WSL2-Linux-Kernel/arch/arm/kernel/entry-v7m.S

161 строка
3.7 KiB
ArmAsm
Исходник Обычный вид История

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* linux/arch/arm/kernel/entry-v7m.S
*
* Copyright (C) 2008 ARM Ltd.
*
* Low-level vector interface routines for the ARMv7-M architecture
*/
#include <asm/memory.h>
#include <asm/glue.h>
#include <asm/thread_notify.h>
#include <asm/v7m.h>
#include "entry-header.S"
#ifdef CONFIG_TRACE_IRQFLAGS
#error "CONFIG_TRACE_IRQFLAGS not supported on the current ARMv7M implementation"
#endif
__invalid_entry:
v7m_exception_entry
#ifdef CONFIG_PRINTK
adr r0, strerr
mrs r1, ipsr
mov r2, lr
printk: Userspace format indexing support We have a number of systems industry-wide that have a subset of their functionality that works as follows: 1. Receive a message from local kmsg, serial console, or netconsole; 2. Apply a set of rules to classify the message; 3. Do something based on this classification (like scheduling a remediation for the machine), rinse, and repeat. As a couple of examples of places we have this implemented just inside Facebook, although this isn't a Facebook-specific problem, we have this inside our netconsole processing (for alarm classification), and as part of our machine health checking. We use these messages to determine fairly important metrics around production health, and it's important that we get them right. While for some kinds of issues we have counters, tracepoints, or metrics with a stable interface which can reliably indicate the issue, in order to react to production issues quickly we need to work with the interface which most kernel developers naturally use when developing: printk. Most production issues come from unexpected phenomena, and as such usually the code in question doesn't have easily usable tracepoints or other counters available for the specific problem being mitigated. We have a number of lines of monitoring defence against problems in production (host metrics, process metrics, service metrics, etc), and where it's not feasible to reliably monitor at another level, this kind of pragmatic netconsole monitoring is essential. As one would expect, monitoring using printk is rather brittle for a number of reasons -- most notably that the message might disappear entirely in a new version of the kernel, or that the message may change in some way that the regex or other classification methods start to silently fail. One factor that makes this even harder is that, under normal operation, many of these messages are never expected to be hit. For example, there may be a rare hardware bug which one wants to detect if it was to ever happen again, but its recurrence is not likely or anticipated. This precludes using something like checking whether the printk in question was printed somewhere fleetwide recently to determine whether the message in question is still present or not, since we don't anticipate that it should be printed anywhere, but still need to monitor for its future presence in the long-term. This class of issue has happened on a number of occasions, causing unhealthy machines with hardware issues to remain in production for longer than ideal. As a recent example, some monitoring around blk_update_request fell out of date and caused semi-broken machines to remain in production for longer than would be desirable. Searching through the codebase to find the message is also extremely fragile, because many of the messages are further constructed beyond their callsite (eg. btrfs_printk and other module-specific wrappers, each with their own functionality). Even if they aren't, guessing the format and formulation of the underlying message based on the aesthetics of the message emitted is not a recipe for success at scale, and our previous issues with fleetwide machine health checking demonstrate as much. This provides a solution to the issue of silently changed or deleted printks: we record pointers to all printk format strings known at compile time into a new .printk_index section, both in vmlinux and modules. At runtime, this can then be iterated by looking at <debugfs>/printk/index/<module>, which emits the following format, both readable by humans and able to be parsed by machines: $ head -1 vmlinux; shuf -n 5 vmlinux # <level[,flags]> filename:line function "format" <5> block/blk-settings.c:661 disk_stack_limits "%s: Warning: Device %s is misaligned\n" <4> kernel/trace/trace.c:8296 trace_create_file "Could not create tracefs '%s' entry\n" <6> arch/x86/kernel/hpet.c:144 _hpet_print_config "hpet: %s(%d):\n" <6> init/do_mounts.c:605 prepare_namespace "Waiting for root device %s...\n" <6> drivers/acpi/osl.c:1410 acpi_no_auto_serialize_setup "ACPI: auto-serialization disabled\n" This mitigates the majority of cases where we have a highly-specific printk which we want to match on, as we can now enumerate and check whether the format changed or the printk callsite disappeared entirely in userspace. This allows us to catch changes to printks we monitor earlier and decide what to do about it before it becomes problematic. There is no additional runtime cost for printk callers or printk itself, and the assembly generated is exactly the same. Signed-off-by: Chris Down <chris@chrisdown.name> Cc: Petr Mladek <pmladek@suse.com> Cc: Jessica Yu <jeyu@kernel.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: John Ogness <john.ogness@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kees Cook <keescook@chromium.org> Reviewed-by: Petr Mladek <pmladek@suse.com> Tested-by: Petr Mladek <pmladek@suse.com> Reported-by: kernel test robot <lkp@intel.com> Acked-by: Andy Shevchenko <andy.shevchenko@gmail.com> Acked-by: Jessica Yu <jeyu@kernel.org> # for module.{c,h} Signed-off-by: Petr Mladek <pmladek@suse.com> Link: https://lore.kernel.org/r/e42070983637ac5e384f17fbdbe86d19c7b212a5.1623775748.git.chris@chrisdown.name
2021-06-15 19:52:53 +03:00
bl _printk
#endif
mov r0, sp
bl show_regs
1: b 1b
ENDPROC(__invalid_entry)
strerr: .asciz "\nUnhandled exception: IPSR = %08lx LR = %08lx\n"
.align 2
__irq_entry:
v7m_exception_entry
@
@ Invoke the IRQ handler
@
mov r0, sp
ldr_this_cpu sp, irq_stack_ptr, r1, r2
@
@ If we took the interrupt while running in the kernel, we may already
@ be using the IRQ stack, so revert to the original value in that case.
@
subs r2, sp, r0 @ SP above bottom of IRQ stack?
rsbscs r2, r2, #THREAD_SIZE @ ... and below the top?
movcs sp, r0
push {r0, lr} @ preserve LR and original SP
@ routine called with r0 = struct pt_regs *
bl generic_handle_arch_irq
pop {r0, lr}
mov sp, r0
@
@ Check for any pending work if returning to user
@
ldr r1, =BASEADDR_V7M_SCB
ldr r0, [r1, V7M_SCB_ICSR]
tst r0, V7M_SCB_ICSR_RETTOBASE
beq 2f
get_thread_info tsk
ldr r2, [tsk, #TI_FLAGS]
movs r2, r2, lsl #16
beq 2f @ no work pending
mov r0, #V7M_SCB_ICSR_PENDSVSET
str r0, [r1, V7M_SCB_ICSR] @ raise PendSV
2:
@ registers r0-r3 and r12 are automatically restored on exception
@ return. r4-r7 were not clobbered in v7m_exception_entry so for
@ correctness they don't need to be restored. So only r8-r11 must be
@ restored here. The easiest way to do so is to restore r0-r7, too.
ldmia sp!, {r0-r11}
add sp, #PT_REGS_SIZE-S_IP
cpsie i
bx lr
ENDPROC(__irq_entry)
__pendsv_entry:
v7m_exception_entry
ldr r1, =BASEADDR_V7M_SCB
mov r0, #V7M_SCB_ICSR_PENDSVCLR
str r0, [r1, V7M_SCB_ICSR] @ clear PendSV
@ execute the pending work, including reschedule
get_thread_info tsk
mov why, #0
b ret_to_user_from_irq
ENDPROC(__pendsv_entry)
/*
* Register switch for ARMv7-M processors.
* r0 = previous task_struct, r1 = previous thread_info, r2 = next thread_info
* previous and next are guaranteed not to be the same.
*/
ENTRY(__switch_to)
.fnstart
.cantunwind
add ip, r1, #TI_CPU_SAVE
stmia ip!, {r4 - r11} @ Store most regs on stack
str sp, [ip], #4
str lr, [ip], #4
mov r5, r0
mov r6, r2 @ Preserve 'next'
add r4, r2, #TI_CPU_SAVE
ldr r0, =thread_notify_head
mov r1, #THREAD_NOTIFY_SWITCH
bl atomic_notifier_call_chain
mov r0, r5
mov r1, r6
ldmia r4, {r4 - r12, lr} @ Load all regs saved previously
set_current r1, r2
mov sp, ip
bx lr
.fnend
ENDPROC(__switch_to)
.data
#if CONFIG_CPU_V7M_NUM_IRQ <= 112
.align 9
#else
.align 10
#endif
/*
* Vector table (Natural alignment need to be ensured)
*/
ENTRY(vector_table)
.long 0 @ 0 - Reset stack pointer
.long __invalid_entry @ 1 - Reset
.long __invalid_entry @ 2 - NMI
.long __invalid_entry @ 3 - HardFault
.long __invalid_entry @ 4 - MemManage
.long __invalid_entry @ 5 - BusFault
.long __invalid_entry @ 6 - UsageFault
.long __invalid_entry @ 7 - Reserved
.long __invalid_entry @ 8 - Reserved
.long __invalid_entry @ 9 - Reserved
.long __invalid_entry @ 10 - Reserved
.long vector_swi @ 11 - SVCall
.long __invalid_entry @ 12 - Debug Monitor
.long __invalid_entry @ 13 - Reserved
.long __pendsv_entry @ 14 - PendSV
.long __invalid_entry @ 15 - SysTick
.rept CONFIG_CPU_V7M_NUM_IRQ
.long __irq_entry @ External Interrupts
.endr
.align 2
.globl exc_ret
exc_ret:
.space 4