License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 17:07:57 +03:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
2012-02-17 08:59:20 +04:00
|
|
|
/*
|
|
|
|
* QNX6 file system, Linux implementation.
|
|
|
|
*
|
|
|
|
* Version : 1.0.0
|
|
|
|
*
|
|
|
|
* History :
|
|
|
|
*
|
|
|
|
* 01-02-2012 by Kai Bankett (chaosman@ontika.net) : first release.
|
|
|
|
* 16-02-2012 pagemap extension by Al Viro
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "qnx6.h"
|
|
|
|
|
|
|
|
static unsigned qnx6_lfile_checksum(char *name, unsigned size)
|
|
|
|
{
|
|
|
|
unsigned crc = 0;
|
|
|
|
char *end = name + size;
|
|
|
|
while (name < end) {
|
|
|
|
crc = ((crc >> 1) + *(name++)) ^
|
|
|
|
((crc & 0x00000001) ? 0x80000000 : 0);
|
|
|
|
}
|
|
|
|
return crc;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct page *qnx6_get_page(struct inode *dir, unsigned long n)
|
|
|
|
{
|
|
|
|
struct address_space *mapping = dir->i_mapping;
|
|
|
|
struct page *page = read_mapping_page(mapping, n, NULL);
|
|
|
|
if (!IS_ERR(page))
|
|
|
|
kmap(page);
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned last_entry(struct inode *inode, unsigned long page_nr)
|
|
|
|
{
|
|
|
|
unsigned long last_byte = inode->i_size;
|
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 15:29:47 +03:00
|
|
|
last_byte -= page_nr << PAGE_SHIFT;
|
|
|
|
if (last_byte > PAGE_SIZE)
|
|
|
|
last_byte = PAGE_SIZE;
|
2012-02-17 08:59:20 +04:00
|
|
|
return last_byte / QNX6_DIR_ENTRY_SIZE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct qnx6_long_filename *qnx6_longname(struct super_block *sb,
|
|
|
|
struct qnx6_long_dir_entry *de,
|
|
|
|
struct page **p)
|
|
|
|
{
|
|
|
|
struct qnx6_sb_info *sbi = QNX6_SB(sb);
|
|
|
|
u32 s = fs32_to_cpu(sbi, de->de_long_inode); /* in block units */
|
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 15:29:47 +03:00
|
|
|
u32 n = s >> (PAGE_SHIFT - sb->s_blocksize_bits); /* in pages */
|
2012-02-17 08:59:20 +04:00
|
|
|
/* within page */
|
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 15:29:47 +03:00
|
|
|
u32 offs = (s << sb->s_blocksize_bits) & ~PAGE_MASK;
|
2012-02-17 08:59:20 +04:00
|
|
|
struct address_space *mapping = sbi->longfile->i_mapping;
|
|
|
|
struct page *page = read_mapping_page(mapping, n, NULL);
|
|
|
|
if (IS_ERR(page))
|
|
|
|
return ERR_CAST(page);
|
|
|
|
kmap(*p = page);
|
|
|
|
return (struct qnx6_long_filename *)(page_address(page) + offs);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int qnx6_dir_longfilename(struct inode *inode,
|
|
|
|
struct qnx6_long_dir_entry *de,
|
2013-05-17 23:32:10 +04:00
|
|
|
struct dir_context *ctx,
|
|
|
|
unsigned de_inode)
|
2012-02-17 08:59:20 +04:00
|
|
|
{
|
|
|
|
struct qnx6_long_filename *lf;
|
|
|
|
struct super_block *s = inode->i_sb;
|
|
|
|
struct qnx6_sb_info *sbi = QNX6_SB(s);
|
|
|
|
struct page *page;
|
|
|
|
int lf_size;
|
|
|
|
|
|
|
|
if (de->de_size != 0xff) {
|
|
|
|
/* error - long filename entries always have size 0xff
|
|
|
|
in direntry */
|
2014-08-09 01:23:05 +04:00
|
|
|
pr_err("invalid direntry size (%i).\n", de->de_size);
|
2012-02-17 08:59:20 +04:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
lf = qnx6_longname(s, de, &page);
|
|
|
|
if (IS_ERR(lf)) {
|
2014-08-09 01:23:05 +04:00
|
|
|
pr_err("Error reading longname\n");
|
2012-02-17 08:59:20 +04:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
lf_size = fs16_to_cpu(sbi, lf->lf_size);
|
|
|
|
|
|
|
|
if (lf_size > QNX6_LONG_NAME_MAX) {
|
2014-08-09 01:23:07 +04:00
|
|
|
pr_debug("file %s\n", lf->lf_fname);
|
2014-08-09 01:23:05 +04:00
|
|
|
pr_err("Filename too long (%i)\n", lf_size);
|
2012-02-17 08:59:20 +04:00
|
|
|
qnx6_put_page(page);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* calc & validate longfilename checksum
|
|
|
|
mmi 3g filesystem does not have that checksum */
|
|
|
|
if (!test_opt(s, MMI_FS) && fs32_to_cpu(sbi, de->de_checksum) !=
|
|
|
|
qnx6_lfile_checksum(lf->lf_fname, lf_size))
|
2014-08-09 01:23:05 +04:00
|
|
|
pr_info("long filename checksum error.\n");
|
2012-02-17 08:59:20 +04:00
|
|
|
|
2014-08-09 01:23:07 +04:00
|
|
|
pr_debug("qnx6_readdir:%.*s inode:%u\n",
|
|
|
|
lf_size, lf->lf_fname, de_inode);
|
2013-05-17 23:32:10 +04:00
|
|
|
if (!dir_emit(ctx, lf->lf_fname, lf_size, de_inode, DT_UNKNOWN)) {
|
2012-02-17 08:59:20 +04:00
|
|
|
qnx6_put_page(page);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
qnx6_put_page(page);
|
|
|
|
/* success */
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2013-05-17 23:32:10 +04:00
|
|
|
static int qnx6_readdir(struct file *file, struct dir_context *ctx)
|
2012-02-17 08:59:20 +04:00
|
|
|
{
|
2013-05-17 23:32:10 +04:00
|
|
|
struct inode *inode = file_inode(file);
|
2012-02-17 08:59:20 +04:00
|
|
|
struct super_block *s = inode->i_sb;
|
|
|
|
struct qnx6_sb_info *sbi = QNX6_SB(s);
|
2013-05-17 23:32:10 +04:00
|
|
|
loff_t pos = ctx->pos & ~(QNX6_DIR_ENTRY_SIZE - 1);
|
2012-02-17 08:59:20 +04:00
|
|
|
unsigned long npages = dir_pages(inode);
|
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 15:29:47 +03:00
|
|
|
unsigned long n = pos >> PAGE_SHIFT;
|
|
|
|
unsigned start = (pos & ~PAGE_MASK) / QNX6_DIR_ENTRY_SIZE;
|
2012-02-17 08:59:20 +04:00
|
|
|
bool done = false;
|
|
|
|
|
2013-05-17 23:32:10 +04:00
|
|
|
ctx->pos = pos;
|
|
|
|
if (ctx->pos >= inode->i_size)
|
2012-02-17 08:59:20 +04:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
for ( ; !done && n < npages; n++, start = 0) {
|
|
|
|
struct page *page = qnx6_get_page(inode, n);
|
|
|
|
int limit = last_entry(inode, n);
|
|
|
|
struct qnx6_dir_entry *de;
|
|
|
|
int i = start;
|
|
|
|
|
|
|
|
if (IS_ERR(page)) {
|
2014-08-09 01:23:05 +04:00
|
|
|
pr_err("%s(): read failed\n", __func__);
|
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 15:29:47 +03:00
|
|
|
ctx->pos = (n + 1) << PAGE_SHIFT;
|
2012-02-17 08:59:20 +04:00
|
|
|
return PTR_ERR(page);
|
|
|
|
}
|
|
|
|
de = ((struct qnx6_dir_entry *)page_address(page)) + start;
|
2013-05-17 23:32:10 +04:00
|
|
|
for (; i < limit; i++, de++, ctx->pos += QNX6_DIR_ENTRY_SIZE) {
|
2012-02-17 08:59:20 +04:00
|
|
|
int size = de->de_size;
|
|
|
|
u32 no_inode = fs32_to_cpu(sbi, de->de_inode);
|
|
|
|
|
|
|
|
if (!no_inode || !size)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (size > QNX6_SHORT_NAME_MAX) {
|
|
|
|
/* long filename detected
|
|
|
|
get the filename from long filename
|
|
|
|
structure / block */
|
|
|
|
if (!qnx6_dir_longfilename(inode,
|
|
|
|
(struct qnx6_long_dir_entry *)de,
|
2013-05-17 23:32:10 +04:00
|
|
|
ctx, no_inode)) {
|
2012-02-17 08:59:20 +04:00
|
|
|
done = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
2014-08-09 01:23:07 +04:00
|
|
|
pr_debug("%s():%.*s inode:%u\n",
|
|
|
|
__func__, size, de->de_fname,
|
|
|
|
no_inode);
|
2013-05-17 23:32:10 +04:00
|
|
|
if (!dir_emit(ctx, de->de_fname, size,
|
|
|
|
no_inode, DT_UNKNOWN)) {
|
2012-02-17 08:59:20 +04:00
|
|
|
done = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
qnx6_put_page(page);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* check if the long filename is correct.
|
|
|
|
*/
|
|
|
|
static unsigned qnx6_long_match(int len, const char *name,
|
|
|
|
struct qnx6_long_dir_entry *de, struct inode *dir)
|
|
|
|
{
|
|
|
|
struct super_block *s = dir->i_sb;
|
|
|
|
struct qnx6_sb_info *sbi = QNX6_SB(s);
|
|
|
|
struct page *page;
|
|
|
|
int thislen;
|
|
|
|
struct qnx6_long_filename *lf = qnx6_longname(s, de, &page);
|
|
|
|
|
|
|
|
if (IS_ERR(lf))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
thislen = fs16_to_cpu(sbi, lf->lf_size);
|
|
|
|
if (len != thislen) {
|
|
|
|
qnx6_put_page(page);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
if (memcmp(name, lf->lf_fname, len) == 0) {
|
|
|
|
qnx6_put_page(page);
|
|
|
|
return fs32_to_cpu(sbi, de->de_inode);
|
|
|
|
}
|
|
|
|
qnx6_put_page(page);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* check if the filename is correct.
|
|
|
|
*/
|
|
|
|
static unsigned qnx6_match(struct super_block *s, int len, const char *name,
|
|
|
|
struct qnx6_dir_entry *de)
|
|
|
|
{
|
|
|
|
struct qnx6_sb_info *sbi = QNX6_SB(s);
|
|
|
|
if (memcmp(name, de->de_fname, len) == 0)
|
|
|
|
return fs32_to_cpu(sbi, de->de_inode);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
unsigned qnx6_find_entry(int len, struct inode *dir, const char *name,
|
|
|
|
struct page **res_page)
|
|
|
|
{
|
|
|
|
struct super_block *s = dir->i_sb;
|
|
|
|
struct qnx6_inode_info *ei = QNX6_I(dir);
|
|
|
|
struct page *page = NULL;
|
|
|
|
unsigned long start, n;
|
|
|
|
unsigned long npages = dir_pages(dir);
|
|
|
|
unsigned ino;
|
|
|
|
struct qnx6_dir_entry *de;
|
|
|
|
struct qnx6_long_dir_entry *lde;
|
|
|
|
|
|
|
|
*res_page = NULL;
|
|
|
|
|
|
|
|
if (npages == 0)
|
|
|
|
return 0;
|
|
|
|
start = ei->i_dir_start_lookup;
|
|
|
|
if (start >= npages)
|
|
|
|
start = 0;
|
|
|
|
n = start;
|
|
|
|
|
|
|
|
do {
|
|
|
|
page = qnx6_get_page(dir, n);
|
|
|
|
if (!IS_ERR(page)) {
|
|
|
|
int limit = last_entry(dir, n);
|
|
|
|
int i;
|
|
|
|
|
|
|
|
de = (struct qnx6_dir_entry *)page_address(page);
|
|
|
|
for (i = 0; i < limit; i++, de++) {
|
|
|
|
if (len <= QNX6_SHORT_NAME_MAX) {
|
|
|
|
/* short filename */
|
|
|
|
if (len != de->de_size)
|
|
|
|
continue;
|
|
|
|
ino = qnx6_match(s, len, name, de);
|
|
|
|
if (ino)
|
|
|
|
goto found;
|
|
|
|
} else if (de->de_size == 0xff) {
|
|
|
|
/* deal with long filename */
|
|
|
|
lde = (struct qnx6_long_dir_entry *)de;
|
|
|
|
ino = qnx6_long_match(len,
|
|
|
|
name, lde, dir);
|
|
|
|
if (ino)
|
|
|
|
goto found;
|
|
|
|
} else
|
2014-08-09 01:23:05 +04:00
|
|
|
pr_err("undefined filename size in inode.\n");
|
2012-02-17 08:59:20 +04:00
|
|
|
}
|
|
|
|
qnx6_put_page(page);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (++n >= npages)
|
|
|
|
n = 0;
|
|
|
|
} while (n != start);
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
found:
|
|
|
|
*res_page = page;
|
|
|
|
ei->i_dir_start_lookup = n;
|
|
|
|
return ino;
|
|
|
|
}
|
|
|
|
|
|
|
|
const struct file_operations qnx6_dir_operations = {
|
|
|
|
.llseek = generic_file_llseek,
|
|
|
|
.read = generic_read_dir,
|
2016-05-01 05:37:34 +03:00
|
|
|
.iterate_shared = qnx6_readdir,
|
2012-02-17 08:59:20 +04:00
|
|
|
.fsync = generic_file_fsync,
|
|
|
|
};
|
|
|
|
|
|
|
|
const struct inode_operations qnx6_dir_inode_operations = {
|
|
|
|
.lookup = qnx6_lookup,
|
|
|
|
};
|