WSL2-Linux-Kernel/net/x25/x25_route.c

205 строки
4.2 KiB
C
Исходник Обычный вид История

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* X.25 Packet Layer release 002
*
* This is ALPHA test software. This code may break your machine,
* randomly fail to work with new releases, misbehave and/or generally
* screw up. It might even work.
*
* This code REQUIRES 2.1.15 or higher
*
* History
* X.25 001 Jonathan Naylor Started coding.
*/
#include <linux/if_arp.h>
#include <linux/init.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
#include <linux/slab.h>
#include <net/x25.h>
LIST_HEAD(x25_route_list);
DEFINE_RWLOCK(x25_route_list_lock);
/*
* Add a new route.
*/
static int x25_add_route(struct x25_address *address, unsigned int sigdigits,
struct net_device *dev)
{
struct x25_route *rt;
int rc = -EINVAL;
write_lock_bh(&x25_route_list_lock);
list_for_each_entry(rt, &x25_route_list, node) {
if (!memcmp(&rt->address, address, sigdigits) &&
rt->sigdigits == sigdigits)
goto out;
}
rt = kmalloc(sizeof(*rt), GFP_ATOMIC);
rc = -ENOMEM;
if (!rt)
goto out;
strcpy(rt->address.x25_addr, "000000000000000");
memcpy(rt->address.x25_addr, address->x25_addr, sigdigits);
rt->sigdigits = sigdigits;
rt->dev = dev;
refcount_set(&rt->refcnt, 1);
list_add(&rt->node, &x25_route_list);
rc = 0;
out:
write_unlock_bh(&x25_route_list_lock);
return rc;
}
/**
* __x25_remove_route - remove route from x25_route_list
* @rt: route to remove
*
* Remove route from x25_route_list. If it was there.
* Caller must hold x25_route_list_lock.
*/
static void __x25_remove_route(struct x25_route *rt)
{
if (rt->node.next) {
list_del(&rt->node);
x25_route_put(rt);
}
}
static int x25_del_route(struct x25_address *address, unsigned int sigdigits,
struct net_device *dev)
{
struct x25_route *rt;
int rc = -EINVAL;
write_lock_bh(&x25_route_list_lock);
list_for_each_entry(rt, &x25_route_list, node) {
if (!memcmp(&rt->address, address, sigdigits) &&
rt->sigdigits == sigdigits && rt->dev == dev) {
__x25_remove_route(rt);
rc = 0;
break;
}
}
write_unlock_bh(&x25_route_list_lock);
return rc;
}
/*
* A device has been removed, remove its routes.
*/
void x25_route_device_down(struct net_device *dev)
{
struct x25_route *rt;
struct list_head *entry, *tmp;
write_lock_bh(&x25_route_list_lock);
list_for_each_safe(entry, tmp, &x25_route_list) {
rt = list_entry(entry, struct x25_route, node);
if (rt->dev == dev)
__x25_remove_route(rt);
}
write_unlock_bh(&x25_route_list_lock);
}
/*
* Check that the device given is a valid X.25 interface that is "up".
*/
struct net_device *x25_dev_get(char *devname)
{
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-17 22:56:21 +04:00
struct net_device *dev = dev_get_by_name(&init_net, devname);
if (dev && (!(dev->flags & IFF_UP) || dev->type != ARPHRD_X25)) {
dev_put(dev);
dev = NULL;
}
return dev;
}
/**
* x25_get_route - Find a route given an X.25 address.
* @addr: - address to find a route for
*
* Find a route given an X.25 address.
*/
struct x25_route *x25_get_route(struct x25_address *addr)
{
struct x25_route *rt, *use = NULL;
read_lock_bh(&x25_route_list_lock);
list_for_each_entry(rt, &x25_route_list, node) {
if (!memcmp(&rt->address, addr, rt->sigdigits)) {
if (!use)
use = rt;
else if (rt->sigdigits > use->sigdigits)
use = rt;
}
}
if (use)
x25_route_hold(use);
read_unlock_bh(&x25_route_list_lock);
return use;
}
/*
* Handle the ioctls that control the routing functions.
*/
int x25_route_ioctl(unsigned int cmd, void __user *arg)
{
struct x25_route_struct rt;
struct net_device *dev;
int rc = -EINVAL;
if (cmd != SIOCADDRT && cmd != SIOCDELRT)
goto out;
rc = -EFAULT;
if (copy_from_user(&rt, arg, sizeof(rt)))
goto out;
rc = -EINVAL;
if (rt.sigdigits > 15)
goto out;
dev = x25_dev_get(rt.device);
if (!dev)
goto out;
if (cmd == SIOCADDRT)
rc = x25_add_route(&rt.address, rt.sigdigits, dev);
else
rc = x25_del_route(&rt.address, rt.sigdigits, dev);
dev_put(dev);
out:
return rc;
}
/*
* Release all memory associated with X.25 routing structures.
*/
void __exit x25_route_free(void)
{
struct x25_route *rt;
struct list_head *entry, *tmp;
write_lock_bh(&x25_route_list_lock);
list_for_each_safe(entry, tmp, &x25_route_list) {
rt = list_entry(entry, struct x25_route, node);
__x25_remove_route(rt);
}
write_unlock_bh(&x25_route_list_lock);
}