WSL2-Linux-Kernel/drivers/thermal/exynos_thermal.c

1022 строки
26 KiB
C
Исходник Обычный вид История

/*
* exynos_thermal.c - Samsung EXYNOS TMU (Thermal Management Unit)
*
* Copyright (C) 2011 Samsung Electronics
* Donggeun Kim <dg77.kim@samsung.com>
* Amit Daniel Kachhap <amit.kachhap@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/module.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
#include <linux/workqueue.h>
#include <linux/sysfs.h>
#include <linux/kobject.h>
#include <linux/io.h>
#include <linux/mutex.h>
#include <linux/platform_data/exynos_thermal.h>
#include <linux/thermal.h>
#include <linux/cpufreq.h>
#include <linux/cpu_cooling.h>
#include <linux/of.h>
#include <plat/cpu.h>
/* Exynos generic registers */
#define EXYNOS_TMU_REG_TRIMINFO 0x0
#define EXYNOS_TMU_REG_CONTROL 0x20
#define EXYNOS_TMU_REG_STATUS 0x28
#define EXYNOS_TMU_REG_CURRENT_TEMP 0x40
#define EXYNOS_TMU_REG_INTEN 0x70
#define EXYNOS_TMU_REG_INTSTAT 0x74
#define EXYNOS_TMU_REG_INTCLEAR 0x78
#define EXYNOS_TMU_TRIM_TEMP_MASK 0xff
#define EXYNOS_TMU_GAIN_SHIFT 8
#define EXYNOS_TMU_REF_VOLTAGE_SHIFT 24
#define EXYNOS_TMU_CORE_ON 3
#define EXYNOS_TMU_CORE_OFF 2
#define EXYNOS_TMU_DEF_CODE_TO_TEMP_OFFSET 50
/* Exynos4210 specific registers */
#define EXYNOS4210_TMU_REG_THRESHOLD_TEMP 0x44
#define EXYNOS4210_TMU_REG_TRIG_LEVEL0 0x50
#define EXYNOS4210_TMU_REG_TRIG_LEVEL1 0x54
#define EXYNOS4210_TMU_REG_TRIG_LEVEL2 0x58
#define EXYNOS4210_TMU_REG_TRIG_LEVEL3 0x5C
#define EXYNOS4210_TMU_REG_PAST_TEMP0 0x60
#define EXYNOS4210_TMU_REG_PAST_TEMP1 0x64
#define EXYNOS4210_TMU_REG_PAST_TEMP2 0x68
#define EXYNOS4210_TMU_REG_PAST_TEMP3 0x6C
#define EXYNOS4210_TMU_TRIG_LEVEL0_MASK 0x1
#define EXYNOS4210_TMU_TRIG_LEVEL1_MASK 0x10
#define EXYNOS4210_TMU_TRIG_LEVEL2_MASK 0x100
#define EXYNOS4210_TMU_TRIG_LEVEL3_MASK 0x1000
#define EXYNOS4210_TMU_INTCLEAR_VAL 0x1111
/* Exynos5250 and Exynos4412 specific registers */
#define EXYNOS_TMU_TRIMINFO_CON 0x14
#define EXYNOS_THD_TEMP_RISE 0x50
#define EXYNOS_THD_TEMP_FALL 0x54
#define EXYNOS_EMUL_CON 0x80
#define EXYNOS_TRIMINFO_RELOAD 0x1
#define EXYNOS_TMU_CLEAR_RISE_INT 0x111
#define EXYNOS_TMU_CLEAR_FALL_INT (0x111 << 16)
#define EXYNOS_MUX_ADDR_VALUE 6
#define EXYNOS_MUX_ADDR_SHIFT 20
#define EXYNOS_TMU_TRIP_MODE_SHIFT 13
#define EFUSE_MIN_VALUE 40
#define EFUSE_MAX_VALUE 100
/* In-kernel thermal framework related macros & definations */
#define SENSOR_NAME_LEN 16
#define MAX_TRIP_COUNT 8
#define MAX_COOLING_DEVICE 4
#define ACTIVE_INTERVAL 500
#define IDLE_INTERVAL 10000
#define MCELSIUS 1000
/* CPU Zone information */
#define PANIC_ZONE 4
#define WARN_ZONE 3
#define MONITOR_ZONE 2
#define SAFE_ZONE 1
#define GET_ZONE(trip) (trip + 2)
#define GET_TRIP(zone) (zone - 2)
#define EXYNOS_ZONE_COUNT 3
struct exynos_tmu_data {
struct exynos_tmu_platform_data *pdata;
struct resource *mem;
void __iomem *base;
int irq;
enum soc_type soc;
struct work_struct irq_work;
struct mutex lock;
struct clk *clk;
u8 temp_error1, temp_error2;
};
struct thermal_trip_point_conf {
int trip_val[MAX_TRIP_COUNT];
int trip_count;
};
struct thermal_cooling_conf {
struct freq_clip_table freq_data[MAX_TRIP_COUNT];
int freq_clip_count;
};
struct thermal_sensor_conf {
char name[SENSOR_NAME_LEN];
int (*read_temperature)(void *data);
struct thermal_trip_point_conf trip_data;
struct thermal_cooling_conf cooling_data;
void *private_data;
};
struct exynos_thermal_zone {
enum thermal_device_mode mode;
struct thermal_zone_device *therm_dev;
struct thermal_cooling_device *cool_dev[MAX_COOLING_DEVICE];
unsigned int cool_dev_size;
struct platform_device *exynos4_dev;
struct thermal_sensor_conf *sensor_conf;
bool bind;
};
static struct exynos_thermal_zone *th_zone;
static void exynos_unregister_thermal(void);
static int exynos_register_thermal(struct thermal_sensor_conf *sensor_conf);
/* Get mode callback functions for thermal zone */
static int exynos_get_mode(struct thermal_zone_device *thermal,
enum thermal_device_mode *mode)
{
if (th_zone)
*mode = th_zone->mode;
return 0;
}
/* Set mode callback functions for thermal zone */
static int exynos_set_mode(struct thermal_zone_device *thermal,
enum thermal_device_mode mode)
{
if (!th_zone->therm_dev) {
pr_notice("thermal zone not registered\n");
return 0;
}
mutex_lock(&th_zone->therm_dev->lock);
if (mode == THERMAL_DEVICE_ENABLED)
th_zone->therm_dev->polling_delay = IDLE_INTERVAL;
else
th_zone->therm_dev->polling_delay = 0;
mutex_unlock(&th_zone->therm_dev->lock);
th_zone->mode = mode;
thermal_zone_device_update(th_zone->therm_dev);
pr_info("thermal polling set for duration=%d msec\n",
th_zone->therm_dev->polling_delay);
return 0;
}
/* Get trip type callback functions for thermal zone */
static int exynos_get_trip_type(struct thermal_zone_device *thermal, int trip,
enum thermal_trip_type *type)
{
switch (GET_ZONE(trip)) {
case MONITOR_ZONE:
case WARN_ZONE:
*type = THERMAL_TRIP_ACTIVE;
break;
case PANIC_ZONE:
*type = THERMAL_TRIP_CRITICAL;
break;
default:
return -EINVAL;
}
return 0;
}
/* Get trip temperature callback functions for thermal zone */
static int exynos_get_trip_temp(struct thermal_zone_device *thermal, int trip,
unsigned long *temp)
{
if (trip < GET_TRIP(MONITOR_ZONE) || trip > GET_TRIP(PANIC_ZONE))
return -EINVAL;
*temp = th_zone->sensor_conf->trip_data.trip_val[trip];
/* convert the temperature into millicelsius */
*temp = *temp * MCELSIUS;
return 0;
}
/* Get critical temperature callback functions for thermal zone */
static int exynos_get_crit_temp(struct thermal_zone_device *thermal,
unsigned long *temp)
{
int ret;
/* Panic zone */
ret = exynos_get_trip_temp(thermal, GET_TRIP(PANIC_ZONE), temp);
return ret;
}
static int exynos_get_frequency_level(unsigned int cpu, unsigned int freq)
{
int i = 0, ret = -EINVAL;
struct cpufreq_frequency_table *table = NULL;
#ifdef CONFIG_CPU_FREQ
table = cpufreq_frequency_get_table(cpu);
#endif
if (!table)
return ret;
while (table[i].frequency != CPUFREQ_TABLE_END) {
if (table[i].frequency == CPUFREQ_ENTRY_INVALID)
continue;
if (table[i].frequency == freq)
return i;
i++;
}
return ret;
}
/* Bind callback functions for thermal zone */
static int exynos_bind(struct thermal_zone_device *thermal,
struct thermal_cooling_device *cdev)
{
int ret = 0, i, tab_size, level;
struct freq_clip_table *tab_ptr, *clip_data;
struct thermal_sensor_conf *data = th_zone->sensor_conf;
tab_ptr = (struct freq_clip_table *)data->cooling_data.freq_data;
tab_size = data->cooling_data.freq_clip_count;
if (tab_ptr == NULL || tab_size == 0)
return -EINVAL;
/* find the cooling device registered*/
for (i = 0; i < th_zone->cool_dev_size; i++)
if (cdev == th_zone->cool_dev[i])
break;
/* No matching cooling device */
if (i == th_zone->cool_dev_size)
return 0;
/* Bind the thermal zone to the cpufreq cooling device */
for (i = 0; i < tab_size; i++) {
clip_data = (struct freq_clip_table *)&(tab_ptr[i]);
level = exynos_get_frequency_level(0, clip_data->freq_clip_max);
if (level < 0)
return 0;
switch (GET_ZONE(i)) {
case MONITOR_ZONE:
case WARN_ZONE:
if (thermal_zone_bind_cooling_device(thermal, i, cdev,
level, level)) {
pr_err("error binding cdev inst %d\n", i);
ret = -EINVAL;
}
th_zone->bind = true;
break;
default:
ret = -EINVAL;
}
}
return ret;
}
/* Unbind callback functions for thermal zone */
static int exynos_unbind(struct thermal_zone_device *thermal,
struct thermal_cooling_device *cdev)
{
int ret = 0, i, tab_size;
struct thermal_sensor_conf *data = th_zone->sensor_conf;
if (th_zone->bind == false)
return 0;
tab_size = data->cooling_data.freq_clip_count;
if (tab_size == 0)
return -EINVAL;
/* find the cooling device registered*/
for (i = 0; i < th_zone->cool_dev_size; i++)
if (cdev == th_zone->cool_dev[i])
break;
/* No matching cooling device */
if (i == th_zone->cool_dev_size)
return 0;
/* Bind the thermal zone to the cpufreq cooling device */
for (i = 0; i < tab_size; i++) {
switch (GET_ZONE(i)) {
case MONITOR_ZONE:
case WARN_ZONE:
if (thermal_zone_unbind_cooling_device(thermal, i,
cdev)) {
pr_err("error unbinding cdev inst=%d\n", i);
ret = -EINVAL;
}
th_zone->bind = false;
break;
default:
ret = -EINVAL;
}
}
return ret;
}
/* Get temperature callback functions for thermal zone */
static int exynos_get_temp(struct thermal_zone_device *thermal,
unsigned long *temp)
{
void *data;
if (!th_zone->sensor_conf) {
pr_info("Temperature sensor not initialised\n");
return -EINVAL;
}
data = th_zone->sensor_conf->private_data;
*temp = th_zone->sensor_conf->read_temperature(data);
/* convert the temperature into millicelsius */
*temp = *temp * MCELSIUS;
return 0;
}
/* Get the temperature trend */
static int exynos_get_trend(struct thermal_zone_device *thermal,
int trip, enum thermal_trend *trend)
{
if (thermal->temperature >= trip)
*trend = THERMAL_TREND_RAISING;
else
*trend = THERMAL_TREND_DROPPING;
return 0;
}
/* Operation callback functions for thermal zone */
static struct thermal_zone_device_ops const exynos_dev_ops = {
.bind = exynos_bind,
.unbind = exynos_unbind,
.get_temp = exynos_get_temp,
.get_trend = exynos_get_trend,
.get_mode = exynos_get_mode,
.set_mode = exynos_set_mode,
.get_trip_type = exynos_get_trip_type,
.get_trip_temp = exynos_get_trip_temp,
.get_crit_temp = exynos_get_crit_temp,
};
/*
* This function may be called from interrupt based temperature sensor
* when threshold is changed.
*/
static void exynos_report_trigger(void)
{
unsigned int i;
char data[10];
char *envp[] = { data, NULL };
if (!th_zone || !th_zone->therm_dev)
return;
if (th_zone->bind == false) {
for (i = 0; i < th_zone->cool_dev_size; i++) {
if (!th_zone->cool_dev[i])
continue;
exynos_bind(th_zone->therm_dev,
th_zone->cool_dev[i]);
}
}
thermal_zone_device_update(th_zone->therm_dev);
mutex_lock(&th_zone->therm_dev->lock);
/* Find the level for which trip happened */
for (i = 0; i < th_zone->sensor_conf->trip_data.trip_count; i++) {
if (th_zone->therm_dev->last_temperature <
th_zone->sensor_conf->trip_data.trip_val[i] * MCELSIUS)
break;
}
if (th_zone->mode == THERMAL_DEVICE_ENABLED) {
if (i > 0)
th_zone->therm_dev->polling_delay = ACTIVE_INTERVAL;
else
th_zone->therm_dev->polling_delay = IDLE_INTERVAL;
}
snprintf(data, sizeof(data), "%u", i);
kobject_uevent_env(&th_zone->therm_dev->device.kobj, KOBJ_CHANGE, envp);
mutex_unlock(&th_zone->therm_dev->lock);
}
/* Register with the in-kernel thermal management */
static int exynos_register_thermal(struct thermal_sensor_conf *sensor_conf)
{
int ret;
struct cpumask mask_val;
if (!sensor_conf || !sensor_conf->read_temperature) {
pr_err("Temperature sensor not initialised\n");
return -EINVAL;
}
th_zone = kzalloc(sizeof(struct exynos_thermal_zone), GFP_KERNEL);
if (!th_zone)
return -ENOMEM;
th_zone->sensor_conf = sensor_conf;
cpumask_set_cpu(0, &mask_val);
th_zone->cool_dev[0] = cpufreq_cooling_register(&mask_val);
if (IS_ERR(th_zone->cool_dev[0])) {
pr_err("Failed to register cpufreq cooling device\n");
ret = -EINVAL;
goto err_unregister;
}
th_zone->cool_dev_size++;
th_zone->therm_dev = thermal_zone_device_register(sensor_conf->name,
EXYNOS_ZONE_COUNT, 0, NULL, &exynos_dev_ops, 0,
IDLE_INTERVAL);
if (IS_ERR(th_zone->therm_dev)) {
pr_err("Failed to register thermal zone device\n");
ret = -EINVAL;
goto err_unregister;
}
th_zone->mode = THERMAL_DEVICE_ENABLED;
pr_info("Exynos: Kernel Thermal management registered\n");
return 0;
err_unregister:
exynos_unregister_thermal();
return ret;
}
/* Un-Register with the in-kernel thermal management */
static void exynos_unregister_thermal(void)
{
int i;
if (th_zone && th_zone->therm_dev)
thermal_zone_device_unregister(th_zone->therm_dev);
for (i = 0; i < th_zone->cool_dev_size; i++) {
if (th_zone && th_zone->cool_dev[i])
cpufreq_cooling_unregister(th_zone->cool_dev[i]);
}
kfree(th_zone);
pr_info("Exynos: Kernel Thermal management unregistered\n");
}
/*
* TMU treats temperature as a mapped temperature code.
* The temperature is converted differently depending on the calibration type.
*/
static int temp_to_code(struct exynos_tmu_data *data, u8 temp)
{
struct exynos_tmu_platform_data *pdata = data->pdata;
int temp_code;
if (data->soc == SOC_ARCH_EXYNOS4210)
/* temp should range between 25 and 125 */
if (temp < 25 || temp > 125) {
temp_code = -EINVAL;
goto out;
}
switch (pdata->cal_type) {
case TYPE_TWO_POINT_TRIMMING:
temp_code = (temp - 25) *
(data->temp_error2 - data->temp_error1) /
(85 - 25) + data->temp_error1;
break;
case TYPE_ONE_POINT_TRIMMING:
temp_code = temp + data->temp_error1 - 25;
break;
default:
temp_code = temp + EXYNOS_TMU_DEF_CODE_TO_TEMP_OFFSET;
break;
}
out:
return temp_code;
}
/*
* Calculate a temperature value from a temperature code.
* The unit of the temperature is degree Celsius.
*/
static int code_to_temp(struct exynos_tmu_data *data, u8 temp_code)
{
struct exynos_tmu_platform_data *pdata = data->pdata;
int temp;
if (data->soc == SOC_ARCH_EXYNOS4210)
/* temp_code should range between 75 and 175 */
if (temp_code < 75 || temp_code > 175) {
temp = -ENODATA;
goto out;
}
switch (pdata->cal_type) {
case TYPE_TWO_POINT_TRIMMING:
temp = (temp_code - data->temp_error1) * (85 - 25) /
(data->temp_error2 - data->temp_error1) + 25;
break;
case TYPE_ONE_POINT_TRIMMING:
temp = temp_code - data->temp_error1 + 25;
break;
default:
temp = temp_code - EXYNOS_TMU_DEF_CODE_TO_TEMP_OFFSET;
break;
}
out:
return temp;
}
static int exynos_tmu_initialize(struct platform_device *pdev)
{
struct exynos_tmu_data *data = platform_get_drvdata(pdev);
struct exynos_tmu_platform_data *pdata = data->pdata;
unsigned int status, trim_info, rising_threshold;
int ret = 0, threshold_code;
mutex_lock(&data->lock);
clk_enable(data->clk);
status = readb(data->base + EXYNOS_TMU_REG_STATUS);
if (!status) {
ret = -EBUSY;
goto out;
}
if (data->soc == SOC_ARCH_EXYNOS) {
__raw_writel(EXYNOS_TRIMINFO_RELOAD,
data->base + EXYNOS_TMU_TRIMINFO_CON);
}
/* Save trimming info in order to perform calibration */
trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO);
data->temp_error1 = trim_info & EXYNOS_TMU_TRIM_TEMP_MASK;
data->temp_error2 = ((trim_info >> 8) & EXYNOS_TMU_TRIM_TEMP_MASK);
if ((EFUSE_MIN_VALUE > data->temp_error1) ||
(data->temp_error1 > EFUSE_MAX_VALUE) ||
(data->temp_error2 != 0))
data->temp_error1 = pdata->efuse_value;
if (data->soc == SOC_ARCH_EXYNOS4210) {
/* Write temperature code for threshold */
threshold_code = temp_to_code(data, pdata->threshold);
if (threshold_code < 0) {
ret = threshold_code;
goto out;
}
writeb(threshold_code,
data->base + EXYNOS4210_TMU_REG_THRESHOLD_TEMP);
writeb(pdata->trigger_levels[0],
data->base + EXYNOS4210_TMU_REG_TRIG_LEVEL0);
writeb(pdata->trigger_levels[1],
data->base + EXYNOS4210_TMU_REG_TRIG_LEVEL1);
writeb(pdata->trigger_levels[2],
data->base + EXYNOS4210_TMU_REG_TRIG_LEVEL2);
writeb(pdata->trigger_levels[3],
data->base + EXYNOS4210_TMU_REG_TRIG_LEVEL3);
writel(EXYNOS4210_TMU_INTCLEAR_VAL,
data->base + EXYNOS_TMU_REG_INTCLEAR);
} else if (data->soc == SOC_ARCH_EXYNOS) {
/* Write temperature code for threshold */
threshold_code = temp_to_code(data, pdata->trigger_levels[0]);
if (threshold_code < 0) {
ret = threshold_code;
goto out;
}
rising_threshold = threshold_code;
threshold_code = temp_to_code(data, pdata->trigger_levels[1]);
if (threshold_code < 0) {
ret = threshold_code;
goto out;
}
rising_threshold |= (threshold_code << 8);
threshold_code = temp_to_code(data, pdata->trigger_levels[2]);
if (threshold_code < 0) {
ret = threshold_code;
goto out;
}
rising_threshold |= (threshold_code << 16);
writel(rising_threshold,
data->base + EXYNOS_THD_TEMP_RISE);
writel(0, data->base + EXYNOS_THD_TEMP_FALL);
writel(EXYNOS_TMU_CLEAR_RISE_INT|EXYNOS_TMU_CLEAR_FALL_INT,
data->base + EXYNOS_TMU_REG_INTCLEAR);
}
out:
clk_disable(data->clk);
mutex_unlock(&data->lock);
return ret;
}
static void exynos_tmu_control(struct platform_device *pdev, bool on)
{
struct exynos_tmu_data *data = platform_get_drvdata(pdev);
struct exynos_tmu_platform_data *pdata = data->pdata;
unsigned int con, interrupt_en;
mutex_lock(&data->lock);
clk_enable(data->clk);
con = pdata->reference_voltage << EXYNOS_TMU_REF_VOLTAGE_SHIFT |
pdata->gain << EXYNOS_TMU_GAIN_SHIFT;
if (data->soc == SOC_ARCH_EXYNOS) {
con |= pdata->noise_cancel_mode << EXYNOS_TMU_TRIP_MODE_SHIFT;
con |= (EXYNOS_MUX_ADDR_VALUE << EXYNOS_MUX_ADDR_SHIFT);
}
if (on) {
con |= EXYNOS_TMU_CORE_ON;
interrupt_en = pdata->trigger_level3_en << 12 |
pdata->trigger_level2_en << 8 |
pdata->trigger_level1_en << 4 |
pdata->trigger_level0_en;
} else {
con |= EXYNOS_TMU_CORE_OFF;
interrupt_en = 0; /* Disable all interrupts */
}
writel(interrupt_en, data->base + EXYNOS_TMU_REG_INTEN);
writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
clk_disable(data->clk);
mutex_unlock(&data->lock);
}
static int exynos_tmu_read(struct exynos_tmu_data *data)
{
u8 temp_code;
int temp;
mutex_lock(&data->lock);
clk_enable(data->clk);
temp_code = readb(data->base + EXYNOS_TMU_REG_CURRENT_TEMP);
temp = code_to_temp(data, temp_code);
clk_disable(data->clk);
mutex_unlock(&data->lock);
return temp;
}
static void exynos_tmu_work(struct work_struct *work)
{
struct exynos_tmu_data *data = container_of(work,
struct exynos_tmu_data, irq_work);
mutex_lock(&data->lock);
clk_enable(data->clk);
if (data->soc == SOC_ARCH_EXYNOS)
writel(EXYNOS_TMU_CLEAR_RISE_INT,
data->base + EXYNOS_TMU_REG_INTCLEAR);
else
writel(EXYNOS4210_TMU_INTCLEAR_VAL,
data->base + EXYNOS_TMU_REG_INTCLEAR);
clk_disable(data->clk);
mutex_unlock(&data->lock);
exynos_report_trigger();
enable_irq(data->irq);
}
static irqreturn_t exynos_tmu_irq(int irq, void *id)
{
struct exynos_tmu_data *data = id;
disable_irq_nosync(irq);
schedule_work(&data->irq_work);
return IRQ_HANDLED;
}
static struct thermal_sensor_conf exynos_sensor_conf = {
.name = "exynos-therm",
.read_temperature = (int (*)(void *))exynos_tmu_read,
};
#if defined(CONFIG_CPU_EXYNOS4210)
static struct exynos_tmu_platform_data const exynos4210_default_tmu_data = {
.threshold = 80,
.trigger_levels[0] = 5,
.trigger_levels[1] = 20,
.trigger_levels[2] = 30,
.trigger_level0_en = 1,
.trigger_level1_en = 1,
.trigger_level2_en = 1,
.trigger_level3_en = 0,
.gain = 15,
.reference_voltage = 7,
.cal_type = TYPE_ONE_POINT_TRIMMING,
.freq_tab[0] = {
.freq_clip_max = 800 * 1000,
.temp_level = 85,
},
.freq_tab[1] = {
.freq_clip_max = 200 * 1000,
.temp_level = 100,
},
.freq_tab_count = 2,
.type = SOC_ARCH_EXYNOS4210,
};
#define EXYNOS4210_TMU_DRV_DATA (&exynos4210_default_tmu_data)
#else
#define EXYNOS4210_TMU_DRV_DATA (NULL)
#endif
#if defined(CONFIG_SOC_EXYNOS5250) || defined(CONFIG_SOC_EXYNOS4412)
static struct exynos_tmu_platform_data const exynos_default_tmu_data = {
.trigger_levels[0] = 85,
.trigger_levels[1] = 103,
.trigger_levels[2] = 110,
.trigger_level0_en = 1,
.trigger_level1_en = 1,
.trigger_level2_en = 1,
.trigger_level3_en = 0,
.gain = 8,
.reference_voltage = 16,
.noise_cancel_mode = 4,
.cal_type = TYPE_ONE_POINT_TRIMMING,
.efuse_value = 55,
.freq_tab[0] = {
.freq_clip_max = 800 * 1000,
.temp_level = 85,
},
.freq_tab[1] = {
.freq_clip_max = 200 * 1000,
.temp_level = 103,
},
.freq_tab_count = 2,
.type = SOC_ARCH_EXYNOS,
};
#define EXYNOS_TMU_DRV_DATA (&exynos_default_tmu_data)
#else
#define EXYNOS_TMU_DRV_DATA (NULL)
#endif
#ifdef CONFIG_OF
static const struct of_device_id exynos_tmu_match[] = {
{
.compatible = "samsung,exynos4210-tmu",
.data = (void *)EXYNOS4210_TMU_DRV_DATA,
},
{
.compatible = "samsung,exynos5250-tmu",
.data = (void *)EXYNOS_TMU_DRV_DATA,
},
{},
};
MODULE_DEVICE_TABLE(of, exynos_tmu_match);
#else
#define exynos_tmu_match NULL
#endif
static struct platform_device_id exynos_tmu_driver_ids[] = {
{
.name = "exynos4210-tmu",
.driver_data = (kernel_ulong_t)EXYNOS4210_TMU_DRV_DATA,
},
{
.name = "exynos5250-tmu",
.driver_data = (kernel_ulong_t)EXYNOS_TMU_DRV_DATA,
},
{ },
};
MODULE_DEVICE_TABLE(platform, exynos4_tmu_driver_ids);
static inline struct exynos_tmu_platform_data *exynos_get_driver_data(
struct platform_device *pdev)
{
#ifdef CONFIG_OF
if (pdev->dev.of_node) {
const struct of_device_id *match;
match = of_match_node(exynos_tmu_match, pdev->dev.of_node);
if (!match)
return NULL;
return (struct exynos_tmu_platform_data *) match->data;
}
#endif
return (struct exynos_tmu_platform_data *)
platform_get_device_id(pdev)->driver_data;
}
static int __devinit exynos_tmu_probe(struct platform_device *pdev)
{
struct exynos_tmu_data *data;
struct exynos_tmu_platform_data *pdata = pdev->dev.platform_data;
int ret, i;
if (!pdata)
pdata = exynos_get_driver_data(pdev);
if (!pdata) {
dev_err(&pdev->dev, "No platform init data supplied.\n");
return -ENODEV;
}
data = kzalloc(sizeof(struct exynos_tmu_data), GFP_KERNEL);
if (!data) {
dev_err(&pdev->dev, "Failed to allocate driver structure\n");
return -ENOMEM;
}
data->irq = platform_get_irq(pdev, 0);
if (data->irq < 0) {
ret = data->irq;
dev_err(&pdev->dev, "Failed to get platform irq\n");
goto err_free;
}
INIT_WORK(&data->irq_work, exynos_tmu_work);
data->mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!data->mem) {
ret = -ENOENT;
dev_err(&pdev->dev, "Failed to get platform resource\n");
goto err_free;
}
data->mem = request_mem_region(data->mem->start,
resource_size(data->mem), pdev->name);
if (!data->mem) {
ret = -ENODEV;
dev_err(&pdev->dev, "Failed to request memory region\n");
goto err_free;
}
data->base = ioremap(data->mem->start, resource_size(data->mem));
if (!data->base) {
ret = -ENODEV;
dev_err(&pdev->dev, "Failed to ioremap memory\n");
goto err_mem_region;
}
ret = request_irq(data->irq, exynos_tmu_irq,
IRQF_TRIGGER_RISING, "exynos-tmu", data);
if (ret) {
dev_err(&pdev->dev, "Failed to request irq: %d\n", data->irq);
goto err_io_remap;
}
data->clk = clk_get(NULL, "tmu_apbif");
if (IS_ERR(data->clk)) {
ret = PTR_ERR(data->clk);
dev_err(&pdev->dev, "Failed to get clock\n");
goto err_irq;
}
if (pdata->type == SOC_ARCH_EXYNOS ||
pdata->type == SOC_ARCH_EXYNOS4210)
data->soc = pdata->type;
else {
ret = -EINVAL;
dev_err(&pdev->dev, "Platform not supported\n");
goto err_clk;
}
data->pdata = pdata;
platform_set_drvdata(pdev, data);
mutex_init(&data->lock);
ret = exynos_tmu_initialize(pdev);
if (ret) {
dev_err(&pdev->dev, "Failed to initialize TMU\n");
goto err_clk;
}
exynos_tmu_control(pdev, true);
/* Register the sensor with thermal management interface */
(&exynos_sensor_conf)->private_data = data;
exynos_sensor_conf.trip_data.trip_count = pdata->trigger_level0_en +
pdata->trigger_level1_en + pdata->trigger_level2_en +
pdata->trigger_level3_en;
for (i = 0; i < exynos_sensor_conf.trip_data.trip_count; i++)
exynos_sensor_conf.trip_data.trip_val[i] =
pdata->threshold + pdata->trigger_levels[i];
exynos_sensor_conf.cooling_data.freq_clip_count =
pdata->freq_tab_count;
for (i = 0; i < pdata->freq_tab_count; i++) {
exynos_sensor_conf.cooling_data.freq_data[i].freq_clip_max =
pdata->freq_tab[i].freq_clip_max;
exynos_sensor_conf.cooling_data.freq_data[i].temp_level =
pdata->freq_tab[i].temp_level;
}
ret = exynos_register_thermal(&exynos_sensor_conf);
if (ret) {
dev_err(&pdev->dev, "Failed to register thermal interface\n");
goto err_clk;
}
return 0;
err_clk:
platform_set_drvdata(pdev, NULL);
clk_put(data->clk);
err_irq:
free_irq(data->irq, data);
err_io_remap:
iounmap(data->base);
err_mem_region:
release_mem_region(data->mem->start, resource_size(data->mem));
err_free:
kfree(data);
return ret;
}
static int __devexit exynos_tmu_remove(struct platform_device *pdev)
{
struct exynos_tmu_data *data = platform_get_drvdata(pdev);
exynos_tmu_control(pdev, false);
exynos_unregister_thermal();
clk_put(data->clk);
free_irq(data->irq, data);
iounmap(data->base);
release_mem_region(data->mem->start, resource_size(data->mem));
platform_set_drvdata(pdev, NULL);
kfree(data);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int exynos_tmu_suspend(struct device *dev)
{
exynos_tmu_control(to_platform_device(dev), false);
return 0;
}
static int exynos_tmu_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
exynos_tmu_initialize(pdev);
exynos_tmu_control(pdev, true);
return 0;
}
static SIMPLE_DEV_PM_OPS(exynos_tmu_pm,
exynos_tmu_suspend, exynos_tmu_resume);
#define EXYNOS_TMU_PM (&exynos_tmu_pm)
#else
#define EXYNOS_TMU_PM NULL
#endif
static struct platform_driver exynos_tmu_driver = {
.driver = {
.name = "exynos-tmu",
.owner = THIS_MODULE,
.pm = EXYNOS_TMU_PM,
.of_match_table = exynos_tmu_match,
},
.probe = exynos_tmu_probe,
.remove = __devexit_p(exynos_tmu_remove),
.id_table = exynos_tmu_driver_ids,
};
module_platform_driver(exynos_tmu_driver);
MODULE_DESCRIPTION("EXYNOS TMU Driver");
MODULE_AUTHOR("Donggeun Kim <dg77.kim@samsung.com>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:exynos-tmu");