WSL2-Linux-Kernel/arch/x86/include/asm/fixmap_32.h

120 строки
3.5 KiB
C
Исходник Обычный вид История

/*
* fixmap.h: compile-time virtual memory allocation
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1998 Ingo Molnar
*
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
*/
#ifndef _ASM_X86_FIXMAP_32_H
#define _ASM_X86_FIXMAP_32_H
/* used by vmalloc.c, vsyscall.lds.S.
*
* Leave one empty page between vmalloc'ed areas and
* the start of the fixmap.
*/
extern unsigned long __FIXADDR_TOP;
#define FIXADDR_USER_START __fix_to_virt(FIX_VDSO)
#define FIXADDR_USER_END __fix_to_virt(FIX_VDSO - 1)
#ifndef __ASSEMBLY__
#include <linux/kernel.h>
#include <asm/acpi.h>
#include <asm/apicdef.h>
#include <asm/page.h>
#include <linux/threads.h>
#include <asm/kmap_types.h>
/*
* Here we define all the compile-time 'special' virtual
* addresses. The point is to have a constant address at
* compile time, but to set the physical address only
* in the boot process. We allocate these special addresses
* from the end of virtual memory (0xfffff000) backwards.
* Also this lets us do fail-safe vmalloc(), we
* can guarantee that these special addresses and
* vmalloc()-ed addresses never overlap.
*
* these 'compile-time allocated' memory buffers are
* fixed-size 4k pages. (or larger if used with an increment
* highger than 1) use fixmap_set(idx,phys) to associate
* physical memory with fixmap indices.
*
* TLB entries of such buffers will not be flushed across
* task switches.
*/
enum fixed_addresses {
FIX_HOLE,
[PATCH] vdso: randomize the i386 vDSO by moving it into a vma Move the i386 VDSO down into a vma and thus randomize it. Besides the security implications, this feature also helps debuggers, which can COW a vma-backed VDSO just like a normal DSO and can thus do single-stepping and other debugging features. It's good for hypervisors (Xen, VMWare) too, which typically live in the same high-mapped address space as the VDSO, hence whenever the VDSO is used, they get lots of guest pagefaults and have to fix such guest accesses up - which slows things down instead of speeding things up (the primary purpose of the VDSO). There's a new CONFIG_COMPAT_VDSO (default=y) option, which provides support for older glibcs that still rely on a prelinked high-mapped VDSO. Newer distributions (using glibc 2.3.3 or later) can turn this option off. Turning it off is also recommended for security reasons: attackers cannot use the predictable high-mapped VDSO page as syscall trampoline anymore. There is a new vdso=[0|1] boot option as well, and a runtime /proc/sys/vm/vdso_enabled sysctl switch, that allows the VDSO to be turned on/off. (This version of the VDSO-randomization patch also has working ELF coredumping, the previous patch crashed in the coredumping code.) This code is a combined work of the exec-shield VDSO randomization code and Gerd Hoffmann's hypervisor-centric VDSO patch. Rusty Russell started this patch and i completed it. [akpm@osdl.org: cleanups] [akpm@osdl.org: compile fix] [akpm@osdl.org: compile fix 2] [akpm@osdl.org: compile fix 3] [akpm@osdl.org: revernt MAXMEM change] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjan@infradead.org> Cc: Gerd Hoffmann <kraxel@suse.de> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Zachary Amsden <zach@vmware.com> Cc: Andi Kleen <ak@muc.de> Cc: Jan Beulich <jbeulich@novell.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 13:53:50 +04:00
FIX_VDSO,
FIX_DBGP_BASE,
FIX_EARLYCON_MEM_BASE,
#ifdef CONFIG_X86_LOCAL_APIC
FIX_APIC_BASE, /* local (CPU) APIC) -- required for SMP or not */
#endif
#ifdef CONFIG_X86_IO_APIC
FIX_IO_APIC_BASE_0,
FIX_IO_APIC_BASE_END = FIX_IO_APIC_BASE_0 + MAX_IO_APICS-1,
#endif
#ifdef CONFIG_X86_VISWS_APIC
FIX_CO_CPU, /* Cobalt timer */
FIX_CO_APIC, /* Cobalt APIC Redirection Table */
FIX_LI_PCIA, /* Lithium PCI Bridge A */
FIX_LI_PCIB, /* Lithium PCI Bridge B */
#endif
#ifdef CONFIG_X86_F00F_BUG
FIX_F00F_IDT, /* Virtual mapping for IDT */
#endif
#ifdef CONFIG_X86_CYCLONE_TIMER
FIX_CYCLONE_TIMER, /*cyclone timer register*/
#endif
FIX_KMAP_BEGIN, /* reserved pte's for temporary kernel mappings */
FIX_KMAP_END = FIX_KMAP_BEGIN+(KM_TYPE_NR*NR_CPUS)-1,
#ifdef CONFIG_PCI_MMCONFIG
FIX_PCIE_MCFG,
#endif
#ifdef CONFIG_PARAVIRT
FIX_PARAVIRT_BOOTMAP,
#endif
__end_of_permanent_fixed_addresses,
/*
* 256 temporary boot-time mappings, used by early_ioremap(),
* before ioremap() is functional.
*
* We round it up to the next 256 pages boundary so that we
* can have a single pgd entry and a single pte table:
*/
#define NR_FIX_BTMAPS 64
#define FIX_BTMAPS_SLOTS 4
FIX_BTMAP_END = __end_of_permanent_fixed_addresses + 256 -
(__end_of_permanent_fixed_addresses & 255),
FIX_BTMAP_BEGIN = FIX_BTMAP_END + NR_FIX_BTMAPS*FIX_BTMAPS_SLOTS - 1,
FIX_WP_TEST,
#ifdef CONFIG_ACPI
FIX_ACPI_BEGIN,
FIX_ACPI_END = FIX_ACPI_BEGIN + FIX_ACPI_PAGES - 1,
#endif
x86: early boot debugging via FireWire (ohci1394_dma=early) This patch adds a new configuration option, which adds support for a new early_param which gets checked in arch/x86/kernel/setup_{32,64}.c:setup_arch() to decide wether OHCI-1394 FireWire controllers should be initialized and enabled for physical DMA access to allow remote debugging of early problems like issues ACPI or other subsystems which are executed very early. If the config option is not enabled, no code is changed, and if the boot paramenter is not given, no new code is executed, and independent of that, all new code is freed after boot, so the config option can be even enabled in standard, non-debug kernels. With specialized tools, it is then possible to get debugging information from machines which have no serial ports (notebooks) such as the printk buffer contents, or any data which can be referenced from global pointers, if it is stored below the 4GB limit and even memory dumps of of the physical RAM region below the 4GB limit can be taken without any cooperation from the CPU of the host, so the machine can be crashed early, it does not matter. In the extreme, even kernel debuggers can be accessed in this way. I wrote a small kgdb module and an accompanying gdb stub for FireWire which allows to gdb to talk to kgdb using remote remory reads and writes over FireWire. An version of the gdb stub fore FireWire is able to read all global data from a system which is running a a normal kernel without any kernel debugger, without any interruption or support of the system's CPU. That way, e.g. the task struct and so on can be read and even manipulated when the physical DMA access is granted. A HOWTO is included in this patch, in Documentation/debugging-via-ohci1394.txt and I've put a copy online at ftp://ftp.suse.de/private/bk/firewire/docs/debugging-via-ohci1394.txt It also has links to all the tools which are available to make use of it another copy of it is online at: ftp://ftp.suse.de/private/bk/firewire/kernel/ohci1394_dma_early-v2.diff Signed-Off-By: Bernhard Kaindl <bk@suse.de> Tested-By: Thomas Renninger <trenn@suse.de> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 15:34:11 +03:00
#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
FIX_OHCI1394_BASE,
#endif
__end_of_fixed_addresses
};
extern void reserve_top_address(unsigned long reserve);
#define FIXADDR_TOP ((unsigned long)__FIXADDR_TOP)
#define __FIXADDR_SIZE (__end_of_permanent_fixed_addresses << PAGE_SHIFT)
#define __FIXADDR_BOOT_SIZE (__end_of_fixed_addresses << PAGE_SHIFT)
#define FIXADDR_START (FIXADDR_TOP - __FIXADDR_SIZE)
#define FIXADDR_BOOT_START (FIXADDR_TOP - __FIXADDR_BOOT_SIZE)
#endif /* !__ASSEMBLY__ */
#endif /* _ASM_X86_FIXMAP_32_H */