WSL2-Linux-Kernel/drivers/lightnvm/sysblk.c

746 строки
17 KiB
C
Исходник Обычный вид История

/*
* Copyright (C) 2015 Matias Bjorling. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
* USA.
*
*/
#include <linux/lightnvm.h>
#define MAX_SYSBLKS 3 /* remember to update mapping scheme on change */
#define MAX_BLKS_PR_SYSBLK 2 /* 2 blks with 256 pages and 3000 erases
* enables ~1.5M updates per sysblk unit
*/
struct sysblk_scan {
/* A row is a collection of flash blocks for a system block. */
int nr_rows;
int row;
int act_blk[MAX_SYSBLKS];
int nr_ppas;
struct ppa_addr ppas[MAX_SYSBLKS * MAX_BLKS_PR_SYSBLK];/* all sysblks */
};
static inline int scan_ppa_idx(int row, int blkid)
{
return (row * MAX_BLKS_PR_SYSBLK) + blkid;
}
static void nvm_sysblk_to_cpu(struct nvm_sb_info *info,
struct nvm_system_block *sb)
{
info->seqnr = be32_to_cpu(sb->seqnr);
info->erase_cnt = be32_to_cpu(sb->erase_cnt);
info->version = be16_to_cpu(sb->version);
strncpy(info->mmtype, sb->mmtype, NVM_MMTYPE_LEN);
info->fs_ppa.ppa = be64_to_cpu(sb->fs_ppa);
}
static void nvm_cpu_to_sysblk(struct nvm_system_block *sb,
struct nvm_sb_info *info)
{
sb->magic = cpu_to_be32(NVM_SYSBLK_MAGIC);
sb->seqnr = cpu_to_be32(info->seqnr);
sb->erase_cnt = cpu_to_be32(info->erase_cnt);
sb->version = cpu_to_be16(info->version);
strncpy(sb->mmtype, info->mmtype, NVM_MMTYPE_LEN);
sb->fs_ppa = cpu_to_be64(info->fs_ppa.ppa);
}
static int nvm_setup_sysblks(struct nvm_dev *dev, struct ppa_addr *sysblk_ppas)
{
int nr_rows = min_t(int, MAX_SYSBLKS, dev->nr_chnls);
int i;
for (i = 0; i < nr_rows; i++)
sysblk_ppas[i].ppa = 0;
/* if possible, place sysblk at first channel, middle channel and last
* channel of the device. If not, create only one or two sys blocks
*/
switch (dev->nr_chnls) {
case 2:
sysblk_ppas[1].g.ch = 1;
/* fall-through */
case 1:
sysblk_ppas[0].g.ch = 0;
break;
default:
sysblk_ppas[0].g.ch = 0;
sysblk_ppas[1].g.ch = dev->nr_chnls / 2;
sysblk_ppas[2].g.ch = dev->nr_chnls - 1;
break;
}
return nr_rows;
}
static void nvm_setup_sysblk_scan(struct nvm_dev *dev, struct sysblk_scan *s,
struct ppa_addr *sysblk_ppas)
{
memset(s, 0, sizeof(struct sysblk_scan));
s->nr_rows = nvm_setup_sysblks(dev, sysblk_ppas);
}
static int sysblk_get_free_blks(struct nvm_dev *dev, struct ppa_addr ppa,
u8 *blks, int nr_blks,
struct sysblk_scan *s)
{
struct ppa_addr *sppa;
int i, blkid = 0;
nr_blks = nvm_bb_tbl_fold(dev, blks, nr_blks);
if (nr_blks < 0)
return nr_blks;
for (i = 0; i < nr_blks; i++) {
if (blks[i] == NVM_BLK_T_HOST)
return -EEXIST;
if (blks[i] != NVM_BLK_T_FREE)
continue;
sppa = &s->ppas[scan_ppa_idx(s->row, blkid)];
sppa->g.ch = ppa.g.ch;
sppa->g.lun = ppa.g.lun;
sppa->g.blk = i;
s->nr_ppas++;
blkid++;
pr_debug("nvm: use (%u %u %u) as sysblk\n",
sppa->g.ch, sppa->g.lun, sppa->g.blk);
if (blkid > MAX_BLKS_PR_SYSBLK - 1)
return 0;
}
pr_err("nvm: sysblk failed get sysblk\n");
return -EINVAL;
}
static int sysblk_get_host_blks(struct nvm_dev *dev, struct ppa_addr ppa,
u8 *blks, int nr_blks,
struct sysblk_scan *s)
{
int i, nr_sysblk = 0;
nr_blks = nvm_bb_tbl_fold(dev, blks, nr_blks);
if (nr_blks < 0)
return nr_blks;
for (i = 0; i < nr_blks; i++) {
if (blks[i] != NVM_BLK_T_HOST)
continue;
if (s->nr_ppas == MAX_BLKS_PR_SYSBLK * MAX_SYSBLKS) {
pr_err("nvm: too many host blks\n");
return -EINVAL;
}
ppa.g.blk = i;
s->ppas[scan_ppa_idx(s->row, nr_sysblk)] = ppa;
s->nr_ppas++;
nr_sysblk++;
}
return 0;
}
static int nvm_get_all_sysblks(struct nvm_dev *dev, struct sysblk_scan *s,
struct ppa_addr *ppas, int get_free)
{
int i, nr_blks, ret = 0;
u8 *blks;
s->nr_ppas = 0;
nr_blks = dev->blks_per_lun * dev->plane_mode;
blks = kmalloc(nr_blks, GFP_KERNEL);
if (!blks)
return -ENOMEM;
for (i = 0; i < s->nr_rows; i++) {
s->row = i;
ret = nvm_get_bb_tbl(dev, ppas[i], blks);
if (ret) {
pr_err("nvm: failed bb tbl for ppa (%u %u)\n",
ppas[i].g.ch,
ppas[i].g.blk);
goto err_get;
}
if (get_free)
ret = sysblk_get_free_blks(dev, ppas[i], blks, nr_blks,
s);
else
ret = sysblk_get_host_blks(dev, ppas[i], blks, nr_blks,
s);
if (ret)
goto err_get;
}
err_get:
kfree(blks);
return ret;
}
/*
* scans a block for latest sysblk.
* Returns:
* 0 - newer sysblk not found. PPA is updated to latest page.
* 1 - newer sysblk found and stored in *cur. PPA is updated to
* next valid page.
* <0- error.
*/
static int nvm_scan_block(struct nvm_dev *dev, struct ppa_addr *ppa,
struct nvm_system_block *sblk)
{
struct nvm_system_block *cur;
int pg, ret, found = 0;
/* the full buffer for a flash page is allocated. Only the first of it
* contains the system block information
*/
cur = kmalloc(dev->pfpg_size, GFP_KERNEL);
if (!cur)
return -ENOMEM;
/* perform linear scan through the block */
for (pg = 0; pg < dev->lps_per_blk; pg++) {
ppa->g.pg = ppa_to_slc(dev, pg);
ret = nvm_submit_ppa(dev, ppa, 1, NVM_OP_PREAD, NVM_IO_SLC_MODE,
cur, dev->pfpg_size);
if (ret) {
if (ret == NVM_RSP_ERR_EMPTYPAGE) {
pr_debug("nvm: sysblk scan empty ppa (%u %u %u %u)\n",
ppa->g.ch,
ppa->g.lun,
ppa->g.blk,
ppa->g.pg);
break;
}
pr_err("nvm: read failed (%x) for ppa (%u %u %u %u)",
ret,
ppa->g.ch,
ppa->g.lun,
ppa->g.blk,
ppa->g.pg);
break; /* if we can't read a page, continue to the
* next blk
*/
}
if (be32_to_cpu(cur->magic) != NVM_SYSBLK_MAGIC) {
pr_debug("nvm: scan break for ppa (%u %u %u %u)\n",
ppa->g.ch,
ppa->g.lun,
ppa->g.blk,
ppa->g.pg);
break; /* last valid page already found */
}
if (be32_to_cpu(cur->seqnr) < be32_to_cpu(sblk->seqnr))
continue;
memcpy(sblk, cur, sizeof(struct nvm_system_block));
found = 1;
}
kfree(cur);
return found;
}
static int nvm_set_bb_tbl(struct nvm_dev *dev, struct sysblk_scan *s, int type)
{
struct nvm_rq rqd;
int ret;
if (s->nr_ppas > dev->ops->max_phys_sect) {
pr_err("nvm: unable to update all sysblocks atomically\n");
return -EINVAL;
}
memset(&rqd, 0, sizeof(struct nvm_rq));
nvm_set_rqd_ppalist(dev, &rqd, s->ppas, s->nr_ppas, 1);
nvm_generic_to_addr_mode(dev, &rqd);
ret = dev->ops->set_bb_tbl(dev, &rqd.ppa_addr, rqd.nr_ppas, type);
nvm_free_rqd_ppalist(dev, &rqd);
if (ret) {
pr_err("nvm: sysblk failed bb mark\n");
return -EINVAL;
}
return 0;
}
static int nvm_write_and_verify(struct nvm_dev *dev, struct nvm_sb_info *info,
struct sysblk_scan *s)
{
struct nvm_system_block nvmsb;
void *buf;
int i, sect, ret = 0;
struct ppa_addr *ppas;
nvm_cpu_to_sysblk(&nvmsb, info);
buf = kzalloc(dev->pfpg_size, GFP_KERNEL);
if (!buf)
return -ENOMEM;
memcpy(buf, &nvmsb, sizeof(struct nvm_system_block));
ppas = kcalloc(dev->sec_per_pg, sizeof(struct ppa_addr), GFP_KERNEL);
if (!ppas) {
ret = -ENOMEM;
goto err;
}
/* Write and verify */
for (i = 0; i < s->nr_rows; i++) {
ppas[0] = s->ppas[scan_ppa_idx(i, s->act_blk[i])];
pr_debug("nvm: writing sysblk to ppa (%u %u %u %u)\n",
ppas[0].g.ch,
ppas[0].g.lun,
ppas[0].g.blk,
ppas[0].g.pg);
/* Expand to all sectors within a flash page */
if (dev->sec_per_pg > 1) {
for (sect = 1; sect < dev->sec_per_pg; sect++) {
ppas[sect].ppa = ppas[0].ppa;
ppas[sect].g.sec = sect;
}
}
ret = nvm_submit_ppa(dev, ppas, dev->sec_per_pg, NVM_OP_PWRITE,
NVM_IO_SLC_MODE, buf, dev->pfpg_size);
if (ret) {
pr_err("nvm: sysblk failed program (%u %u %u)\n",
ppas[0].g.ch,
ppas[0].g.lun,
ppas[0].g.blk);
break;
}
ret = nvm_submit_ppa(dev, ppas, dev->sec_per_pg, NVM_OP_PREAD,
NVM_IO_SLC_MODE, buf, dev->pfpg_size);
if (ret) {
pr_err("nvm: sysblk failed read (%u %u %u)\n",
ppas[0].g.ch,
ppas[0].g.lun,
ppas[0].g.blk);
break;
}
if (memcmp(buf, &nvmsb, sizeof(struct nvm_system_block))) {
pr_err("nvm: sysblk failed verify (%u %u %u)\n",
ppas[0].g.ch,
ppas[0].g.lun,
ppas[0].g.blk);
ret = -EINVAL;
break;
}
}
kfree(ppas);
err:
kfree(buf);
return ret;
}
static int nvm_prepare_new_sysblks(struct nvm_dev *dev, struct sysblk_scan *s)
{
int i, ret;
unsigned long nxt_blk;
struct ppa_addr *ppa;
for (i = 0; i < s->nr_rows; i++) {
nxt_blk = (s->act_blk[i] + 1) % MAX_BLKS_PR_SYSBLK;
ppa = &s->ppas[scan_ppa_idx(i, nxt_blk)];
ppa->g.pg = ppa_to_slc(dev, 0);
ret = nvm_erase_ppa(dev, ppa, 1);
if (ret)
return ret;
s->act_blk[i] = nxt_blk;
}
return 0;
}
int nvm_get_sysblock(struct nvm_dev *dev, struct nvm_sb_info *info)
{
struct ppa_addr sysblk_ppas[MAX_SYSBLKS];
struct sysblk_scan s;
struct nvm_system_block *cur;
int i, j, found = 0;
int ret = -ENOMEM;
/*
* 1. setup sysblk locations
* 2. get bad block list
* 3. filter on host-specific (type 3)
* 4. iterate through all and find the highest seq nr.
* 5. return superblock information
*/
if (!dev->ops->get_bb_tbl)
return -EINVAL;
nvm_setup_sysblk_scan(dev, &s, sysblk_ppas);
mutex_lock(&dev->mlock);
ret = nvm_get_all_sysblks(dev, &s, sysblk_ppas, 0);
if (ret)
goto err_sysblk;
/* no sysblocks initialized */
if (!s.nr_ppas)
goto err_sysblk;
cur = kzalloc(sizeof(struct nvm_system_block), GFP_KERNEL);
if (!cur)
goto err_sysblk;
/* find the latest block across all sysblocks */
for (i = 0; i < s.nr_rows; i++) {
for (j = 0; j < MAX_BLKS_PR_SYSBLK; j++) {
struct ppa_addr ppa = s.ppas[scan_ppa_idx(i, j)];
ret = nvm_scan_block(dev, &ppa, cur);
if (ret > 0)
found = 1;
else if (ret < 0)
break;
}
}
nvm_sysblk_to_cpu(info, cur);
kfree(cur);
err_sysblk:
mutex_unlock(&dev->mlock);
if (found)
return 1;
return ret;
}
int nvm_update_sysblock(struct nvm_dev *dev, struct nvm_sb_info *new)
{
/* 1. for each latest superblock
* 2. if room
* a. write new flash page entry with the updated information
* 3. if no room
* a. find next available block on lun (linear search)
* if none, continue to next lun
* if none at all, report error. also report that it wasn't
* possible to write to all superblocks.
* c. write data to block.
*/
struct ppa_addr sysblk_ppas[MAX_SYSBLKS];
struct sysblk_scan s;
struct nvm_system_block *cur;
int i, j, ppaidx, found = 0;
int ret = -ENOMEM;
if (!dev->ops->get_bb_tbl)
return -EINVAL;
nvm_setup_sysblk_scan(dev, &s, sysblk_ppas);
mutex_lock(&dev->mlock);
ret = nvm_get_all_sysblks(dev, &s, sysblk_ppas, 0);
if (ret)
goto err_sysblk;
cur = kzalloc(sizeof(struct nvm_system_block), GFP_KERNEL);
if (!cur)
goto err_sysblk;
/* Get the latest sysblk for each sysblk row */
for (i = 0; i < s.nr_rows; i++) {
found = 0;
for (j = 0; j < MAX_BLKS_PR_SYSBLK; j++) {
ppaidx = scan_ppa_idx(i, j);
ret = nvm_scan_block(dev, &s.ppas[ppaidx], cur);
if (ret > 0) {
s.act_blk[i] = j;
found = 1;
} else if (ret < 0)
break;
}
}
if (!found) {
pr_err("nvm: no valid sysblks found to update\n");
ret = -EINVAL;
goto err_cur;
}
/*
* All sysblocks found. Check that they have same page id in their flash
* blocks
*/
for (i = 1; i < s.nr_rows; i++) {
struct ppa_addr l = s.ppas[scan_ppa_idx(0, s.act_blk[0])];
struct ppa_addr r = s.ppas[scan_ppa_idx(i, s.act_blk[i])];
if (l.g.pg != r.g.pg) {
pr_err("nvm: sysblks not on same page. Previous update failed.\n");
ret = -EINVAL;
goto err_cur;
}
}
/*
* Check that there haven't been another update to the seqnr since we
* began
*/
if ((new->seqnr - 1) != be32_to_cpu(cur->seqnr)) {
pr_err("nvm: seq is not sequential\n");
ret = -EINVAL;
goto err_cur;
}
/*
* When all pages in a block has been written, a new block is selected
* and writing is performed on the new block.
*/
if (s.ppas[scan_ppa_idx(0, s.act_blk[0])].g.pg ==
dev->lps_per_blk - 1) {
ret = nvm_prepare_new_sysblks(dev, &s);
if (ret)
goto err_cur;
}
ret = nvm_write_and_verify(dev, new, &s);
err_cur:
kfree(cur);
err_sysblk:
mutex_unlock(&dev->mlock);
return ret;
}
int nvm_init_sysblock(struct nvm_dev *dev, struct nvm_sb_info *info)
{
struct ppa_addr sysblk_ppas[MAX_SYSBLKS];
struct sysblk_scan s;
int ret;
/*
* 1. select master blocks and select first available blks
* 2. get bad block list
* 3. mark MAX_SYSBLKS block as host-based device allocated.
* 4. write and verify data to block
*/
if (!dev->ops->get_bb_tbl || !dev->ops->set_bb_tbl)
return -EINVAL;
if (!(dev->mccap & NVM_ID_CAP_SLC) || !dev->lps_per_blk) {
pr_err("nvm: memory does not support SLC access\n");
return -EINVAL;
}
/* Index all sysblocks and mark them as host-driven */
nvm_setup_sysblk_scan(dev, &s, sysblk_ppas);
mutex_lock(&dev->mlock);
ret = nvm_get_all_sysblks(dev, &s, sysblk_ppas, 1);
if (ret)
goto err_mark;
ret = nvm_set_bb_tbl(dev, &s, NVM_BLK_T_HOST);
if (ret)
goto err_mark;
/* Write to the first block of each row */
ret = nvm_write_and_verify(dev, info, &s);
err_mark:
mutex_unlock(&dev->mlock);
return ret;
}
static int factory_nblks(int nblks)
{
/* Round up to nearest BITS_PER_LONG */
return (nblks + (BITS_PER_LONG - 1)) & ~(BITS_PER_LONG - 1);
}
static unsigned int factory_blk_offset(struct nvm_dev *dev, struct ppa_addr ppa)
{
int nblks = factory_nblks(dev->blks_per_lun);
return ((ppa.g.ch * dev->luns_per_chnl * nblks) + (ppa.g.lun * nblks)) /
BITS_PER_LONG;
}
static int nvm_factory_blks(struct nvm_dev *dev, struct ppa_addr ppa,
u8 *blks, int nr_blks,
unsigned long *blk_bitmap, int flags)
{
int i, lunoff;
nr_blks = nvm_bb_tbl_fold(dev, blks, nr_blks);
if (nr_blks < 0)
return nr_blks;
lunoff = factory_blk_offset(dev, ppa);
/* non-set bits correspond to the block must be erased */
for (i = 0; i < nr_blks; i++) {
switch (blks[i]) {
case NVM_BLK_T_FREE:
if (flags & NVM_FACTORY_ERASE_ONLY_USER)
set_bit(i, &blk_bitmap[lunoff]);
break;
case NVM_BLK_T_HOST:
if (!(flags & NVM_FACTORY_RESET_HOST_BLKS))
set_bit(i, &blk_bitmap[lunoff]);
break;
case NVM_BLK_T_GRWN_BAD:
if (!(flags & NVM_FACTORY_RESET_GRWN_BBLKS))
set_bit(i, &blk_bitmap[lunoff]);
break;
default:
set_bit(i, &blk_bitmap[lunoff]);
break;
}
}
return 0;
}
static int nvm_fact_get_blks(struct nvm_dev *dev, struct ppa_addr *erase_list,
int max_ppas, unsigned long *blk_bitmap)
{
struct ppa_addr ppa;
int ch, lun, blkid, idx, done = 0, ppa_cnt = 0;
unsigned long *offset;
while (!done) {
done = 1;
nvm_for_each_lun_ppa(dev, ppa, ch, lun) {
idx = factory_blk_offset(dev, ppa);
offset = &blk_bitmap[idx];
blkid = find_first_zero_bit(offset,
dev->blks_per_lun);
if (blkid >= dev->blks_per_lun)
continue;
set_bit(blkid, offset);
ppa.g.blk = blkid;
pr_debug("nvm: erase ppa (%u %u %u)\n",
ppa.g.ch,
ppa.g.lun,
ppa.g.blk);
erase_list[ppa_cnt] = ppa;
ppa_cnt++;
done = 0;
if (ppa_cnt == max_ppas)
return ppa_cnt;
}
}
return ppa_cnt;
}
static int nvm_fact_select_blks(struct nvm_dev *dev, unsigned long *blk_bitmap,
int flags)
{
struct ppa_addr ppa;
int ch, lun, nr_blks, ret = 0;
u8 *blks;
nr_blks = dev->blks_per_lun * dev->plane_mode;
blks = kmalloc(nr_blks, GFP_KERNEL);
if (!blks)
return -ENOMEM;
nvm_for_each_lun_ppa(dev, ppa, ch, lun) {
ret = nvm_get_bb_tbl(dev, ppa, blks);
if (ret)
pr_err("nvm: failed bb tbl for ch%u lun%u\n",
ppa.g.ch, ppa.g.blk);
ret = nvm_factory_blks(dev, ppa, blks, nr_blks, blk_bitmap,
flags);
if (ret)
break;
}
kfree(blks);
return ret;
}
int nvm_dev_factory(struct nvm_dev *dev, int flags)
{
struct ppa_addr *ppas;
int ppa_cnt, ret = -ENOMEM;
int max_ppas = dev->ops->max_phys_sect / dev->nr_planes;
struct ppa_addr sysblk_ppas[MAX_SYSBLKS];
struct sysblk_scan s;
unsigned long *blk_bitmap;
blk_bitmap = kzalloc(factory_nblks(dev->blks_per_lun) * dev->nr_luns,
GFP_KERNEL);
if (!blk_bitmap)
return ret;
ppas = kcalloc(max_ppas, sizeof(struct ppa_addr), GFP_KERNEL);
if (!ppas)
goto err_blks;
/* create list of blks to be erased */
ret = nvm_fact_select_blks(dev, blk_bitmap, flags);
if (ret)
goto err_ppas;
/* continue to erase until list of blks until empty */
while ((ppa_cnt =
nvm_fact_get_blks(dev, ppas, max_ppas, blk_bitmap)) > 0)
nvm_erase_ppa(dev, ppas, ppa_cnt);
/* mark host reserved blocks free */
if (flags & NVM_FACTORY_RESET_HOST_BLKS) {
nvm_setup_sysblk_scan(dev, &s, sysblk_ppas);
mutex_lock(&dev->mlock);
ret = nvm_get_all_sysblks(dev, &s, sysblk_ppas, 0);
if (!ret)
ret = nvm_set_bb_tbl(dev, &s, NVM_BLK_T_FREE);
mutex_unlock(&dev->mlock);
}
err_ppas:
kfree(ppas);
err_blks:
kfree(blk_bitmap);
return ret;
}
EXPORT_SYMBOL(nvm_dev_factory);