WSL2-Linux-Kernel/include/linux/prandom.h

130 строки
3.7 KiB
C
Исходник Обычный вид История

/* SPDX-License-Identifier: GPL-2.0 */
/*
* include/linux/prandom.h
*
* Include file for the fast pseudo-random 32-bit
* generation.
*/
#ifndef _LINUX_PRANDOM_H
#define _LINUX_PRANDOM_H
#include <linux/types.h>
#include <linux/percpu.h>
u32 prandom_u32(void);
void prandom_bytes(void *buf, size_t nbytes);
void prandom_seed(u32 seed);
void prandom_reseed_late(void);
random32: add noise from network and scheduling activity With the removal of the interrupt perturbations in previous random32 change (random32: make prandom_u32() output unpredictable), the PRNG has become 100% deterministic again. While SipHash is expected to be way more robust against brute force than the previous Tausworthe LFSR, there's still the risk that whoever has even one temporary access to the PRNG's internal state is able to predict all subsequent draws till the next reseed (roughly every minute). This may happen through a side channel attack or any data leak. This patch restores the spirit of commit f227e3ec3b5c ("random32: update the net random state on interrupt and activity") in that it will perturb the internal PRNG's statee using externally collected noise, except that it will not pick that noise from the random pool's bits nor upon interrupt, but will rather combine a few elements along the Tx path that are collectively hard to predict, such as dev, skb and txq pointers, packet length and jiffies values. These ones are combined using a single round of SipHash into a single long variable that is mixed with the net_rand_state upon each invocation. The operation was inlined because it produces very small and efficient code, typically 3 xor, 2 add and 2 rol. The performance was measured to be the same (even very slightly better) than before the switch to SipHash; on a 6-core 12-thread Core i7-8700k equipped with a 40G NIC (i40e), the connection rate dropped from 556k/s to 555k/s while the SYN cookie rate grew from 5.38 Mpps to 5.45 Mpps. Link: https://lore.kernel.org/netdev/20200808152628.GA27941@SDF.ORG/ Cc: George Spelvin <lkml@sdf.org> Cc: Amit Klein <aksecurity@gmail.com> Cc: Eric Dumazet <edumazet@google.com> Cc: "Jason A. Donenfeld" <Jason@zx2c4.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: tytso@mit.edu Cc: Florian Westphal <fw@strlen.de> Cc: Marc Plumb <lkml.mplumb@gmail.com> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Signed-off-by: Willy Tarreau <w@1wt.eu>
2020-08-10 11:27:42 +03:00
DECLARE_PER_CPU(unsigned long, net_rand_noise);
#define PRANDOM_ADD_NOISE(a, b, c, d) \
prandom_u32_add_noise((unsigned long)(a), (unsigned long)(b), \
(unsigned long)(c), (unsigned long)(d))
random32: make prandom_u32() output unpredictable Non-cryptographic PRNGs may have great statistical properties, but are usually trivially predictable to someone who knows the algorithm, given a small sample of their output. An LFSR like prandom_u32() is particularly simple, even if the sample is widely scattered bits. It turns out the network stack uses prandom_u32() for some things like random port numbers which it would prefer are *not* trivially predictable. Predictability led to a practical DNS spoofing attack. Oops. This patch replaces the LFSR with a homebrew cryptographic PRNG based on the SipHash round function, which is in turn seeded with 128 bits of strong random key. (The authors of SipHash have *not* been consulted about this abuse of their algorithm.) Speed is prioritized over security; attacks are rare, while performance is always wanted. Replacing all callers of prandom_u32() is the quick fix. Whether to reinstate a weaker PRNG for uses which can tolerate it is an open question. Commit f227e3ec3b5c ("random32: update the net random state on interrupt and activity") was an earlier attempt at a solution. This patch replaces it. Reported-by: Amit Klein <aksecurity@gmail.com> Cc: Willy Tarreau <w@1wt.eu> Cc: Eric Dumazet <edumazet@google.com> Cc: "Jason A. Donenfeld" <Jason@zx2c4.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: tytso@mit.edu Cc: Florian Westphal <fw@strlen.de> Cc: Marc Plumb <lkml.mplumb@gmail.com> Fixes: f227e3ec3b5c ("random32: update the net random state on interrupt and activity") Signed-off-by: George Spelvin <lkml@sdf.org> Link: https://lore.kernel.org/netdev/20200808152628.GA27941@SDF.ORG/ [ willy: partial reversal of f227e3ec3b5c; moved SIPROUND definitions to prandom.h for later use; merged George's prandom_seed() proposal; inlined siprand_u32(); replaced the net_rand_state[] array with 4 members to fix a build issue; cosmetic cleanups to make checkpatch happy; fixed RANDOM32_SELFTEST build ] Signed-off-by: Willy Tarreau <w@1wt.eu>
2020-08-09 09:57:44 +03:00
#if BITS_PER_LONG == 64
/*
* The core SipHash round function. Each line can be executed in
* parallel given enough CPU resources.
*/
#define PRND_SIPROUND(v0, v1, v2, v3) ( \
v0 += v1, v1 = rol64(v1, 13), v2 += v3, v3 = rol64(v3, 16), \
v1 ^= v0, v0 = rol64(v0, 32), v3 ^= v2, \
v0 += v3, v3 = rol64(v3, 21), v2 += v1, v1 = rol64(v1, 17), \
v3 ^= v0, v1 ^= v2, v2 = rol64(v2, 32) \
)
#define PRND_K0 (0x736f6d6570736575 ^ 0x6c7967656e657261)
#define PRND_K1 (0x646f72616e646f6d ^ 0x7465646279746573)
#elif BITS_PER_LONG == 32
/*
* On 32-bit machines, we use HSipHash, a reduced-width version of SipHash.
* This is weaker, but 32-bit machines are not used for high-traffic
* applications, so there is less output for an attacker to analyze.
*/
#define PRND_SIPROUND(v0, v1, v2, v3) ( \
v0 += v1, v1 = rol32(v1, 5), v2 += v3, v3 = rol32(v3, 8), \
v1 ^= v0, v0 = rol32(v0, 16), v3 ^= v2, \
v0 += v3, v3 = rol32(v3, 7), v2 += v1, v1 = rol32(v1, 13), \
v3 ^= v0, v1 ^= v2, v2 = rol32(v2, 16) \
)
#define PRND_K0 0x6c796765
#define PRND_K1 0x74656462
#else
#error Unsupported BITS_PER_LONG
#endif
random32: add noise from network and scheduling activity With the removal of the interrupt perturbations in previous random32 change (random32: make prandom_u32() output unpredictable), the PRNG has become 100% deterministic again. While SipHash is expected to be way more robust against brute force than the previous Tausworthe LFSR, there's still the risk that whoever has even one temporary access to the PRNG's internal state is able to predict all subsequent draws till the next reseed (roughly every minute). This may happen through a side channel attack or any data leak. This patch restores the spirit of commit f227e3ec3b5c ("random32: update the net random state on interrupt and activity") in that it will perturb the internal PRNG's statee using externally collected noise, except that it will not pick that noise from the random pool's bits nor upon interrupt, but will rather combine a few elements along the Tx path that are collectively hard to predict, such as dev, skb and txq pointers, packet length and jiffies values. These ones are combined using a single round of SipHash into a single long variable that is mixed with the net_rand_state upon each invocation. The operation was inlined because it produces very small and efficient code, typically 3 xor, 2 add and 2 rol. The performance was measured to be the same (even very slightly better) than before the switch to SipHash; on a 6-core 12-thread Core i7-8700k equipped with a 40G NIC (i40e), the connection rate dropped from 556k/s to 555k/s while the SYN cookie rate grew from 5.38 Mpps to 5.45 Mpps. Link: https://lore.kernel.org/netdev/20200808152628.GA27941@SDF.ORG/ Cc: George Spelvin <lkml@sdf.org> Cc: Amit Klein <aksecurity@gmail.com> Cc: Eric Dumazet <edumazet@google.com> Cc: "Jason A. Donenfeld" <Jason@zx2c4.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: tytso@mit.edu Cc: Florian Westphal <fw@strlen.de> Cc: Marc Plumb <lkml.mplumb@gmail.com> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Signed-off-by: Willy Tarreau <w@1wt.eu>
2020-08-10 11:27:42 +03:00
static inline void prandom_u32_add_noise(unsigned long a, unsigned long b,
unsigned long c, unsigned long d)
{
/*
* This is not used cryptographically; it's just
* a convenient 4-word hash function. (3 xor, 2 add, 2 rol)
*/
a ^= raw_cpu_read(net_rand_noise);
PRND_SIPROUND(a, b, c, d);
raw_cpu_write(net_rand_noise, d);
}
struct rnd_state {
__u32 s1, s2, s3, s4;
};
u32 prandom_u32_state(struct rnd_state *state);
void prandom_bytes_state(struct rnd_state *state, void *buf, size_t nbytes);
void prandom_seed_full_state(struct rnd_state __percpu *pcpu_state);
#define prandom_init_once(pcpu_state) \
DO_ONCE(prandom_seed_full_state, (pcpu_state))
/**
* prandom_u32_max - returns a pseudo-random number in interval [0, ep_ro)
* @ep_ro: right open interval endpoint
*
* Returns a pseudo-random number that is in interval [0, ep_ro). Note
* that the result depends on PRNG being well distributed in [0, ~0U]
* u32 space. Here we use maximally equidistributed combined Tausworthe
* generator, that is, prandom_u32(). This is useful when requesting a
* random index of an array containing ep_ro elements, for example.
*
* Returns: pseudo-random number in interval [0, ep_ro)
*/
static inline u32 prandom_u32_max(u32 ep_ro)
{
return (u32)(((u64) prandom_u32() * ep_ro) >> 32);
}
/*
* Handle minimum values for seeds
*/
static inline u32 __seed(u32 x, u32 m)
{
return (x < m) ? x + m : x;
}
/**
* prandom_seed_state - set seed for prandom_u32_state().
* @state: pointer to state structure to receive the seed.
* @seed: arbitrary 64-bit value to use as a seed.
*/
static inline void prandom_seed_state(struct rnd_state *state, u64 seed)
{
u32 i = (seed >> 32) ^ (seed << 10) ^ seed;
state->s1 = __seed(i, 2U);
state->s2 = __seed(i, 8U);
state->s3 = __seed(i, 16U);
state->s4 = __seed(i, 128U);
random32: add noise from network and scheduling activity With the removal of the interrupt perturbations in previous random32 change (random32: make prandom_u32() output unpredictable), the PRNG has become 100% deterministic again. While SipHash is expected to be way more robust against brute force than the previous Tausworthe LFSR, there's still the risk that whoever has even one temporary access to the PRNG's internal state is able to predict all subsequent draws till the next reseed (roughly every minute). This may happen through a side channel attack or any data leak. This patch restores the spirit of commit f227e3ec3b5c ("random32: update the net random state on interrupt and activity") in that it will perturb the internal PRNG's statee using externally collected noise, except that it will not pick that noise from the random pool's bits nor upon interrupt, but will rather combine a few elements along the Tx path that are collectively hard to predict, such as dev, skb and txq pointers, packet length and jiffies values. These ones are combined using a single round of SipHash into a single long variable that is mixed with the net_rand_state upon each invocation. The operation was inlined because it produces very small and efficient code, typically 3 xor, 2 add and 2 rol. The performance was measured to be the same (even very slightly better) than before the switch to SipHash; on a 6-core 12-thread Core i7-8700k equipped with a 40G NIC (i40e), the connection rate dropped from 556k/s to 555k/s while the SYN cookie rate grew from 5.38 Mpps to 5.45 Mpps. Link: https://lore.kernel.org/netdev/20200808152628.GA27941@SDF.ORG/ Cc: George Spelvin <lkml@sdf.org> Cc: Amit Klein <aksecurity@gmail.com> Cc: Eric Dumazet <edumazet@google.com> Cc: "Jason A. Donenfeld" <Jason@zx2c4.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: tytso@mit.edu Cc: Florian Westphal <fw@strlen.de> Cc: Marc Plumb <lkml.mplumb@gmail.com> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Signed-off-by: Willy Tarreau <w@1wt.eu>
2020-08-10 11:27:42 +03:00
PRANDOM_ADD_NOISE(state, i, 0, 0);
}
/* Pseudo random number generator from numerical recipes. */
static inline u32 next_pseudo_random32(u32 seed)
{
return seed * 1664525 + 1013904223;
}
#endif