WSL2-Linux-Kernel/arch/sparc64/kernel/pci_sabre.c

1709 строки
50 KiB
C
Исходник Обычный вид История

/* $Id: pci_sabre.c,v 1.42 2002/01/23 11:27:32 davem Exp $
* pci_sabre.c: Sabre specific PCI controller support.
*
* Copyright (C) 1997, 1998, 1999 David S. Miller (davem@caipfs.rutgers.edu)
* Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1999 Jakub Jelinek (jakub@redhat.com)
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <asm/apb.h>
#include <asm/pbm.h>
#include <asm/iommu.h>
#include <asm/irq.h>
#include <asm/smp.h>
#include <asm/oplib.h>
#include "pci_impl.h"
#include "iommu_common.h"
/* All SABRE registers are 64-bits. The following accessor
* routines are how they are accessed. The REG parameter
* is a physical address.
*/
#define sabre_read(__reg) \
({ u64 __ret; \
__asm__ __volatile__("ldxa [%1] %2, %0" \
: "=r" (__ret) \
: "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
: "memory"); \
__ret; \
})
#define sabre_write(__reg, __val) \
__asm__ __volatile__("stxa %0, [%1] %2" \
: /* no outputs */ \
: "r" (__val), "r" (__reg), \
"i" (ASI_PHYS_BYPASS_EC_E) \
: "memory")
/* SABRE PCI controller register offsets and definitions. */
#define SABRE_UE_AFSR 0x0030UL
#define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
#define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
#define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
#define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
#define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */
#define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */
#define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
#define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */
#define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */
#define SABRE_UECE_AFAR 0x0038UL
#define SABRE_CE_AFSR 0x0040UL
#define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
#define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
#define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
#define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
#define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */
#define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
#define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */
#define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */
#define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */
#define SABRE_IOMMU_CONTROL 0x0200UL
#define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */
#define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */
#define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */
#define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */
#define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */
#define SABRE_IOMMU_TSBSZ_1K 0x0000000000000000
#define SABRE_IOMMU_TSBSZ_2K 0x0000000000010000
#define SABRE_IOMMU_TSBSZ_4K 0x0000000000020000
#define SABRE_IOMMU_TSBSZ_8K 0x0000000000030000
#define SABRE_IOMMU_TSBSZ_16K 0x0000000000040000
#define SABRE_IOMMU_TSBSZ_32K 0x0000000000050000
#define SABRE_IOMMU_TSBSZ_64K 0x0000000000060000
#define SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
#define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */
#define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */
#define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */
#define SABRE_IOMMU_TSBBASE 0x0208UL
#define SABRE_IOMMU_FLUSH 0x0210UL
#define SABRE_IMAP_A_SLOT0 0x0c00UL
#define SABRE_IMAP_B_SLOT0 0x0c20UL
#define SABRE_IMAP_SCSI 0x1000UL
#define SABRE_IMAP_ETH 0x1008UL
#define SABRE_IMAP_BPP 0x1010UL
#define SABRE_IMAP_AU_REC 0x1018UL
#define SABRE_IMAP_AU_PLAY 0x1020UL
#define SABRE_IMAP_PFAIL 0x1028UL
#define SABRE_IMAP_KMS 0x1030UL
#define SABRE_IMAP_FLPY 0x1038UL
#define SABRE_IMAP_SHW 0x1040UL
#define SABRE_IMAP_KBD 0x1048UL
#define SABRE_IMAP_MS 0x1050UL
#define SABRE_IMAP_SER 0x1058UL
#define SABRE_IMAP_UE 0x1070UL
#define SABRE_IMAP_CE 0x1078UL
#define SABRE_IMAP_PCIERR 0x1080UL
#define SABRE_IMAP_GFX 0x1098UL
#define SABRE_IMAP_EUPA 0x10a0UL
#define SABRE_ICLR_A_SLOT0 0x1400UL
#define SABRE_ICLR_B_SLOT0 0x1480UL
#define SABRE_ICLR_SCSI 0x1800UL
#define SABRE_ICLR_ETH 0x1808UL
#define SABRE_ICLR_BPP 0x1810UL
#define SABRE_ICLR_AU_REC 0x1818UL
#define SABRE_ICLR_AU_PLAY 0x1820UL
#define SABRE_ICLR_PFAIL 0x1828UL
#define SABRE_ICLR_KMS 0x1830UL
#define SABRE_ICLR_FLPY 0x1838UL
#define SABRE_ICLR_SHW 0x1840UL
#define SABRE_ICLR_KBD 0x1848UL
#define SABRE_ICLR_MS 0x1850UL
#define SABRE_ICLR_SER 0x1858UL
#define SABRE_ICLR_UE 0x1870UL
#define SABRE_ICLR_CE 0x1878UL
#define SABRE_ICLR_PCIERR 0x1880UL
#define SABRE_WRSYNC 0x1c20UL
#define SABRE_PCICTRL 0x2000UL
#define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */
#define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */
#define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
#define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */
#define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */
#define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */
#define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */
#define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */
#define SABRE_PIOAFSR 0x2010UL
#define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */
#define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */
#define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */
#define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */
#define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */
#define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */
#define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */
#define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */
#define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */
#define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */
#define SABRE_PIOAFAR 0x2018UL
#define SABRE_PCIDIAG 0x2020UL
#define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */
#define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */
#define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */
#define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */
#define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */
#define SABRE_PCITASR 0x2028UL
#define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */
#define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */
#define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */
#define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */
#define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */
#define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */
#define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */
#define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */
#define SABRE_PIOBUF_DIAG 0x5000UL
#define SABRE_DMABUF_DIAGLO 0x5100UL
#define SABRE_DMABUF_DIAGHI 0x51c0UL
#define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */
#define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */
#define SABRE_IOMMU_VADIAG 0xa400UL
#define SABRE_IOMMU_TCDIAG 0xa408UL
#define SABRE_IOMMU_TAG 0xa580UL
#define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */
#define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */
#define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */
#define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */
#define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */
#define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */
#define SABRE_IOMMU_DATA 0xa600UL
#define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */
#define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */
#define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */
#define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */
#define SABRE_PCI_IRQSTATE 0xa800UL
#define SABRE_OBIO_IRQSTATE 0xa808UL
#define SABRE_FFBCFG 0xf000UL
#define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */
#define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */
#define SABRE_MCCTRL0 0xf010UL
#define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */
#define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */
#define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */
#define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */
#define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */
#define SABRE_MCCTRL1 0xf018UL
#define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */
#define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */
#define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */
#define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */
#define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */
#define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */
#define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */
#define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */
#define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */
#define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */
#define SABRE_RESETCTRL 0xf020UL
#define SABRE_CONFIGSPACE 0x001000000UL
#define SABRE_IOSPACE 0x002000000UL
#define SABRE_IOSPACE_SIZE 0x000ffffffUL
#define SABRE_MEMSPACE 0x100000000UL
#define SABRE_MEMSPACE_SIZE 0x07fffffffUL
/* UltraSparc-IIi Programmer's Manual, page 325, PCI
* configuration space address format:
*
* 32 24 23 16 15 11 10 8 7 2 1 0
* ---------------------------------------------------------
* |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 |
* ---------------------------------------------------------
*/
#define SABRE_CONFIG_BASE(PBM) \
((PBM)->config_space | (1UL << 24))
#define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \
(((unsigned long)(BUS) << 16) | \
((unsigned long)(DEVFN) << 8) | \
((unsigned long)(REG)))
static int hummingbird_p;
static struct pci_bus *sabre_root_bus;
static void *sabre_pci_config_mkaddr(struct pci_pbm_info *pbm,
unsigned char bus,
unsigned int devfn,
int where)
{
if (!pbm)
return NULL;
return (void *)
(SABRE_CONFIG_BASE(pbm) |
SABRE_CONFIG_ENCODE(bus, devfn, where));
}
static int sabre_out_of_range(unsigned char devfn)
{
if (hummingbird_p)
return 0;
return (((PCI_SLOT(devfn) == 0) && (PCI_FUNC(devfn) > 0)) ||
((PCI_SLOT(devfn) == 1) && (PCI_FUNC(devfn) > 1)) ||
(PCI_SLOT(devfn) > 1));
}
static int __sabre_out_of_range(struct pci_pbm_info *pbm,
unsigned char bus,
unsigned char devfn)
{
if (hummingbird_p)
return 0;
return ((pbm->parent == 0) ||
((pbm == &pbm->parent->pbm_B) &&
(bus == pbm->pci_first_busno) &&
PCI_SLOT(devfn) > 8) ||
((pbm == &pbm->parent->pbm_A) &&
(bus == pbm->pci_first_busno) &&
PCI_SLOT(devfn) > 8));
}
static int __sabre_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
int where, int size, u32 *value)
{
struct pci_pbm_info *pbm = bus_dev->sysdata;
unsigned char bus = bus_dev->number;
u32 *addr;
u16 tmp16;
u8 tmp8;
switch (size) {
case 1:
*value = 0xff;
break;
case 2:
*value = 0xffff;
break;
case 4:
*value = 0xffffffff;
break;
}
addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
if (!addr)
return PCIBIOS_SUCCESSFUL;
if (__sabre_out_of_range(pbm, bus, devfn))
return PCIBIOS_SUCCESSFUL;
switch (size) {
case 1:
pci_config_read8((u8 *) addr, &tmp8);
*value = tmp8;
break;
case 2:
if (where & 0x01) {
printk("pci_read_config_word: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_read16((u16 *) addr, &tmp16);
*value = tmp16;
break;
case 4:
if (where & 0x03) {
printk("pci_read_config_dword: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_read32(addr, value);
break;
}
return PCIBIOS_SUCCESSFUL;
}
static int sabre_read_pci_cfg(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 *value)
{
if (!bus->number && sabre_out_of_range(devfn)) {
switch (size) {
case 1:
*value = 0xff;
break;
case 2:
*value = 0xffff;
break;
case 4:
*value = 0xffffffff;
break;
}
return PCIBIOS_SUCCESSFUL;
}
if (bus->number || PCI_SLOT(devfn))
return __sabre_read_pci_cfg(bus, devfn, where, size, value);
/* When accessing PCI config space of the PCI controller itself (bus
* 0, device slot 0, function 0) there are restrictions. Each
* register must be accessed as it's natural size. Thus, for example
* the Vendor ID must be accessed as a 16-bit quantity.
*/
switch (size) {
case 1:
if (where < 8) {
u32 tmp32;
u16 tmp16;
__sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
tmp16 = (u16) tmp32;
if (where & 1)
*value = tmp16 >> 8;
else
*value = tmp16 & 0xff;
} else
return __sabre_read_pci_cfg(bus, devfn, where, 1, value);
break;
case 2:
if (where < 8)
return __sabre_read_pci_cfg(bus, devfn, where, 2, value);
else {
u32 tmp32;
u8 tmp8;
__sabre_read_pci_cfg(bus, devfn, where, 1, &tmp32);
tmp8 = (u8) tmp32;
*value = tmp8;
__sabre_read_pci_cfg(bus, devfn, where + 1, 1, &tmp32);
tmp8 = (u8) tmp32;
*value |= tmp8 << 8;
}
break;
case 4: {
u32 tmp32;
u16 tmp16;
sabre_read_pci_cfg(bus, devfn, where, 2, &tmp32);
tmp16 = (u16) tmp32;
*value = tmp16;
sabre_read_pci_cfg(bus, devfn, where + 2, 2, &tmp32);
tmp16 = (u16) tmp32;
*value |= tmp16 << 16;
break;
}
}
return PCIBIOS_SUCCESSFUL;
}
static int __sabre_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
int where, int size, u32 value)
{
struct pci_pbm_info *pbm = bus_dev->sysdata;
unsigned char bus = bus_dev->number;
u32 *addr;
addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
if (!addr)
return PCIBIOS_SUCCESSFUL;
if (__sabre_out_of_range(pbm, bus, devfn))
return PCIBIOS_SUCCESSFUL;
switch (size) {
case 1:
pci_config_write8((u8 *) addr, value);
break;
case 2:
if (where & 0x01) {
printk("pci_write_config_word: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_write16((u16 *) addr, value);
break;
case 4:
if (where & 0x03) {
printk("pci_write_config_dword: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_write32(addr, value);
break;
}
return PCIBIOS_SUCCESSFUL;
}
static int sabre_write_pci_cfg(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 value)
{
if (bus->number)
return __sabre_write_pci_cfg(bus, devfn, where, size, value);
if (sabre_out_of_range(devfn))
return PCIBIOS_SUCCESSFUL;
switch (size) {
case 1:
if (where < 8) {
u32 tmp32;
u16 tmp16;
__sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
tmp16 = (u16) tmp32;
if (where & 1) {
value &= 0x00ff;
value |= tmp16 << 8;
} else {
value &= 0xff00;
value |= tmp16;
}
tmp32 = (u32) tmp16;
return __sabre_write_pci_cfg(bus, devfn, where & ~1, 2, tmp32);
} else
return __sabre_write_pci_cfg(bus, devfn, where, 1, value);
break;
case 2:
if (where < 8)
return __sabre_write_pci_cfg(bus, devfn, where, 2, value);
else {
__sabre_write_pci_cfg(bus, devfn, where, 1, value & 0xff);
__sabre_write_pci_cfg(bus, devfn, where + 1, 1, value >> 8);
}
break;
case 4:
sabre_write_pci_cfg(bus, devfn, where, 2, value & 0xffff);
sabre_write_pci_cfg(bus, devfn, where + 2, 2, value >> 16);
break;
}
return PCIBIOS_SUCCESSFUL;
}
static struct pci_ops sabre_ops = {
.read = sabre_read_pci_cfg,
.write = sabre_write_pci_cfg,
};
static unsigned long sabre_pcislot_imap_offset(unsigned long ino)
{
unsigned int bus = (ino & 0x10) >> 4;
unsigned int slot = (ino & 0x0c) >> 2;
if (bus == 0)
return SABRE_IMAP_A_SLOT0 + (slot * 8);
else
return SABRE_IMAP_B_SLOT0 + (slot * 8);
}
static unsigned long __onboard_imap_off[] = {
/*0x20*/ SABRE_IMAP_SCSI,
/*0x21*/ SABRE_IMAP_ETH,
/*0x22*/ SABRE_IMAP_BPP,
/*0x23*/ SABRE_IMAP_AU_REC,
/*0x24*/ SABRE_IMAP_AU_PLAY,
/*0x25*/ SABRE_IMAP_PFAIL,
/*0x26*/ SABRE_IMAP_KMS,
/*0x27*/ SABRE_IMAP_FLPY,
/*0x28*/ SABRE_IMAP_SHW,
/*0x29*/ SABRE_IMAP_KBD,
/*0x2a*/ SABRE_IMAP_MS,
/*0x2b*/ SABRE_IMAP_SER,
/*0x2c*/ 0 /* reserved */,
/*0x2d*/ 0 /* reserved */,
/*0x2e*/ SABRE_IMAP_UE,
/*0x2f*/ SABRE_IMAP_CE,
/*0x30*/ SABRE_IMAP_PCIERR,
};
#define SABRE_ONBOARD_IRQ_BASE 0x20
#define SABRE_ONBOARD_IRQ_LAST 0x30
#define sabre_onboard_imap_offset(__ino) \
__onboard_imap_off[(__ino) - SABRE_ONBOARD_IRQ_BASE]
#define sabre_iclr_offset(ino) \
((ino & 0x20) ? (SABRE_ICLR_SCSI + (((ino) & 0x1f) << 3)) : \
(SABRE_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3)))
/* PCI SABRE INO number to Sparc PIL level. */
static unsigned char sabre_pil_table[] = {
/*0x00*/0, 0, 0, 0, /* PCI A slot 0 Int A, B, C, D */
/*0x04*/0, 0, 0, 0, /* PCI A slot 1 Int A, B, C, D */
/*0x08*/0, 0, 0, 0, /* PCI A slot 2 Int A, B, C, D */
/*0x0c*/0, 0, 0, 0, /* PCI A slot 3 Int A, B, C, D */
/*0x10*/0, 0, 0, 0, /* PCI B slot 0 Int A, B, C, D */
/*0x14*/0, 0, 0, 0, /* PCI B slot 1 Int A, B, C, D */
/*0x18*/0, 0, 0, 0, /* PCI B slot 2 Int A, B, C, D */
/*0x1c*/0, 0, 0, 0, /* PCI B slot 3 Int A, B, C, D */
/*0x20*/4, /* SCSI */
/*0x21*/5, /* Ethernet */
/*0x22*/8, /* Parallel Port */
/*0x23*/13, /* Audio Record */
/*0x24*/14, /* Audio Playback */
/*0x25*/15, /* PowerFail */
/*0x26*/4, /* second SCSI */
/*0x27*/11, /* Floppy */
/*0x28*/4, /* Spare Hardware */
/*0x29*/9, /* Keyboard */
/*0x2a*/4, /* Mouse */
/*0x2b*/12, /* Serial */
/*0x2c*/10, /* Timer 0 */
/*0x2d*/11, /* Timer 1 */
/*0x2e*/15, /* Uncorrectable ECC */
/*0x2f*/15, /* Correctable ECC */
/*0x30*/15, /* PCI Bus A Error */
/*0x31*/15, /* PCI Bus B Error */
/*0x32*/15, /* Power Management */
};
static int __init sabre_ino_to_pil(struct pci_dev *pdev, unsigned int ino)
{
int ret;
if (pdev &&
pdev->vendor == PCI_VENDOR_ID_SUN &&
pdev->device == PCI_DEVICE_ID_SUN_RIO_USB)
return 9;
ret = sabre_pil_table[ino];
if (ret == 0 && pdev == NULL) {
ret = 4;
} else if (ret == 0) {
switch ((pdev->class >> 16) & 0xff) {
case PCI_BASE_CLASS_STORAGE:
ret = 4;
break;
case PCI_BASE_CLASS_NETWORK:
ret = 6;
break;
case PCI_BASE_CLASS_DISPLAY:
ret = 9;
break;
case PCI_BASE_CLASS_MULTIMEDIA:
case PCI_BASE_CLASS_MEMORY:
case PCI_BASE_CLASS_BRIDGE:
case PCI_BASE_CLASS_SERIAL:
ret = 10;
break;
default:
ret = 4;
break;
};
}
return ret;
}
/* When a device lives behind a bridge deeper in the PCI bus topology
* than APB, a special sequence must run to make sure all pending DMA
* transfers at the time of IRQ delivery are visible in the coherency
* domain by the cpu. This sequence is to perform a read on the far
* side of the non-APB bridge, then perform a read of Sabre's DMA
* write-sync register.
*/
static void sabre_wsync_handler(struct ino_bucket *bucket, void *_arg1, void *_arg2)
{
struct pci_dev *pdev = _arg1;
unsigned long sync_reg = (unsigned long) _arg2;
u16 _unused;
pci_read_config_word(pdev, PCI_VENDOR_ID, &_unused);
sabre_read(sync_reg);
}
static unsigned int __init sabre_irq_build(struct pci_pbm_info *pbm,
struct pci_dev *pdev,
unsigned int ino)
{
struct ino_bucket *bucket;
unsigned long imap, iclr;
unsigned long imap_off, iclr_off;
int pil, inofixup = 0;
ino &= PCI_IRQ_INO;
if (ino < SABRE_ONBOARD_IRQ_BASE) {
/* PCI slot */
imap_off = sabre_pcislot_imap_offset(ino);
} else {
/* onboard device */
if (ino > SABRE_ONBOARD_IRQ_LAST) {
prom_printf("sabre_irq_build: Wacky INO [%x]\n", ino);
prom_halt();
}
imap_off = sabre_onboard_imap_offset(ino);
}
/* Now build the IRQ bucket. */
pil = sabre_ino_to_pil(pdev, ino);
if (PIL_RESERVED(pil))
BUG();
imap = pbm->controller_regs + imap_off;
imap += 4;
iclr_off = sabre_iclr_offset(ino);
iclr = pbm->controller_regs + iclr_off;
iclr += 4;
if ((ino & 0x20) == 0)
inofixup = ino & 0x03;
bucket = __bucket(build_irq(pil, inofixup, iclr, imap));
bucket->flags |= IBF_PCI;
if (pdev) {
struct pcidev_cookie *pcp = pdev->sysdata;
if (pdev->bus->number != pcp->pbm->pci_first_busno) {
struct pci_controller_info *p = pcp->pbm->parent;
struct irq_desc *d = bucket->irq_info;
d->pre_handler = sabre_wsync_handler;
d->pre_handler_arg1 = pdev;
d->pre_handler_arg2 = (void *)
p->pbm_A.controller_regs + SABRE_WRSYNC;
}
}
return __irq(bucket);
}
/* SABRE error handling support. */
static void sabre_check_iommu_error(struct pci_controller_info *p,
unsigned long afsr,
unsigned long afar)
{
struct pci_iommu *iommu = p->pbm_A.iommu;
unsigned long iommu_tag[16];
unsigned long iommu_data[16];
unsigned long flags;
u64 control;
int i;
spin_lock_irqsave(&iommu->lock, flags);
control = sabre_read(iommu->iommu_control);
if (control & SABRE_IOMMUCTRL_ERR) {
char *type_string;
/* Clear the error encountered bit.
* NOTE: On Sabre this is write 1 to clear,
* which is different from Psycho.
*/
sabre_write(iommu->iommu_control, control);
switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) {
case 1:
type_string = "Invalid Error";
break;
case 3:
type_string = "ECC Error";
break;
default:
type_string = "Unknown";
break;
};
printk("SABRE%d: IOMMU Error, type[%s]\n",
p->index, type_string);
/* Enter diagnostic mode and probe for error'd
* entries in the IOTLB.
*/
control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR);
sabre_write(iommu->iommu_control,
(control | SABRE_IOMMUCTRL_DENAB));
for (i = 0; i < 16; i++) {
unsigned long base = p->pbm_A.controller_regs;
iommu_tag[i] =
sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL));
iommu_data[i] =
sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL));
sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0);
sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0);
}
sabre_write(iommu->iommu_control, control);
for (i = 0; i < 16; i++) {
unsigned long tag, data;
tag = iommu_tag[i];
if (!(tag & SABRE_IOMMUTAG_ERR))
continue;
data = iommu_data[i];
switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) {
case 1:
type_string = "Invalid Error";
break;
case 3:
type_string = "ECC Error";
break;
default:
type_string = "Unknown";
break;
};
printk("SABRE%d: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n",
p->index, i, tag, type_string,
((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0),
((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8),
((tag & SABRE_IOMMUTAG_VPN) << IOMMU_PAGE_SHIFT));
printk("SABRE%d: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n",
p->index, i, data,
((data & SABRE_IOMMUDATA_VALID) ? 1 : 0),
((data & SABRE_IOMMUDATA_USED) ? 1 : 0),
((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0),
((data & SABRE_IOMMUDATA_PPN) << IOMMU_PAGE_SHIFT));
}
}
spin_unlock_irqrestore(&iommu->lock, flags);
}
static irqreturn_t sabre_ue_intr(int irq, void *dev_id, struct pt_regs *regs)
{
struct pci_controller_info *p = dev_id;
unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_UE_AFSR;
unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
unsigned long afsr, afar, error_bits;
int reported;
/* Latch uncorrectable error status. */
afar = sabre_read(afar_reg);
afsr = sabre_read(afsr_reg);
/* Clear the primary/secondary error status bits. */
error_bits = afsr &
(SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE);
if (!error_bits)
return IRQ_NONE;
sabre_write(afsr_reg, error_bits);
/* Log the error. */
printk("SABRE%d: Uncorrectable Error, primary error type[%s%s]\n",
p->index,
((error_bits & SABRE_UEAFSR_PDRD) ?
"DMA Read" :
((error_bits & SABRE_UEAFSR_PDWR) ?
"DMA Write" : "???")),
((error_bits & SABRE_UEAFSR_PDTE) ?
":Translation Error" : ""));
printk("SABRE%d: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
p->index,
(afsr & SABRE_UEAFSR_BMSK) >> 32UL,
(afsr & SABRE_UEAFSR_OFF) >> 29UL,
((afsr & SABRE_UEAFSR_BLK) ? 1 : 0));
printk("SABRE%d: UE AFAR [%016lx]\n", p->index, afar);
printk("SABRE%d: UE Secondary errors [", p->index);
reported = 0;
if (afsr & SABRE_UEAFSR_SDRD) {
reported++;
printk("(DMA Read)");
}
if (afsr & SABRE_UEAFSR_SDWR) {
reported++;
printk("(DMA Write)");
}
if (afsr & SABRE_UEAFSR_SDTE) {
reported++;
printk("(Translation Error)");
}
if (!reported)
printk("(none)");
printk("]\n");
/* Interrogate IOMMU for error status. */
sabre_check_iommu_error(p, afsr, afar);
return IRQ_HANDLED;
}
static irqreturn_t sabre_ce_intr(int irq, void *dev_id, struct pt_regs *regs)
{
struct pci_controller_info *p = dev_id;
unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_CE_AFSR;
unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
unsigned long afsr, afar, error_bits;
int reported;
/* Latch error status. */
afar = sabre_read(afar_reg);
afsr = sabre_read(afsr_reg);
/* Clear primary/secondary error status bits. */
error_bits = afsr &
(SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR);
if (!error_bits)
return IRQ_NONE;
sabre_write(afsr_reg, error_bits);
/* Log the error. */
printk("SABRE%d: Correctable Error, primary error type[%s]\n",
p->index,
((error_bits & SABRE_CEAFSR_PDRD) ?
"DMA Read" :
((error_bits & SABRE_CEAFSR_PDWR) ?
"DMA Write" : "???")));
/* XXX Use syndrome and afar to print out module string just like
* XXX UDB CE trap handler does... -DaveM
*/
printk("SABRE%d: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
"was_block(%d)\n",
p->index,
(afsr & SABRE_CEAFSR_ESYND) >> 48UL,
(afsr & SABRE_CEAFSR_BMSK) >> 32UL,
(afsr & SABRE_CEAFSR_OFF) >> 29UL,
((afsr & SABRE_CEAFSR_BLK) ? 1 : 0));
printk("SABRE%d: CE AFAR [%016lx]\n", p->index, afar);
printk("SABRE%d: CE Secondary errors [", p->index);
reported = 0;
if (afsr & SABRE_CEAFSR_SDRD) {
reported++;
printk("(DMA Read)");
}
if (afsr & SABRE_CEAFSR_SDWR) {
reported++;
printk("(DMA Write)");
}
if (!reported)
printk("(none)");
printk("]\n");
return IRQ_HANDLED;
}
static irqreturn_t sabre_pcierr_intr_other(struct pci_controller_info *p)
{
unsigned long csr_reg, csr, csr_error_bits;
irqreturn_t ret = IRQ_NONE;
u16 stat;
csr_reg = p->pbm_A.controller_regs + SABRE_PCICTRL;
csr = sabre_read(csr_reg);
csr_error_bits =
csr & SABRE_PCICTRL_SERR;
if (csr_error_bits) {
/* Clear the errors. */
sabre_write(csr_reg, csr);
/* Log 'em. */
if (csr_error_bits & SABRE_PCICTRL_SERR)
printk("SABRE%d: PCI SERR signal asserted.\n",
p->index);
ret = IRQ_HANDLED;
}
pci_read_config_word(sabre_root_bus->self,
PCI_STATUS, &stat);
if (stat & (PCI_STATUS_PARITY |
PCI_STATUS_SIG_TARGET_ABORT |
PCI_STATUS_REC_TARGET_ABORT |
PCI_STATUS_REC_MASTER_ABORT |
PCI_STATUS_SIG_SYSTEM_ERROR)) {
printk("SABRE%d: PCI bus error, PCI_STATUS[%04x]\n",
p->index, stat);
pci_write_config_word(sabre_root_bus->self,
PCI_STATUS, 0xffff);
ret = IRQ_HANDLED;
}
return ret;
}
static irqreturn_t sabre_pcierr_intr(int irq, void *dev_id, struct pt_regs *regs)
{
struct pci_controller_info *p = dev_id;
unsigned long afsr_reg, afar_reg;
unsigned long afsr, afar, error_bits;
int reported;
afsr_reg = p->pbm_A.controller_regs + SABRE_PIOAFSR;
afar_reg = p->pbm_A.controller_regs + SABRE_PIOAFAR;
/* Latch error status. */
afar = sabre_read(afar_reg);
afsr = sabre_read(afsr_reg);
/* Clear primary/secondary error status bits. */
error_bits = afsr &
(SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA |
SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR |
SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA |
SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR);
if (!error_bits)
return sabre_pcierr_intr_other(p);
sabre_write(afsr_reg, error_bits);
/* Log the error. */
printk("SABRE%d: PCI Error, primary error type[%s]\n",
p->index,
(((error_bits & SABRE_PIOAFSR_PMA) ?
"Master Abort" :
((error_bits & SABRE_PIOAFSR_PTA) ?
"Target Abort" :
((error_bits & SABRE_PIOAFSR_PRTRY) ?
"Excessive Retries" :
((error_bits & SABRE_PIOAFSR_PPERR) ?
"Parity Error" : "???"))))));
printk("SABRE%d: bytemask[%04lx] was_block(%d)\n",
p->index,
(afsr & SABRE_PIOAFSR_BMSK) >> 32UL,
(afsr & SABRE_PIOAFSR_BLK) ? 1 : 0);
printk("SABRE%d: PCI AFAR [%016lx]\n", p->index, afar);
printk("SABRE%d: PCI Secondary errors [", p->index);
reported = 0;
if (afsr & SABRE_PIOAFSR_SMA) {
reported++;
printk("(Master Abort)");
}
if (afsr & SABRE_PIOAFSR_STA) {
reported++;
printk("(Target Abort)");
}
if (afsr & SABRE_PIOAFSR_SRTRY) {
reported++;
printk("(Excessive Retries)");
}
if (afsr & SABRE_PIOAFSR_SPERR) {
reported++;
printk("(Parity Error)");
}
if (!reported)
printk("(none)");
printk("]\n");
/* For the error types shown, scan both PCI buses for devices
* which have logged that error type.
*/
/* If we see a Target Abort, this could be the result of an
* IOMMU translation error of some sort. It is extremely
* useful to log this information as usually it indicates
* a bug in the IOMMU support code or a PCI device driver.
*/
if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) {
sabre_check_iommu_error(p, afsr, afar);
pci_scan_for_target_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
pci_scan_for_target_abort(p, &p->pbm_B, p->pbm_B.pci_bus);
}
if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA)) {
pci_scan_for_master_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
pci_scan_for_master_abort(p, &p->pbm_B, p->pbm_B.pci_bus);
}
/* For excessive retries, SABRE/PBM will abort the device
* and there is no way to specifically check for excessive
* retries in the config space status registers. So what
* we hope is that we'll catch it via the master/target
* abort events.
*/
if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR)) {
pci_scan_for_parity_error(p, &p->pbm_A, p->pbm_A.pci_bus);
pci_scan_for_parity_error(p, &p->pbm_B, p->pbm_B.pci_bus);
}
return IRQ_HANDLED;
}
/* XXX What about PowerFail/PowerManagement??? -DaveM */
#define SABRE_UE_INO 0x2e
#define SABRE_CE_INO 0x2f
#define SABRE_PCIERR_INO 0x30
static void __init sabre_register_error_handlers(struct pci_controller_info *p)
{
struct pci_pbm_info *pbm = &p->pbm_A; /* arbitrary */
unsigned long base = pbm->controller_regs;
unsigned long irq, portid = pbm->portid;
u64 tmp;
/* We clear the error bits in the appropriate AFSR before
* registering the handler so that we don't get spurious
* interrupts.
*/
sabre_write(base + SABRE_UE_AFSR,
(SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE));
irq = sabre_irq_build(pbm, NULL, (portid << 6) | SABRE_UE_INO);
if (request_irq(irq, sabre_ue_intr,
SA_SHIRQ, "SABRE UE", p) < 0) {
prom_printf("SABRE%d: Cannot register UE interrupt.\n",
p->index);
prom_halt();
}
sabre_write(base + SABRE_CE_AFSR,
(SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR));
irq = sabre_irq_build(pbm, NULL, (portid << 6) | SABRE_CE_INO);
if (request_irq(irq, sabre_ce_intr,
SA_SHIRQ, "SABRE CE", p) < 0) {
prom_printf("SABRE%d: Cannot register CE interrupt.\n",
p->index);
prom_halt();
}
irq = sabre_irq_build(pbm, NULL, (portid << 6) | SABRE_PCIERR_INO);
if (request_irq(irq, sabre_pcierr_intr,
SA_SHIRQ, "SABRE PCIERR", p) < 0) {
prom_printf("SABRE%d: Cannot register PciERR interrupt.\n",
p->index);
prom_halt();
}
tmp = sabre_read(base + SABRE_PCICTRL);
tmp |= SABRE_PCICTRL_ERREN;
sabre_write(base + SABRE_PCICTRL, tmp);
}
static void __init sabre_resource_adjust(struct pci_dev *pdev,
struct resource *res,
struct resource *root)
{
struct pci_pbm_info *pbm = pdev->bus->sysdata;
unsigned long base;
if (res->flags & IORESOURCE_IO)
base = pbm->controller_regs + SABRE_IOSPACE;
else
base = pbm->controller_regs + SABRE_MEMSPACE;
res->start += base;
res->end += base;
}
static void __init sabre_base_address_update(struct pci_dev *pdev, int resource)
{
struct pcidev_cookie *pcp = pdev->sysdata;
struct pci_pbm_info *pbm = pcp->pbm;
struct resource *res;
unsigned long base;
u32 reg;
int where, size, is_64bit;
res = &pdev->resource[resource];
if (resource < 6) {
where = PCI_BASE_ADDRESS_0 + (resource * 4);
} else if (resource == PCI_ROM_RESOURCE) {
where = pdev->rom_base_reg;
} else {
/* Somebody might have asked allocation of a non-standard resource */
return;
}
is_64bit = 0;
if (res->flags & IORESOURCE_IO)
base = pbm->controller_regs + SABRE_IOSPACE;
else {
base = pbm->controller_regs + SABRE_MEMSPACE;
if ((res->flags & PCI_BASE_ADDRESS_MEM_TYPE_MASK)
== PCI_BASE_ADDRESS_MEM_TYPE_64)
is_64bit = 1;
}
size = res->end - res->start;
pci_read_config_dword(pdev, where, &reg);
reg = ((reg & size) |
(((u32)(res->start - base)) & ~size));
if (resource == PCI_ROM_RESOURCE) {
reg |= PCI_ROM_ADDRESS_ENABLE;
res->flags |= IORESOURCE_ROM_ENABLE;
}
pci_write_config_dword(pdev, where, reg);
/* This knows that the upper 32-bits of the address
* must be zero. Our PCI common layer enforces this.
*/
if (is_64bit)
pci_write_config_dword(pdev, where + 4, 0);
}
static void __init apb_init(struct pci_controller_info *p, struct pci_bus *sabre_bus)
{
struct pci_dev *pdev;
list_for_each_entry(pdev, &sabre_bus->devices, bus_list) {
if (pdev->vendor == PCI_VENDOR_ID_SUN &&
pdev->device == PCI_DEVICE_ID_SUN_SIMBA) {
u32 word32;
u16 word16;
sabre_read_pci_cfg(pdev->bus, pdev->devfn,
PCI_COMMAND, 2, &word32);
word16 = (u16) word32;
word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY |
PCI_COMMAND_IO;
word32 = (u32) word16;
sabre_write_pci_cfg(pdev->bus, pdev->devfn,
PCI_COMMAND, 2, word32);
/* Status register bits are "write 1 to clear". */
sabre_write_pci_cfg(pdev->bus, pdev->devfn,
PCI_STATUS, 2, 0xffff);
sabre_write_pci_cfg(pdev->bus, pdev->devfn,
PCI_SEC_STATUS, 2, 0xffff);
/* Use a primary/seconday latency timer value
* of 64.
*/
sabre_write_pci_cfg(pdev->bus, pdev->devfn,
PCI_LATENCY_TIMER, 1, 64);
sabre_write_pci_cfg(pdev->bus, pdev->devfn,
PCI_SEC_LATENCY_TIMER, 1, 64);
/* Enable reporting/forwarding of master aborts,
* parity, and SERR.
*/
sabre_write_pci_cfg(pdev->bus, pdev->devfn,
PCI_BRIDGE_CONTROL, 1,
(PCI_BRIDGE_CTL_PARITY |
PCI_BRIDGE_CTL_SERR |
PCI_BRIDGE_CTL_MASTER_ABORT));
}
}
}
static struct pcidev_cookie *alloc_bridge_cookie(struct pci_pbm_info *pbm)
{
struct pcidev_cookie *cookie = kmalloc(sizeof(*cookie), GFP_KERNEL);
if (!cookie) {
prom_printf("SABRE: Critical allocation failure.\n");
prom_halt();
}
/* All we care about is the PBM. */
memset(cookie, 0, sizeof(*cookie));
cookie->pbm = pbm;
return cookie;
}
static void __init sabre_scan_bus(struct pci_controller_info *p)
{
static int once;
struct pci_bus *sabre_bus, *pbus;
struct pci_pbm_info *pbm;
struct pcidev_cookie *cookie;
int sabres_scanned;
/* The APB bridge speaks to the Sabre host PCI bridge
* at 66Mhz, but the front side of APB runs at 33Mhz
* for both segments.
*/
p->pbm_A.is_66mhz_capable = 0;
p->pbm_B.is_66mhz_capable = 0;
/* This driver has not been verified to handle
* multiple SABREs yet, so trap this.
*
* Also note that the SABRE host bridge is hardwired
* to live at bus 0.
*/
if (once != 0) {
prom_printf("SABRE: Multiple controllers unsupported.\n");
prom_halt();
}
once++;
cookie = alloc_bridge_cookie(&p->pbm_A);
sabre_bus = pci_scan_bus(p->pci_first_busno,
p->pci_ops,
&p->pbm_A);
pci_fixup_host_bridge_self(sabre_bus);
sabre_bus->self->sysdata = cookie;
sabre_root_bus = sabre_bus;
apb_init(p, sabre_bus);
sabres_scanned = 0;
list_for_each_entry(pbus, &sabre_bus->children, node) {
if (pbus->number == p->pbm_A.pci_first_busno) {
pbm = &p->pbm_A;
} else if (pbus->number == p->pbm_B.pci_first_busno) {
pbm = &p->pbm_B;
} else
continue;
cookie = alloc_bridge_cookie(pbm);
pbus->self->sysdata = cookie;
sabres_scanned++;
pbus->sysdata = pbm;
pbm->pci_bus = pbus;
pci_fill_in_pbm_cookies(pbus, pbm, pbm->prom_node);
pci_record_assignments(pbm, pbus);
pci_assign_unassigned(pbm, pbus);
pci_fixup_irq(pbm, pbus);
pci_determine_66mhz_disposition(pbm, pbus);
pci_setup_busmastering(pbm, pbus);
}
if (!sabres_scanned) {
/* Hummingbird, no APBs. */
pbm = &p->pbm_A;
sabre_bus->sysdata = pbm;
pbm->pci_bus = sabre_bus;
pci_fill_in_pbm_cookies(sabre_bus, pbm, pbm->prom_node);
pci_record_assignments(pbm, sabre_bus);
pci_assign_unassigned(pbm, sabre_bus);
pci_fixup_irq(pbm, sabre_bus);
pci_determine_66mhz_disposition(pbm, sabre_bus);
pci_setup_busmastering(pbm, sabre_bus);
}
sabre_register_error_handlers(p);
}
static void __init sabre_iommu_init(struct pci_controller_info *p,
int tsbsize, unsigned long dvma_offset,
u32 dma_mask)
{
struct pci_iommu *iommu = p->pbm_A.iommu;
unsigned long tsbbase, i, order;
u64 control;
/* Setup initial software IOMMU state. */
spin_lock_init(&iommu->lock);
iommu->ctx_lowest_free = 1;
/* Register addresses. */
iommu->iommu_control = p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL;
iommu->iommu_tsbbase = p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE;
iommu->iommu_flush = p->pbm_A.controller_regs + SABRE_IOMMU_FLUSH;
iommu->write_complete_reg = p->pbm_A.controller_regs + SABRE_WRSYNC;
/* Sabre's IOMMU lacks ctx flushing. */
iommu->iommu_ctxflush = 0;
/* Invalidate TLB Entries. */
control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
control |= SABRE_IOMMUCTRL_DENAB;
sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
for(i = 0; i < 16; i++) {
sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TAG + (i * 8UL), 0);
sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_DATA + (i * 8UL), 0);
}
/* Leave diag mode enabled for full-flushing done
* in pci_iommu.c
*/
iommu->dummy_page = __get_free_pages(GFP_KERNEL, 0);
if (!iommu->dummy_page) {
prom_printf("PSYCHO_IOMMU: Error, gfp(dummy_page) failed.\n");
prom_halt();
}
memset((void *)iommu->dummy_page, 0, PAGE_SIZE);
iommu->dummy_page_pa = (unsigned long) __pa(iommu->dummy_page);
tsbbase = __get_free_pages(GFP_KERNEL, order = get_order(tsbsize * 1024 * 8));
if (!tsbbase) {
prom_printf("SABRE_IOMMU: Error, gfp(tsb) failed.\n");
prom_halt();
}
iommu->page_table = (iopte_t *)tsbbase;
iommu->page_table_map_base = dvma_offset;
iommu->dma_addr_mask = dma_mask;
pci_iommu_table_init(iommu, PAGE_SIZE << order);
sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE, __pa(tsbbase));
control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
control &= ~(SABRE_IOMMUCTRL_TSBSZ | SABRE_IOMMUCTRL_TBWSZ);
control |= SABRE_IOMMUCTRL_ENAB;
switch(tsbsize) {
case 64:
control |= SABRE_IOMMU_TSBSZ_64K;
iommu->page_table_sz_bits = 16;
break;
case 128:
control |= SABRE_IOMMU_TSBSZ_128K;
iommu->page_table_sz_bits = 17;
break;
default:
prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize);
prom_halt();
break;
}
sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
/* We start with no consistent mappings. */
iommu->lowest_consistent_map =
1 << (iommu->page_table_sz_bits - PBM_LOGCLUSTERS);
for (i = 0; i < PBM_NCLUSTERS; i++) {
iommu->alloc_info[i].flush = 0;
iommu->alloc_info[i].next = 0;
}
}
static void __init pbm_register_toplevel_resources(struct pci_controller_info *p,
struct pci_pbm_info *pbm)
{
char *name = pbm->name;
unsigned long ibase = p->pbm_A.controller_regs + SABRE_IOSPACE;
unsigned long mbase = p->pbm_A.controller_regs + SABRE_MEMSPACE;
unsigned int devfn;
unsigned long first, last, i;
u8 *addr, map;
sprintf(name, "SABRE%d PBM%c",
p->index,
(pbm == &p->pbm_A ? 'A' : 'B'));
pbm->io_space.name = pbm->mem_space.name = name;
devfn = PCI_DEVFN(1, (pbm == &p->pbm_A) ? 0 : 1);
addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_IO_ADDRESS_MAP);
map = 0;
pci_config_read8(addr, &map);
first = 8;
last = 0;
for (i = 0; i < 8; i++) {
if ((map & (1 << i)) != 0) {
if (first > i)
first = i;
if (last < i)
last = i;
}
}
pbm->io_space.start = ibase + (first << 21UL);
pbm->io_space.end = ibase + (last << 21UL) + ((1 << 21UL) - 1);
pbm->io_space.flags = IORESOURCE_IO;
addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_MEM_ADDRESS_MAP);
map = 0;
pci_config_read8(addr, &map);
first = 8;
last = 0;
for (i = 0; i < 8; i++) {
if ((map & (1 << i)) != 0) {
if (first > i)
first = i;
if (last < i)
last = i;
}
}
pbm->mem_space.start = mbase + (first << 29UL);
pbm->mem_space.end = mbase + (last << 29UL) + ((1 << 29UL) - 1);
pbm->mem_space.flags = IORESOURCE_MEM;
if (request_resource(&ioport_resource, &pbm->io_space) < 0) {
prom_printf("Cannot register PBM-%c's IO space.\n",
(pbm == &p->pbm_A ? 'A' : 'B'));
prom_halt();
}
if (request_resource(&iomem_resource, &pbm->mem_space) < 0) {
prom_printf("Cannot register PBM-%c's MEM space.\n",
(pbm == &p->pbm_A ? 'A' : 'B'));
prom_halt();
}
/* Register legacy regions if this PBM covers that area. */
if (pbm->io_space.start == ibase &&
pbm->mem_space.start == mbase)
pci_register_legacy_regions(&pbm->io_space,
&pbm->mem_space);
}
static void __init sabre_pbm_init(struct pci_controller_info *p, int sabre_node, u32 dma_begin)
{
struct pci_pbm_info *pbm;
char namebuf[128];
u32 busrange[2];
int node, simbas_found;
simbas_found = 0;
node = prom_getchild(sabre_node);
while ((node = prom_searchsiblings(node, "pci")) != 0) {
int err;
err = prom_getproperty(node, "model", namebuf, sizeof(namebuf));
if ((err <= 0) || strncmp(namebuf, "SUNW,simba", err))
goto next_pci;
err = prom_getproperty(node, "bus-range",
(char *)&busrange[0], sizeof(busrange));
if (err == 0 || err == -1) {
prom_printf("APB: Error, cannot get PCI bus-range.\n");
prom_halt();
}
simbas_found++;
if (busrange[0] == 1)
pbm = &p->pbm_B;
else
pbm = &p->pbm_A;
pbm->chip_type = PBM_CHIP_TYPE_SABRE;
pbm->parent = p;
pbm->prom_node = node;
pbm->pci_first_slot = 1;
pbm->pci_first_busno = busrange[0];
pbm->pci_last_busno = busrange[1];
prom_getstring(node, "name", pbm->prom_name, sizeof(pbm->prom_name));
err = prom_getproperty(node, "ranges",
(char *)pbm->pbm_ranges,
sizeof(pbm->pbm_ranges));
if (err != -1)
pbm->num_pbm_ranges =
(err / sizeof(struct linux_prom_pci_ranges));
else
pbm->num_pbm_ranges = 0;
err = prom_getproperty(node, "interrupt-map",
(char *)pbm->pbm_intmap,
sizeof(pbm->pbm_intmap));
if (err != -1) {
pbm->num_pbm_intmap = (err / sizeof(struct linux_prom_pci_intmap));
err = prom_getproperty(node, "interrupt-map-mask",
(char *)&pbm->pbm_intmask,
sizeof(pbm->pbm_intmask));
if (err == -1) {
prom_printf("APB: Fatal error, no interrupt-map-mask.\n");
prom_halt();
}
} else {
pbm->num_pbm_intmap = 0;
memset(&pbm->pbm_intmask, 0, sizeof(pbm->pbm_intmask));
}
pbm_register_toplevel_resources(p, pbm);
next_pci:
node = prom_getsibling(node);
if (!node)
break;
}
if (simbas_found == 0) {
int err;
/* No APBs underneath, probably this is a hummingbird
* system.
*/
pbm = &p->pbm_A;
pbm->parent = p;
pbm->prom_node = sabre_node;
pbm->pci_first_busno = p->pci_first_busno;
pbm->pci_last_busno = p->pci_last_busno;
prom_getstring(sabre_node, "name", pbm->prom_name, sizeof(pbm->prom_name));
err = prom_getproperty(sabre_node, "ranges",
(char *) pbm->pbm_ranges,
sizeof(pbm->pbm_ranges));
if (err != -1)
pbm->num_pbm_ranges =
(err / sizeof(struct linux_prom_pci_ranges));
else
pbm->num_pbm_ranges = 0;
err = prom_getproperty(sabre_node, "interrupt-map",
(char *) pbm->pbm_intmap,
sizeof(pbm->pbm_intmap));
if (err != -1) {
pbm->num_pbm_intmap = (err / sizeof(struct linux_prom_pci_intmap));
err = prom_getproperty(sabre_node, "interrupt-map-mask",
(char *)&pbm->pbm_intmask,
sizeof(pbm->pbm_intmask));
if (err == -1) {
prom_printf("Hummingbird: Fatal error, no interrupt-map-mask.\n");
prom_halt();
}
} else {
pbm->num_pbm_intmap = 0;
memset(&pbm->pbm_intmask, 0, sizeof(pbm->pbm_intmask));
}
sprintf(pbm->name, "SABRE%d PBM%c", p->index,
(pbm == &p->pbm_A ? 'A' : 'B'));
pbm->io_space.name = pbm->mem_space.name = pbm->name;
/* Hack up top-level resources. */
pbm->io_space.start = p->pbm_A.controller_regs + SABRE_IOSPACE;
pbm->io_space.end = pbm->io_space.start + (1UL << 24) - 1UL;
pbm->io_space.flags = IORESOURCE_IO;
pbm->mem_space.start = p->pbm_A.controller_regs + SABRE_MEMSPACE;
pbm->mem_space.end = pbm->mem_space.start + (unsigned long)dma_begin - 1UL;
pbm->mem_space.flags = IORESOURCE_MEM;
if (request_resource(&ioport_resource, &pbm->io_space) < 0) {
prom_printf("Cannot register Hummingbird's IO space.\n");
prom_halt();
}
if (request_resource(&iomem_resource, &pbm->mem_space) < 0) {
prom_printf("Cannot register Hummingbird's MEM space.\n");
prom_halt();
}
pci_register_legacy_regions(&pbm->io_space,
&pbm->mem_space);
}
}
void __init sabre_init(int pnode, char *model_name)
{
struct linux_prom64_registers pr_regs[2];
struct pci_controller_info *p;
struct pci_iommu *iommu;
int tsbsize, err;
u32 busrange[2];
u32 vdma[2];
u32 upa_portid, dma_mask;
u64 clear_irq;
hummingbird_p = 0;
if (!strcmp(model_name, "pci108e,a001"))
hummingbird_p = 1;
else if (!strcmp(model_name, "SUNW,sabre")) {
char compat[64];
if (prom_getproperty(pnode, "compatible",
compat, sizeof(compat)) > 0 &&
!strcmp(compat, "pci108e,a001")) {
hummingbird_p = 1;
} else {
int cpu_node;
/* Of course, Sun has to encode things a thousand
* different ways, inconsistently.
*/
cpu_find_by_instance(0, &cpu_node, NULL);
if (prom_getproperty(cpu_node, "name",
compat, sizeof(compat)) > 0 &&
!strcmp(compat, "SUNW,UltraSPARC-IIe"))
hummingbird_p = 1;
}
}
p = kmalloc(sizeof(*p), GFP_ATOMIC);
if (!p) {
prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n");
prom_halt();
}
memset(p, 0, sizeof(*p));
iommu = kmalloc(sizeof(*iommu), GFP_ATOMIC);
if (!iommu) {
prom_printf("SABRE: Error, kmalloc(pci_iommu) failed.\n");
prom_halt();
}
memset(iommu, 0, sizeof(*iommu));
p->pbm_A.iommu = p->pbm_B.iommu = iommu;
upa_portid = prom_getintdefault(pnode, "upa-portid", 0xff);
p->next = pci_controller_root;
pci_controller_root = p;
p->pbm_A.portid = upa_portid;
p->pbm_B.portid = upa_portid;
p->index = pci_num_controllers++;
p->pbms_same_domain = 1;
p->scan_bus = sabre_scan_bus;
p->irq_build = sabre_irq_build;
p->base_address_update = sabre_base_address_update;
p->resource_adjust = sabre_resource_adjust;
p->pci_ops = &sabre_ops;
/*
* Map in SABRE register set and report the presence of this SABRE.
*/
err = prom_getproperty(pnode, "reg",
(char *)&pr_regs[0], sizeof(pr_regs));
if(err == 0 || err == -1) {
prom_printf("SABRE: Error, cannot get U2P registers "
"from PROM.\n");
prom_halt();
}
/*
* First REG in property is base of entire SABRE register space.
*/
p->pbm_A.controller_regs = pr_regs[0].phys_addr;
p->pbm_B.controller_regs = pr_regs[0].phys_addr;
printk("PCI: Found SABRE, main regs at %016lx\n",
p->pbm_A.controller_regs);
/* Clear interrupts */
/* PCI first */
for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8)
sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
/* Then OBIO */
for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8)
sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
/* Error interrupts are enabled later after the bus scan. */
sabre_write(p->pbm_A.controller_regs + SABRE_PCICTRL,
(SABRE_PCICTRL_MRLEN | SABRE_PCICTRL_SERR |
SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN));
/* Now map in PCI config space for entire SABRE. */
p->pbm_A.config_space = p->pbm_B.config_space =
(p->pbm_A.controller_regs + SABRE_CONFIGSPACE);
printk("SABRE: Shared PCI config space at %016lx\n",
p->pbm_A.config_space);
err = prom_getproperty(pnode, "virtual-dma",
(char *)&vdma[0], sizeof(vdma));
if(err == 0 || err == -1) {
prom_printf("SABRE: Error, cannot get virtual-dma property "
"from PROM.\n");
prom_halt();
}
dma_mask = vdma[0];
switch(vdma[1]) {
case 0x20000000:
dma_mask |= 0x1fffffff;
tsbsize = 64;
break;
case 0x40000000:
dma_mask |= 0x3fffffff;
tsbsize = 128;
break;
case 0x80000000:
dma_mask |= 0x7fffffff;
tsbsize = 128;
break;
default:
prom_printf("SABRE: strange virtual-dma size.\n");
prom_halt();
}
sabre_iommu_init(p, tsbsize, vdma[0], dma_mask);
printk("SABRE: DVMA at %08x [%08x]\n", vdma[0], vdma[1]);
err = prom_getproperty(pnode, "bus-range",
(char *)&busrange[0], sizeof(busrange));
if(err == 0 || err == -1) {
prom_printf("SABRE: Error, cannot get PCI bus-range "
" from PROM.\n");
prom_halt();
}
p->pci_first_busno = busrange[0];
p->pci_last_busno = busrange[1];
/*
* Look for APB underneath.
*/
sabre_pbm_init(p, pnode, vdma[0]);
}