WSL2-Linux-Kernel/arch/x86/kernel/sysfb_simplefb.c

96 строки
2.7 KiB
C
Исходник Обычный вид История

x86: provide platform-devices for boot-framebuffers The current situation regarding boot-framebuffers (VGA, VESA/VBE, EFI) on x86 causes troubles when loading multiple fbdev drivers. The global "struct screen_info" does not provide any state-tracking about which drivers use the FBs. request_mem_region() theoretically works, but unfortunately vesafb/efifb ignore it due to quirks for broken boards. Avoid this by creating a platform framebuffer devices with a pointer to the "struct screen_info" as platform-data. Drivers can now create platform-drivers and the driver-core will refuse multiple drivers being active simultaneously. We keep the screen_info available for backwards-compatibility. Drivers can be converted in follow-up patches. Different devices are created for VGA/VESA/EFI FBs to allow multiple drivers to be loaded on distro kernels. We create: - "vesa-framebuffer" for VBE/VESA graphics FBs - "efi-framebuffer" for EFI FBs - "platform-framebuffer" for everything else This allows to load vesafb, efifb and others simultaneously and each picks up only the supported FB types. Apart from platform-framebuffer devices, this also introduces a compatibility option for "simple-framebuffer" drivers which recently got introduced for OF based systems. If CONFIG_X86_SYSFB is selected, we try to match the screen_info against a simple-framebuffer supported format. If we succeed, we create a "simple-framebuffer" device instead of a platform-framebuffer. This allows to reuse the simplefb.c driver across architectures and also to introduce a SimpleDRM driver. There is no need to have vesafb.c, efifb.c, simplefb.c and more just to have architecture specific quirks in their setup-routines. Instead, we now move the architecture specific quirks into x86-setup and provide a generic simple-framebuffer. For backwards-compatibility (if strange formats are used), we still allow vesafb/efifb to be loaded simultaneously and pick up all remaining devices. Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Link: http://lkml.kernel.org/r/1375445127-15480-4-git-send-email-dh.herrmann@gmail.com Tested-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-08-02 16:05:22 +04:00
/*
* Generic System Framebuffers on x86
* Copyright (c) 2012-2013 David Herrmann <dh.herrmann@gmail.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*/
/*
* simple-framebuffer probing
* Try to convert "screen_info" into a "simple-framebuffer" compatible mode.
* If the mode is incompatible, we return "false" and let the caller create
* legacy nodes instead.
*/
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/platform_data/simplefb.h>
#include <linux/platform_device.h>
#include <linux/screen_info.h>
#include <asm/sysfb.h>
static const char simplefb_resname[] = "BOOTFB";
static const struct simplefb_format formats[] = SIMPLEFB_FORMATS;
/* try parsing x86 screen_info into a simple-framebuffer mode struct */
__init bool parse_mode(const struct screen_info *si,
struct simplefb_platform_data *mode)
{
const struct simplefb_format *f;
__u8 type;
unsigned int i;
type = si->orig_video_isVGA;
if (type != VIDEO_TYPE_VLFB && type != VIDEO_TYPE_EFI)
return false;
for (i = 0; i < ARRAY_SIZE(formats); ++i) {
f = &formats[i];
if (si->lfb_depth == f->bits_per_pixel &&
si->red_size == f->red.length &&
si->red_pos == f->red.offset &&
si->green_size == f->green.length &&
si->green_pos == f->green.offset &&
si->blue_size == f->blue.length &&
si->blue_pos == f->blue.offset &&
si->rsvd_size == f->transp.length &&
si->rsvd_pos == f->transp.offset) {
mode->format = f->name;
mode->width = si->lfb_width;
mode->height = si->lfb_height;
mode->stride = si->lfb_linelength;
return true;
}
}
return false;
}
__init int create_simplefb(const struct screen_info *si,
const struct simplefb_platform_data *mode)
{
struct platform_device *pd;
struct resource res;
unsigned long len;
/* don't use lfb_size as it may contain the whole VMEM instead of only
* the part that is occupied by the framebuffer */
len = mode->height * mode->stride;
len = PAGE_ALIGN(len);
if (len > (u64)si->lfb_size << 16) {
x86: provide platform-devices for boot-framebuffers The current situation regarding boot-framebuffers (VGA, VESA/VBE, EFI) on x86 causes troubles when loading multiple fbdev drivers. The global "struct screen_info" does not provide any state-tracking about which drivers use the FBs. request_mem_region() theoretically works, but unfortunately vesafb/efifb ignore it due to quirks for broken boards. Avoid this by creating a platform framebuffer devices with a pointer to the "struct screen_info" as platform-data. Drivers can now create platform-drivers and the driver-core will refuse multiple drivers being active simultaneously. We keep the screen_info available for backwards-compatibility. Drivers can be converted in follow-up patches. Different devices are created for VGA/VESA/EFI FBs to allow multiple drivers to be loaded on distro kernels. We create: - "vesa-framebuffer" for VBE/VESA graphics FBs - "efi-framebuffer" for EFI FBs - "platform-framebuffer" for everything else This allows to load vesafb, efifb and others simultaneously and each picks up only the supported FB types. Apart from platform-framebuffer devices, this also introduces a compatibility option for "simple-framebuffer" drivers which recently got introduced for OF based systems. If CONFIG_X86_SYSFB is selected, we try to match the screen_info against a simple-framebuffer supported format. If we succeed, we create a "simple-framebuffer" device instead of a platform-framebuffer. This allows to reuse the simplefb.c driver across architectures and also to introduce a SimpleDRM driver. There is no need to have vesafb.c, efifb.c, simplefb.c and more just to have architecture specific quirks in their setup-routines. Instead, we now move the architecture specific quirks into x86-setup and provide a generic simple-framebuffer. For backwards-compatibility (if strange formats are used), we still allow vesafb/efifb to be loaded simultaneously and pick up all remaining devices. Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Link: http://lkml.kernel.org/r/1375445127-15480-4-git-send-email-dh.herrmann@gmail.com Tested-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-08-02 16:05:22 +04:00
printk(KERN_WARNING "sysfb: VRAM smaller than advertised\n");
return -EINVAL;
}
/* setup IORESOURCE_MEM as framebuffer memory */
memset(&res, 0, sizeof(res));
x86/simplefb: Mark framebuffer mem-resources as IORESOURCE_BUSY to avoid bootup warning IORESOURCE_BUSY is used to mark temporary driver mem-resources instead of global regions. This suppresses warnings if regions overlap with a region marked as BUSY. This was always the case for VESA/VGA/EFI framebuffer regions so do the same for simplefb regions. The reason we do this is to allow device handover to real GPU drivers like i915/radeon/nouveau which get the same regions via PCI BARs. Maybe at some point we will be able to unregister platform devices properly during the handover. In this case the simplefb region would get removed before the new region is created. However, this is currently not the case and would require rather huge changes in remove_conflicting_framebuffers(). Add the BUSY marker now and try to eventually rewrite the handover for a next release. Also see kernel/resource.c for more information: /* * if a resource is "BUSY", it's not a hardware resource * but a driver mapping of such a resource; we don't want * to warn for those; some drivers legitimately map only * partial hardware resources. (example: vesafb) */ This suppresses warnings like: ------------[ cut here ]------------ WARNING: CPU: 2 PID: 199 at arch/x86/mm/ioremap.c:171 __ioremap_caller+0x2e3/0x390() Info: mapping multiple BARs. Your kernel is fine. Call Trace: dump_stack+0x54/0x8d warn_slowpath_common+0x7d/0xa0 warn_slowpath_fmt+0x4c/0x50 iomem_map_sanity_check+0xac/0xe0 __ioremap_caller+0x2e3/0x390 ioremap_wc+0x32/0x40 i915_driver_load+0x670/0xf50 [i915] ... Reported-by: Tom Gundersen <teg@jklm.no> Tested-by: Tom Gundersen <teg@jklm.no> Tested-by: Pavel Roskin <proski@gnu.org> Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Link: http://lkml.kernel.org/r/1380724864-1757-1-git-send-email-dh.herrmann@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-02 18:41:04 +04:00
res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
x86: provide platform-devices for boot-framebuffers The current situation regarding boot-framebuffers (VGA, VESA/VBE, EFI) on x86 causes troubles when loading multiple fbdev drivers. The global "struct screen_info" does not provide any state-tracking about which drivers use the FBs. request_mem_region() theoretically works, but unfortunately vesafb/efifb ignore it due to quirks for broken boards. Avoid this by creating a platform framebuffer devices with a pointer to the "struct screen_info" as platform-data. Drivers can now create platform-drivers and the driver-core will refuse multiple drivers being active simultaneously. We keep the screen_info available for backwards-compatibility. Drivers can be converted in follow-up patches. Different devices are created for VGA/VESA/EFI FBs to allow multiple drivers to be loaded on distro kernels. We create: - "vesa-framebuffer" for VBE/VESA graphics FBs - "efi-framebuffer" for EFI FBs - "platform-framebuffer" for everything else This allows to load vesafb, efifb and others simultaneously and each picks up only the supported FB types. Apart from platform-framebuffer devices, this also introduces a compatibility option for "simple-framebuffer" drivers which recently got introduced for OF based systems. If CONFIG_X86_SYSFB is selected, we try to match the screen_info against a simple-framebuffer supported format. If we succeed, we create a "simple-framebuffer" device instead of a platform-framebuffer. This allows to reuse the simplefb.c driver across architectures and also to introduce a SimpleDRM driver. There is no need to have vesafb.c, efifb.c, simplefb.c and more just to have architecture specific quirks in their setup-routines. Instead, we now move the architecture specific quirks into x86-setup and provide a generic simple-framebuffer. For backwards-compatibility (if strange formats are used), we still allow vesafb/efifb to be loaded simultaneously and pick up all remaining devices. Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Link: http://lkml.kernel.org/r/1375445127-15480-4-git-send-email-dh.herrmann@gmail.com Tested-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-08-02 16:05:22 +04:00
res.name = simplefb_resname;
res.start = si->lfb_base;
res.end = si->lfb_base + len - 1;
if (res.end <= res.start)
return -EINVAL;
pd = platform_device_register_resndata(NULL, "simple-framebuffer", 0,
&res, 1, mode, sizeof(*mode));
if (IS_ERR(pd))
return PTR_ERR(pd);
return 0;
}