ASSERT(end > found_start);
if (end > found_end)
end = found_end;
ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
first = (*start - found_start) >> fs_info->sectorsize_bits;
last = (end - found_start) >> fs_info->sectorsize_bits;
if (bit)
extent_buffer_bitmap_set(leaf, ptr, first, last - first);
else
extent_buffer_bitmap_clear(leaf, ptr, first, last - first);
btrfs_mark_buffer_dirty(leaf);
*size -= end - *start;
*start = end;
}
/*
* We can't use btrfs_next_item() in modify_free_space_bitmap() because
* btrfs_next_leaf() doesn't get the path for writing. We can forgo the fancy
* tree walking in btrfs_next_leaf() anyways because we know exactly what we're
* looking for.
*/
static int free_space_next_bitmap(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct btrfs_path *p)
{
struct btrfs_key key;
if (p->slots[0] + 1 < btrfs_header_nritems(p->nodes[0])) {
p->slots[0]++;
return 0;
}
btrfs_item_key_to_cpu(p->nodes[0], &key, p->slots[0]);
btrfs_release_path(p);
key.objectid += key.offset;
key.type = (u8)-1;
key.offset = (u64)-1;
return btrfs_search_prev_slot(trans, root, &key, p, 0, 1);
}
/*
* If remove is 1, then we are removing free space, thus clearing bits in the
* bitmap. If remove is 0, then we are adding free space, thus setting bits in
* the bitmap.
*/
static int modify_free_space_bitmap(struct btrfs_trans_handle *trans,
struct btrfs_block_group *block_group,
struct btrfs_path *path,
u64 start, u64 size, int remove)
{
struct btrfs_root *root = btrfs_free_space_root(block_group);
struct btrfs_key key;
u64 end = start + size;
u64 cur_start, cur_size;
int prev_bit, next_bit;
int new_extents;
int ret;
/*
* Read the bit for the block immediately before the extent of space if
* that block is within the block group.
*/
if (start > block_group->start) {
u64 prev_block = start - block_group->fs_info->sectorsize;
key.objectid = prev_block;
key.type = (u8)-1;
key.offset = (u64)-1;
ret = btrfs_search_prev_slot(trans, root, &key, path, 0, 1);
if (ret)
goto out;
prev_bit = free_space_test_bit(block_group, path, prev_block);
/* The previous block may have been in the previous bitmap. */
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
if (start >= key.objectid + key.offset) {
ret = free_space_next_bitmap(trans, root, path);
if (ret)
goto out;
}
} else {
key.objectid = start;
key.type = (u8)-1;
key.offset = (u64)-1;
ret = btrfs_search_prev_slot(trans, root, &key, path, 0, 1);
if (ret)
goto out;
prev_bit = -1;
}
/*
* Iterate over all of the bitmaps overlapped by the extent of space,
* clearing/setting bits as required.
*/
cur_start = start;
cur_size = size;
while (1) {
free_space_set_bits(block_group, path, &cur_start, &cur_size,
!remove);
if (cur_size == 0)
break;
ret = free_space_next_bitmap(trans, root, path);
if (ret)
goto out;
}
/*
* Read the bit for the block immediately after the extent of space if
* that block is within the block group.
*/
if (end < block_group->start + block_group->length) {
/* The next block may be in the next bitmap. */
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
if (end >= key.objectid + key.offset) {
ret = free_space_next_bitmap(trans, root, path);
if (ret)
goto out;
}
next_bit = free_space_test_bit(block_group, path, end);
} else {
next_bit = -1;
}
if (remove) {
new_extents = -1;
if (prev_bit == 1) {
/* Leftover on the left. */
new_extents++;
}
if (next_bit == 1) {
/* Leftover on the right. */
new_extents++;
}
} else {
new_extents = 1;
if (prev_bit == 1) {
/* Merging with neighbor on the left. */
new_extents--;
}
if (next_bit == 1) {
/* Merging with neighbor on the right. */
new_extents--;
}
}
btrfs_release_path(path);
ret = update_free_space_extent_count(trans, block_group, path,
new_extents);
out:
return ret;
}
static int remove_free_space_extent(struct btrfs_trans_handle *trans,
struct btrfs_block_group *block_group,
struct btrfs_path *path,
u64 start, u64 size)
{
struct btrfs_root *root = btrfs_free_space_root(block_group);
struct btrfs_key key;
u64 found_start, found_end;
u64 end = start + size;
int new_extents = -1;
int ret;
key.objectid = start;
key.type = (u8)-1;
key.offset = (u64)-1;
ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1);
if (ret)
goto out;
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
ASSERT(key.type == BTRFS_FREE_SPACE_EXTENT_KEY);
found_start = key.objectid;
found_end = key.objectid + key.offset;
ASSERT(start >= found_start && end <= found_end);
/*
* Okay, now that we've found the free space extent which contains the
* free space that we are removing, there are four cases:
*
* 1. We're using the whole extent: delete the key we found and
* decrement the free space extent count.
* 2. We are using part of the extent starting at the beginning: delete
* the key we found and insert a new key representing the leftover at
* the end. There is no net change in the number of extents.
* 3. We are using part of the extent ending at the end: delete the key
* we found and insert a new key representing the leftover at the
* beginning. There is no net change in the number of extents.
* 4. We are using part of the extent in the middle: delete the key we
* found and insert two new keys representing the leftovers on each
* side. Where we used to have one extent, we now have two, so increment
* the extent count. We may need to convert the block group to bitmaps
* as a result.
*/
/* Delete the existing key (cases 1-4). */
ret = btrfs_del_item(trans, root, path);
if (ret)
goto out;
/* Add a key for leftovers at the beginning (cases 3 and 4). */
if (start > found_start) {
key.objectid = found_start;
key.type = BTRFS_FREE_SPACE_EXTENT_KEY;
key.offset = start - found_start;
btrfs_release_path(path);
ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
if (ret)
goto out;
new_extents++;
}
/* Add a key for leftovers at the end (cases 2 and 4). */
if (end < found_end) {
key.objectid = end;
key.type = BTRFS_FREE_SPACE_EXTENT_KEY;
key.offset = found_end - end;
btrfs_release_path(path);
ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
if (ret)
goto out;
new_extents++;
}
btrfs_release_path(path);
ret = update_free_space_extent_count(trans, block_group, path,
new_extents);
out:
return ret;
}
EXPORT_FOR_TESTS
int __remove_from_free_space_tree(struct btrfs_trans_handle *trans,
struct btrfs_block_group *block_group,
struct btrfs_path *path, u64 start, u64 size)
{
struct btrfs_free_space_info *info;
u32 flags;
int ret;
if (block_group->needs_free_space) {
ret = __add_block_group_free_space(trans, block_group, path);
if (ret)
return ret;
}
info = search_free_space_info(NULL, block_group, path, 0);
if (IS_ERR(info))
return PTR_ERR(info);
flags = btrfs_free_space_flags(path->nodes[0], info);
btrfs_release_path(path);
if (flags & BTRFS_FREE_SPACE_USING_BITMAPS) {
return modify_free_space_bitmap(trans, block_group, path,
start, size, 1);
} else {
return remove_free_space_extent(trans, block_group, path,
start, size);
}
}
int remove_from_free_space_tree(struct btrfs_trans_handle *trans,
u64 start, u64 size)
{
struct btrfs_block_group *block_group;
struct btrfs_path *path;
int ret;
if (!btrfs_fs_compat_ro(trans->fs_info, FREE_SPACE_TREE))
return 0;
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
block_group = btrfs_lookup_block_group(trans->fs_info, start);
if (!block_group) {
ASSERT(0);
ret = -ENOENT;
goto out;
}
mutex_lock(&block_group->free_space_lock);
ret = __remove_from_free_space_tree(trans, block_group, path, start,
size);
mutex_unlock(&block_group->free_space_lock);
btrfs_put_block_group(block_group);
out:
btrfs_free_path(path);
if (ret)
btrfs_abort_transaction(trans, ret);
return ret;
}
static int add_free_space_extent(struct btrfs_trans_handle *trans,
struct btrfs_block_group *block_group,
struct btrfs_path *path,
u64 start, u64 size)
{
struct btrfs_root *root = btrfs_free_space_root(block_group);
struct btrfs_key key, new_key;
u64 found_start, found_end;
u64 end = start + size;
int new_extents = 1;
int ret;
/*
* We are adding a new extent of free space, but we need to merge
* extents. There are four cases here:
*
* 1. The new extent does not have any immediate neighbors to merge
* with: add the new key and increment the free space extent count. We
* may need to convert the block group to bitmaps as a result.
* 2. The new extent has an immediate neighbor before it: remove the
* previous key and insert a new key combining both of them. There is no
* net change in the number of extents.
* 3. The new extent has an immediate neighbor after it: remove the next
* key and insert a new key combining both of them. There is no net
* change in the number of extents.
* 4. The new extent has immediate neighbors on both sides: remove both
* of the keys and insert a new key combining all of them. Where we used
* to have two extents, we now have one, so decrement the extent count.
*/
new_key.objectid = start;
new_key.type = BTRFS_FREE_SPACE_EXTENT_KEY;
new_key.offset = size;
/* Search for a neighbor on the left. */
if (start == block_group->start)
goto right;
key.objectid = start - 1;
key.type = (u8)-1;
key.offset = (u64)-1;
ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1);
if (ret)
goto out;
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
if (key.type != BTRFS_FREE_SPACE_EXTENT_KEY) {
ASSERT(key.type == BTRFS_FREE_SPACE_INFO_KEY);
btrfs_release_path(path);
goto right;
}
found_start = key.objectid;
found_end = key.objectid + key.offset;
ASSERT(found_start >= block_group->start &&
found_end > block_group->start);
ASSERT(found_start < start && found_end <= start);
/*
* Delete the neighbor on the left and absorb it into the new key (cases
* 2 and 4).
*/
if (found_end == start) {
ret = btrfs_del_item(trans, root, path);
if (ret)
goto out;
new_key.objectid = found_start;
new_key.offset += key.offset;
new_extents--;
}
btrfs_release_path(path);
right:
/* Search for a neighbor on the right. */
if (end == block_group->start + block_group->length)
goto insert;
key.objectid = end;
key.type = (u8)-1;
key.offset = (u64)-1;
ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1);
if (ret)
goto out;
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
if (key.type != BTRFS_FREE_SPACE_EXTENT_KEY) {
ASSERT(key.type == BTRFS_FREE_SPACE_INFO_KEY);
btrfs_release_path(path);
goto insert;
}
found_start = key.objectid;
found_end = key.objectid + key.offset;
ASSERT(found_start >= block_group->start &&
found_end > block_group->start);
ASSERT((found_start < start && found_end <= start) ||
(found_start >= end && found_end > end));
/*
* Delete the neighbor on the right and absorb it into the new key
* (cases 3 and 4).
*/
if (found_start == end) {
ret = btrfs_del_item(trans, root, path);
if (ret)
goto out;
new_key.offset += key.offset;
new_extents--;
}
btrfs_release_path(path);
insert:
/* Insert the new key (cases 1-4). */
ret = btrfs_insert_empty_item(trans, root, path, &new_key, 0);
if (ret)
goto out;
btrfs_release_path(path);
ret = update_free_space_extent_count(trans, block_group, path,
new_extents);
out:
return ret;
}
EXPORT_FOR_TESTS
int __add_to_free_space_tree(struct btrfs_trans_handle *trans,
struct btrfs_block_group *block_group,
struct btrfs_path *path, u64 start, u64 size)
{
struct btrfs_free_space_info *info;
u32 flags;
int ret;
if (block_group->needs_free_space) {
ret = __add_block_group_free_space(trans, block_group, path);
if (ret)
return ret;
}
info = search_free_space_info(NULL, block_group, path, 0);
if (IS_ERR(info))
return PTR_ERR(info);
flags = btrfs_free_space_flags(path->nodes[0], info);
btrfs_release_path(path);
if (flags & BTRFS_FREE_SPACE_USING_BITMAPS) {
return modify_free_space_bitmap(trans, block_group, path,
start, size, 0);
} else {
return add_free_space_extent(trans, block_group, path, start,
size);
}
}
int add_to_free_space_tree(struct btrfs_trans_handle *trans,
u64 start, u64 size)
{
struct btrfs_block_group *block_group;
struct btrfs_path *path;
int ret;
if (!btrfs_fs_compat_ro(trans->fs_info, FREE_SPACE_TREE))
return 0;
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
block_group = btrfs_lookup_block_group(trans->fs_info, start);
if (!block_group) {
ASSERT(0);
ret = -ENOENT;
goto out;
}
mutex_lock(&block_group->free_space_lock);
ret = __add_to_free_space_tree(trans, block_group, path, start, size);
mutex_unlock(&block_group->free_space_lock);
btrfs_put_block_group(block_group);
out:
btrfs_free_path(path);
if (ret)
btrfs_abort_transaction(trans, ret);
return ret;
}
/*
* Populate the free space tree by walking the extent tree. Operations on the
* extent tree that happen as a result of writes to the free space tree will go
* through the normal add/remove hooks.
*/
static int populate_free_space_tree(struct btrfs_trans_handle *trans,
struct btrfs_block_group *block_group)
{
struct btrfs_root *extent_root;
struct btrfs_path *path, *path2;
struct btrfs_key key;
u64 start, end;
int ret;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->reada = READA_FORWARD;
path2 = btrfs_alloc_path();
if (!path2) {
btrfs_free_path(path);
return -ENOMEM;
}
ret = add_new_free_space_info(trans, block_group, path2);
if (ret)
goto out;
mutex_lock(&block_group->free_space_lock);
/*
* Iterate through all of the extent and metadata items in this block
* group, adding the free space between them and the free space at the
* end. Note that EXTENT_ITEM and METADATA_ITEM are less than
* BLOCK_GROUP_ITEM, so an extent may precede the block group that it's
* contained in.
*/
key.objectid = block_group->start;
key.type = BTRFS_EXTENT_ITEM_KEY;
key.offset = 0;
extent_root = btrfs_extent_root(trans->fs_info, key.objectid);
ret = btrfs_search_slot_for_read(extent_root, &key, path, 1, 0);
if (ret < 0)
goto out_locked;
ASSERT(ret == 0);
start = block_group->start;
end = block_group->start + block_group->length;
while (1) {
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
if (key.type == BTRFS_EXTENT_ITEM_KEY ||
key.type == BTRFS_METADATA_ITEM_KEY) {
if (key.objectid >= end)
break;
if (start < key.objectid) {
ret = __add_to_free_space_tree(trans,
block_group,
path2, start,
key.objectid -
start);
if (ret)
goto out_locked;
}
start = key.objectid;
if (key.type == BTRFS_METADATA_ITEM_KEY)
start += trans->fs_info->nodesize;
else
start += key.offset;
} else if (key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
if (key.objectid != block_group->start)
break;
}
ret = btrfs_next_item(extent_root, path);
if (ret < 0)
goto out_locked;
if (ret)
break;
}
if (start < end) {
ret = __add_to_free_space_tree(trans, block_group, path2,
start, end - start);
if (ret)
goto out_locked;
}
ret = 0;
out_locked:
mutex_unlock(&block_group->free_space_lock);
out:
btrfs_free_path(path2);
btrfs_free_path(path);
return ret;
}
int btrfs_create_free_space_tree(struct btrfs_fs_info *fs_info)
{
struct btrfs_trans_handle *trans;
struct btrfs_root *tree_root = fs_info->tree_root;
struct btrfs_root *free_space_root;
struct btrfs_block_group *block_group;
struct rb_node *node;
int ret;
trans = btrfs_start_transaction(tree_root, 0);
if (IS_ERR(trans))
return PTR_ERR(trans);
set_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags);
btrfs: fix possible free space tree corruption with online conversion While running btrfs/011 in a loop I would often ASSERT() while trying to add a new free space entry that already existed, or get an EEXIST while adding a new block to the extent tree, which is another indication of double allocation. This occurs because when we do the free space tree population, we create the new root and then populate the tree and commit the transaction. The problem is when you create a new root, the root node and commit root node are the same. During this initial transaction commit we will run all of the delayed refs that were paused during the free space tree generation, and thus begin to cache block groups. While caching block groups the caching thread will be reading from the main root for the free space tree, so as we make allocations we'll be changing the free space tree, which can cause us to add the same range twice which results in either the ASSERT(ret != -EEXIST); in __btrfs_add_free_space, or in a variety of different errors when running delayed refs because of a double allocation. Fix this by marking the fs_info as unsafe to load the free space tree, and fall back on the old slow method. We could be smarter than this, for example caching the block group while we're populating the free space tree, but since this is a serious problem I've opted for the simplest solution. CC: stable@vger.kernel.org # 4.9+ Fixes: a5ed91828518 ("Btrfs: implement the free space B-tree") Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-01-16 00:26:17 +03:00
set_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags);
free_space_root = btrfs_create_tree(trans,
BTRFS_FREE_SPACE_TREE_OBJECTID);
if (IS_ERR(free_space_root)) {
ret = PTR_ERR(free_space_root);
goto abort;
}
ret = btrfs_global_root_insert(free_space_root);
if (ret) {
btrfs_put_root(free_space_root);
goto abort;
}
node = rb_first_cached(&fs_info->block_group_cache_tree);
while (node) {
block_group = rb_entry(node, struct btrfs_block_group,
cache_node);
ret = populate_free_space_tree(trans, block_group);
if (ret)
goto abort;
node = rb_next(node);
}
btrfs_set_fs_compat_ro(fs_info, FREE_SPACE_TREE);
btrfs_set_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID);
clear_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags);
btrfs: fix possible free space tree corruption with online conversion While running btrfs/011 in a loop I would often ASSERT() while trying to add a new free space entry that already existed, or get an EEXIST while adding a new block to the extent tree, which is another indication of double allocation. This occurs because when we do the free space tree population, we create the new root and then populate the tree and commit the transaction. The problem is when you create a new root, the root node and commit root node are the same. During this initial transaction commit we will run all of the delayed refs that were paused during the free space tree generation, and thus begin to cache block groups. While caching block groups the caching thread will be reading from the main root for the free space tree, so as we make allocations we'll be changing the free space tree, which can cause us to add the same range twice which results in either the ASSERT(ret != -EEXIST); in __btrfs_add_free_space, or in a variety of different errors when running delayed refs because of a double allocation. Fix this by marking the fs_info as unsafe to load the free space tree, and fall back on the old slow method. We could be smarter than this, for example caching the block group while we're populating the free space tree, but since this is a serious problem I've opted for the simplest solution. CC: stable@vger.kernel.org # 4.9+ Fixes: a5ed91828518 ("Btrfs: implement the free space B-tree") Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-01-16 00:26:17 +03:00
ret = btrfs_commit_transaction(trans);
btrfs: fix possible free space tree corruption with online conversion While running btrfs/011 in a loop I would often ASSERT() while trying to add a new free space entry that already existed, or get an EEXIST while adding a new block to the extent tree, which is another indication of double allocation. This occurs because when we do the free space tree population, we create the new root and then populate the tree and commit the transaction. The problem is when you create a new root, the root node and commit root node are the same. During this initial transaction commit we will run all of the delayed refs that were paused during the free space tree generation, and thus begin to cache block groups. While caching block groups the caching thread will be reading from the main root for the free space tree, so as we make allocations we'll be changing the free space tree, which can cause us to add the same range twice which results in either the ASSERT(ret != -EEXIST); in __btrfs_add_free_space, or in a variety of different errors when running delayed refs because of a double allocation. Fix this by marking the fs_info as unsafe to load the free space tree, and fall back on the old slow method. We could be smarter than this, for example caching the block group while we're populating the free space tree, but since this is a serious problem I've opted for the simplest solution. CC: stable@vger.kernel.org # 4.9+ Fixes: a5ed91828518 ("Btrfs: implement the free space B-tree") Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-01-16 00:26:17 +03:00
/*
* Now that we've committed the transaction any reading of our commit
* root will be safe, so we can cache from the free space tree now.
*/
clear_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags);
return ret;
abort:
clear_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags);
btrfs: fix possible free space tree corruption with online conversion While running btrfs/011 in a loop I would often ASSERT() while trying to add a new free space entry that already existed, or get an EEXIST while adding a new block to the extent tree, which is another indication of double allocation. This occurs because when we do the free space tree population, we create the new root and then populate the tree and commit the transaction. The problem is when you create a new root, the root node and commit root node are the same. During this initial transaction commit we will run all of the delayed refs that were paused during the free space tree generation, and thus begin to cache block groups. While caching block groups the caching thread will be reading from the main root for the free space tree, so as we make allocations we'll be changing the free space tree, which can cause us to add the same range twice which results in either the ASSERT(ret != -EEXIST); in __btrfs_add_free_space, or in a variety of different errors when running delayed refs because of a double allocation. Fix this by marking the fs_info as unsafe to load the free space tree, and fall back on the old slow method. We could be smarter than this, for example caching the block group while we're populating the free space tree, but since this is a serious problem I've opted for the simplest solution. CC: stable@vger.kernel.org # 4.9+ Fixes: a5ed91828518 ("Btrfs: implement the free space B-tree") Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-01-16 00:26:17 +03:00
clear_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags);
btrfs_abort_transaction(trans, ret);
btrfs_end_transaction(trans);
return ret;
}
static int clear_free_space_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_path *path;
struct btrfs_key key;
int nr;
int ret;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = 0;
key.type = 0;
key.offset = 0;
while (1) {
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret < 0)
goto out;
nr = btrfs_header_nritems(path->nodes[0]);
if (!nr)
break;
path->slots[0] = 0;
ret = btrfs_del_items(trans, root, path, 0, nr);
if (ret)
goto out;
btrfs_release_path(path);
}
ret = 0;
out:
btrfs_free_path(path);
return ret;
}
int btrfs_clear_free_space_tree(struct btrfs_fs_info *fs_info)
{
struct btrfs_trans_handle *trans;
struct btrfs_root *tree_root = fs_info->tree_root;
struct btrfs_key key = {
.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID,
.type = BTRFS_ROOT_ITEM_KEY,
.offset = 0,
};
struct btrfs_root *free_space_root = btrfs_global_root(fs_info, &key);
int ret;
trans = btrfs_start_transaction(tree_root, 0);
if (IS_ERR(trans))
return PTR_ERR(trans);
btrfs_clear_fs_compat_ro(fs_info, FREE_SPACE_TREE);
btrfs_clear_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID);
ret = clear_free_space_tree(trans, free_space_root);
if (ret)
goto abort;
ret = btrfs_del_root(trans, &free_space_root->root_key);
if (ret)
goto abort;
btrfs_global_root_delete(free_space_root);
list_del(&free_space_root->dirty_list);
btrfs_tree_lock(free_space_root->node);
btrfs_clean_tree_block(free_space_root->node);
btrfs_tree_unlock(free_space_root->node);
btrfs: fix invalid delayed ref after subvolume creation failure When creating a subvolume, at ioctl.c:create_subvol(), if we fail to insert the new root's root item into the root tree, we are freeing the metadata extent we reserved for the new root to prevent a metadata extent leak, as we don't abort the transaction at that point (since there is nothing at that point that is irreversible). However we allocated the metadata extent for the new root which we are creating for the new subvolume, so its delayed reference refers to the ID of this new root. But when we free the metadata extent we pass the root of the subvolume where the new subvolume is located to btrfs_free_tree_block() - this is incorrect because this will generate a delayed reference that refers to the ID of the parent subvolume's root, and not to ID of the new root. This results in a failure when running delayed references that leads to a transaction abort and a trace like the following: [3868.738042] RIP: 0010:__btrfs_free_extent+0x709/0x950 [btrfs] [3868.739857] Code: 68 0f 85 e6 fb ff (...) [3868.742963] RSP: 0018:ffffb0e9045cf910 EFLAGS: 00010246 [3868.743908] RAX: 00000000fffffffe RBX: 00000000fffffffe RCX: 0000000000000002 [3868.745312] RDX: 00000000fffffffe RSI: 0000000000000002 RDI: ffff90b0cd793b88 [3868.746643] RBP: 000000000e5d8000 R08: 0000000000000000 R09: ffff90b0cd793b88 [3868.747979] R10: 0000000000000002 R11: 00014ded97944d68 R12: 0000000000000000 [3868.749373] R13: ffff90b09afe4a28 R14: 0000000000000000 R15: ffff90b0cd793b88 [3868.750725] FS: 00007f281c4a8b80(0000) GS:ffff90b3ada00000(0000) knlGS:0000000000000000 [3868.752275] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [3868.753515] CR2: 00007f281c6a5000 CR3: 0000000108a42006 CR4: 0000000000370ee0 [3868.754869] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [3868.756228] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [3868.757803] Call Trace: [3868.758281] <TASK> [3868.758655] ? btrfs_merge_delayed_refs+0x178/0x1c0 [btrfs] [3868.759827] __btrfs_run_delayed_refs+0x2b1/0x1250 [btrfs] [3868.761047] btrfs_run_delayed_refs+0x86/0x210 [btrfs] [3868.762069] ? lock_acquired+0x19f/0x420 [3868.762829] btrfs_commit_transaction+0x69/0xb20 [btrfs] [3868.763860] ? _raw_spin_unlock+0x29/0x40 [3868.764614] ? btrfs_block_rsv_release+0x1c2/0x1e0 [btrfs] [3868.765870] create_subvol+0x1d8/0x9a0 [btrfs] [3868.766766] btrfs_mksubvol+0x447/0x4c0 [btrfs] [3868.767669] ? preempt_count_add+0x49/0xa0 [3868.768444] __btrfs_ioctl_snap_create+0x123/0x190 [btrfs] [3868.769639] ? _copy_from_user+0x66/0xa0 [3868.770391] btrfs_ioctl_snap_create_v2+0xbb/0x140 [btrfs] [3868.771495] btrfs_ioctl+0xd1e/0x35c0 [btrfs] [3868.772364] ? __slab_free+0x10a/0x360 [3868.773198] ? rcu_read_lock_sched_held+0x12/0x60 [3868.774121] ? lock_release+0x223/0x4a0 [3868.774863] ? lock_acquired+0x19f/0x420 [3868.775634] ? rcu_read_lock_sched_held+0x12/0x60 [3868.776530] ? trace_hardirqs_on+0x1b/0xe0 [3868.777373] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [3868.778280] ? kmem_cache_free+0x321/0x3c0 [3868.779011] ? __x64_sys_ioctl+0x83/0xb0 [3868.779718] __x64_sys_ioctl+0x83/0xb0 [3868.780387] do_syscall_64+0x3b/0xc0 [3868.781059] entry_SYSCALL_64_after_hwframe+0x44/0xae [3868.781953] RIP: 0033:0x7f281c59e957 [3868.782585] Code: 3c 1c 48 f7 d8 4c (...) [3868.785867] RSP: 002b:00007ffe1f83e2b8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010 [3868.787198] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f281c59e957 [3868.788450] RDX: 00007ffe1f83e2c0 RSI: 0000000050009418 RDI: 0000000000000003 [3868.789748] RBP: 00007ffe1f83f300 R08: 0000000000000000 R09: 00007ffe1f83fe36 [3868.791214] R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000003 [3868.792468] R13: 0000000000000003 R14: 00007ffe1f83e2c0 R15: 00000000000003cc [3868.793765] </TASK> [3868.794037] irq event stamp: 0 [3868.794548] hardirqs last enabled at (0): [<0000000000000000>] 0x0 [3868.795670] hardirqs last disabled at (0): [<ffffffff98294214>] copy_process+0x934/0x2040 [3868.797086] softirqs last enabled at (0): [<ffffffff98294214>] copy_process+0x934/0x2040 [3868.798309] softirqs last disabled at (0): [<0000000000000000>] 0x0 [3868.799284] ---[ end trace be24c7002fe27747 ]--- [3868.799928] BTRFS info (device dm-0): leaf 241188864 gen 1268 total ptrs 214 free space 469 owner 2 [3868.801133] BTRFS info (device dm-0): refs 2 lock_owner 225627 current 225627 [3868.802056] item 0 key (237436928 169 0) itemoff 16250 itemsize 33 [3868.802863] extent refs 1 gen 1265 flags 2 [3868.803447] ref#0: tree block backref root 1610 (...) [3869.064354] item 114 key (241008640 169 0) itemoff 12488 itemsize 33 [3869.065421] extent refs 1 gen 1268 flags 2 [3869.066115] ref#0: tree block backref root 1689 (...) [3869.403834] BTRFS error (device dm-0): unable to find ref byte nr 241008640 parent 0 root 1622 owner 0 offset 0 [3869.405641] BTRFS: error (device dm-0) in __btrfs_free_extent:3076: errno=-2 No such entry [3869.407138] BTRFS: error (device dm-0) in btrfs_run_delayed_refs:2159: errno=-2 No such entry Fix this by passing the new subvolume's root ID to btrfs_free_tree_block(). This requires changing the root argument of btrfs_free_tree_block() from struct btrfs_root * to a u64, since at this point during the subvolume creation we have not yet created the struct btrfs_root for the new subvolume, and btrfs_free_tree_block() only needs a root ID and nothing else from a struct btrfs_root. This was triggered by test case generic/475 from fstests. Fixes: 67addf29004c5b ("btrfs: fix metadata extent leak after failure to create subvolume") CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-12-13 11:45:12 +03:00
btrfs_free_tree_block(trans, btrfs_root_id(free_space_root),
free_space_root->node, 0, 1);
btrfs_put_root(free_space_root);
return btrfs_commit_transaction(trans);
abort:
btrfs_abort_transaction(trans, ret);
btrfs_end_transaction(trans);
return ret;
}
static int __add_block_group_free_space(struct btrfs_trans_handle *trans,
struct btrfs_block_group *block_group,
struct btrfs_path *path)
{
int ret;
block_group->needs_free_space = 0;
ret = add_new_free_space_info(trans, block_group, path);
if (ret)
return ret;
return __add_to_free_space_tree(trans, block_group, path,
block_group->start,
block_group->length);
}
int add_block_group_free_space(struct btrfs_trans_handle *trans,
struct btrfs_block_group *block_group)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_path *path = NULL;
int ret = 0;
if (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
return 0;
mutex_lock(&block_group->free_space_lock);
if (!block_group->needs_free_space)
goto out;
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
ret = __add_block_group_free_space(trans, block_group, path);
out:
btrfs_free_path(path);
mutex_unlock(&block_group->free_space_lock);
if (ret)
btrfs_abort_transaction(trans, ret);
return ret;
}
int remove_block_group_free_space(struct btrfs_trans_handle *trans,
struct btrfs_block_group *block_group)
{
struct btrfs_root *root = btrfs_free_space_root(block_group);
struct btrfs_path *path;
struct btrfs_key key, found_key;
struct extent_buffer *leaf;
u64 start, end;
int done = 0, nr;
int ret;
if (!btrfs_fs_compat_ro(trans->fs_info, FREE_SPACE_TREE))
return 0;
if (block_group->needs_free_space) {
/* We never added this block group to the free space tree. */
return 0;
}
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
start = block_group->start;
end = block_group->start + block_group->length;
key.objectid = end - 1;
key.type = (u8)-1;
key.offset = (u64)-1;
while (!done) {
ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1);
if (ret)
goto out;
leaf = path->nodes[0];
nr = 0;
path->slots[0]++;
while (path->slots[0] > 0) {
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0] - 1);
if (found_key.type == BTRFS_FREE_SPACE_INFO_KEY) {
ASSERT(found_key.objectid == block_group->start);
ASSERT(found_key.offset == block_group->length);
done = 1;
nr++;
path->slots[0]--;
break;
} else if (found_key.type == BTRFS_FREE_SPACE_EXTENT_KEY ||
found_key.type == BTRFS_FREE_SPACE_BITMAP_KEY) {
ASSERT(found_key.objectid >= start);
ASSERT(found_key.objectid < end);
ASSERT(found_key.objectid + found_key.offset <= end);
nr++;
path->slots[0]--;
} else {
ASSERT(0);
}
}
ret = btrfs_del_items(trans, root, path, path->slots[0], nr);
if (ret)
goto out;
btrfs_release_path(path);
}
ret = 0;
out:
btrfs_free_path(path);
if (ret)
btrfs_abort_transaction(trans, ret);
return ret;
}
static int load_free_space_bitmaps(struct btrfs_caching_control *caching_ctl,
struct btrfs_path *path,
u32 expected_extent_count)
{
struct btrfs_block_group *block_group;
struct btrfs_fs_info *fs_info;
struct btrfs_root *root;
struct btrfs_key key;
int prev_bit = 0, bit;
/* Initialize to silence GCC. */
u64 extent_start = 0;
u64 end, offset;
u64 total_found = 0;
u32 extent_count = 0;
int ret;
block_group = caching_ctl->block_group;
fs_info = block_group->fs_info;
root = btrfs_free_space_root(block_group);
end = block_group->start + block_group->length;
while (1) {
ret = btrfs_next_item(root, path);
if (ret < 0)
goto out;
if (ret)
break;
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
if (key.type == BTRFS_FREE_SPACE_INFO_KEY)
break;
ASSERT(key.type == BTRFS_FREE_SPACE_BITMAP_KEY);
ASSERT(key.objectid < end && key.objectid + key.offset <= end);
caching_ctl->progress = key.objectid;
offset = key.objectid;
while (offset < key.objectid + key.offset) {
bit = free_space_test_bit(block_group, path, offset);
if (prev_bit == 0 && bit == 1) {
extent_start = offset;
} else if (prev_bit == 1 && bit == 0) {
total_found += add_new_free_space(block_group,
extent_start,
offset);
if (total_found > CACHING_CTL_WAKE_UP) {
total_found = 0;
wake_up(&caching_ctl->wait);
}
extent_count++;
}
prev_bit = bit;
offset += fs_info->sectorsize;
}
}
if (prev_bit == 1) {
total_found += add_new_free_space(block_group, extent_start,
end);
extent_count++;
}
if (extent_count != expected_extent_count) {
btrfs_err(fs_info,
"incorrect extent count for %llu; counted %u, expected %u",
block_group->start, extent_count,
expected_extent_count);
ASSERT(0);
ret = -EIO;
goto out;
}
caching_ctl->progress = (u64)-1;
ret = 0;
out:
return ret;
}
static int load_free_space_extents(struct btrfs_caching_control *caching_ctl,
struct btrfs_path *path,
u32 expected_extent_count)
{
struct btrfs_block_group *block_group;
struct btrfs_fs_info *fs_info;
struct btrfs_root *root;
struct btrfs_key key;
u64 end;
u64 total_found = 0;
u32 extent_count = 0;
int ret;
block_group = caching_ctl->block_group;
fs_info = block_group->fs_info;
root = btrfs_free_space_root(block_group);
end = block_group->start + block_group->length;
while (1) {
ret = btrfs_next_item(root, path);
if (ret < 0)
goto out;
if (ret)
break;
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
if (key.type == BTRFS_FREE_SPACE_INFO_KEY)
break;
ASSERT(key.type == BTRFS_FREE_SPACE_EXTENT_KEY);
ASSERT(key.objectid < end && key.objectid + key.offset <= end);
caching_ctl->progress = key.objectid;
total_found += add_new_free_space(block_group, key.objectid,
key.objectid + key.offset);
if (total_found > CACHING_CTL_WAKE_UP) {
total_found = 0;
wake_up(&caching_ctl->wait);
}
extent_count++;
}
if (extent_count != expected_extent_count) {
btrfs_err(fs_info,
"incorrect extent count for %llu; counted %u, expected %u",
block_group->start, extent_count,
expected_extent_count);
ASSERT(0);
ret = -EIO;
goto out;
}
caching_ctl->progress = (u64)-1;
ret = 0;
out:
return ret;
}
int load_free_space_tree(struct btrfs_caching_control *caching_ctl)
{
struct btrfs_block_group *block_group;
struct btrfs_free_space_info *info;
struct btrfs_path *path;
u32 extent_count, flags;
int ret;
block_group = caching_ctl->block_group;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
/*
* Just like caching_thread() doesn't want to deadlock on the extent
* tree, we don't want to deadlock on the free space tree.
*/
path->skip_locking = 1;
path->search_commit_root = 1;
path->reada = READA_FORWARD;
info = search_free_space_info(NULL, block_group, path, 0);
if (IS_ERR(info)) {
ret = PTR_ERR(info);
goto out;
}
extent_count = btrfs_free_space_extent_count(path->nodes[0], info);
flags = btrfs_free_space_flags(path->nodes[0], info);
/*
* We left path pointing to the free space info item, so now
* load_free_space_foo can just iterate through the free space tree from
* there.
*/
if (flags & BTRFS_FREE_SPACE_USING_BITMAPS)
ret = load_free_space_bitmaps(caching_ctl, path, extent_count);
else
ret = load_free_space_extents(caching_ctl, path, extent_count);
out:
btrfs_free_path(path);
return ret;
}