WSL2-Linux-Kernel/drivers/media/rc/meson-ir-tx.c

405 строки
9.3 KiB
C
Исходник Обычный вид История

// SPDX-License-Identifier: GPL-2.0-only
/*
* meson-ir-tx.c - Amlogic Meson IR TX driver
*
* Copyright (c) 2021, SberDevices. All Rights Reserved.
*
* Author: Viktor Prutyanov <viktor.prutyanov@phystech.edu>
*/
#include <linux/device.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/of_irq.h>
#include <linux/clk.h>
#include <linux/slab.h>
#include <media/rc-core.h>
#define DEVICE_NAME "Meson IR TX"
#define DRIVER_NAME "meson-ir-tx"
#define MIRTX_DEFAULT_CARRIER 38000
#define MIRTX_DEFAULT_DUTY_CYCLE 50
#define MIRTX_FIFO_THD 32
#define IRB_MOD_1US_CLK_RATE 1000000
#define IRB_FIFO_LEN 128
#define IRB_ADDR0 0x0
#define IRB_ADDR1 0x4
#define IRB_ADDR2 0x8
#define IRB_ADDR3 0xc
#define IRB_MAX_DELAY (1 << 10)
#define IRB_DELAY_MASK (IRB_MAX_DELAY - 1)
/* IRCTRL_IR_BLASTER_ADDR0 */
#define IRB_MOD_CLK(x) ((x) << 12)
#define IRB_MOD_SYS_CLK 0
#define IRB_MOD_XTAL3_CLK 1
#define IRB_MOD_1US_CLK 2
#define IRB_MOD_10US_CLK 3
#define IRB_INIT_HIGH BIT(2)
#define IRB_ENABLE BIT(0)
/* IRCTRL_IR_BLASTER_ADDR2 */
#define IRB_MOD_COUNT(lo, hi) ((((lo) - 1) << 16) | ((hi) - 1))
/* IRCTRL_IR_BLASTER_ADDR2 */
#define IRB_WRITE_FIFO BIT(16)
#define IRB_MOD_ENABLE BIT(12)
#define IRB_TB_1US (0x0 << 10)
#define IRB_TB_10US (0x1 << 10)
#define IRB_TB_100US (0x2 << 10)
#define IRB_TB_MOD_CLK (0x3 << 10)
/* IRCTRL_IR_BLASTER_ADDR3 */
#define IRB_FIFO_THD_PENDING BIT(16)
#define IRB_FIFO_IRQ_ENABLE BIT(8)
struct meson_irtx {
struct device *dev;
void __iomem *reg_base;
u32 *buf;
unsigned int buf_len;
unsigned int buf_head;
unsigned int carrier;
unsigned int duty_cycle;
/* Locks buf */
spinlock_t lock;
struct completion completion;
unsigned long clk_rate;
};
static void meson_irtx_set_mod(struct meson_irtx *ir)
{
unsigned int cnt = DIV_ROUND_CLOSEST(ir->clk_rate, ir->carrier);
unsigned int pulse_cnt = DIV_ROUND_CLOSEST(cnt * ir->duty_cycle, 100);
unsigned int space_cnt = cnt - pulse_cnt;
dev_dbg(ir->dev, "F_mod = %uHz, T_mod = %luns, duty_cycle = %u%%\n",
ir->carrier, NSEC_PER_SEC / ir->clk_rate * cnt,
100 * pulse_cnt / cnt);
writel(IRB_MOD_COUNT(pulse_cnt, space_cnt),
ir->reg_base + IRB_ADDR1);
}
static void meson_irtx_setup(struct meson_irtx *ir, unsigned int clk_nr)
{
/*
* Disable the TX, set modulator clock tick and set initialize
* output to be high. Set up carrier frequency and duty cycle. Then
* unset initialize output. Enable FIFO interrupt, set FIFO interrupt
* threshold. Finally, enable the transmitter back.
*/
writel(~IRB_ENABLE & (IRB_MOD_CLK(clk_nr) | IRB_INIT_HIGH),
ir->reg_base + IRB_ADDR0);
meson_irtx_set_mod(ir);
writel(readl(ir->reg_base + IRB_ADDR0) & ~IRB_INIT_HIGH,
ir->reg_base + IRB_ADDR0);
writel(IRB_FIFO_IRQ_ENABLE | MIRTX_FIFO_THD,
ir->reg_base + IRB_ADDR3);
writel(readl(ir->reg_base + IRB_ADDR0) | IRB_ENABLE,
ir->reg_base + IRB_ADDR0);
}
static u32 meson_irtx_prepare_pulse(struct meson_irtx *ir, unsigned int time)
{
unsigned int delay;
unsigned int tb = IRB_TB_MOD_CLK;
unsigned int tb_us = DIV_ROUND_CLOSEST(USEC_PER_SEC, ir->carrier);
delay = (DIV_ROUND_CLOSEST(time, tb_us) - 1) & IRB_DELAY_MASK;
return ((IRB_WRITE_FIFO | IRB_MOD_ENABLE) | tb | delay);
}
static u32 meson_irtx_prepare_space(struct meson_irtx *ir, unsigned int time)
{
unsigned int delay;
unsigned int tb = IRB_TB_100US;
unsigned int tb_us = 100;
if (time <= IRB_MAX_DELAY) {
tb = IRB_TB_1US;
tb_us = 1;
} else if (time <= 10 * IRB_MAX_DELAY) {
tb = IRB_TB_10US;
tb_us = 10;
} else if (time <= 100 * IRB_MAX_DELAY) {
tb = IRB_TB_100US;
tb_us = 100;
}
delay = (DIV_ROUND_CLOSEST(time, tb_us) - 1) & IRB_DELAY_MASK;
return ((IRB_WRITE_FIFO & ~IRB_MOD_ENABLE) | tb | delay);
}
static void meson_irtx_send_buffer(struct meson_irtx *ir)
{
unsigned int nr = 0;
unsigned int max_fifo_level = IRB_FIFO_LEN - MIRTX_FIFO_THD;
while (ir->buf_head < ir->buf_len && nr < max_fifo_level) {
writel(ir->buf[ir->buf_head], ir->reg_base + IRB_ADDR2);
ir->buf_head++;
nr++;
}
}
static bool meson_irtx_check_buf(struct meson_irtx *ir,
unsigned int *buf, unsigned int len)
{
unsigned int i;
for (i = 0; i < len; i++) {
unsigned int max_tb_us;
/*
* Max space timebase is 100 us.
* Pulse timebase equals to carrier period.
*/
if (i % 2 == 0)
max_tb_us = USEC_PER_SEC / ir->carrier;
else
max_tb_us = 100;
if (buf[i] >= max_tb_us * IRB_MAX_DELAY)
return false;
}
return true;
}
static void meson_irtx_fill_buf(struct meson_irtx *ir, u32 *dst_buf,
unsigned int *src_buf, unsigned int len)
{
unsigned int i;
for (i = 0; i < len; i++) {
if (i % 2 == 0)
dst_buf[i] = meson_irtx_prepare_pulse(ir, src_buf[i]);
else
dst_buf[i] = meson_irtx_prepare_space(ir, src_buf[i]);
}
}
static irqreturn_t meson_irtx_irqhandler(int irq, void *data)
{
unsigned long flags;
struct meson_irtx *ir = data;
writel(readl(ir->reg_base + IRB_ADDR3) & ~IRB_FIFO_THD_PENDING,
ir->reg_base + IRB_ADDR3);
if (completion_done(&ir->completion))
return IRQ_HANDLED;
spin_lock_irqsave(&ir->lock, flags);
if (ir->buf_head < ir->buf_len)
meson_irtx_send_buffer(ir);
else
complete(&ir->completion);
spin_unlock_irqrestore(&ir->lock, flags);
return IRQ_HANDLED;
}
static int meson_irtx_set_carrier(struct rc_dev *rc, u32 carrier)
{
struct meson_irtx *ir = rc->priv;
if (carrier == 0)
return -EINVAL;
ir->carrier = carrier;
meson_irtx_set_mod(ir);
return 0;
}
static int meson_irtx_set_duty_cycle(struct rc_dev *rc, u32 duty_cycle)
{
struct meson_irtx *ir = rc->priv;
ir->duty_cycle = duty_cycle;
meson_irtx_set_mod(ir);
return 0;
}
static void meson_irtx_update_buf(struct meson_irtx *ir, u32 *buf,
unsigned int len, unsigned int head)
{
ir->buf = buf;
ir->buf_len = len;
ir->buf_head = head;
}
static int meson_irtx_transmit(struct rc_dev *rc, unsigned int *buf,
unsigned int len)
{
unsigned long flags;
struct meson_irtx *ir = rc->priv;
u32 *tx_buf;
int ret = len;
if (!meson_irtx_check_buf(ir, buf, len))
return -EINVAL;
tx_buf = kmalloc_array(len, sizeof(u32), GFP_KERNEL);
if (!tx_buf)
return -ENOMEM;
meson_irtx_fill_buf(ir, tx_buf, buf, len);
dev_dbg(ir->dev, "TX buffer filled, length = %u\n", len);
spin_lock_irqsave(&ir->lock, flags);
meson_irtx_update_buf(ir, tx_buf, len, 0);
reinit_completion(&ir->completion);
meson_irtx_send_buffer(ir);
spin_unlock_irqrestore(&ir->lock, flags);
if (!wait_for_completion_timeout(&ir->completion,
usecs_to_jiffies(IR_MAX_DURATION)))
ret = -ETIMEDOUT;
spin_lock_irqsave(&ir->lock, flags);
kfree(ir->buf);
meson_irtx_update_buf(ir, NULL, 0, 0);
spin_unlock_irqrestore(&ir->lock, flags);
return ret;
}
static int meson_irtx_mod_clock_probe(struct meson_irtx *ir,
unsigned int *clk_nr)
{
struct device_node *np = ir->dev->of_node;
struct clk *clock;
if (!np)
return -ENODEV;
clock = devm_clk_get(ir->dev, "xtal");
if (IS_ERR(clock) || clk_prepare_enable(clock))
return -ENODEV;
*clk_nr = IRB_MOD_XTAL3_CLK;
ir->clk_rate = clk_get_rate(clock) / 3;
if (ir->clk_rate < IRB_MOD_1US_CLK_RATE) {
*clk_nr = IRB_MOD_1US_CLK;
ir->clk_rate = IRB_MOD_1US_CLK_RATE;
}
dev_info(ir->dev, "F_clk = %luHz\n", ir->clk_rate);
return 0;
}
static int __init meson_irtx_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct meson_irtx *ir;
struct rc_dev *rc;
int irq;
unsigned int clk_nr;
int ret;
ir = devm_kzalloc(dev, sizeof(*ir), GFP_KERNEL);
if (!ir)
return -ENOMEM;
ir->reg_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(ir->reg_base))
return PTR_ERR(ir->reg_base);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return -ENODEV;
ir->dev = dev;
ir->carrier = MIRTX_DEFAULT_CARRIER;
ir->duty_cycle = MIRTX_DEFAULT_DUTY_CYCLE;
init_completion(&ir->completion);
spin_lock_init(&ir->lock);
ret = meson_irtx_mod_clock_probe(ir, &clk_nr);
if (ret) {
dev_err(dev, "modulator clock setup failed\n");
return ret;
}
meson_irtx_setup(ir, clk_nr);
ret = devm_request_irq(dev, irq,
meson_irtx_irqhandler,
IRQF_TRIGGER_RISING,
DRIVER_NAME, ir);
if (ret) {
dev_err(dev, "irq request failed\n");
return ret;
}
rc = rc_allocate_device(RC_DRIVER_IR_RAW_TX);
if (!rc)
return -ENOMEM;
rc->driver_name = DRIVER_NAME;
rc->device_name = DEVICE_NAME;
rc->priv = ir;
rc->tx_ir = meson_irtx_transmit;
rc->s_tx_carrier = meson_irtx_set_carrier;
rc->s_tx_duty_cycle = meson_irtx_set_duty_cycle;
ret = rc_register_device(rc);
if (ret < 0) {
dev_err(dev, "rc_dev registration failed\n");
rc_free_device(rc);
return ret;
}
platform_set_drvdata(pdev, rc);
return 0;
}
static int meson_irtx_remove(struct platform_device *pdev)
{
struct rc_dev *rc = platform_get_drvdata(pdev);
rc_unregister_device(rc);
return 0;
}
static const struct of_device_id meson_irtx_dt_match[] = {
{
.compatible = "amlogic,meson-g12a-ir-tx",
},
{},
};
MODULE_DEVICE_TABLE(of, meson_irtx_dt_match);
static struct platform_driver meson_irtx_pd = {
.remove = meson_irtx_remove,
.driver = {
.name = DRIVER_NAME,
.of_match_table = meson_irtx_dt_match,
},
};
module_platform_driver_probe(meson_irtx_pd, meson_irtx_probe);
MODULE_DESCRIPTION("Meson IR TX driver");
MODULE_AUTHOR("Viktor Prutyanov <viktor.prutyanov@phystech.edu>");
MODULE_LICENSE("GPL");