WSL2-Linux-Kernel/arch/powerpc/boot/ops.h

257 строки
7.2 KiB
C
Исходник Обычный вид История

/*
* Global definition of all the bootwrapper operations.
*
* Author: Mark A. Greer <mgreer@mvista.com>
*
* 2006 (c) MontaVista Software, Inc. This file is licensed under
* the terms of the GNU General Public License version 2. This program
* is licensed "as is" without any warranty of any kind, whether express
* or implied.
*/
#ifndef _PPC_BOOT_OPS_H_
#define _PPC_BOOT_OPS_H_
#include <stddef.h>
#include "types.h"
#include "string.h"
#define COMMAND_LINE_SIZE 512
#define MAX_PATH_LEN 256
#define MAX_PROP_LEN 256 /* What should this be? */
typedef void (*kernel_entry_t)(unsigned long r3, unsigned long r4, void *r5);
/* Platform specific operations */
struct platform_ops {
void (*fixups)(void);
void (*image_hdr)(const void *);
void * (*malloc)(unsigned long size);
void (*free)(void *ptr);
void * (*realloc)(void *ptr, unsigned long size);
void (*exit)(void);
void * (*vmlinux_alloc)(unsigned long size);
};
extern struct platform_ops platform_ops;
/* Device Tree operations */
struct dt_ops {
void * (*finddevice)(const char *name);
int (*getprop)(const void *phandle, const char *name, void *buf,
const int buflen);
int (*setprop)(const void *phandle, const char *name,
const void *buf, const int buflen);
void *(*get_parent)(const void *phandle);
/* The node must not already exist. */
void *(*create_node)(const void *parent, const char *name);
void *(*find_node_by_prop_value)(const void *prev,
const char *propname,
const char *propval, int proplen);
void *(*find_node_by_compatible)(const void *prev,
const char *compat);
[POWERPC] Cleanup zImage handling of kernel entry with flat device tree This makes 2 changes to clean up the flat device tree handling logic in the zImage wrapper. First, there were two callbacks from the dt_ops structure used for producing a final flat tree to pass to the kerne: dt_ops.ft_pack() which packed the flat tree (possibly a no-op) and dt_ops.ft_addr() which retreived the address of the final blob. Since they were only ever called together, this patch combines the two into a single new callback, dt_ops.finalize(). This new callback does whatever platform-dependent things are necessary to produce a final flat device tree blob, and returns the blob's addres. Second, the current logic calls the kernel with a flat device tree if one is build into the zImage wrapper, otherwise it boots the kernel with a PROM pointer, expecting the kernel to copy the OF device tree itself. This approach precludes the possibility of the platform wrapper code building a flat device tree from whatever platform-specific information firmware provides. Thus, this patch takes the more sensible approach of invoking the kernel with a flat tree if the dt_ops.finalize callback provides one (by whatever means). So, the dt_ops.finalize callback can be NULL, or can be a function which returns NULL. In either case, the zImage wrapper logic assumes that this is a platform with OF and invokes the kernel accordingly. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-11-21 03:37:37 +03:00
unsigned long (*finalize)(void);
char *(*get_path)(const void *phandle, char *buf, int len);
};
extern struct dt_ops dt_ops;
/* Console operations */
struct console_ops {
int (*open)(void);
void (*write)(const char *buf, int len);
void (*edit_cmdline)(char *buf, int len);
void (*close)(void);
void *data;
};
extern struct console_ops console_ops;
/* Serial console operations */
struct serial_console_data {
int (*open)(void);
void (*putc)(unsigned char c);
unsigned char (*getc)(void);
u8 (*tstc)(void);
void (*close)(void);
};
[POWERPC] zImage: Cleanup and improve zImage entry point This patch re-organises the way the zImage wrapper code is entered, to allow more flexibility on platforms with unusual entry conditions. After this patch, a platform .o file has two options: 1) It can define a _zimage_start, in which case the platform code gets control from the very beginning of execution. In this case the platform code is responsible for relocating the zImage if necessary, clearing the BSS, performing any platform specific initialization, and finally calling start() to load and enter the kernel. 2) It can define platform_init(). In this case the generic crt0.S handles initial entry, and calls platform_init() before calling start(). The signature of platform_init() is changed, however, to take up to 5 parameters (in r3..r7) as they come from the platform's initial loader, instead of a fixed set of parameters based on OF's usage. When using the generic crt0.S, the platform .o can optionally supply a custom stack to use, using the BSS_STACK() macro. If this is not supplied, the crt0.S will assume that the loader has supplied a usable stack. In either case, the platform code communicates information to the generic code (specifically, a PROM pointer for OF systems, and/or an initrd image address supplied by the bootloader) via a global structure "loader_info". In addition the wrapper script is rearranged to ensure that the platform .o is always linked first. This means that platforms where the zImage entry point is at a fixed address or offset, rather than being encoded in the binary header can be supported using option (1). Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-03-05 06:24:52 +03:00
struct loader_info {
void *promptr;
unsigned long initrd_addr, initrd_size;
char *cmdline;
int cmdline_len;
[POWERPC] zImage: Cleanup and improve zImage entry point This patch re-organises the way the zImage wrapper code is entered, to allow more flexibility on platforms with unusual entry conditions. After this patch, a platform .o file has two options: 1) It can define a _zimage_start, in which case the platform code gets control from the very beginning of execution. In this case the platform code is responsible for relocating the zImage if necessary, clearing the BSS, performing any platform specific initialization, and finally calling start() to load and enter the kernel. 2) It can define platform_init(). In this case the generic crt0.S handles initial entry, and calls platform_init() before calling start(). The signature of platform_init() is changed, however, to take up to 5 parameters (in r3..r7) as they come from the platform's initial loader, instead of a fixed set of parameters based on OF's usage. When using the generic crt0.S, the platform .o can optionally supply a custom stack to use, using the BSS_STACK() macro. If this is not supplied, the crt0.S will assume that the loader has supplied a usable stack. In either case, the platform code communicates information to the generic code (specifically, a PROM pointer for OF systems, and/or an initrd image address supplied by the bootloader) via a global structure "loader_info". In addition the wrapper script is rearranged to ensure that the platform .o is always linked first. This means that platforms where the zImage entry point is at a fixed address or offset, rather than being encoded in the binary header can be supported using option (1). Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-03-05 06:24:52 +03:00
};
extern struct loader_info loader_info;
void start(void);
void fdt_init(void *blob);
int serial_console_init(void);
int ns16550_console_init(void *devp, struct serial_console_data *scdp);
int mpsc_console_init(void *devp, struct serial_console_data *scdp);
int cpm_console_init(void *devp, struct serial_console_data *scdp);
int mpc5200_psc_console_init(void *devp, struct serial_console_data *scdp);
int uartlite_console_init(void *devp, struct serial_console_data *scdp);
void *simple_alloc_init(char *base, unsigned long heap_size,
unsigned long granularity, unsigned long max_allocs);
extern void flush_cache(void *, unsigned long);
int dt_xlate_reg(void *node, int res, unsigned long *addr, unsigned long *size);
int dt_xlate_addr(void *node, u32 *buf, int buflen, unsigned long *xlated_addr);
int dt_is_compatible(void *node, const char *compat);
void dt_get_reg_format(void *node, u32 *naddr, u32 *nsize);
int dt_get_virtual_reg(void *node, void **addr, int nres);
static inline void *finddevice(const char *name)
{
return (dt_ops.finddevice) ? dt_ops.finddevice(name) : NULL;
}
static inline int getprop(void *devp, const char *name, void *buf, int buflen)
{
return (dt_ops.getprop) ? dt_ops.getprop(devp, name, buf, buflen) : -1;
}
static inline int setprop(void *devp, const char *name,
const void *buf, int buflen)
{
return (dt_ops.setprop) ? dt_ops.setprop(devp, name, buf, buflen) : -1;
}
#define setprop_val(devp, name, val) \
do { \
typeof(val) x = (val); \
setprop((devp), (name), &x, sizeof(x)); \
} while (0)
static inline int setprop_str(void *devp, const char *name, const char *buf)
{
if (dt_ops.setprop)
return dt_ops.setprop(devp, name, buf, strlen(buf) + 1);
return -1;
}
static inline void *get_parent(const char *devp)
{
return dt_ops.get_parent ? dt_ops.get_parent(devp) : NULL;
}
static inline void *create_node(const void *parent, const char *name)
{
return dt_ops.create_node ? dt_ops.create_node(parent, name) : NULL;
}
static inline void *find_node_by_prop_value(const void *prev,
const char *propname,
const char *propval, int proplen)
{
if (dt_ops.find_node_by_prop_value)
return dt_ops.find_node_by_prop_value(prev, propname,
propval, proplen);
return NULL;
}
static inline void *find_node_by_prop_value_str(const void *prev,
const char *propname,
const char *propval)
{
return find_node_by_prop_value(prev, propname, propval,
strlen(propval) + 1);
}
static inline void *find_node_by_devtype(const void *prev,
const char *type)
{
return find_node_by_prop_value_str(prev, "device_type", type);
}
static inline void *find_node_by_alias(const char *alias)
{
void *devp = finddevice("/aliases");
if (devp) {
char path[MAX_PATH_LEN];
if (getprop(devp, alias, path, MAX_PATH_LEN) > 0)
return finddevice(path);
}
return NULL;
}
static inline void *find_node_by_compatible(const void *prev,
const char *compat)
{
if (dt_ops.find_node_by_compatible)
return dt_ops.find_node_by_compatible(prev, compat);
return NULL;
}
void dt_fixup_memory(u64 start, u64 size);
void dt_fixup_cpu_clocks(u32 cpufreq, u32 tbfreq, u32 busfreq);
void dt_fixup_clock(const char *path, u32 freq);
void dt_fixup_mac_address_by_alias(const char *alias, const u8 *addr);
void dt_fixup_mac_address(u32 index, const u8 *addr);
void __dt_fixup_mac_addresses(u32 startindex, ...);
#define dt_fixup_mac_addresses(...) \
__dt_fixup_mac_addresses(0, __VA_ARGS__, NULL)
static inline void *find_node_by_linuxphandle(const u32 linuxphandle)
{
return find_node_by_prop_value(NULL, "linux,phandle",
(char *)&linuxphandle, sizeof(u32));
}
static inline char *get_path(const void *phandle, char *buf, int len)
{
if (dt_ops.get_path)
return dt_ops.get_path(phandle, buf, len);
return NULL;
}
static inline void *malloc(unsigned long size)
{
return (platform_ops.malloc) ? platform_ops.malloc(size) : NULL;
}
static inline void free(void *ptr)
{
if (platform_ops.free)
platform_ops.free(ptr);
}
static inline void exit(void)
{
if (platform_ops.exit)
platform_ops.exit();
for(;;);
}
#define fatal(args...) { printf(args); exit(); }
[POWERPC] zImage: Cleanup and improve zImage entry point This patch re-organises the way the zImage wrapper code is entered, to allow more flexibility on platforms with unusual entry conditions. After this patch, a platform .o file has two options: 1) It can define a _zimage_start, in which case the platform code gets control from the very beginning of execution. In this case the platform code is responsible for relocating the zImage if necessary, clearing the BSS, performing any platform specific initialization, and finally calling start() to load and enter the kernel. 2) It can define platform_init(). In this case the generic crt0.S handles initial entry, and calls platform_init() before calling start(). The signature of platform_init() is changed, however, to take up to 5 parameters (in r3..r7) as they come from the platform's initial loader, instead of a fixed set of parameters based on OF's usage. When using the generic crt0.S, the platform .o can optionally supply a custom stack to use, using the BSS_STACK() macro. If this is not supplied, the crt0.S will assume that the loader has supplied a usable stack. In either case, the platform code communicates information to the generic code (specifically, a PROM pointer for OF systems, and/or an initrd image address supplied by the bootloader) via a global structure "loader_info". In addition the wrapper script is rearranged to ensure that the platform .o is always linked first. This means that platforms where the zImage entry point is at a fixed address or offset, rather than being encoded in the binary header can be supported using option (1). Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-03-05 06:24:52 +03:00
#define BSS_STACK(size) \
static char _bss_stack[size]; \
void *_platform_stack_top = _bss_stack + sizeof(_bss_stack);
extern unsigned long timebase_period_ns;
void udelay(long delay);
extern char _start[];
extern char __bss_start[];
extern char _end[];
extern char _vmlinux_start[];
extern char _vmlinux_end[];
extern char _initrd_start[];
extern char _initrd_end[];
extern char _dtb_start[];
extern char _dtb_end[];
static inline __attribute__((const))
int __ilog2_u32(u32 n)
{
int bit;
asm ("cntlzw %0,%1" : "=r" (bit) : "r" (n));
return 31 - bit;
}
#endif /* _PPC_BOOT_OPS_H_ */