WSL2-Linux-Kernel/drivers/clocksource/timer-fttmr010.c

411 строки
11 KiB
C
Исходник Обычный вид История

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 17:07:57 +03:00
// SPDX-License-Identifier: GPL-2.0
/*
* Faraday Technology FTTMR010 timer driver
* Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
*
* Based on a rewrite of arch/arm/mach-gemini/timer.c:
* Copyright (C) 2001-2006 Storlink, Corp.
* Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
*/
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/clockchips.h>
#include <linux/clocksource.h>
#include <linux/sched_clock.h>
#include <linux/clk.h>
#include <linux/slab.h>
#include <linux/bitops.h>
#include <linux/delay.h>
/*
* Register definitions for the timers
*/
#define TIMER1_COUNT (0x00)
#define TIMER1_LOAD (0x04)
#define TIMER1_MATCH1 (0x08)
#define TIMER1_MATCH2 (0x0c)
#define TIMER2_COUNT (0x10)
#define TIMER2_LOAD (0x14)
#define TIMER2_MATCH1 (0x18)
#define TIMER2_MATCH2 (0x1c)
#define TIMER3_COUNT (0x20)
#define TIMER3_LOAD (0x24)
#define TIMER3_MATCH1 (0x28)
#define TIMER3_MATCH2 (0x2c)
#define TIMER_CR (0x30)
#define TIMER_INTR_STATE (0x34)
#define TIMER_INTR_MASK (0x38)
#define TIMER_1_CR_ENABLE BIT(0)
#define TIMER_1_CR_CLOCK BIT(1)
#define TIMER_1_CR_INT BIT(2)
#define TIMER_2_CR_ENABLE BIT(3)
#define TIMER_2_CR_CLOCK BIT(4)
#define TIMER_2_CR_INT BIT(5)
#define TIMER_3_CR_ENABLE BIT(6)
#define TIMER_3_CR_CLOCK BIT(7)
#define TIMER_3_CR_INT BIT(8)
#define TIMER_1_CR_UPDOWN BIT(9)
#define TIMER_2_CR_UPDOWN BIT(10)
#define TIMER_3_CR_UPDOWN BIT(11)
/*
* The Aspeed AST2400 moves bits around in the control register
* and lacks bits for setting the timer to count upwards.
*/
#define TIMER_1_CR_ASPEED_ENABLE BIT(0)
#define TIMER_1_CR_ASPEED_CLOCK BIT(1)
#define TIMER_1_CR_ASPEED_INT BIT(2)
#define TIMER_2_CR_ASPEED_ENABLE BIT(4)
#define TIMER_2_CR_ASPEED_CLOCK BIT(5)
#define TIMER_2_CR_ASPEED_INT BIT(6)
#define TIMER_3_CR_ASPEED_ENABLE BIT(8)
#define TIMER_3_CR_ASPEED_CLOCK BIT(9)
#define TIMER_3_CR_ASPEED_INT BIT(10)
#define TIMER_1_INT_MATCH1 BIT(0)
#define TIMER_1_INT_MATCH2 BIT(1)
#define TIMER_1_INT_OVERFLOW BIT(2)
#define TIMER_2_INT_MATCH1 BIT(3)
#define TIMER_2_INT_MATCH2 BIT(4)
#define TIMER_2_INT_OVERFLOW BIT(5)
#define TIMER_3_INT_MATCH1 BIT(6)
#define TIMER_3_INT_MATCH2 BIT(7)
#define TIMER_3_INT_OVERFLOW BIT(8)
#define TIMER_INT_ALL_MASK 0x1ff
struct fttmr010 {
void __iomem *base;
unsigned int tick_rate;
bool count_down;
u32 t1_enable_val;
struct clock_event_device clkevt;
#ifdef CONFIG_ARM
struct delay_timer delay_timer;
#endif
};
/*
* A local singleton used by sched_clock and delay timer reads, which are
* fast and stateless
*/
static struct fttmr010 *local_fttmr;
static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
{
return container_of(evt, struct fttmr010, clkevt);
}
static unsigned long fttmr010_read_current_timer_up(void)
{
return readl(local_fttmr->base + TIMER2_COUNT);
}
static unsigned long fttmr010_read_current_timer_down(void)
{
return ~readl(local_fttmr->base + TIMER2_COUNT);
}
static u64 notrace fttmr010_read_sched_clock_up(void)
{
return fttmr010_read_current_timer_up();
}
static u64 notrace fttmr010_read_sched_clock_down(void)
{
return fttmr010_read_current_timer_down();
}
static int fttmr010_timer_set_next_event(unsigned long cycles,
struct clock_event_device *evt)
{
struct fttmr010 *fttmr010 = to_fttmr010(evt);
u32 cr;
/* Stop */
cr = readl(fttmr010->base + TIMER_CR);
cr &= ~fttmr010->t1_enable_val;
writel(cr, fttmr010->base + TIMER_CR);
if (fttmr010->count_down) {
/*
* ASPEED Timer Controller will load TIMER1_LOAD register
* into TIMER1_COUNT register when the timer is re-enabled.
*/
writel(cycles, fttmr010->base + TIMER1_LOAD);
} else {
/* Setup the match register forward in time */
cr = readl(fttmr010->base + TIMER1_COUNT);
writel(cr + cycles, fttmr010->base + TIMER1_MATCH1);
}
/* Start */
cr = readl(fttmr010->base + TIMER_CR);
cr |= fttmr010->t1_enable_val;
writel(cr, fttmr010->base + TIMER_CR);
return 0;
}
static int fttmr010_timer_shutdown(struct clock_event_device *evt)
{
struct fttmr010 *fttmr010 = to_fttmr010(evt);
u32 cr;
/* Stop */
cr = readl(fttmr010->base + TIMER_CR);
cr &= ~fttmr010->t1_enable_val;
writel(cr, fttmr010->base + TIMER_CR);
return 0;
}
static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
{
struct fttmr010 *fttmr010 = to_fttmr010(evt);
u32 cr;
/* Stop */
cr = readl(fttmr010->base + TIMER_CR);
cr &= ~fttmr010->t1_enable_val;
writel(cr, fttmr010->base + TIMER_CR);
/* Setup counter start from 0 or ~0 */
writel(0, fttmr010->base + TIMER1_COUNT);
if (fttmr010->count_down)
writel(~0, fttmr010->base + TIMER1_LOAD);
else
writel(0, fttmr010->base + TIMER1_LOAD);
/* Enable interrupt */
cr = readl(fttmr010->base + TIMER_INTR_MASK);
cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
cr |= TIMER_1_INT_MATCH1;
writel(cr, fttmr010->base + TIMER_INTR_MASK);
return 0;
}
static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
{
struct fttmr010 *fttmr010 = to_fttmr010(evt);
u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
u32 cr;
/* Stop */
cr = readl(fttmr010->base + TIMER_CR);
cr &= ~fttmr010->t1_enable_val;
writel(cr, fttmr010->base + TIMER_CR);
/* Setup timer to fire at 1/HZ intervals. */
if (fttmr010->count_down) {
writel(period, fttmr010->base + TIMER1_LOAD);
writel(0, fttmr010->base + TIMER1_MATCH1);
} else {
cr = 0xffffffff - (period - 1);
writel(cr, fttmr010->base + TIMER1_COUNT);
writel(cr, fttmr010->base + TIMER1_LOAD);
/* Enable interrupt on overflow */
cr = readl(fttmr010->base + TIMER_INTR_MASK);
cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
cr |= TIMER_1_INT_OVERFLOW;
writel(cr, fttmr010->base + TIMER_INTR_MASK);
}
/* Start the timer */
cr = readl(fttmr010->base + TIMER_CR);
cr |= fttmr010->t1_enable_val;
writel(cr, fttmr010->base + TIMER_CR);
return 0;
}
/*
* IRQ handler for the timer
*/
static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
{
struct clock_event_device *evt = dev_id;
evt->event_handler(evt);
return IRQ_HANDLED;
}
static int __init fttmr010_common_init(struct device_node *np, bool is_aspeed)
{
struct fttmr010 *fttmr010;
int irq;
struct clk *clk;
int ret;
u32 val;
/*
* These implementations require a clock reference.
* FIXME: we currently only support clocking using PCLK
* and using EXTCLK is not supported in the driver.
*/
clk = of_clk_get_by_name(np, "PCLK");
if (IS_ERR(clk)) {
pr_err("could not get PCLK\n");
return PTR_ERR(clk);
}
ret = clk_prepare_enable(clk);
if (ret) {
pr_err("failed to enable PCLK\n");
return ret;
}
fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
if (!fttmr010) {
ret = -ENOMEM;
goto out_disable_clock;
}
fttmr010->tick_rate = clk_get_rate(clk);
fttmr010->base = of_iomap(np, 0);
if (!fttmr010->base) {
pr_err("Can't remap registers\n");
ret = -ENXIO;
goto out_free;
}
/* IRQ for timer 1 */
irq = irq_of_parse_and_map(np, 0);
if (irq <= 0) {
pr_err("Can't parse IRQ\n");
ret = -EINVAL;
goto out_unmap;
}
/*
* The Aspeed AST2400 moves bits around in the control register,
* otherwise it works the same.
*/
if (is_aspeed) {
fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
TIMER_1_CR_ASPEED_INT;
/* Downward not available */
fttmr010->count_down = true;
} else {
fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
}
/*
* Reset the interrupt mask and status
*/
writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
writel(0, fttmr010->base + TIMER_INTR_STATE);
/*
* Enable timer 1 count up, timer 2 count up, except on Aspeed,
* where everything just counts down.
*/
if (is_aspeed)
val = TIMER_2_CR_ASPEED_ENABLE;
else {
val = TIMER_2_CR_ENABLE;
if (!fttmr010->count_down)
val |= TIMER_1_CR_UPDOWN | TIMER_2_CR_UPDOWN;
}
writel(val, fttmr010->base + TIMER_CR);
/*
* Setup free-running clocksource timer (interrupts
* disabled.)
*/
local_fttmr = fttmr010;
writel(0, fttmr010->base + TIMER2_COUNT);
writel(0, fttmr010->base + TIMER2_MATCH1);
writel(0, fttmr010->base + TIMER2_MATCH2);
if (fttmr010->count_down) {
writel(~0, fttmr010->base + TIMER2_LOAD);
clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
"FTTMR010-TIMER2",
fttmr010->tick_rate,
300, 32, clocksource_mmio_readl_down);
sched_clock_register(fttmr010_read_sched_clock_down, 32,
fttmr010->tick_rate);
} else {
writel(0, fttmr010->base + TIMER2_LOAD);
clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
"FTTMR010-TIMER2",
fttmr010->tick_rate,
300, 32, clocksource_mmio_readl_up);
sched_clock_register(fttmr010_read_sched_clock_up, 32,
fttmr010->tick_rate);
}
/*
* Setup clockevent timer (interrupt-driven) on timer 1.
*/
writel(0, fttmr010->base + TIMER1_COUNT);
writel(0, fttmr010->base + TIMER1_LOAD);
writel(0, fttmr010->base + TIMER1_MATCH1);
writel(0, fttmr010->base + TIMER1_MATCH2);
ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER,
"FTTMR010-TIMER1", &fttmr010->clkevt);
if (ret) {
pr_err("FTTMR010-TIMER1 no IRQ\n");
goto out_unmap;
}
fttmr010->clkevt.name = "FTTMR010-TIMER1";
/* Reasonably fast and accurate clock event */
fttmr010->clkevt.rating = 300;
fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
CLOCK_EVT_FEAT_ONESHOT;
fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown;
fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown;
fttmr010->clkevt.cpumask = cpumask_of(0);
fttmr010->clkevt.irq = irq;
clockevents_config_and_register(&fttmr010->clkevt,
fttmr010->tick_rate,
1, 0xffffffff);
#ifdef CONFIG_ARM
/* Also use this timer for delays */
if (fttmr010->count_down)
fttmr010->delay_timer.read_current_timer =
fttmr010_read_current_timer_down;
else
fttmr010->delay_timer.read_current_timer =
fttmr010_read_current_timer_up;
fttmr010->delay_timer.freq = fttmr010->tick_rate;
register_current_timer_delay(&fttmr010->delay_timer);
#endif
return 0;
out_unmap:
iounmap(fttmr010->base);
out_free:
kfree(fttmr010);
out_disable_clock:
clk_disable_unprepare(clk);
return ret;
}
static __init int aspeed_timer_init(struct device_node *np)
{
return fttmr010_common_init(np, true);
}
static __init int fttmr010_timer_init(struct device_node *np)
{
return fttmr010_common_init(np, false);
}
TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);