1614 строки
47 KiB
C
1614 строки
47 KiB
C
|
/*
|
||
|
* NAND flash simulator.
|
||
|
*
|
||
|
* Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
|
||
|
*
|
||
|
* Copyright (C) 2004 Nokia Corporation
|
||
|
*
|
||
|
* Note: NS means "NAND Simulator".
|
||
|
* Note: Input means input TO flash chip, output means output FROM chip.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License as published by the
|
||
|
* Free Software Foundation; either version 2, or (at your option) any later
|
||
|
* version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful, but
|
||
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||
|
* Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
|
||
|
*
|
||
|
* $Id: nandsim.c,v 1.7 2004/12/06 11:53:06 dedekind Exp $
|
||
|
*/
|
||
|
|
||
|
#include <linux/config.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/moduleparam.h>
|
||
|
#include <linux/vmalloc.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/string.h>
|
||
|
#include <linux/mtd/mtd.h>
|
||
|
#include <linux/mtd/nand.h>
|
||
|
#include <linux/mtd/partitions.h>
|
||
|
#include <linux/delay.h>
|
||
|
#ifdef CONFIG_NS_ABS_POS
|
||
|
#include <asm/io.h>
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/* Default simulator parameters values */
|
||
|
#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
|
||
|
!defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
|
||
|
!defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
|
||
|
!defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
|
||
|
#define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
|
||
|
#define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
|
||
|
#define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
|
||
|
#define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
|
||
|
#endif
|
||
|
|
||
|
#ifndef CONFIG_NANDSIM_ACCESS_DELAY
|
||
|
#define CONFIG_NANDSIM_ACCESS_DELAY 25
|
||
|
#endif
|
||
|
#ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
|
||
|
#define CONFIG_NANDSIM_PROGRAMM_DELAY 200
|
||
|
#endif
|
||
|
#ifndef CONFIG_NANDSIM_ERASE_DELAY
|
||
|
#define CONFIG_NANDSIM_ERASE_DELAY 2
|
||
|
#endif
|
||
|
#ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
|
||
|
#define CONFIG_NANDSIM_OUTPUT_CYCLE 40
|
||
|
#endif
|
||
|
#ifndef CONFIG_NANDSIM_INPUT_CYCLE
|
||
|
#define CONFIG_NANDSIM_INPUT_CYCLE 50
|
||
|
#endif
|
||
|
#ifndef CONFIG_NANDSIM_BUS_WIDTH
|
||
|
#define CONFIG_NANDSIM_BUS_WIDTH 8
|
||
|
#endif
|
||
|
#ifndef CONFIG_NANDSIM_DO_DELAYS
|
||
|
#define CONFIG_NANDSIM_DO_DELAYS 0
|
||
|
#endif
|
||
|
#ifndef CONFIG_NANDSIM_LOG
|
||
|
#define CONFIG_NANDSIM_LOG 0
|
||
|
#endif
|
||
|
#ifndef CONFIG_NANDSIM_DBG
|
||
|
#define CONFIG_NANDSIM_DBG 0
|
||
|
#endif
|
||
|
|
||
|
static uint first_id_byte = CONFIG_NANDSIM_FIRST_ID_BYTE;
|
||
|
static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
|
||
|
static uint third_id_byte = CONFIG_NANDSIM_THIRD_ID_BYTE;
|
||
|
static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
|
||
|
static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY;
|
||
|
static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
|
||
|
static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY;
|
||
|
static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE;
|
||
|
static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE;
|
||
|
static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH;
|
||
|
static uint do_delays = CONFIG_NANDSIM_DO_DELAYS;
|
||
|
static uint log = CONFIG_NANDSIM_LOG;
|
||
|
static uint dbg = CONFIG_NANDSIM_DBG;
|
||
|
|
||
|
module_param(first_id_byte, uint, 0400);
|
||
|
module_param(second_id_byte, uint, 0400);
|
||
|
module_param(third_id_byte, uint, 0400);
|
||
|
module_param(fourth_id_byte, uint, 0400);
|
||
|
module_param(access_delay, uint, 0400);
|
||
|
module_param(programm_delay, uint, 0400);
|
||
|
module_param(erase_delay, uint, 0400);
|
||
|
module_param(output_cycle, uint, 0400);
|
||
|
module_param(input_cycle, uint, 0400);
|
||
|
module_param(bus_width, uint, 0400);
|
||
|
module_param(do_delays, uint, 0400);
|
||
|
module_param(log, uint, 0400);
|
||
|
module_param(dbg, uint, 0400);
|
||
|
|
||
|
MODULE_PARM_DESC(first_id_byte, "The fist byte returned by NAND Flash 'read ID' command (manufaturer ID)");
|
||
|
MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
|
||
|
MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command");
|
||
|
MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
|
||
|
MODULE_PARM_DESC(access_delay, "Initial page access delay (microiseconds)");
|
||
|
MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
|
||
|
MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)");
|
||
|
MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanodeconds)");
|
||
|
MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanodeconds)");
|
||
|
MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)");
|
||
|
MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero");
|
||
|
MODULE_PARM_DESC(log, "Perform logging if not zero");
|
||
|
MODULE_PARM_DESC(dbg, "Output debug information if not zero");
|
||
|
|
||
|
/* The largest possible page size */
|
||
|
#define NS_LARGEST_PAGE_SIZE 2048
|
||
|
|
||
|
/* The prefix for simulator output */
|
||
|
#define NS_OUTPUT_PREFIX "[nandsim]"
|
||
|
|
||
|
/* Simulator's output macros (logging, debugging, warning, error) */
|
||
|
#define NS_LOG(args...) \
|
||
|
do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
|
||
|
#define NS_DBG(args...) \
|
||
|
do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
|
||
|
#define NS_WARN(args...) \
|
||
|
do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warnig: " args); } while(0)
|
||
|
#define NS_ERR(args...) \
|
||
|
do { printk(KERN_ERR NS_OUTPUT_PREFIX " errorr: " args); } while(0)
|
||
|
|
||
|
/* Busy-wait delay macros (microseconds, milliseconds) */
|
||
|
#define NS_UDELAY(us) \
|
||
|
do { if (do_delays) udelay(us); } while(0)
|
||
|
#define NS_MDELAY(us) \
|
||
|
do { if (do_delays) mdelay(us); } while(0)
|
||
|
|
||
|
/* Is the nandsim structure initialized ? */
|
||
|
#define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
|
||
|
|
||
|
/* Good operation completion status */
|
||
|
#define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
|
||
|
|
||
|
/* Operation failed completion status */
|
||
|
#define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
|
||
|
|
||
|
/* Calculate the page offset in flash RAM image by (row, column) address */
|
||
|
#define NS_RAW_OFFSET(ns) \
|
||
|
(((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
|
||
|
|
||
|
/* Calculate the OOB offset in flash RAM image by (row, column) address */
|
||
|
#define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
|
||
|
|
||
|
/* After a command is input, the simulator goes to one of the following states */
|
||
|
#define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
|
||
|
#define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
|
||
|
#define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
|
||
|
#define STATE_CMD_PAGEPROG 0x00000004 /* start page programm */
|
||
|
#define STATE_CMD_READOOB 0x00000005 /* read OOB area */
|
||
|
#define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
|
||
|
#define STATE_CMD_STATUS 0x00000007 /* read status */
|
||
|
#define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
|
||
|
#define STATE_CMD_SEQIN 0x00000009 /* sequential data imput */
|
||
|
#define STATE_CMD_READID 0x0000000A /* read ID */
|
||
|
#define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
|
||
|
#define STATE_CMD_RESET 0x0000000C /* reset */
|
||
|
#define STATE_CMD_MASK 0x0000000F /* command states mask */
|
||
|
|
||
|
/* After an addres is input, the simulator goes to one of these states */
|
||
|
#define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
|
||
|
#define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
|
||
|
#define STATE_ADDR_ZERO 0x00000030 /* one byte zero address was accepted */
|
||
|
#define STATE_ADDR_MASK 0x00000030 /* address states mask */
|
||
|
|
||
|
/* Durind data input/output the simulator is in these states */
|
||
|
#define STATE_DATAIN 0x00000100 /* waiting for data input */
|
||
|
#define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
|
||
|
|
||
|
#define STATE_DATAOUT 0x00001000 /* waiting for page data output */
|
||
|
#define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
|
||
|
#define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
|
||
|
#define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
|
||
|
#define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
|
||
|
|
||
|
/* Previous operation is done, ready to accept new requests */
|
||
|
#define STATE_READY 0x00000000
|
||
|
|
||
|
/* This state is used to mark that the next state isn't known yet */
|
||
|
#define STATE_UNKNOWN 0x10000000
|
||
|
|
||
|
/* Simulator's actions bit masks */
|
||
|
#define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
|
||
|
#define ACTION_PRGPAGE 0x00200000 /* programm the internal buffer to flash */
|
||
|
#define ACTION_SECERASE 0x00300000 /* erase sector */
|
||
|
#define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
|
||
|
#define ACTION_HALFOFF 0x00500000 /* add to address half of page */
|
||
|
#define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
|
||
|
#define ACTION_MASK 0x00700000 /* action mask */
|
||
|
|
||
|
#define NS_OPER_NUM 12 /* Number of operations supported by the simulator */
|
||
|
#define NS_OPER_STATES 6 /* Maximum number of states in operation */
|
||
|
|
||
|
#define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
|
||
|
#define OPT_PAGE256 0x00000001 /* 256-byte page chips */
|
||
|
#define OPT_PAGE512 0x00000002 /* 512-byte page chips */
|
||
|
#define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
|
||
|
#define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
|
||
|
#define OPT_AUTOINCR 0x00000020 /* page number auto inctimentation is possible */
|
||
|
#define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
|
||
|
#define OPT_LARGEPAGE (OPT_PAGE2048) /* 2048-byte page chips */
|
||
|
#define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
|
||
|
|
||
|
/* Remove action bits ftom state */
|
||
|
#define NS_STATE(x) ((x) & ~ACTION_MASK)
|
||
|
|
||
|
/*
|
||
|
* Maximum previous states which need to be saved. Currently saving is
|
||
|
* only needed for page programm operation with preceeded read command
|
||
|
* (which is only valid for 512-byte pages).
|
||
|
*/
|
||
|
#define NS_MAX_PREVSTATES 1
|
||
|
|
||
|
/*
|
||
|
* The structure which describes all the internal simulator data.
|
||
|
*/
|
||
|
struct nandsim {
|
||
|
struct mtd_partition part;
|
||
|
|
||
|
uint busw; /* flash chip bus width (8 or 16) */
|
||
|
u_char ids[4]; /* chip's ID bytes */
|
||
|
uint32_t options; /* chip's characteristic bits */
|
||
|
uint32_t state; /* current chip state */
|
||
|
uint32_t nxstate; /* next expected state */
|
||
|
|
||
|
uint32_t *op; /* current operation, NULL operations isn't known yet */
|
||
|
uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
|
||
|
uint16_t npstates; /* number of previous states saved */
|
||
|
uint16_t stateidx; /* current state index */
|
||
|
|
||
|
/* The simulated NAND flash image */
|
||
|
union flash_media {
|
||
|
u_char *byte;
|
||
|
uint16_t *word;
|
||
|
} mem;
|
||
|
|
||
|
/* Internal buffer of page + OOB size bytes */
|
||
|
union internal_buffer {
|
||
|
u_char *byte; /* for byte access */
|
||
|
uint16_t *word; /* for 16-bit word access */
|
||
|
} buf;
|
||
|
|
||
|
/* NAND flash "geometry" */
|
||
|
struct nandsin_geometry {
|
||
|
uint32_t totsz; /* total flash size, bytes */
|
||
|
uint32_t secsz; /* flash sector (erase block) size, bytes */
|
||
|
uint pgsz; /* NAND flash page size, bytes */
|
||
|
uint oobsz; /* page OOB area size, bytes */
|
||
|
uint32_t totszoob; /* total flash size including OOB, bytes */
|
||
|
uint pgszoob; /* page size including OOB , bytes*/
|
||
|
uint secszoob; /* sector size including OOB, bytes */
|
||
|
uint pgnum; /* total number of pages */
|
||
|
uint pgsec; /* number of pages per sector */
|
||
|
uint secshift; /* bits number in sector size */
|
||
|
uint pgshift; /* bits number in page size */
|
||
|
uint oobshift; /* bits number in OOB size */
|
||
|
uint pgaddrbytes; /* bytes per page address */
|
||
|
uint secaddrbytes; /* bytes per sector address */
|
||
|
uint idbytes; /* the number ID bytes that this chip outputs */
|
||
|
} geom;
|
||
|
|
||
|
/* NAND flash internal registers */
|
||
|
struct nandsim_regs {
|
||
|
unsigned command; /* the command register */
|
||
|
u_char status; /* the status register */
|
||
|
uint row; /* the page number */
|
||
|
uint column; /* the offset within page */
|
||
|
uint count; /* internal counter */
|
||
|
uint num; /* number of bytes which must be processed */
|
||
|
uint off; /* fixed page offset */
|
||
|
} regs;
|
||
|
|
||
|
/* NAND flash lines state */
|
||
|
struct ns_lines_status {
|
||
|
int ce; /* chip Enable */
|
||
|
int cle; /* command Latch Enable */
|
||
|
int ale; /* address Latch Enable */
|
||
|
int wp; /* write Protect */
|
||
|
} lines;
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Operations array. To perform any operation the simulator must pass
|
||
|
* through the correspondent states chain.
|
||
|
*/
|
||
|
static struct nandsim_operations {
|
||
|
uint32_t reqopts; /* options which are required to perform the operation */
|
||
|
uint32_t states[NS_OPER_STATES]; /* operation's states */
|
||
|
} ops[NS_OPER_NUM] = {
|
||
|
/* Read page + OOB from the beginning */
|
||
|
{OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
|
||
|
STATE_DATAOUT, STATE_READY}},
|
||
|
/* Read page + OOB from the second half */
|
||
|
{OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
|
||
|
STATE_DATAOUT, STATE_READY}},
|
||
|
/* Read OOB */
|
||
|
{OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
|
||
|
STATE_DATAOUT, STATE_READY}},
|
||
|
/* Programm page starting from the beginning */
|
||
|
{OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
|
||
|
STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
|
||
|
/* Programm page starting from the beginning */
|
||
|
{OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
|
||
|
STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
|
||
|
/* Programm page starting from the second half */
|
||
|
{OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
|
||
|
STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
|
||
|
/* Programm OOB */
|
||
|
{OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
|
||
|
STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
|
||
|
/* Erase sector */
|
||
|
{OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
|
||
|
/* Read status */
|
||
|
{OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
|
||
|
/* Read multi-plane status */
|
||
|
{OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
|
||
|
/* Read ID */
|
||
|
{OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
|
||
|
/* Large page devices read page */
|
||
|
{OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
|
||
|
STATE_DATAOUT, STATE_READY}}
|
||
|
};
|
||
|
|
||
|
/* MTD structure for NAND controller */
|
||
|
static struct mtd_info *nsmtd;
|
||
|
|
||
|
static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
|
||
|
|
||
|
/*
|
||
|
* Initialize the nandsim structure.
|
||
|
*
|
||
|
* RETURNS: 0 if success, -ERRNO if failure.
|
||
|
*/
|
||
|
static int
|
||
|
init_nandsim(struct mtd_info *mtd)
|
||
|
{
|
||
|
struct nand_chip *chip = (struct nand_chip *)mtd->priv;
|
||
|
struct nandsim *ns = (struct nandsim *)(chip->priv);
|
||
|
int i;
|
||
|
|
||
|
if (NS_IS_INITIALIZED(ns)) {
|
||
|
NS_ERR("init_nandsim: nandsim is already initialized\n");
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
/* Force mtd to not do delays */
|
||
|
chip->chip_delay = 0;
|
||
|
|
||
|
/* Initialize the NAND flash parameters */
|
||
|
ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
|
||
|
ns->geom.totsz = mtd->size;
|
||
|
ns->geom.pgsz = mtd->oobblock;
|
||
|
ns->geom.oobsz = mtd->oobsize;
|
||
|
ns->geom.secsz = mtd->erasesize;
|
||
|
ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz;
|
||
|
ns->geom.pgnum = ns->geom.totsz / ns->geom.pgsz;
|
||
|
ns->geom.totszoob = ns->geom.totsz + ns->geom.pgnum * ns->geom.oobsz;
|
||
|
ns->geom.secshift = ffs(ns->geom.secsz) - 1;
|
||
|
ns->geom.pgshift = chip->page_shift;
|
||
|
ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
|
||
|
ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz;
|
||
|
ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
|
||
|
ns->options = 0;
|
||
|
|
||
|
if (ns->geom.pgsz == 256) {
|
||
|
ns->options |= OPT_PAGE256;
|
||
|
}
|
||
|
else if (ns->geom.pgsz == 512) {
|
||
|
ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
|
||
|
if (ns->busw == 8)
|
||
|
ns->options |= OPT_PAGE512_8BIT;
|
||
|
} else if (ns->geom.pgsz == 2048) {
|
||
|
ns->options |= OPT_PAGE2048;
|
||
|
} else {
|
||
|
NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
if (ns->options & OPT_SMALLPAGE) {
|
||
|
if (ns->geom.totsz < (64 << 20)) {
|
||
|
ns->geom.pgaddrbytes = 3;
|
||
|
ns->geom.secaddrbytes = 2;
|
||
|
} else {
|
||
|
ns->geom.pgaddrbytes = 4;
|
||
|
ns->geom.secaddrbytes = 3;
|
||
|
}
|
||
|
} else {
|
||
|
if (ns->geom.totsz <= (128 << 20)) {
|
||
|
ns->geom.pgaddrbytes = 5;
|
||
|
ns->geom.secaddrbytes = 2;
|
||
|
} else {
|
||
|
ns->geom.pgaddrbytes = 5;
|
||
|
ns->geom.secaddrbytes = 3;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Detect how many ID bytes the NAND chip outputs */
|
||
|
for (i = 0; nand_flash_ids[i].name != NULL; i++) {
|
||
|
if (second_id_byte != nand_flash_ids[i].id)
|
||
|
continue;
|
||
|
if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
|
||
|
ns->options |= OPT_AUTOINCR;
|
||
|
}
|
||
|
|
||
|
if (ns->busw == 16)
|
||
|
NS_WARN("16-bit flashes support wasn't tested\n");
|
||
|
|
||
|
printk("flash size: %u MiB\n", ns->geom.totsz >> 20);
|
||
|
printk("page size: %u bytes\n", ns->geom.pgsz);
|
||
|
printk("OOB area size: %u bytes\n", ns->geom.oobsz);
|
||
|
printk("sector size: %u KiB\n", ns->geom.secsz >> 10);
|
||
|
printk("pages number: %u\n", ns->geom.pgnum);
|
||
|
printk("pages per sector: %u\n", ns->geom.pgsec);
|
||
|
printk("bus width: %u\n", ns->busw);
|
||
|
printk("bits in sector size: %u\n", ns->geom.secshift);
|
||
|
printk("bits in page size: %u\n", ns->geom.pgshift);
|
||
|
printk("bits in OOB size: %u\n", ns->geom.oobshift);
|
||
|
printk("flash size with OOB: %u KiB\n", ns->geom.totszoob >> 10);
|
||
|
printk("page address bytes: %u\n", ns->geom.pgaddrbytes);
|
||
|
printk("sector address bytes: %u\n", ns->geom.secaddrbytes);
|
||
|
printk("options: %#x\n", ns->options);
|
||
|
|
||
|
/* Map / allocate and initialize the flash image */
|
||
|
#ifdef CONFIG_NS_ABS_POS
|
||
|
ns->mem.byte = ioremap(CONFIG_NS_ABS_POS, ns->geom.totszoob);
|
||
|
if (!ns->mem.byte) {
|
||
|
NS_ERR("init_nandsim: failed to map the NAND flash image at address %p\n",
|
||
|
(void *)CONFIG_NS_ABS_POS);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
#else
|
||
|
ns->mem.byte = vmalloc(ns->geom.totszoob);
|
||
|
if (!ns->mem.byte) {
|
||
|
NS_ERR("init_nandsim: unable to allocate %u bytes for flash image\n",
|
||
|
ns->geom.totszoob);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
memset(ns->mem.byte, 0xFF, ns->geom.totszoob);
|
||
|
#endif
|
||
|
|
||
|
/* Allocate / initialize the internal buffer */
|
||
|
ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
|
||
|
if (!ns->buf.byte) {
|
||
|
NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
|
||
|
ns->geom.pgszoob);
|
||
|
goto error;
|
||
|
}
|
||
|
memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
|
||
|
|
||
|
/* Fill the partition_info structure */
|
||
|
ns->part.name = "NAND simulator partition";
|
||
|
ns->part.offset = 0;
|
||
|
ns->part.size = ns->geom.totsz;
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
error:
|
||
|
#ifdef CONFIG_NS_ABS_POS
|
||
|
iounmap(ns->mem.byte);
|
||
|
#else
|
||
|
vfree(ns->mem.byte);
|
||
|
#endif
|
||
|
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Free the nandsim structure.
|
||
|
*/
|
||
|
static void
|
||
|
free_nandsim(struct nandsim *ns)
|
||
|
{
|
||
|
kfree(ns->buf.byte);
|
||
|
|
||
|
#ifdef CONFIG_NS_ABS_POS
|
||
|
iounmap(ns->mem.byte);
|
||
|
#else
|
||
|
vfree(ns->mem.byte);
|
||
|
#endif
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Returns the string representation of 'state' state.
|
||
|
*/
|
||
|
static char *
|
||
|
get_state_name(uint32_t state)
|
||
|
{
|
||
|
switch (NS_STATE(state)) {
|
||
|
case STATE_CMD_READ0:
|
||
|
return "STATE_CMD_READ0";
|
||
|
case STATE_CMD_READ1:
|
||
|
return "STATE_CMD_READ1";
|
||
|
case STATE_CMD_PAGEPROG:
|
||
|
return "STATE_CMD_PAGEPROG";
|
||
|
case STATE_CMD_READOOB:
|
||
|
return "STATE_CMD_READOOB";
|
||
|
case STATE_CMD_READSTART:
|
||
|
return "STATE_CMD_READSTART";
|
||
|
case STATE_CMD_ERASE1:
|
||
|
return "STATE_CMD_ERASE1";
|
||
|
case STATE_CMD_STATUS:
|
||
|
return "STATE_CMD_STATUS";
|
||
|
case STATE_CMD_STATUS_M:
|
||
|
return "STATE_CMD_STATUS_M";
|
||
|
case STATE_CMD_SEQIN:
|
||
|
return "STATE_CMD_SEQIN";
|
||
|
case STATE_CMD_READID:
|
||
|
return "STATE_CMD_READID";
|
||
|
case STATE_CMD_ERASE2:
|
||
|
return "STATE_CMD_ERASE2";
|
||
|
case STATE_CMD_RESET:
|
||
|
return "STATE_CMD_RESET";
|
||
|
case STATE_ADDR_PAGE:
|
||
|
return "STATE_ADDR_PAGE";
|
||
|
case STATE_ADDR_SEC:
|
||
|
return "STATE_ADDR_SEC";
|
||
|
case STATE_ADDR_ZERO:
|
||
|
return "STATE_ADDR_ZERO";
|
||
|
case STATE_DATAIN:
|
||
|
return "STATE_DATAIN";
|
||
|
case STATE_DATAOUT:
|
||
|
return "STATE_DATAOUT";
|
||
|
case STATE_DATAOUT_ID:
|
||
|
return "STATE_DATAOUT_ID";
|
||
|
case STATE_DATAOUT_STATUS:
|
||
|
return "STATE_DATAOUT_STATUS";
|
||
|
case STATE_DATAOUT_STATUS_M:
|
||
|
return "STATE_DATAOUT_STATUS_M";
|
||
|
case STATE_READY:
|
||
|
return "STATE_READY";
|
||
|
case STATE_UNKNOWN:
|
||
|
return "STATE_UNKNOWN";
|
||
|
}
|
||
|
|
||
|
NS_ERR("get_state_name: unknown state, BUG\n");
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check if command is valid.
|
||
|
*
|
||
|
* RETURNS: 1 if wrong command, 0 if right.
|
||
|
*/
|
||
|
static int
|
||
|
check_command(int cmd)
|
||
|
{
|
||
|
switch (cmd) {
|
||
|
|
||
|
case NAND_CMD_READ0:
|
||
|
case NAND_CMD_READSTART:
|
||
|
case NAND_CMD_PAGEPROG:
|
||
|
case NAND_CMD_READOOB:
|
||
|
case NAND_CMD_ERASE1:
|
||
|
case NAND_CMD_STATUS:
|
||
|
case NAND_CMD_SEQIN:
|
||
|
case NAND_CMD_READID:
|
||
|
case NAND_CMD_ERASE2:
|
||
|
case NAND_CMD_RESET:
|
||
|
case NAND_CMD_READ1:
|
||
|
return 0;
|
||
|
|
||
|
case NAND_CMD_STATUS_MULTI:
|
||
|
default:
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Returns state after command is accepted by command number.
|
||
|
*/
|
||
|
static uint32_t
|
||
|
get_state_by_command(unsigned command)
|
||
|
{
|
||
|
switch (command) {
|
||
|
case NAND_CMD_READ0:
|
||
|
return STATE_CMD_READ0;
|
||
|
case NAND_CMD_READ1:
|
||
|
return STATE_CMD_READ1;
|
||
|
case NAND_CMD_PAGEPROG:
|
||
|
return STATE_CMD_PAGEPROG;
|
||
|
case NAND_CMD_READSTART:
|
||
|
return STATE_CMD_READSTART;
|
||
|
case NAND_CMD_READOOB:
|
||
|
return STATE_CMD_READOOB;
|
||
|
case NAND_CMD_ERASE1:
|
||
|
return STATE_CMD_ERASE1;
|
||
|
case NAND_CMD_STATUS:
|
||
|
return STATE_CMD_STATUS;
|
||
|
case NAND_CMD_STATUS_MULTI:
|
||
|
return STATE_CMD_STATUS_M;
|
||
|
case NAND_CMD_SEQIN:
|
||
|
return STATE_CMD_SEQIN;
|
||
|
case NAND_CMD_READID:
|
||
|
return STATE_CMD_READID;
|
||
|
case NAND_CMD_ERASE2:
|
||
|
return STATE_CMD_ERASE2;
|
||
|
case NAND_CMD_RESET:
|
||
|
return STATE_CMD_RESET;
|
||
|
}
|
||
|
|
||
|
NS_ERR("get_state_by_command: unknown command, BUG\n");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Move an address byte to the correspondent internal register.
|
||
|
*/
|
||
|
static inline void
|
||
|
accept_addr_byte(struct nandsim *ns, u_char bt)
|
||
|
{
|
||
|
uint byte = (uint)bt;
|
||
|
|
||
|
if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
|
||
|
ns->regs.column |= (byte << 8 * ns->regs.count);
|
||
|
else {
|
||
|
ns->regs.row |= (byte << 8 * (ns->regs.count -
|
||
|
ns->geom.pgaddrbytes +
|
||
|
ns->geom.secaddrbytes));
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Switch to STATE_READY state.
|
||
|
*/
|
||
|
static inline void
|
||
|
switch_to_ready_state(struct nandsim *ns, u_char status)
|
||
|
{
|
||
|
NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
|
||
|
|
||
|
ns->state = STATE_READY;
|
||
|
ns->nxstate = STATE_UNKNOWN;
|
||
|
ns->op = NULL;
|
||
|
ns->npstates = 0;
|
||
|
ns->stateidx = 0;
|
||
|
ns->regs.num = 0;
|
||
|
ns->regs.count = 0;
|
||
|
ns->regs.off = 0;
|
||
|
ns->regs.row = 0;
|
||
|
ns->regs.column = 0;
|
||
|
ns->regs.status = status;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If the operation isn't known yet, try to find it in the global array
|
||
|
* of supported operations.
|
||
|
*
|
||
|
* Operation can be unknown because of the following.
|
||
|
* 1. New command was accepted and this is the firs call to find the
|
||
|
* correspondent states chain. In this case ns->npstates = 0;
|
||
|
* 2. There is several operations which begin with the same command(s)
|
||
|
* (for example program from the second half and read from the
|
||
|
* second half operations both begin with the READ1 command). In this
|
||
|
* case the ns->pstates[] array contains previous states.
|
||
|
*
|
||
|
* Thus, the function tries to find operation containing the following
|
||
|
* states (if the 'flag' parameter is 0):
|
||
|
* ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
|
||
|
*
|
||
|
* If (one and only one) matching operation is found, it is accepted (
|
||
|
* ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
|
||
|
* zeroed).
|
||
|
*
|
||
|
* If there are several maches, the current state is pushed to the
|
||
|
* ns->pstates.
|
||
|
*
|
||
|
* The operation can be unknown only while commands are input to the chip.
|
||
|
* As soon as address command is accepted, the operation must be known.
|
||
|
* In such situation the function is called with 'flag' != 0, and the
|
||
|
* operation is searched using the following pattern:
|
||
|
* ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
|
||
|
*
|
||
|
* It is supposed that this pattern must either match one operation on
|
||
|
* none. There can't be ambiguity in that case.
|
||
|
*
|
||
|
* If no matches found, the functions does the following:
|
||
|
* 1. if there are saved states present, try to ignore them and search
|
||
|
* again only using the last command. If nothing was found, switch
|
||
|
* to the STATE_READY state.
|
||
|
* 2. if there are no saved states, switch to the STATE_READY state.
|
||
|
*
|
||
|
* RETURNS: -2 - no matched operations found.
|
||
|
* -1 - several matches.
|
||
|
* 0 - operation is found.
|
||
|
*/
|
||
|
static int
|
||
|
find_operation(struct nandsim *ns, uint32_t flag)
|
||
|
{
|
||
|
int opsfound = 0;
|
||
|
int i, j, idx = 0;
|
||
|
|
||
|
for (i = 0; i < NS_OPER_NUM; i++) {
|
||
|
|
||
|
int found = 1;
|
||
|
|
||
|
if (!(ns->options & ops[i].reqopts))
|
||
|
/* Ignore operations we can't perform */
|
||
|
continue;
|
||
|
|
||
|
if (flag) {
|
||
|
if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
|
||
|
continue;
|
||
|
} else {
|
||
|
if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
for (j = 0; j < ns->npstates; j++)
|
||
|
if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
|
||
|
&& (ns->options & ops[idx].reqopts)) {
|
||
|
found = 0;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (found) {
|
||
|
idx = i;
|
||
|
opsfound += 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (opsfound == 1) {
|
||
|
/* Exact match */
|
||
|
ns->op = &ops[idx].states[0];
|
||
|
if (flag) {
|
||
|
/*
|
||
|
* In this case the find_operation function was
|
||
|
* called when address has just began input. But it isn't
|
||
|
* yet fully input and the current state must
|
||
|
* not be one of STATE_ADDR_*, but the STATE_ADDR_*
|
||
|
* state must be the next state (ns->nxstate).
|
||
|
*/
|
||
|
ns->stateidx = ns->npstates - 1;
|
||
|
} else {
|
||
|
ns->stateidx = ns->npstates;
|
||
|
}
|
||
|
ns->npstates = 0;
|
||
|
ns->state = ns->op[ns->stateidx];
|
||
|
ns->nxstate = ns->op[ns->stateidx + 1];
|
||
|
NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
|
||
|
idx, get_state_name(ns->state), get_state_name(ns->nxstate));
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (opsfound == 0) {
|
||
|
/* Nothing was found. Try to ignore previous commands (if any) and search again */
|
||
|
if (ns->npstates != 0) {
|
||
|
NS_DBG("find_operation: no operation found, try again with state %s\n",
|
||
|
get_state_name(ns->state));
|
||
|
ns->npstates = 0;
|
||
|
return find_operation(ns, 0);
|
||
|
|
||
|
}
|
||
|
NS_DBG("find_operation: no operations found\n");
|
||
|
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
|
||
|
return -2;
|
||
|
}
|
||
|
|
||
|
if (flag) {
|
||
|
/* This shouldn't happen */
|
||
|
NS_DBG("find_operation: BUG, operation must be known if address is input\n");
|
||
|
return -2;
|
||
|
}
|
||
|
|
||
|
NS_DBG("find_operation: there is still ambiguity\n");
|
||
|
|
||
|
ns->pstates[ns->npstates++] = ns->state;
|
||
|
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If state has any action bit, perform this action.
|
||
|
*
|
||
|
* RETURNS: 0 if success, -1 if error.
|
||
|
*/
|
||
|
static int
|
||
|
do_state_action(struct nandsim *ns, uint32_t action)
|
||
|
{
|
||
|
int i, num;
|
||
|
int busdiv = ns->busw == 8 ? 1 : 2;
|
||
|
|
||
|
action &= ACTION_MASK;
|
||
|
|
||
|
/* Check that page address input is correct */
|
||
|
if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
|
||
|
NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
switch (action) {
|
||
|
|
||
|
case ACTION_CPY:
|
||
|
/*
|
||
|
* Copy page data to the internal buffer.
|
||
|
*/
|
||
|
|
||
|
/* Column shouldn't be very large */
|
||
|
if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
|
||
|
NS_ERR("do_state_action: column number is too large\n");
|
||
|
break;
|
||
|
}
|
||
|
num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
|
||
|
memcpy(ns->buf.byte, ns->mem.byte + NS_RAW_OFFSET(ns) + ns->regs.off, num);
|
||
|
|
||
|
NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
|
||
|
num, NS_RAW_OFFSET(ns) + ns->regs.off);
|
||
|
|
||
|
if (ns->regs.off == 0)
|
||
|
NS_LOG("read page %d\n", ns->regs.row);
|
||
|
else if (ns->regs.off < ns->geom.pgsz)
|
||
|
NS_LOG("read page %d (second half)\n", ns->regs.row);
|
||
|
else
|
||
|
NS_LOG("read OOB of page %d\n", ns->regs.row);
|
||
|
|
||
|
NS_UDELAY(access_delay);
|
||
|
NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
|
||
|
|
||
|
break;
|
||
|
|
||
|
case ACTION_SECERASE:
|
||
|
/*
|
||
|
* Erase sector.
|
||
|
*/
|
||
|
|
||
|
if (ns->lines.wp) {
|
||
|
NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
|
||
|
|| (ns->regs.row & ~(ns->geom.secsz - 1))) {
|
||
|
NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
ns->regs.row = (ns->regs.row <<
|
||
|
8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
|
||
|
ns->regs.column = 0;
|
||
|
|
||
|
NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
|
||
|
ns->regs.row, NS_RAW_OFFSET(ns));
|
||
|
NS_LOG("erase sector %d\n", ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift));
|
||
|
|
||
|
memset(ns->mem.byte + NS_RAW_OFFSET(ns), 0xFF, ns->geom.secszoob);
|
||
|
|
||
|
NS_MDELAY(erase_delay);
|
||
|
|
||
|
break;
|
||
|
|
||
|
case ACTION_PRGPAGE:
|
||
|
/*
|
||
|
* Programm page - move internal buffer data to the page.
|
||
|
*/
|
||
|
|
||
|
if (ns->lines.wp) {
|
||
|
NS_WARN("do_state_action: device is write-protected, programm\n");
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
|
||
|
if (num != ns->regs.count) {
|
||
|
NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
|
||
|
ns->regs.count, num);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < num; i++)
|
||
|
ns->mem.byte[NS_RAW_OFFSET(ns) + ns->regs.off + i] &= ns->buf.byte[i];
|
||
|
|
||
|
NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
|
||
|
num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
|
||
|
NS_LOG("programm page %d\n", ns->regs.row);
|
||
|
|
||
|
NS_UDELAY(programm_delay);
|
||
|
NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
|
||
|
|
||
|
break;
|
||
|
|
||
|
case ACTION_ZEROOFF:
|
||
|
NS_DBG("do_state_action: set internal offset to 0\n");
|
||
|
ns->regs.off = 0;
|
||
|
break;
|
||
|
|
||
|
case ACTION_HALFOFF:
|
||
|
if (!(ns->options & OPT_PAGE512_8BIT)) {
|
||
|
NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
|
||
|
"byte page size 8x chips\n");
|
||
|
return -1;
|
||
|
}
|
||
|
NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
|
||
|
ns->regs.off = ns->geom.pgsz/2;
|
||
|
break;
|
||
|
|
||
|
case ACTION_OOBOFF:
|
||
|
NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
|
||
|
ns->regs.off = ns->geom.pgsz;
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
NS_DBG("do_state_action: BUG! unknown action\n");
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Switch simulator's state.
|
||
|
*/
|
||
|
static void
|
||
|
switch_state(struct nandsim *ns)
|
||
|
{
|
||
|
if (ns->op) {
|
||
|
/*
|
||
|
* The current operation have already been identified.
|
||
|
* Just follow the states chain.
|
||
|
*/
|
||
|
|
||
|
ns->stateidx += 1;
|
||
|
ns->state = ns->nxstate;
|
||
|
ns->nxstate = ns->op[ns->stateidx + 1];
|
||
|
|
||
|
NS_DBG("switch_state: operation is known, switch to the next state, "
|
||
|
"state: %s, nxstate: %s\n",
|
||
|
get_state_name(ns->state), get_state_name(ns->nxstate));
|
||
|
|
||
|
/* See, whether we need to do some action */
|
||
|
if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
|
||
|
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
} else {
|
||
|
/*
|
||
|
* We don't yet know which operation we perform.
|
||
|
* Try to identify it.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* The only event causing the switch_state function to
|
||
|
* be called with yet unknown operation is new command.
|
||
|
*/
|
||
|
ns->state = get_state_by_command(ns->regs.command);
|
||
|
|
||
|
NS_DBG("switch_state: operation is unknown, try to find it\n");
|
||
|
|
||
|
if (find_operation(ns, 0) != 0)
|
||
|
return;
|
||
|
|
||
|
if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
|
||
|
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* For 16x devices column means the page offset in words */
|
||
|
if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
|
||
|
NS_DBG("switch_state: double the column number for 16x device\n");
|
||
|
ns->regs.column <<= 1;
|
||
|
}
|
||
|
|
||
|
if (NS_STATE(ns->nxstate) == STATE_READY) {
|
||
|
/*
|
||
|
* The current state is the last. Return to STATE_READY
|
||
|
*/
|
||
|
|
||
|
u_char status = NS_STATUS_OK(ns);
|
||
|
|
||
|
/* In case of data states, see if all bytes were input/output */
|
||
|
if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
|
||
|
&& ns->regs.count != ns->regs.num) {
|
||
|
NS_WARN("switch_state: not all bytes were processed, %d left\n",
|
||
|
ns->regs.num - ns->regs.count);
|
||
|
status = NS_STATUS_FAILED(ns);
|
||
|
}
|
||
|
|
||
|
NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
|
||
|
|
||
|
switch_to_ready_state(ns, status);
|
||
|
|
||
|
return;
|
||
|
} else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
|
||
|
/*
|
||
|
* If the next state is data input/output, switch to it now
|
||
|
*/
|
||
|
|
||
|
ns->state = ns->nxstate;
|
||
|
ns->nxstate = ns->op[++ns->stateidx + 1];
|
||
|
ns->regs.num = ns->regs.count = 0;
|
||
|
|
||
|
NS_DBG("switch_state: the next state is data I/O, switch, "
|
||
|
"state: %s, nxstate: %s\n",
|
||
|
get_state_name(ns->state), get_state_name(ns->nxstate));
|
||
|
|
||
|
/*
|
||
|
* Set the internal register to the count of bytes which
|
||
|
* are expected to be input or output
|
||
|
*/
|
||
|
switch (NS_STATE(ns->state)) {
|
||
|
case STATE_DATAIN:
|
||
|
case STATE_DATAOUT:
|
||
|
ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
|
||
|
break;
|
||
|
|
||
|
case STATE_DATAOUT_ID:
|
||
|
ns->regs.num = ns->geom.idbytes;
|
||
|
break;
|
||
|
|
||
|
case STATE_DATAOUT_STATUS:
|
||
|
case STATE_DATAOUT_STATUS_M:
|
||
|
ns->regs.count = ns->regs.num = 0;
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
NS_ERR("switch_state: BUG! unknown data state\n");
|
||
|
}
|
||
|
|
||
|
} else if (ns->nxstate & STATE_ADDR_MASK) {
|
||
|
/*
|
||
|
* If the next state is address input, set the internal
|
||
|
* register to the number of expected address bytes
|
||
|
*/
|
||
|
|
||
|
ns->regs.count = 0;
|
||
|
|
||
|
switch (NS_STATE(ns->nxstate)) {
|
||
|
case STATE_ADDR_PAGE:
|
||
|
ns->regs.num = ns->geom.pgaddrbytes;
|
||
|
|
||
|
break;
|
||
|
case STATE_ADDR_SEC:
|
||
|
ns->regs.num = ns->geom.secaddrbytes;
|
||
|
break;
|
||
|
|
||
|
case STATE_ADDR_ZERO:
|
||
|
ns->regs.num = 1;
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
NS_ERR("switch_state: BUG! unknown address state\n");
|
||
|
}
|
||
|
} else {
|
||
|
/*
|
||
|
* Just reset internal counters.
|
||
|
*/
|
||
|
|
||
|
ns->regs.num = 0;
|
||
|
ns->regs.count = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
ns_hwcontrol(struct mtd_info *mtd, int cmd)
|
||
|
{
|
||
|
struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
|
||
|
|
||
|
switch (cmd) {
|
||
|
|
||
|
/* set CLE line high */
|
||
|
case NAND_CTL_SETCLE:
|
||
|
NS_DBG("ns_hwcontrol: start command latch cycles\n");
|
||
|
ns->lines.cle = 1;
|
||
|
break;
|
||
|
|
||
|
/* set CLE line low */
|
||
|
case NAND_CTL_CLRCLE:
|
||
|
NS_DBG("ns_hwcontrol: stop command latch cycles\n");
|
||
|
ns->lines.cle = 0;
|
||
|
break;
|
||
|
|
||
|
/* set ALE line high */
|
||
|
case NAND_CTL_SETALE:
|
||
|
NS_DBG("ns_hwcontrol: start address latch cycles\n");
|
||
|
ns->lines.ale = 1;
|
||
|
break;
|
||
|
|
||
|
/* set ALE line low */
|
||
|
case NAND_CTL_CLRALE:
|
||
|
NS_DBG("ns_hwcontrol: stop address latch cycles\n");
|
||
|
ns->lines.ale = 0;
|
||
|
break;
|
||
|
|
||
|
/* set WP line high */
|
||
|
case NAND_CTL_SETWP:
|
||
|
NS_DBG("ns_hwcontrol: enable write protection\n");
|
||
|
ns->lines.wp = 1;
|
||
|
break;
|
||
|
|
||
|
/* set WP line low */
|
||
|
case NAND_CTL_CLRWP:
|
||
|
NS_DBG("ns_hwcontrol: disable write protection\n");
|
||
|
ns->lines.wp = 0;
|
||
|
break;
|
||
|
|
||
|
/* set CE line low */
|
||
|
case NAND_CTL_SETNCE:
|
||
|
NS_DBG("ns_hwcontrol: enable chip\n");
|
||
|
ns->lines.ce = 1;
|
||
|
break;
|
||
|
|
||
|
/* set CE line high */
|
||
|
case NAND_CTL_CLRNCE:
|
||
|
NS_DBG("ns_hwcontrol: disable chip\n");
|
||
|
ns->lines.ce = 0;
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
NS_ERR("hwcontrol: unknown command\n");
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static u_char
|
||
|
ns_nand_read_byte(struct mtd_info *mtd)
|
||
|
{
|
||
|
struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
|
||
|
u_char outb = 0x00;
|
||
|
|
||
|
/* Sanity and correctness checks */
|
||
|
if (!ns->lines.ce) {
|
||
|
NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
|
||
|
return outb;
|
||
|
}
|
||
|
if (ns->lines.ale || ns->lines.cle) {
|
||
|
NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
|
||
|
return outb;
|
||
|
}
|
||
|
if (!(ns->state & STATE_DATAOUT_MASK)) {
|
||
|
NS_WARN("read_byte: unexpected data output cycle, state is %s "
|
||
|
"return %#x\n", get_state_name(ns->state), (uint)outb);
|
||
|
return outb;
|
||
|
}
|
||
|
|
||
|
/* Status register may be read as many times as it is wanted */
|
||
|
if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
|
||
|
NS_DBG("read_byte: return %#x status\n", ns->regs.status);
|
||
|
return ns->regs.status;
|
||
|
}
|
||
|
|
||
|
/* Check if there is any data in the internal buffer which may be read */
|
||
|
if (ns->regs.count == ns->regs.num) {
|
||
|
NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
|
||
|
return outb;
|
||
|
}
|
||
|
|
||
|
switch (NS_STATE(ns->state)) {
|
||
|
case STATE_DATAOUT:
|
||
|
if (ns->busw == 8) {
|
||
|
outb = ns->buf.byte[ns->regs.count];
|
||
|
ns->regs.count += 1;
|
||
|
} else {
|
||
|
outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
|
||
|
ns->regs.count += 2;
|
||
|
}
|
||
|
break;
|
||
|
case STATE_DATAOUT_ID:
|
||
|
NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
|
||
|
outb = ns->ids[ns->regs.count];
|
||
|
ns->regs.count += 1;
|
||
|
break;
|
||
|
default:
|
||
|
BUG();
|
||
|
}
|
||
|
|
||
|
if (ns->regs.count == ns->regs.num) {
|
||
|
NS_DBG("read_byte: all bytes were read\n");
|
||
|
|
||
|
/*
|
||
|
* The OPT_AUTOINCR allows to read next conseqitive pages without
|
||
|
* new read operation cycle.
|
||
|
*/
|
||
|
if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
|
||
|
ns->regs.count = 0;
|
||
|
if (ns->regs.row + 1 < ns->geom.pgnum)
|
||
|
ns->regs.row += 1;
|
||
|
NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
|
||
|
do_state_action(ns, ACTION_CPY);
|
||
|
}
|
||
|
else if (NS_STATE(ns->nxstate) == STATE_READY)
|
||
|
switch_state(ns);
|
||
|
|
||
|
}
|
||
|
|
||
|
return outb;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
|
||
|
{
|
||
|
struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
|
||
|
|
||
|
/* Sanity and correctness checks */
|
||
|
if (!ns->lines.ce) {
|
||
|
NS_ERR("write_byte: chip is disabled, ignore write\n");
|
||
|
return;
|
||
|
}
|
||
|
if (ns->lines.ale && ns->lines.cle) {
|
||
|
NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (ns->lines.cle == 1) {
|
||
|
/*
|
||
|
* The byte written is a command.
|
||
|
*/
|
||
|
|
||
|
if (byte == NAND_CMD_RESET) {
|
||
|
NS_LOG("reset chip\n");
|
||
|
switch_to_ready_state(ns, NS_STATUS_OK(ns));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Chip might still be in STATE_DATAOUT
|
||
|
* (if OPT_AUTOINCR feature is supported), STATE_DATAOUT_STATUS or
|
||
|
* STATE_DATAOUT_STATUS_M state. If so, switch state.
|
||
|
*/
|
||
|
if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
|
||
|
|| NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
|
||
|
|| ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT))
|
||
|
switch_state(ns);
|
||
|
|
||
|
/* Check if chip is expecting command */
|
||
|
if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
|
||
|
/*
|
||
|
* We are in situation when something else (not command)
|
||
|
* was expected but command was input. In this case ignore
|
||
|
* previous command(s)/state(s) and accept the last one.
|
||
|
*/
|
||
|
NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
|
||
|
"ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
|
||
|
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
|
||
|
}
|
||
|
|
||
|
/* Check that the command byte is correct */
|
||
|
if (check_command(byte)) {
|
||
|
NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
NS_DBG("command byte corresponding to %s state accepted\n",
|
||
|
get_state_name(get_state_by_command(byte)));
|
||
|
ns->regs.command = byte;
|
||
|
switch_state(ns);
|
||
|
|
||
|
} else if (ns->lines.ale == 1) {
|
||
|
/*
|
||
|
* The byte written is an address.
|
||
|
*/
|
||
|
|
||
|
if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
|
||
|
|
||
|
NS_DBG("write_byte: operation isn't known yet, identify it\n");
|
||
|
|
||
|
if (find_operation(ns, 1) < 0)
|
||
|
return;
|
||
|
|
||
|
if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
|
||
|
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
ns->regs.count = 0;
|
||
|
switch (NS_STATE(ns->nxstate)) {
|
||
|
case STATE_ADDR_PAGE:
|
||
|
ns->regs.num = ns->geom.pgaddrbytes;
|
||
|
break;
|
||
|
case STATE_ADDR_SEC:
|
||
|
ns->regs.num = ns->geom.secaddrbytes;
|
||
|
break;
|
||
|
case STATE_ADDR_ZERO:
|
||
|
ns->regs.num = 1;
|
||
|
break;
|
||
|
default:
|
||
|
BUG();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Check that chip is expecting address */
|
||
|
if (!(ns->nxstate & STATE_ADDR_MASK)) {
|
||
|
NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
|
||
|
"switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
|
||
|
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Check if this is expected byte */
|
||
|
if (ns->regs.count == ns->regs.num) {
|
||
|
NS_ERR("write_byte: no more address bytes expected\n");
|
||
|
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
accept_addr_byte(ns, byte);
|
||
|
|
||
|
ns->regs.count += 1;
|
||
|
|
||
|
NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
|
||
|
(uint)byte, ns->regs.count, ns->regs.num);
|
||
|
|
||
|
if (ns->regs.count == ns->regs.num) {
|
||
|
NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
|
||
|
switch_state(ns);
|
||
|
}
|
||
|
|
||
|
} else {
|
||
|
/*
|
||
|
* The byte written is an input data.
|
||
|
*/
|
||
|
|
||
|
/* Check that chip is expecting data input */
|
||
|
if (!(ns->state & STATE_DATAIN_MASK)) {
|
||
|
NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
|
||
|
"switch to %s\n", (uint)byte,
|
||
|
get_state_name(ns->state), get_state_name(STATE_READY));
|
||
|
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Check if this is expected byte */
|
||
|
if (ns->regs.count == ns->regs.num) {
|
||
|
NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
|
||
|
ns->regs.num);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (ns->busw == 8) {
|
||
|
ns->buf.byte[ns->regs.count] = byte;
|
||
|
ns->regs.count += 1;
|
||
|
} else {
|
||
|
ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
|
||
|
ns->regs.count += 2;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
ns_device_ready(struct mtd_info *mtd)
|
||
|
{
|
||
|
NS_DBG("device_ready\n");
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static uint16_t
|
||
|
ns_nand_read_word(struct mtd_info *mtd)
|
||
|
{
|
||
|
struct nand_chip *chip = (struct nand_chip *)mtd->priv;
|
||
|
|
||
|
NS_DBG("read_word\n");
|
||
|
|
||
|
return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
ns_nand_write_word(struct mtd_info *mtd, uint16_t word)
|
||
|
{
|
||
|
struct nand_chip *chip = (struct nand_chip *)mtd->priv;
|
||
|
|
||
|
NS_DBG("write_word\n");
|
||
|
|
||
|
chip->write_byte(mtd, word & 0xFF);
|
||
|
chip->write_byte(mtd, word >> 8);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
|
||
|
{
|
||
|
struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
|
||
|
|
||
|
/* Check that chip is expecting data input */
|
||
|
if (!(ns->state & STATE_DATAIN_MASK)) {
|
||
|
NS_ERR("write_buf: data input isn't expected, state is %s, "
|
||
|
"switch to STATE_READY\n", get_state_name(ns->state));
|
||
|
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Check if these are expected bytes */
|
||
|
if (ns->regs.count + len > ns->regs.num) {
|
||
|
NS_ERR("write_buf: too many input bytes\n");
|
||
|
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
memcpy(ns->buf.byte + ns->regs.count, buf, len);
|
||
|
ns->regs.count += len;
|
||
|
|
||
|
if (ns->regs.count == ns->regs.num) {
|
||
|
NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
|
||
|
{
|
||
|
struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
|
||
|
|
||
|
/* Sanity and correctness checks */
|
||
|
if (!ns->lines.ce) {
|
||
|
NS_ERR("read_buf: chip is disabled\n");
|
||
|
return;
|
||
|
}
|
||
|
if (ns->lines.ale || ns->lines.cle) {
|
||
|
NS_ERR("read_buf: ALE or CLE pin is high\n");
|
||
|
return;
|
||
|
}
|
||
|
if (!(ns->state & STATE_DATAOUT_MASK)) {
|
||
|
NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
|
||
|
get_state_name(ns->state));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (NS_STATE(ns->state) != STATE_DATAOUT) {
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < len; i++)
|
||
|
buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Check if these are expected bytes */
|
||
|
if (ns->regs.count + len > ns->regs.num) {
|
||
|
NS_ERR("read_buf: too many bytes to read\n");
|
||
|
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
memcpy(buf, ns->buf.byte + ns->regs.count, len);
|
||
|
ns->regs.count += len;
|
||
|
|
||
|
if (ns->regs.count == ns->regs.num) {
|
||
|
if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
|
||
|
ns->regs.count = 0;
|
||
|
if (ns->regs.row + 1 < ns->geom.pgnum)
|
||
|
ns->regs.row += 1;
|
||
|
NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
|
||
|
do_state_action(ns, ACTION_CPY);
|
||
|
}
|
||
|
else if (NS_STATE(ns->nxstate) == STATE_READY)
|
||
|
switch_state(ns);
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
|
||
|
{
|
||
|
ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
|
||
|
|
||
|
if (!memcmp(buf, &ns_verify_buf[0], len)) {
|
||
|
NS_DBG("verify_buf: the buffer is OK\n");
|
||
|
return 0;
|
||
|
} else {
|
||
|
NS_DBG("verify_buf: the buffer is wrong\n");
|
||
|
return -EFAULT;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Having only NAND chip IDs we call nand_scan which detects NAND flash
|
||
|
* parameters and then calls scan_bbt in order to scan/find/build the
|
||
|
* NAND flash bad block table. But since at that moment the NAND flash
|
||
|
* image isn't allocated in the simulator, errors arise. To avoid this
|
||
|
* we redefine the scan_bbt callback and initialize the nandsim structure
|
||
|
* before the flash media scanning.
|
||
|
*/
|
||
|
int ns_scan_bbt(struct mtd_info *mtd)
|
||
|
{
|
||
|
struct nand_chip *chip = (struct nand_chip *)mtd->priv;
|
||
|
struct nandsim *ns = (struct nandsim *)(chip->priv);
|
||
|
int retval;
|
||
|
|
||
|
if (!NS_IS_INITIALIZED(ns))
|
||
|
if ((retval = init_nandsim(mtd)) != 0) {
|
||
|
NS_ERR("scan_bbt: can't initialize the nandsim structure\n");
|
||
|
return retval;
|
||
|
}
|
||
|
if ((retval = nand_default_bbt(mtd)) != 0) {
|
||
|
free_nandsim(ns);
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Module initialization function
|
||
|
*/
|
||
|
int __init ns_init_module(void)
|
||
|
{
|
||
|
struct nand_chip *chip;
|
||
|
struct nandsim *nand;
|
||
|
int retval = -ENOMEM;
|
||
|
|
||
|
if (bus_width != 8 && bus_width != 16) {
|
||
|
NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/* Allocate and initialize mtd_info, nand_chip and nandsim structures */
|
||
|
nsmtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
|
||
|
+ sizeof(struct nandsim), GFP_KERNEL);
|
||
|
if (!nsmtd) {
|
||
|
NS_ERR("unable to allocate core structures.\n");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
memset(nsmtd, 0, sizeof(struct mtd_info) + sizeof(struct nand_chip) +
|
||
|
sizeof(struct nandsim));
|
||
|
chip = (struct nand_chip *)(nsmtd + 1);
|
||
|
nsmtd->priv = (void *)chip;
|
||
|
nand = (struct nandsim *)(chip + 1);
|
||
|
chip->priv = (void *)nand;
|
||
|
|
||
|
/*
|
||
|
* Register simulator's callbacks.
|
||
|
*/
|
||
|
chip->hwcontrol = ns_hwcontrol;
|
||
|
chip->read_byte = ns_nand_read_byte;
|
||
|
chip->dev_ready = ns_device_ready;
|
||
|
chip->scan_bbt = ns_scan_bbt;
|
||
|
chip->write_byte = ns_nand_write_byte;
|
||
|
chip->write_buf = ns_nand_write_buf;
|
||
|
chip->read_buf = ns_nand_read_buf;
|
||
|
chip->verify_buf = ns_nand_verify_buf;
|
||
|
chip->write_word = ns_nand_write_word;
|
||
|
chip->read_word = ns_nand_read_word;
|
||
|
chip->eccmode = NAND_ECC_SOFT;
|
||
|
|
||
|
/*
|
||
|
* Perform minimum nandsim structure initialization to handle
|
||
|
* the initial ID read command correctly
|
||
|
*/
|
||
|
if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
|
||
|
nand->geom.idbytes = 4;
|
||
|
else
|
||
|
nand->geom.idbytes = 2;
|
||
|
nand->regs.status = NS_STATUS_OK(nand);
|
||
|
nand->nxstate = STATE_UNKNOWN;
|
||
|
nand->options |= OPT_PAGE256; /* temporary value */
|
||
|
nand->ids[0] = first_id_byte;
|
||
|
nand->ids[1] = second_id_byte;
|
||
|
nand->ids[2] = third_id_byte;
|
||
|
nand->ids[3] = fourth_id_byte;
|
||
|
if (bus_width == 16) {
|
||
|
nand->busw = 16;
|
||
|
chip->options |= NAND_BUSWIDTH_16;
|
||
|
}
|
||
|
|
||
|
if ((retval = nand_scan(nsmtd, 1)) != 0) {
|
||
|
NS_ERR("can't register NAND Simulator\n");
|
||
|
if (retval > 0)
|
||
|
retval = -ENXIO;
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
/* Register NAND as one big partition */
|
||
|
add_mtd_partitions(nsmtd, &nand->part, 1);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
error:
|
||
|
kfree(nsmtd);
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
module_init(ns_init_module);
|
||
|
|
||
|
/*
|
||
|
* Module clean-up function
|
||
|
*/
|
||
|
static void __exit ns_cleanup_module(void)
|
||
|
{
|
||
|
struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv);
|
||
|
|
||
|
free_nandsim(ns); /* Free nandsim private resources */
|
||
|
nand_release(nsmtd); /* Unregisterd drived */
|
||
|
kfree(nsmtd); /* Free other structures */
|
||
|
}
|
||
|
|
||
|
module_exit(ns_cleanup_module);
|
||
|
|
||
|
MODULE_LICENSE ("GPL");
|
||
|
MODULE_AUTHOR ("Artem B. Bityuckiy");
|
||
|
MODULE_DESCRIPTION ("The NAND flash simulator");
|
||
|
|