WSL2-Linux-Kernel/net/ipv6/ip6_output.c

1385 строки
35 KiB
C
Исходник Обычный вид История

/*
* IPv6 output functions
* Linux INET6 implementation
*
* Authors:
* Pedro Roque <roque@di.fc.ul.pt>
*
* $Id: ip6_output.c,v 1.34 2002/02/01 22:01:04 davem Exp $
*
* Based on linux/net/ipv4/ip_output.c
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Changes:
* A.N.Kuznetsov : airthmetics in fragmentation.
* extension headers are implemented.
* route changes now work.
* ip6_forward does not confuse sniffers.
* etc.
*
* H. von Brand : Added missing #include <linux/string.h>
* Imran Patel : frag id should be in NBO
* Kazunori MIYAZAWA @USAGI
* : add ip6_append_data and related functions
* for datagram xmit
*/
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/net.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/in6.h>
#include <linux/tcp.h>
#include <linux/route.h>
#include <linux/module.h>
#include <linux/netfilter.h>
#include <linux/netfilter_ipv6.h>
#include <net/sock.h>
#include <net/snmp.h>
#include <net/ipv6.h>
#include <net/ndisc.h>
#include <net/protocol.h>
#include <net/ip6_route.h>
#include <net/addrconf.h>
#include <net/rawv6.h>
#include <net/icmp.h>
#include <net/xfrm.h>
#include <net/checksum.h>
static int ip6_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *));
static __inline__ void ipv6_select_ident(struct sk_buff *skb, struct frag_hdr *fhdr)
{
static u32 ipv6_fragmentation_id = 1;
static DEFINE_SPINLOCK(ip6_id_lock);
spin_lock_bh(&ip6_id_lock);
fhdr->identification = htonl(ipv6_fragmentation_id);
if (++ipv6_fragmentation_id == 0)
ipv6_fragmentation_id = 1;
spin_unlock_bh(&ip6_id_lock);
}
static inline int ip6_output_finish(struct sk_buff *skb)
{
struct dst_entry *dst = skb->dst;
struct hh_cache *hh = dst->hh;
if (hh) {
int hh_alen;
read_lock_bh(&hh->hh_lock);
hh_alen = HH_DATA_ALIGN(hh->hh_len);
memcpy(skb->data - hh_alen, hh->hh_data, hh_alen);
read_unlock_bh(&hh->hh_lock);
skb_push(skb, hh->hh_len);
return hh->hh_output(skb);
} else if (dst->neighbour)
return dst->neighbour->output(skb);
IP6_INC_STATS_BH(ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
kfree_skb(skb);
return -EINVAL;
}
/* dev_loopback_xmit for use with netfilter. */
static int ip6_dev_loopback_xmit(struct sk_buff *newskb)
{
newskb->mac.raw = newskb->data;
__skb_pull(newskb, newskb->nh.raw - newskb->data);
newskb->pkt_type = PACKET_LOOPBACK;
newskb->ip_summed = CHECKSUM_UNNECESSARY;
BUG_TRAP(newskb->dst);
netif_rx(newskb);
return 0;
}
static int ip6_output2(struct sk_buff *skb)
{
struct dst_entry *dst = skb->dst;
struct net_device *dev = dst->dev;
skb->protocol = htons(ETH_P_IPV6);
skb->dev = dev;
if (ipv6_addr_is_multicast(&skb->nh.ipv6h->daddr)) {
struct ipv6_pinfo* np = skb->sk ? inet6_sk(skb->sk) : NULL;
struct inet6_dev *idev = ip6_dst_idev(skb->dst);
if (!(dev->flags & IFF_LOOPBACK) && (!np || np->mc_loop) &&
ipv6_chk_mcast_addr(dev, &skb->nh.ipv6h->daddr,
&skb->nh.ipv6h->saddr)) {
struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
/* Do not check for IFF_ALLMULTI; multicast routing
is not supported in any case.
*/
if (newskb)
NF_HOOK(PF_INET6, NF_IP6_POST_ROUTING, newskb, NULL,
newskb->dev,
ip6_dev_loopback_xmit);
if (skb->nh.ipv6h->hop_limit == 0) {
IP6_INC_STATS(idev, IPSTATS_MIB_OUTDISCARDS);
kfree_skb(skb);
return 0;
}
}
IP6_INC_STATS(idev, IPSTATS_MIB_OUTMCASTPKTS);
}
return NF_HOOK(PF_INET6, NF_IP6_POST_ROUTING, skb,NULL, skb->dev,ip6_output_finish);
}
int ip6_output(struct sk_buff *skb)
{
if ((skb->len > dst_mtu(skb->dst) && !skb_is_gso(skb)) ||
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-19 02:46:41 +04:00
dst_allfrag(skb->dst))
return ip6_fragment(skb, ip6_output2);
else
return ip6_output2(skb);
}
/*
* xmit an sk_buff (used by TCP)
*/
int ip6_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
struct ipv6_txoptions *opt, int ipfragok)
{
struct ipv6_pinfo *np = inet6_sk(sk);
struct in6_addr *first_hop = &fl->fl6_dst;
struct dst_entry *dst = skb->dst;
struct ipv6hdr *hdr;
u8 proto = fl->proto;
int seg_len = skb->len;
int hlimit, tclass;
u32 mtu;
if (opt) {
int head_room;
/* First: exthdrs may take lots of space (~8K for now)
MAX_HEADER is not enough.
*/
head_room = opt->opt_nflen + opt->opt_flen;
seg_len += head_room;
head_room += sizeof(struct ipv6hdr) + LL_RESERVED_SPACE(dst->dev);
if (skb_headroom(skb) < head_room) {
struct sk_buff *skb2 = skb_realloc_headroom(skb, head_room);
if (skb2 == NULL) {
IP6_INC_STATS(ip6_dst_idev(skb->dst),
IPSTATS_MIB_OUTDISCARDS);
kfree_skb(skb);
return -ENOBUFS;
}
kfree_skb(skb);
skb = skb2;
if (sk)
skb_set_owner_w(skb, sk);
}
if (opt->opt_flen)
ipv6_push_frag_opts(skb, opt, &proto);
if (opt->opt_nflen)
ipv6_push_nfrag_opts(skb, opt, &proto, &first_hop);
}
hdr = skb->nh.ipv6h = (struct ipv6hdr*)skb_push(skb, sizeof(struct ipv6hdr));
/*
* Fill in the IPv6 header
*/
hlimit = -1;
if (np)
hlimit = np->hop_limit;
if (hlimit < 0)
hlimit = dst_metric(dst, RTAX_HOPLIMIT);
if (hlimit < 0)
hlimit = ipv6_get_hoplimit(dst->dev);
tclass = -1;
if (np)
tclass = np->tclass;
if (tclass < 0)
tclass = 0;
*(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | fl->fl6_flowlabel;
hdr->payload_len = htons(seg_len);
hdr->nexthdr = proto;
hdr->hop_limit = hlimit;
ipv6_addr_copy(&hdr->saddr, &fl->fl6_src);
ipv6_addr_copy(&hdr->daddr, first_hop);
skb->priority = sk->sk_priority;
mtu = dst_mtu(dst);
if ((skb->len <= mtu) || ipfragok || skb_is_gso(skb)) {
IP6_INC_STATS(ip6_dst_idev(skb->dst),
IPSTATS_MIB_OUTREQUESTS);
return NF_HOOK(PF_INET6, NF_IP6_LOCAL_OUT, skb, NULL, dst->dev,
dst_output);
}
if (net_ratelimit())
printk(KERN_DEBUG "IPv6: sending pkt_too_big to self\n");
skb->dev = dst->dev;
icmpv6_send(skb, ICMPV6_PKT_TOOBIG, 0, mtu, skb->dev);
IP6_INC_STATS(ip6_dst_idev(skb->dst), IPSTATS_MIB_FRAGFAILS);
kfree_skb(skb);
return -EMSGSIZE;
}
/*
* To avoid extra problems ND packets are send through this
* routine. It's code duplication but I really want to avoid
* extra checks since ipv6_build_header is used by TCP (which
* is for us performance critical)
*/
int ip6_nd_hdr(struct sock *sk, struct sk_buff *skb, struct net_device *dev,
struct in6_addr *saddr, struct in6_addr *daddr,
int proto, int len)
{
struct ipv6_pinfo *np = inet6_sk(sk);
struct ipv6hdr *hdr;
int totlen;
skb->protocol = htons(ETH_P_IPV6);
skb->dev = dev;
totlen = len + sizeof(struct ipv6hdr);
hdr = (struct ipv6hdr *) skb_put(skb, sizeof(struct ipv6hdr));
skb->nh.ipv6h = hdr;
*(__be32*)hdr = htonl(0x60000000);
hdr->payload_len = htons(len);
hdr->nexthdr = proto;
hdr->hop_limit = np->hop_limit;
ipv6_addr_copy(&hdr->saddr, saddr);
ipv6_addr_copy(&hdr->daddr, daddr);
return 0;
}
static int ip6_call_ra_chain(struct sk_buff *skb, int sel)
{
struct ip6_ra_chain *ra;
struct sock *last = NULL;
read_lock(&ip6_ra_lock);
for (ra = ip6_ra_chain; ra; ra = ra->next) {
struct sock *sk = ra->sk;
if (sk && ra->sel == sel &&
(!sk->sk_bound_dev_if ||
sk->sk_bound_dev_if == skb->dev->ifindex)) {
if (last) {
struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
if (skb2)
rawv6_rcv(last, skb2);
}
last = sk;
}
}
if (last) {
rawv6_rcv(last, skb);
read_unlock(&ip6_ra_lock);
return 1;
}
read_unlock(&ip6_ra_lock);
return 0;
}
static int ip6_forward_proxy_check(struct sk_buff *skb)
{
struct ipv6hdr *hdr = skb->nh.ipv6h;
u8 nexthdr = hdr->nexthdr;
int offset;
if (ipv6_ext_hdr(nexthdr)) {
offset = ipv6_skip_exthdr(skb, sizeof(*hdr), &nexthdr);
if (offset < 0)
return 0;
} else
offset = sizeof(struct ipv6hdr);
if (nexthdr == IPPROTO_ICMPV6) {
struct icmp6hdr *icmp6;
if (!pskb_may_pull(skb, skb->nh.raw + offset + 1 - skb->data))
return 0;
icmp6 = (struct icmp6hdr *)(skb->nh.raw + offset);
switch (icmp6->icmp6_type) {
case NDISC_ROUTER_SOLICITATION:
case NDISC_ROUTER_ADVERTISEMENT:
case NDISC_NEIGHBOUR_SOLICITATION:
case NDISC_NEIGHBOUR_ADVERTISEMENT:
case NDISC_REDIRECT:
/* For reaction involving unicast neighbor discovery
* message destined to the proxied address, pass it to
* input function.
*/
return 1;
default:
break;
}
}
/*
* The proxying router can't forward traffic sent to a link-local
* address, so signal the sender and discard the packet. This
* behavior is clarified by the MIPv6 specification.
*/
if (ipv6_addr_type(&hdr->daddr) & IPV6_ADDR_LINKLOCAL) {
dst_link_failure(skb);
return -1;
}
return 0;
}
static inline int ip6_forward_finish(struct sk_buff *skb)
{
return dst_output(skb);
}
int ip6_forward(struct sk_buff *skb)
{
struct dst_entry *dst = skb->dst;
struct ipv6hdr *hdr = skb->nh.ipv6h;
struct inet6_skb_parm *opt = IP6CB(skb);
if (ipv6_devconf.forwarding == 0)
goto error;
if (!xfrm6_policy_check(NULL, XFRM_POLICY_FWD, skb)) {
IP6_INC_STATS(ip6_dst_idev(dst), IPSTATS_MIB_INDISCARDS);
goto drop;
}
skb->ip_summed = CHECKSUM_NONE;
/*
* We DO NOT make any processing on
* RA packets, pushing them to user level AS IS
* without ane WARRANTY that application will be able
* to interpret them. The reason is that we
* cannot make anything clever here.
*
* We are not end-node, so that if packet contains
* AH/ESP, we cannot make anything.
* Defragmentation also would be mistake, RA packets
* cannot be fragmented, because there is no warranty
* that different fragments will go along one path. --ANK
*/
if (opt->ra) {
u8 *ptr = skb->nh.raw + opt->ra;
if (ip6_call_ra_chain(skb, (ptr[2]<<8) + ptr[3]))
return 0;
}
/*
* check and decrement ttl
*/
if (hdr->hop_limit <= 1) {
/* Force OUTPUT device used as source address */
skb->dev = dst->dev;
icmpv6_send(skb, ICMPV6_TIME_EXCEED, ICMPV6_EXC_HOPLIMIT,
0, skb->dev);
IP6_INC_STATS_BH(ip6_dst_idev(dst), IPSTATS_MIB_INHDRERRORS);
kfree_skb(skb);
return -ETIMEDOUT;
}
/* XXX: idev->cnf.proxy_ndp? */
if (ipv6_devconf.proxy_ndp &&
pneigh_lookup(&nd_tbl, &hdr->daddr, skb->dev, 0)) {
int proxied = ip6_forward_proxy_check(skb);
if (proxied > 0)
return ip6_input(skb);
else if (proxied < 0) {
IP6_INC_STATS(ip6_dst_idev(dst), IPSTATS_MIB_INDISCARDS);
goto drop;
}
}
if (!xfrm6_route_forward(skb)) {
IP6_INC_STATS(ip6_dst_idev(dst), IPSTATS_MIB_INDISCARDS);
goto drop;
}
dst = skb->dst;
/* IPv6 specs say nothing about it, but it is clear that we cannot
send redirects to source routed frames.
*/
if (skb->dev == dst->dev && dst->neighbour && opt->srcrt == 0) {
struct in6_addr *target = NULL;
struct rt6_info *rt;
struct neighbour *n = dst->neighbour;
/*
* incoming and outgoing devices are the same
* send a redirect.
*/
rt = (struct rt6_info *) dst;
if ((rt->rt6i_flags & RTF_GATEWAY))
target = (struct in6_addr*)&n->primary_key;
else
target = &hdr->daddr;
/* Limit redirects both by destination (here)
and by source (inside ndisc_send_redirect)
*/
if (xrlim_allow(dst, 1*HZ))
ndisc_send_redirect(skb, n, target);
} else if (ipv6_addr_type(&hdr->saddr)&(IPV6_ADDR_MULTICAST|IPV6_ADDR_LOOPBACK
|IPV6_ADDR_LINKLOCAL)) {
/* This check is security critical. */
goto error;
}
if (skb->len > dst_mtu(dst)) {
/* Again, force OUTPUT device used as source address */
skb->dev = dst->dev;
icmpv6_send(skb, ICMPV6_PKT_TOOBIG, 0, dst_mtu(dst), skb->dev);
IP6_INC_STATS_BH(ip6_dst_idev(dst), IPSTATS_MIB_INTOOBIGERRORS);
IP6_INC_STATS_BH(ip6_dst_idev(dst), IPSTATS_MIB_FRAGFAILS);
kfree_skb(skb);
return -EMSGSIZE;
}
if (skb_cow(skb, dst->dev->hard_header_len)) {
IP6_INC_STATS(ip6_dst_idev(dst), IPSTATS_MIB_OUTDISCARDS);
goto drop;
}
hdr = skb->nh.ipv6h;
/* Mangling hops number delayed to point after skb COW */
hdr->hop_limit--;
IP6_INC_STATS_BH(ip6_dst_idev(dst), IPSTATS_MIB_OUTFORWDATAGRAMS);
return NF_HOOK(PF_INET6,NF_IP6_FORWARD, skb, skb->dev, dst->dev, ip6_forward_finish);
error:
IP6_INC_STATS_BH(ip6_dst_idev(dst), IPSTATS_MIB_INADDRERRORS);
drop:
kfree_skb(skb);
return -EINVAL;
}
static void ip6_copy_metadata(struct sk_buff *to, struct sk_buff *from)
{
to->pkt_type = from->pkt_type;
to->priority = from->priority;
to->protocol = from->protocol;
dst_release(to->dst);
to->dst = dst_clone(from->dst);
to->dev = from->dev;
to->mark = from->mark;
#ifdef CONFIG_NET_SCHED
to->tc_index = from->tc_index;
#endif
#ifdef CONFIG_NETFILTER
/* Connection association is same as pre-frag packet */
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 03:38:16 +03:00
nf_conntrack_put(to->nfct);
to->nfct = from->nfct;
nf_conntrack_get(to->nfct);
to->nfctinfo = from->nfctinfo;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 03:38:16 +03:00
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
nf_conntrack_put_reasm(to->nfct_reasm);
to->nfct_reasm = from->nfct_reasm;
nf_conntrack_get_reasm(to->nfct_reasm);
#endif
#ifdef CONFIG_BRIDGE_NETFILTER
nf_bridge_put(to->nf_bridge);
to->nf_bridge = from->nf_bridge;
nf_bridge_get(to->nf_bridge);
#endif
#endif
skb_copy_secmark(to, from);
}
int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr)
{
u16 offset = sizeof(struct ipv6hdr);
struct ipv6_opt_hdr *exthdr = (struct ipv6_opt_hdr*)(skb->nh.ipv6h + 1);
unsigned int packet_len = skb->tail - skb->nh.raw;
int found_rhdr = 0;
*nexthdr = &skb->nh.ipv6h->nexthdr;
while (offset + 1 <= packet_len) {
switch (**nexthdr) {
case NEXTHDR_HOP:
break;
case NEXTHDR_ROUTING:
found_rhdr = 1;
break;
case NEXTHDR_DEST:
#ifdef CONFIG_IPV6_MIP6
if (ipv6_find_tlv(skb, offset, IPV6_TLV_HAO) >= 0)
break;
#endif
if (found_rhdr)
return offset;
break;
default :
return offset;
}
offset += ipv6_optlen(exthdr);
*nexthdr = &exthdr->nexthdr;
exthdr = (struct ipv6_opt_hdr*)(skb->nh.raw + offset);
}
return offset;
}
EXPORT_SYMBOL_GPL(ip6_find_1stfragopt);
static int ip6_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
{
struct net_device *dev;
struct sk_buff *frag;
struct rt6_info *rt = (struct rt6_info*)skb->dst;
struct ipv6_pinfo *np = skb->sk ? inet6_sk(skb->sk) : NULL;
struct ipv6hdr *tmp_hdr;
struct frag_hdr *fh;
unsigned int mtu, hlen, left, len;
__be32 frag_id = 0;
int ptr, offset = 0, err=0;
u8 *prevhdr, nexthdr = 0;
dev = rt->u.dst.dev;
hlen = ip6_find_1stfragopt(skb, &prevhdr);
nexthdr = *prevhdr;
mtu = dst_mtu(&rt->u.dst);
if (np && np->frag_size < mtu) {
if (np->frag_size)
mtu = np->frag_size;
}
mtu -= hlen + sizeof(struct frag_hdr);
if (skb_shinfo(skb)->frag_list) {
int first_len = skb_pagelen(skb);
if (first_len - hlen > mtu ||
((first_len - hlen) & 7) ||
skb_cloned(skb))
goto slow_path;
for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) {
/* Correct geometry. */
if (frag->len > mtu ||
((frag->len & 7) && frag->next) ||
skb_headroom(frag) < hlen)
goto slow_path;
/* Partially cloned skb? */
if (skb_shared(frag))
goto slow_path;
BUG_ON(frag->sk);
if (skb->sk) {
sock_hold(skb->sk);
frag->sk = skb->sk;
frag->destructor = sock_wfree;
skb->truesize -= frag->truesize;
}
}
err = 0;
offset = 0;
frag = skb_shinfo(skb)->frag_list;
skb_shinfo(skb)->frag_list = NULL;
/* BUILD HEADER */
tmp_hdr = kmemdup(skb->nh.raw, hlen, GFP_ATOMIC);
if (!tmp_hdr) {
IP6_INC_STATS(ip6_dst_idev(skb->dst), IPSTATS_MIB_FRAGFAILS);
return -ENOMEM;
}
*prevhdr = NEXTHDR_FRAGMENT;
__skb_pull(skb, hlen);
fh = (struct frag_hdr*)__skb_push(skb, sizeof(struct frag_hdr));
skb->nh.raw = __skb_push(skb, hlen);
memcpy(skb->nh.raw, tmp_hdr, hlen);
ipv6_select_ident(skb, fh);
fh->nexthdr = nexthdr;
fh->reserved = 0;
fh->frag_off = htons(IP6_MF);
frag_id = fh->identification;
first_len = skb_pagelen(skb);
skb->data_len = first_len - skb_headlen(skb);
skb->len = first_len;
skb->nh.ipv6h->payload_len = htons(first_len - sizeof(struct ipv6hdr));
dst_hold(&rt->u.dst);
for (;;) {
/* Prepare header of the next frame,
* before previous one went down. */
if (frag) {
frag->ip_summed = CHECKSUM_NONE;
frag->h.raw = frag->data;
fh = (struct frag_hdr*)__skb_push(frag, sizeof(struct frag_hdr));
frag->nh.raw = __skb_push(frag, hlen);
memcpy(frag->nh.raw, tmp_hdr, hlen);
offset += skb->len - hlen - sizeof(struct frag_hdr);
fh->nexthdr = nexthdr;
fh->reserved = 0;
fh->frag_off = htons(offset);
if (frag->next != NULL)
fh->frag_off |= htons(IP6_MF);
fh->identification = frag_id;
frag->nh.ipv6h->payload_len = htons(frag->len - sizeof(struct ipv6hdr));
ip6_copy_metadata(frag, skb);
}
err = output(skb);
[IPV6]: SNMPv2 "ipv6IfStatsOutFragCreates" counter error When I tested linux kernel 2.6.71.7 about statistics "ipv6IfStatsOutFragCreates", and found that it couldn't increase correctly. The criteria is RFC 2465: ipv6IfStatsOutFragCreates OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of output datagram fragments that have been generated as a result of fragmentation at this output interface." ::= { ipv6IfStatsEntry 15 } I think there are two issues in Linux kernel. 1st: RFC2465 specifies the counter is "The number of output datagram fragments...". I think increasing this counter after output a fragment successfully is better. And it should not be increased even though a fragment is created but failed to output. 2nd: If we send a big ICMP/ICMPv6 echo request to a host, and receive ICMP/ICMPv6 echo reply consisted of some fragments. As we know that in Linux kernel first fragmentation occurs in ICMP layer(maybe saying transport layer is better), but this is not the "real" fragmentation,just do some "pre-fragment" -- allocate space for date, and form a frag_list, etc. The "real" fragmentation happens in IP layer -- set offset and MF flag and so on. So I think in "fast path" for ip_fragment/ip6_fragment, if we send a fragment which "pre-fragment" by upper layer we should also increase "ipv6IfStatsOutFragCreates". Signed-off-by: Wei Dong <weid@nanjing-fnst.com> Acked-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-08-03 00:41:21 +04:00
if(!err)
IP6_INC_STATS(ip6_dst_idev(&rt->u.dst), IPSTATS_MIB_FRAGCREATES);
[IPV6]: SNMPv2 "ipv6IfStatsOutFragCreates" counter error When I tested linux kernel 2.6.71.7 about statistics "ipv6IfStatsOutFragCreates", and found that it couldn't increase correctly. The criteria is RFC 2465: ipv6IfStatsOutFragCreates OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of output datagram fragments that have been generated as a result of fragmentation at this output interface." ::= { ipv6IfStatsEntry 15 } I think there are two issues in Linux kernel. 1st: RFC2465 specifies the counter is "The number of output datagram fragments...". I think increasing this counter after output a fragment successfully is better. And it should not be increased even though a fragment is created but failed to output. 2nd: If we send a big ICMP/ICMPv6 echo request to a host, and receive ICMP/ICMPv6 echo reply consisted of some fragments. As we know that in Linux kernel first fragmentation occurs in ICMP layer(maybe saying transport layer is better), but this is not the "real" fragmentation,just do some "pre-fragment" -- allocate space for date, and form a frag_list, etc. The "real" fragmentation happens in IP layer -- set offset and MF flag and so on. So I think in "fast path" for ip_fragment/ip6_fragment, if we send a fragment which "pre-fragment" by upper layer we should also increase "ipv6IfStatsOutFragCreates". Signed-off-by: Wei Dong <weid@nanjing-fnst.com> Acked-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-08-03 00:41:21 +04:00
if (err || !frag)
break;
skb = frag;
frag = skb->next;
skb->next = NULL;
}
kfree(tmp_hdr);
if (err == 0) {
IP6_INC_STATS(ip6_dst_idev(&rt->u.dst), IPSTATS_MIB_FRAGOKS);
dst_release(&rt->u.dst);
return 0;
}
while (frag) {
skb = frag->next;
kfree_skb(frag);
frag = skb;
}
IP6_INC_STATS(ip6_dst_idev(&rt->u.dst), IPSTATS_MIB_FRAGFAILS);
dst_release(&rt->u.dst);
return err;
}
slow_path:
left = skb->len - hlen; /* Space per frame */
ptr = hlen; /* Where to start from */
/*
* Fragment the datagram.
*/
*prevhdr = NEXTHDR_FRAGMENT;
/*
* Keep copying data until we run out.
*/
while(left > 0) {
len = left;
/* IF: it doesn't fit, use 'mtu' - the data space left */
if (len > mtu)
len = mtu;
/* IF: we are not sending upto and including the packet end
then align the next start on an eight byte boundary */
if (len < left) {
len &= ~7;
}
/*
* Allocate buffer.
*/
if ((frag = alloc_skb(len+hlen+sizeof(struct frag_hdr)+LL_RESERVED_SPACE(rt->u.dst.dev), GFP_ATOMIC)) == NULL) {
NETDEBUG(KERN_INFO "IPv6: frag: no memory for new fragment!\n");
IP6_INC_STATS(ip6_dst_idev(skb->dst),
IPSTATS_MIB_FRAGFAILS);
err = -ENOMEM;
goto fail;
}
/*
* Set up data on packet
*/
ip6_copy_metadata(frag, skb);
skb_reserve(frag, LL_RESERVED_SPACE(rt->u.dst.dev));
skb_put(frag, len + hlen + sizeof(struct frag_hdr));
frag->nh.raw = frag->data;
fh = (struct frag_hdr*)(frag->data + hlen);
frag->h.raw = frag->data + hlen + sizeof(struct frag_hdr);
/*
* Charge the memory for the fragment to any owner
* it might possess
*/
if (skb->sk)
skb_set_owner_w(frag, skb->sk);
/*
* Copy the packet header into the new buffer.
*/
memcpy(frag->nh.raw, skb->data, hlen);
/*
* Build fragment header.
*/
fh->nexthdr = nexthdr;
fh->reserved = 0;
if (!frag_id) {
ipv6_select_ident(skb, fh);
frag_id = fh->identification;
} else
fh->identification = frag_id;
/*
* Copy a block of the IP datagram.
*/
if (skb_copy_bits(skb, ptr, frag->h.raw, len))
BUG();
left -= len;
fh->frag_off = htons(offset);
if (left > 0)
fh->frag_off |= htons(IP6_MF);
frag->nh.ipv6h->payload_len = htons(frag->len - sizeof(struct ipv6hdr));
ptr += len;
offset += len;
/*
* Put this fragment into the sending queue.
*/
err = output(frag);
if (err)
goto fail;
[IPV6]: SNMPv2 "ipv6IfStatsOutFragCreates" counter error When I tested linux kernel 2.6.71.7 about statistics "ipv6IfStatsOutFragCreates", and found that it couldn't increase correctly. The criteria is RFC 2465: ipv6IfStatsOutFragCreates OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of output datagram fragments that have been generated as a result of fragmentation at this output interface." ::= { ipv6IfStatsEntry 15 } I think there are two issues in Linux kernel. 1st: RFC2465 specifies the counter is "The number of output datagram fragments...". I think increasing this counter after output a fragment successfully is better. And it should not be increased even though a fragment is created but failed to output. 2nd: If we send a big ICMP/ICMPv6 echo request to a host, and receive ICMP/ICMPv6 echo reply consisted of some fragments. As we know that in Linux kernel first fragmentation occurs in ICMP layer(maybe saying transport layer is better), but this is not the "real" fragmentation,just do some "pre-fragment" -- allocate space for date, and form a frag_list, etc. The "real" fragmentation happens in IP layer -- set offset and MF flag and so on. So I think in "fast path" for ip_fragment/ip6_fragment, if we send a fragment which "pre-fragment" by upper layer we should also increase "ipv6IfStatsOutFragCreates". Signed-off-by: Wei Dong <weid@nanjing-fnst.com> Acked-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-08-03 00:41:21 +04:00
IP6_INC_STATS(ip6_dst_idev(skb->dst), IPSTATS_MIB_FRAGCREATES);
}
IP6_INC_STATS(ip6_dst_idev(skb->dst),
IPSTATS_MIB_FRAGOKS);
kfree_skb(skb);
return err;
fail:
IP6_INC_STATS(ip6_dst_idev(skb->dst),
IPSTATS_MIB_FRAGFAILS);
kfree_skb(skb);
return err;
}
static inline int ip6_rt_check(struct rt6key *rt_key,
struct in6_addr *fl_addr,
struct in6_addr *addr_cache)
{
return ((rt_key->plen != 128 || !ipv6_addr_equal(fl_addr, &rt_key->addr)) &&
(addr_cache == NULL || !ipv6_addr_equal(fl_addr, addr_cache)));
}
static struct dst_entry *ip6_sk_dst_check(struct sock *sk,
struct dst_entry *dst,
struct flowi *fl)
{
struct ipv6_pinfo *np = inet6_sk(sk);
struct rt6_info *rt = (struct rt6_info *)dst;
if (!dst)
goto out;
/* Yes, checking route validity in not connected
* case is not very simple. Take into account,
* that we do not support routing by source, TOS,
* and MSG_DONTROUTE --ANK (980726)
*
* 1. ip6_rt_check(): If route was host route,
* check that cached destination is current.
* If it is network route, we still may
* check its validity using saved pointer
* to the last used address: daddr_cache.
* We do not want to save whole address now,
* (because main consumer of this service
* is tcp, which has not this problem),
* so that the last trick works only on connected
* sockets.
* 2. oif also should be the same.
*/
if (ip6_rt_check(&rt->rt6i_dst, &fl->fl6_dst, np->daddr_cache) ||
#ifdef CONFIG_IPV6_SUBTREES
ip6_rt_check(&rt->rt6i_src, &fl->fl6_src, np->saddr_cache) ||
#endif
(fl->oif && fl->oif != dst->dev->ifindex)) {
dst_release(dst);
dst = NULL;
}
out:
return dst;
}
static int ip6_dst_lookup_tail(struct sock *sk,
struct dst_entry **dst, struct flowi *fl)
{
int err;
if (*dst == NULL)
*dst = ip6_route_output(sk, fl);
if ((err = (*dst)->error))
goto out_err_release;
if (ipv6_addr_any(&fl->fl6_src)) {
err = ipv6_get_saddr(*dst, &fl->fl6_dst, &fl->fl6_src);
if (err)
goto out_err_release;
}
return 0;
out_err_release:
dst_release(*dst);
*dst = NULL;
return err;
}
/**
* ip6_dst_lookup - perform route lookup on flow
* @sk: socket which provides route info
* @dst: pointer to dst_entry * for result
* @fl: flow to lookup
*
* This function performs a route lookup on the given flow.
*
* It returns zero on success, or a standard errno code on error.
*/
int ip6_dst_lookup(struct sock *sk, struct dst_entry **dst, struct flowi *fl)
{
*dst = NULL;
return ip6_dst_lookup_tail(sk, dst, fl);
}
EXPORT_SYMBOL_GPL(ip6_dst_lookup);
/**
* ip6_sk_dst_lookup - perform socket cached route lookup on flow
* @sk: socket which provides the dst cache and route info
* @dst: pointer to dst_entry * for result
* @fl: flow to lookup
*
* This function performs a route lookup on the given flow with the
* possibility of using the cached route in the socket if it is valid.
* It will take the socket dst lock when operating on the dst cache.
* As a result, this function can only be used in process context.
*
* It returns zero on success, or a standard errno code on error.
*/
int ip6_sk_dst_lookup(struct sock *sk, struct dst_entry **dst, struct flowi *fl)
{
*dst = NULL;
if (sk) {
*dst = sk_dst_check(sk, inet6_sk(sk)->dst_cookie);
*dst = ip6_sk_dst_check(sk, *dst, fl);
}
return ip6_dst_lookup_tail(sk, dst, fl);
}
EXPORT_SYMBOL_GPL(ip6_sk_dst_lookup);
static inline int ip6_ufo_append_data(struct sock *sk,
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-19 02:46:41 +04:00
int getfrag(void *from, char *to, int offset, int len,
int odd, struct sk_buff *skb),
void *from, int length, int hh_len, int fragheaderlen,
int transhdrlen, int mtu,unsigned int flags)
{
struct sk_buff *skb;
int err;
/* There is support for UDP large send offload by network
* device, so create one single skb packet containing complete
* udp datagram
*/
if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
skb = sock_alloc_send_skb(sk,
hh_len + fragheaderlen + transhdrlen + 20,
(flags & MSG_DONTWAIT), &err);
if (skb == NULL)
return -ENOMEM;
/* reserve space for Hardware header */
skb_reserve(skb, hh_len);
/* create space for UDP/IP header */
skb_put(skb,fragheaderlen + transhdrlen);
/* initialize network header pointer */
skb->nh.raw = skb->data;
/* initialize protocol header pointer */
skb->h.raw = skb->data + fragheaderlen;
skb->ip_summed = CHECKSUM_PARTIAL;
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-19 02:46:41 +04:00
skb->csum = 0;
sk->sk_sndmsg_off = 0;
}
err = skb_append_datato_frags(sk,skb, getfrag, from,
(length - transhdrlen));
if (!err) {
struct frag_hdr fhdr;
/* specify the length of each IP datagram fragment*/
skb_shinfo(skb)->gso_size = mtu - fragheaderlen -
sizeof(struct frag_hdr);
[IPV6]: Added GSO support for TCPv6 This patch adds GSO support for IPv6 and TCPv6. This is based on a patch by Ananda Raju <Ananda.Raju@neterion.com>. His original description is: This patch enables TSO over IPv6. Currently Linux network stacks restricts TSO over IPv6 by clearing of the NETIF_F_TSO bit from "dev->features". This patch will remove this restriction. This patch will introduce a new flag NETIF_F_TSO6 which will be used to check whether device supports TSO over IPv6. If device support TSO over IPv6 then we don't clear of NETIF_F_TSO and which will make the TCP layer to create TSO packets. Any device supporting TSO over IPv6 will set NETIF_F_TSO6 flag in "dev->features" along with NETIF_F_TSO. In case when user disables TSO using ethtool, NETIF_F_TSO will get cleared from "dev->features". So even if we have NETIF_F_TSO6 we don't get TSO packets created by TCP layer. SKB_GSO_TCPV4 renamed to SKB_GSO_TCP to make it generic GSO packet. SKB_GSO_UDPV4 renamed to SKB_GSO_UDP as UFO is not a IPv4 feature. UFO is supported over IPv6 also The following table shows there is significant improvement in throughput with normal frames and CPU usage for both normal and jumbo. -------------------------------------------------- | | 1500 | 9600 | | ------------------|-------------------| | | thru CPU | thru CPU | -------------------------------------------------- | TSO OFF | 2.00 5.5% id | 5.66 20.0% id | -------------------------------------------------- | TSO ON | 2.63 78.0 id | 5.67 39.0% id | -------------------------------------------------- Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-07-01 00:37:03 +04:00
skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-19 02:46:41 +04:00
ipv6_select_ident(skb, &fhdr);
skb_shinfo(skb)->ip6_frag_id = fhdr.identification;
__skb_queue_tail(&sk->sk_write_queue, skb);
return 0;
}
/* There is not enough support do UPD LSO,
* so follow normal path
*/
kfree_skb(skb);
return err;
}
int ip6_append_data(struct sock *sk, int getfrag(void *from, char *to,
int offset, int len, int odd, struct sk_buff *skb),
void *from, int length, int transhdrlen,
int hlimit, int tclass, struct ipv6_txoptions *opt, struct flowi *fl,
struct rt6_info *rt, unsigned int flags)
{
struct inet_sock *inet = inet_sk(sk);
struct ipv6_pinfo *np = inet6_sk(sk);
struct sk_buff *skb;
unsigned int maxfraglen, fragheaderlen;
int exthdrlen;
int hh_len;
int mtu;
int copy;
int err;
int offset = 0;
int csummode = CHECKSUM_NONE;
if (flags&MSG_PROBE)
return 0;
if (skb_queue_empty(&sk->sk_write_queue)) {
/*
* setup for corking
*/
if (opt) {
if (np->cork.opt == NULL) {
np->cork.opt = kmalloc(opt->tot_len,
sk->sk_allocation);
if (unlikely(np->cork.opt == NULL))
return -ENOBUFS;
} else if (np->cork.opt->tot_len < opt->tot_len) {
printk(KERN_DEBUG "ip6_append_data: invalid option length\n");
return -EINVAL;
}
memcpy(np->cork.opt, opt, opt->tot_len);
inet->cork.flags |= IPCORK_OPT;
/* need source address above miyazawa*/
}
dst_hold(&rt->u.dst);
np->cork.rt = rt;
inet->cork.fl = *fl;
np->cork.hop_limit = hlimit;
np->cork.tclass = tclass;
mtu = dst_mtu(rt->u.dst.path);
if (np->frag_size < mtu) {
if (np->frag_size)
mtu = np->frag_size;
}
inet->cork.fragsize = mtu;
if (dst_allfrag(rt->u.dst.path))
inet->cork.flags |= IPCORK_ALLFRAG;
inet->cork.length = 0;
sk->sk_sndmsg_page = NULL;
sk->sk_sndmsg_off = 0;
exthdrlen = rt->u.dst.header_len + (opt ? opt->opt_flen : 0);
length += exthdrlen;
transhdrlen += exthdrlen;
} else {
rt = np->cork.rt;
fl = &inet->cork.fl;
if (inet->cork.flags & IPCORK_OPT)
opt = np->cork.opt;
transhdrlen = 0;
exthdrlen = 0;
mtu = inet->cork.fragsize;
}
hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
fragheaderlen = sizeof(struct ipv6hdr) + rt->u.dst.nfheader_len + (opt ? opt->opt_nflen : 0);
maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen - sizeof(struct frag_hdr);
if (mtu <= sizeof(struct ipv6hdr) + IPV6_MAXPLEN) {
if (inet->cork.length + length > sizeof(struct ipv6hdr) + IPV6_MAXPLEN - fragheaderlen) {
ipv6_local_error(sk, EMSGSIZE, fl, mtu-exthdrlen);
return -EMSGSIZE;
}
}
/*
* Let's try using as much space as possible.
* Use MTU if total length of the message fits into the MTU.
* Otherwise, we need to reserve fragment header and
* fragment alignment (= 8-15 octects, in total).
*
* Note that we may need to "move" the data from the tail of
* of the buffer to the new fragment when we split
* the message.
*
* FIXME: It may be fragmented into multiple chunks
* at once if non-fragmentable extension headers
* are too large.
* --yoshfuji
*/
inet->cork.length += length;
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-19 02:46:41 +04:00
if (((length > mtu) && (sk->sk_protocol == IPPROTO_UDP)) &&
(rt->u.dst.dev->features & NETIF_F_UFO)) {
err = ip6_ufo_append_data(sk, getfrag, from, length, hh_len,
fragheaderlen, transhdrlen, mtu,
flags);
if (err)
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-19 02:46:41 +04:00
goto error;
return 0;
}
if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
goto alloc_new_skb;
while (length > 0) {
/* Check if the remaining data fits into current packet. */
copy = (inet->cork.length <= mtu && !(inet->cork.flags & IPCORK_ALLFRAG) ? mtu : maxfraglen) - skb->len;
if (copy < length)
copy = maxfraglen - skb->len;
if (copy <= 0) {
char *data;
unsigned int datalen;
unsigned int fraglen;
unsigned int fraggap;
unsigned int alloclen;
struct sk_buff *skb_prev;
alloc_new_skb:
skb_prev = skb;
/* There's no room in the current skb */
if (skb_prev)
fraggap = skb_prev->len - maxfraglen;
else
fraggap = 0;
/*
* If remaining data exceeds the mtu,
* we know we need more fragment(s).
*/
datalen = length + fraggap;
if (datalen > (inet->cork.length <= mtu && !(inet->cork.flags & IPCORK_ALLFRAG) ? mtu : maxfraglen) - fragheaderlen)
datalen = maxfraglen - fragheaderlen;
fraglen = datalen + fragheaderlen;
if ((flags & MSG_MORE) &&
!(rt->u.dst.dev->features&NETIF_F_SG))
alloclen = mtu;
else
alloclen = datalen + fragheaderlen;
/*
* The last fragment gets additional space at tail.
* Note: we overallocate on fragments with MSG_MODE
* because we have no idea if we're the last one.
*/
if (datalen == length + fraggap)
alloclen += rt->u.dst.trailer_len;
/*
* We just reserve space for fragment header.
* Note: this may be overallocation if the message
* (without MSG_MORE) fits into the MTU.
*/
alloclen += sizeof(struct frag_hdr);
if (transhdrlen) {
skb = sock_alloc_send_skb(sk,
alloclen + hh_len,
(flags & MSG_DONTWAIT), &err);
} else {
skb = NULL;
if (atomic_read(&sk->sk_wmem_alloc) <=
2 * sk->sk_sndbuf)
skb = sock_wmalloc(sk,
alloclen + hh_len, 1,
sk->sk_allocation);
if (unlikely(skb == NULL))
err = -ENOBUFS;
}
if (skb == NULL)
goto error;
/*
* Fill in the control structures
*/
skb->ip_summed = csummode;
skb->csum = 0;
/* reserve for fragmentation */
skb_reserve(skb, hh_len+sizeof(struct frag_hdr));
/*
* Find where to start putting bytes
*/
data = skb_put(skb, fraglen);
skb->nh.raw = data + exthdrlen;
data += fragheaderlen;
skb->h.raw = data + exthdrlen;
if (fraggap) {
skb->csum = skb_copy_and_csum_bits(
skb_prev, maxfraglen,
data + transhdrlen, fraggap, 0);
skb_prev->csum = csum_sub(skb_prev->csum,
skb->csum);
data += fraggap;
pskb_trim_unique(skb_prev, maxfraglen);
}
copy = datalen - transhdrlen - fraggap;
if (copy < 0) {
err = -EINVAL;
kfree_skb(skb);
goto error;
} else if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
err = -EFAULT;
kfree_skb(skb);
goto error;
}
offset += copy;
length -= datalen - fraggap;
transhdrlen = 0;
exthdrlen = 0;
csummode = CHECKSUM_NONE;
/*
* Put the packet on the pending queue
*/
__skb_queue_tail(&sk->sk_write_queue, skb);
continue;
}
if (copy > length)
copy = length;
if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
unsigned int off;
off = skb->len;
if (getfrag(from, skb_put(skb, copy),
offset, copy, off, skb) < 0) {
__skb_trim(skb, off);
err = -EFAULT;
goto error;
}
} else {
int i = skb_shinfo(skb)->nr_frags;
skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
struct page *page = sk->sk_sndmsg_page;
int off = sk->sk_sndmsg_off;
unsigned int left;
if (page && (left = PAGE_SIZE - off) > 0) {
if (copy >= left)
copy = left;
if (page != frag->page) {
if (i == MAX_SKB_FRAGS) {
err = -EMSGSIZE;
goto error;
}
get_page(page);
skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
frag = &skb_shinfo(skb)->frags[i];
}
} else if(i < MAX_SKB_FRAGS) {
if (copy > PAGE_SIZE)
copy = PAGE_SIZE;
page = alloc_pages(sk->sk_allocation, 0);
if (page == NULL) {
err = -ENOMEM;
goto error;
}
sk->sk_sndmsg_page = page;
sk->sk_sndmsg_off = 0;
skb_fill_page_desc(skb, i, page, 0, 0);
frag = &skb_shinfo(skb)->frags[i];
skb->truesize += PAGE_SIZE;
atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
} else {
err = -EMSGSIZE;
goto error;
}
if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
err = -EFAULT;
goto error;
}
sk->sk_sndmsg_off += copy;
frag->size += copy;
skb->len += copy;
skb->data_len += copy;
}
offset += copy;
length -= copy;
}
return 0;
error:
inet->cork.length -= length;
IP6_INC_STATS(rt->rt6i_idev, IPSTATS_MIB_OUTDISCARDS);
return err;
}
int ip6_push_pending_frames(struct sock *sk)
{
struct sk_buff *skb, *tmp_skb;
struct sk_buff **tail_skb;
struct in6_addr final_dst_buf, *final_dst = &final_dst_buf;
struct inet_sock *inet = inet_sk(sk);
struct ipv6_pinfo *np = inet6_sk(sk);
struct ipv6hdr *hdr;
struct ipv6_txoptions *opt = np->cork.opt;
struct rt6_info *rt = np->cork.rt;
struct flowi *fl = &inet->cork.fl;
unsigned char proto = fl->proto;
int err = 0;
if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
goto out;
tail_skb = &(skb_shinfo(skb)->frag_list);
/* move skb->data to ip header from ext header */
if (skb->data < skb->nh.raw)
__skb_pull(skb, skb->nh.raw - skb->data);
while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
__skb_pull(tmp_skb, skb->h.raw - skb->nh.raw);
*tail_skb = tmp_skb;
tail_skb = &(tmp_skb->next);
skb->len += tmp_skb->len;
skb->data_len += tmp_skb->len;
skb->truesize += tmp_skb->truesize;
__sock_put(tmp_skb->sk);
tmp_skb->destructor = NULL;
tmp_skb->sk = NULL;
}
ipv6_addr_copy(final_dst, &fl->fl6_dst);
__skb_pull(skb, skb->h.raw - skb->nh.raw);
if (opt && opt->opt_flen)
ipv6_push_frag_opts(skb, opt, &proto);
if (opt && opt->opt_nflen)
ipv6_push_nfrag_opts(skb, opt, &proto, &final_dst);
skb->nh.ipv6h = hdr = (struct ipv6hdr*) skb_push(skb, sizeof(struct ipv6hdr));
*(__be32*)hdr = fl->fl6_flowlabel |
htonl(0x60000000 | ((int)np->cork.tclass << 20));
if (skb->len <= sizeof(struct ipv6hdr) + IPV6_MAXPLEN)
hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
else
hdr->payload_len = 0;
hdr->hop_limit = np->cork.hop_limit;
hdr->nexthdr = proto;
ipv6_addr_copy(&hdr->saddr, &fl->fl6_src);
ipv6_addr_copy(&hdr->daddr, final_dst);
skb->priority = sk->sk_priority;
skb->dst = dst_clone(&rt->u.dst);
IP6_INC_STATS(rt->rt6i_idev, IPSTATS_MIB_OUTREQUESTS);
err = NF_HOOK(PF_INET6, NF_IP6_LOCAL_OUT, skb, NULL, skb->dst->dev, dst_output);
if (err) {
if (err > 0)
err = np->recverr ? net_xmit_errno(err) : 0;
if (err)
goto error;
}
out:
inet->cork.flags &= ~IPCORK_OPT;
kfree(np->cork.opt);
np->cork.opt = NULL;
if (np->cork.rt) {
dst_release(&np->cork.rt->u.dst);
np->cork.rt = NULL;
inet->cork.flags &= ~IPCORK_ALLFRAG;
}
memset(&inet->cork.fl, 0, sizeof(inet->cork.fl));
return err;
error:
goto out;
}
void ip6_flush_pending_frames(struct sock *sk)
{
struct inet_sock *inet = inet_sk(sk);
struct ipv6_pinfo *np = inet6_sk(sk);
struct sk_buff *skb;
while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL) {
IP6_INC_STATS(ip6_dst_idev(skb->dst),
IPSTATS_MIB_OUTDISCARDS);
kfree_skb(skb);
}
inet->cork.flags &= ~IPCORK_OPT;
kfree(np->cork.opt);
np->cork.opt = NULL;
if (np->cork.rt) {
dst_release(&np->cork.rt->u.dst);
np->cork.rt = NULL;
inet->cork.flags &= ~IPCORK_ALLFRAG;
}
memset(&inet->cork.fl, 0, sizeof(inet->cork.fl));
}