WSL2-Linux-Kernel/include/linux/counter.h

480 строки
16 KiB
C
Исходник Обычный вид История

counter: Introduce the Generic Counter interface This patch introduces the Generic Counter interface for supporting counter devices. In the context of the Generic Counter interface, a counter is defined as a device that reports one or more "counts" based on the state changes of one or more "signals" as evaluated by a defined "count function." Driver callbacks should be provided to communicate with the device: to read and write various Signals and Counts, and to set and get the "action mode" and "count function" for various Synapses and Counts respectively. To support a counter device, a driver must first allocate the available Counter Signals via counter_signal structures. These Signals should be stored as an array and set to the signals array member of an allocated counter_device structure before the Counter is registered to the system. Counter Counts may be allocated via counter_count structures, and respective Counter Signal associations (Synapses) made via counter_synapse structures. Associated counter_synapse structures are stored as an array and set to the the synapses array member of the respective counter_count structure. These counter_count structures are set to the counts array member of an allocated counter_device structure before the Counter is registered to the system. A counter device is registered to the system by passing the respective initialized counter_device structure to the counter_register function; similarly, the counter_unregister function unregisters the respective Counter. The devm_counter_register and devm_counter_unregister functions serve as device memory-managed versions of the counter_register and counter_unregister functions respectively. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-02 09:30:36 +03:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Counter interface
* Copyright (C) 2018 William Breathitt Gray
*/
#ifndef _COUNTER_H_
#define _COUNTER_H_
#include <linux/cdev.h>
counter: Introduce the Generic Counter interface This patch introduces the Generic Counter interface for supporting counter devices. In the context of the Generic Counter interface, a counter is defined as a device that reports one or more "counts" based on the state changes of one or more "signals" as evaluated by a defined "count function." Driver callbacks should be provided to communicate with the device: to read and write various Signals and Counts, and to set and get the "action mode" and "count function" for various Synapses and Counts respectively. To support a counter device, a driver must first allocate the available Counter Signals via counter_signal structures. These Signals should be stored as an array and set to the signals array member of an allocated counter_device structure before the Counter is registered to the system. Counter Counts may be allocated via counter_count structures, and respective Counter Signal associations (Synapses) made via counter_synapse structures. Associated counter_synapse structures are stored as an array and set to the the synapses array member of the respective counter_count structure. These counter_count structures are set to the counts array member of an allocated counter_device structure before the Counter is registered to the system. A counter device is registered to the system by passing the respective initialized counter_device structure to the counter_register function; similarly, the counter_unregister function unregisters the respective Counter. The devm_counter_register and devm_counter_unregister functions serve as device memory-managed versions of the counter_register and counter_unregister functions respectively. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-02 09:30:36 +03:00
#include <linux/device.h>
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 06:47:47 +03:00
#include <linux/kernel.h>
#include <linux/kfifo.h>
#include <linux/mutex.h>
#include <linux/spinlock_types.h>
counter: Introduce the Generic Counter interface This patch introduces the Generic Counter interface for supporting counter devices. In the context of the Generic Counter interface, a counter is defined as a device that reports one or more "counts" based on the state changes of one or more "signals" as evaluated by a defined "count function." Driver callbacks should be provided to communicate with the device: to read and write various Signals and Counts, and to set and get the "action mode" and "count function" for various Synapses and Counts respectively. To support a counter device, a driver must first allocate the available Counter Signals via counter_signal structures. These Signals should be stored as an array and set to the signals array member of an allocated counter_device structure before the Counter is registered to the system. Counter Counts may be allocated via counter_count structures, and respective Counter Signal associations (Synapses) made via counter_synapse structures. Associated counter_synapse structures are stored as an array and set to the the synapses array member of the respective counter_count structure. These counter_count structures are set to the counts array member of an allocated counter_device structure before the Counter is registered to the system. A counter device is registered to the system by passing the respective initialized counter_device structure to the counter_register function; similarly, the counter_unregister function unregisters the respective Counter. The devm_counter_register and devm_counter_unregister functions serve as device memory-managed versions of the counter_register and counter_unregister functions respectively. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-02 09:30:36 +03:00
#include <linux/types.h>
#include <linux/wait.h>
#include <uapi/linux/counter.h>
counter: Introduce the Generic Counter interface This patch introduces the Generic Counter interface for supporting counter devices. In the context of the Generic Counter interface, a counter is defined as a device that reports one or more "counts" based on the state changes of one or more "signals" as evaluated by a defined "count function." Driver callbacks should be provided to communicate with the device: to read and write various Signals and Counts, and to set and get the "action mode" and "count function" for various Synapses and Counts respectively. To support a counter device, a driver must first allocate the available Counter Signals via counter_signal structures. These Signals should be stored as an array and set to the signals array member of an allocated counter_device structure before the Counter is registered to the system. Counter Counts may be allocated via counter_count structures, and respective Counter Signal associations (Synapses) made via counter_synapse structures. Associated counter_synapse structures are stored as an array and set to the the synapses array member of the respective counter_count structure. These counter_count structures are set to the counts array member of an allocated counter_device structure before the Counter is registered to the system. A counter device is registered to the system by passing the respective initialized counter_device structure to the counter_register function; similarly, the counter_unregister function unregisters the respective Counter. The devm_counter_register and devm_counter_unregister functions serve as device memory-managed versions of the counter_register and counter_unregister functions respectively. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-02 09:30:36 +03:00
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 06:47:47 +03:00
struct counter_device;
struct counter_count;
struct counter_synapse;
struct counter_signal;
enum counter_comp_type {
COUNTER_COMP_U8,
COUNTER_COMP_U64,
COUNTER_COMP_BOOL,
COUNTER_COMP_SIGNAL_LEVEL,
COUNTER_COMP_FUNCTION,
COUNTER_COMP_SYNAPSE_ACTION,
COUNTER_COMP_ENUM,
COUNTER_COMP_COUNT_DIRECTION,
COUNTER_COMP_COUNT_MODE,
};
counter: Introduce the Generic Counter interface This patch introduces the Generic Counter interface for supporting counter devices. In the context of the Generic Counter interface, a counter is defined as a device that reports one or more "counts" based on the state changes of one or more "signals" as evaluated by a defined "count function." Driver callbacks should be provided to communicate with the device: to read and write various Signals and Counts, and to set and get the "action mode" and "count function" for various Synapses and Counts respectively. To support a counter device, a driver must first allocate the available Counter Signals via counter_signal structures. These Signals should be stored as an array and set to the signals array member of an allocated counter_device structure before the Counter is registered to the system. Counter Counts may be allocated via counter_count structures, and respective Counter Signal associations (Synapses) made via counter_synapse structures. Associated counter_synapse structures are stored as an array and set to the the synapses array member of the respective counter_count structure. These counter_count structures are set to the counts array member of an allocated counter_device structure before the Counter is registered to the system. A counter device is registered to the system by passing the respective initialized counter_device structure to the counter_register function; similarly, the counter_unregister function unregisters the respective Counter. The devm_counter_register and devm_counter_unregister functions serve as device memory-managed versions of the counter_register and counter_unregister functions respectively. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-02 09:30:36 +03:00
/**
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 06:47:47 +03:00
* struct counter_comp - Counter component node
* @type: Counter component data type
* @name: device-specific component name
* @priv: component-relevant data
* @action_read Synapse action mode read callback. The read value of the
* respective Synapse action mode should be passed back via
* the action parameter.
* @device_u8_read Device u8 component read callback. The read value of the
* respective Device u8 component should be passed back via
* the val parameter.
* @count_u8_read Count u8 component read callback. The read value of the
* respective Count u8 component should be passed back via
* the val parameter.
* @signal_u8_read Signal u8 component read callback. The read value of the
* respective Signal u8 component should be passed back via
* the val parameter.
* @device_u32_read Device u32 component read callback. The read value of
* the respective Device u32 component should be passed
* back via the val parameter.
* @count_u32_read Count u32 component read callback. The read value of the
* respective Count u32 component should be passed back via
* the val parameter.
* @signal_u32_read Signal u32 component read callback. The read value of
* the respective Signal u32 component should be passed
* back via the val parameter.
* @device_u64_read Device u64 component read callback. The read value of
* the respective Device u64 component should be passed
* back via the val parameter.
* @count_u64_read Count u64 component read callback. The read value of the
* respective Count u64 component should be passed back via
* the val parameter.
* @signal_u64_read Signal u64 component read callback. The read value of
* the respective Signal u64 component should be passed
* back via the val parameter.
* @action_write Synapse action mode write callback. The write value of
* the respective Synapse action mode is passed via the
* action parameter.
* @device_u8_write Device u8 component write callback. The write value of
* the respective Device u8 component is passed via the val
* parameter.
* @count_u8_write Count u8 component write callback. The write value of
* the respective Count u8 component is passed via the val
* parameter.
* @signal_u8_write Signal u8 component write callback. The write value of
* the respective Signal u8 component is passed via the val
* parameter.
* @device_u32_write Device u32 component write callback. The write value of
* the respective Device u32 component is passed via the
* val parameter.
* @count_u32_write Count u32 component write callback. The write value of
* the respective Count u32 component is passed via the val
* parameter.
* @signal_u32_write Signal u32 component write callback. The write value of
* the respective Signal u32 component is passed via the
* val parameter.
* @device_u64_write Device u64 component write callback. The write value of
* the respective Device u64 component is passed via the
* val parameter.
* @count_u64_write Count u64 component write callback. The write value of
* the respective Count u64 component is passed via the val
* parameter.
* @signal_u64_write Signal u64 component write callback. The write value of
* the respective Signal u64 component is passed via the
* val parameter.
counter: Introduce the Generic Counter interface This patch introduces the Generic Counter interface for supporting counter devices. In the context of the Generic Counter interface, a counter is defined as a device that reports one or more "counts" based on the state changes of one or more "signals" as evaluated by a defined "count function." Driver callbacks should be provided to communicate with the device: to read and write various Signals and Counts, and to set and get the "action mode" and "count function" for various Synapses and Counts respectively. To support a counter device, a driver must first allocate the available Counter Signals via counter_signal structures. These Signals should be stored as an array and set to the signals array member of an allocated counter_device structure before the Counter is registered to the system. Counter Counts may be allocated via counter_count structures, and respective Counter Signal associations (Synapses) made via counter_synapse structures. Associated counter_synapse structures are stored as an array and set to the the synapses array member of the respective counter_count structure. These counter_count structures are set to the counts array member of an allocated counter_device structure before the Counter is registered to the system. A counter device is registered to the system by passing the respective initialized counter_device structure to the counter_register function; similarly, the counter_unregister function unregisters the respective Counter. The devm_counter_register and devm_counter_unregister functions serve as device memory-managed versions of the counter_register and counter_unregister functions respectively. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-02 09:30:36 +03:00
*/
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 06:47:47 +03:00
struct counter_comp {
enum counter_comp_type type;
counter: Introduce the Generic Counter interface This patch introduces the Generic Counter interface for supporting counter devices. In the context of the Generic Counter interface, a counter is defined as a device that reports one or more "counts" based on the state changes of one or more "signals" as evaluated by a defined "count function." Driver callbacks should be provided to communicate with the device: to read and write various Signals and Counts, and to set and get the "action mode" and "count function" for various Synapses and Counts respectively. To support a counter device, a driver must first allocate the available Counter Signals via counter_signal structures. These Signals should be stored as an array and set to the signals array member of an allocated counter_device structure before the Counter is registered to the system. Counter Counts may be allocated via counter_count structures, and respective Counter Signal associations (Synapses) made via counter_synapse structures. Associated counter_synapse structures are stored as an array and set to the the synapses array member of the respective counter_count structure. These counter_count structures are set to the counts array member of an allocated counter_device structure before the Counter is registered to the system. A counter device is registered to the system by passing the respective initialized counter_device structure to the counter_register function; similarly, the counter_unregister function unregisters the respective Counter. The devm_counter_register and devm_counter_unregister functions serve as device memory-managed versions of the counter_register and counter_unregister functions respectively. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-02 09:30:36 +03:00
const char *name;
void *priv;
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 06:47:47 +03:00
union {
int (*action_read)(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
enum counter_synapse_action *action);
int (*device_u8_read)(struct counter_device *counter, u8 *val);
int (*count_u8_read)(struct counter_device *counter,
struct counter_count *count, u8 *val);
int (*signal_u8_read)(struct counter_device *counter,
struct counter_signal *signal, u8 *val);
int (*device_u32_read)(struct counter_device *counter,
u32 *val);
int (*count_u32_read)(struct counter_device *counter,
struct counter_count *count, u32 *val);
int (*signal_u32_read)(struct counter_device *counter,
struct counter_signal *signal, u32 *val);
int (*device_u64_read)(struct counter_device *counter,
u64 *val);
int (*count_u64_read)(struct counter_device *counter,
struct counter_count *count, u64 *val);
int (*signal_u64_read)(struct counter_device *counter,
struct counter_signal *signal, u64 *val);
};
union {
int (*action_write)(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
enum counter_synapse_action action);
int (*device_u8_write)(struct counter_device *counter, u8 val);
int (*count_u8_write)(struct counter_device *counter,
struct counter_count *count, u8 val);
int (*signal_u8_write)(struct counter_device *counter,
struct counter_signal *signal, u8 val);
int (*device_u32_write)(struct counter_device *counter,
u32 val);
int (*count_u32_write)(struct counter_device *counter,
struct counter_count *count, u32 val);
int (*signal_u32_write)(struct counter_device *counter,
struct counter_signal *signal, u32 val);
int (*device_u64_write)(struct counter_device *counter,
u64 val);
int (*count_u64_write)(struct counter_device *counter,
struct counter_count *count, u64 val);
int (*signal_u64_write)(struct counter_device *counter,
struct counter_signal *signal, u64 val);
};
counter: Introduce the Generic Counter interface This patch introduces the Generic Counter interface for supporting counter devices. In the context of the Generic Counter interface, a counter is defined as a device that reports one or more "counts" based on the state changes of one or more "signals" as evaluated by a defined "count function." Driver callbacks should be provided to communicate with the device: to read and write various Signals and Counts, and to set and get the "action mode" and "count function" for various Synapses and Counts respectively. To support a counter device, a driver must first allocate the available Counter Signals via counter_signal structures. These Signals should be stored as an array and set to the signals array member of an allocated counter_device structure before the Counter is registered to the system. Counter Counts may be allocated via counter_count structures, and respective Counter Signal associations (Synapses) made via counter_synapse structures. Associated counter_synapse structures are stored as an array and set to the the synapses array member of the respective counter_count structure. These counter_count structures are set to the counts array member of an allocated counter_device structure before the Counter is registered to the system. A counter device is registered to the system by passing the respective initialized counter_device structure to the counter_register function; similarly, the counter_unregister function unregisters the respective Counter. The devm_counter_register and devm_counter_unregister functions serve as device memory-managed versions of the counter_register and counter_unregister functions respectively. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-02 09:30:36 +03:00
};
/**
* struct counter_signal - Counter Signal node
* @id: unique ID used to identify the Signal
* @name: device-specific Signal name
* @ext: optional array of Signal extensions
* @num_ext: number of Signal extensions specified in @ext
counter: Introduce the Generic Counter interface This patch introduces the Generic Counter interface for supporting counter devices. In the context of the Generic Counter interface, a counter is defined as a device that reports one or more "counts" based on the state changes of one or more "signals" as evaluated by a defined "count function." Driver callbacks should be provided to communicate with the device: to read and write various Signals and Counts, and to set and get the "action mode" and "count function" for various Synapses and Counts respectively. To support a counter device, a driver must first allocate the available Counter Signals via counter_signal structures. These Signals should be stored as an array and set to the signals array member of an allocated counter_device structure before the Counter is registered to the system. Counter Counts may be allocated via counter_count structures, and respective Counter Signal associations (Synapses) made via counter_synapse structures. Associated counter_synapse structures are stored as an array and set to the the synapses array member of the respective counter_count structure. These counter_count structures are set to the counts array member of an allocated counter_device structure before the Counter is registered to the system. A counter device is registered to the system by passing the respective initialized counter_device structure to the counter_register function; similarly, the counter_unregister function unregisters the respective Counter. The devm_counter_register and devm_counter_unregister functions serve as device memory-managed versions of the counter_register and counter_unregister functions respectively. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-02 09:30:36 +03:00
*/
struct counter_signal {
int id;
const char *name;
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 06:47:47 +03:00
struct counter_comp *ext;
counter: Introduce the Generic Counter interface This patch introduces the Generic Counter interface for supporting counter devices. In the context of the Generic Counter interface, a counter is defined as a device that reports one or more "counts" based on the state changes of one or more "signals" as evaluated by a defined "count function." Driver callbacks should be provided to communicate with the device: to read and write various Signals and Counts, and to set and get the "action mode" and "count function" for various Synapses and Counts respectively. To support a counter device, a driver must first allocate the available Counter Signals via counter_signal structures. These Signals should be stored as an array and set to the signals array member of an allocated counter_device structure before the Counter is registered to the system. Counter Counts may be allocated via counter_count structures, and respective Counter Signal associations (Synapses) made via counter_synapse structures. Associated counter_synapse structures are stored as an array and set to the the synapses array member of the respective counter_count structure. These counter_count structures are set to the counts array member of an allocated counter_device structure before the Counter is registered to the system. A counter device is registered to the system by passing the respective initialized counter_device structure to the counter_register function; similarly, the counter_unregister function unregisters the respective Counter. The devm_counter_register and devm_counter_unregister functions serve as device memory-managed versions of the counter_register and counter_unregister functions respectively. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-02 09:30:36 +03:00
size_t num_ext;
};
/**
* struct counter_synapse - Counter Synapse node
* @actions_list: array of available action modes
* @num_actions: number of action modes specified in @actions_list
* @signal: pointer to the associated Signal
counter: Introduce the Generic Counter interface This patch introduces the Generic Counter interface for supporting counter devices. In the context of the Generic Counter interface, a counter is defined as a device that reports one or more "counts" based on the state changes of one or more "signals" as evaluated by a defined "count function." Driver callbacks should be provided to communicate with the device: to read and write various Signals and Counts, and to set and get the "action mode" and "count function" for various Synapses and Counts respectively. To support a counter device, a driver must first allocate the available Counter Signals via counter_signal structures. These Signals should be stored as an array and set to the signals array member of an allocated counter_device structure before the Counter is registered to the system. Counter Counts may be allocated via counter_count structures, and respective Counter Signal associations (Synapses) made via counter_synapse structures. Associated counter_synapse structures are stored as an array and set to the the synapses array member of the respective counter_count structure. These counter_count structures are set to the counts array member of an allocated counter_device structure before the Counter is registered to the system. A counter device is registered to the system by passing the respective initialized counter_device structure to the counter_register function; similarly, the counter_unregister function unregisters the respective Counter. The devm_counter_register and devm_counter_unregister functions serve as device memory-managed versions of the counter_register and counter_unregister functions respectively. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-02 09:30:36 +03:00
*/
struct counter_synapse {
const enum counter_synapse_action *actions_list;
size_t num_actions;
struct counter_signal *signal;
};
/**
* struct counter_count - Counter Count node
* @id: unique ID used to identify the Count
* @name: device-specific Count name
* @functions_list: array of available function modes
counter: Introduce the Generic Counter interface This patch introduces the Generic Counter interface for supporting counter devices. In the context of the Generic Counter interface, a counter is defined as a device that reports one or more "counts" based on the state changes of one or more "signals" as evaluated by a defined "count function." Driver callbacks should be provided to communicate with the device: to read and write various Signals and Counts, and to set and get the "action mode" and "count function" for various Synapses and Counts respectively. To support a counter device, a driver must first allocate the available Counter Signals via counter_signal structures. These Signals should be stored as an array and set to the signals array member of an allocated counter_device structure before the Counter is registered to the system. Counter Counts may be allocated via counter_count structures, and respective Counter Signal associations (Synapses) made via counter_synapse structures. Associated counter_synapse structures are stored as an array and set to the the synapses array member of the respective counter_count structure. These counter_count structures are set to the counts array member of an allocated counter_device structure before the Counter is registered to the system. A counter device is registered to the system by passing the respective initialized counter_device structure to the counter_register function; similarly, the counter_unregister function unregisters the respective Counter. The devm_counter_register and devm_counter_unregister functions serve as device memory-managed versions of the counter_register and counter_unregister functions respectively. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-02 09:30:36 +03:00
* @num_functions: number of function modes specified in @functions_list
* @synapses: array of Synapses for initialization
* @num_synapses: number of Synapses specified in @synapses
* @ext: optional array of Count extensions
* @num_ext: number of Count extensions specified in @ext
counter: Introduce the Generic Counter interface This patch introduces the Generic Counter interface for supporting counter devices. In the context of the Generic Counter interface, a counter is defined as a device that reports one or more "counts" based on the state changes of one or more "signals" as evaluated by a defined "count function." Driver callbacks should be provided to communicate with the device: to read and write various Signals and Counts, and to set and get the "action mode" and "count function" for various Synapses and Counts respectively. To support a counter device, a driver must first allocate the available Counter Signals via counter_signal structures. These Signals should be stored as an array and set to the signals array member of an allocated counter_device structure before the Counter is registered to the system. Counter Counts may be allocated via counter_count structures, and respective Counter Signal associations (Synapses) made via counter_synapse structures. Associated counter_synapse structures are stored as an array and set to the the synapses array member of the respective counter_count structure. These counter_count structures are set to the counts array member of an allocated counter_device structure before the Counter is registered to the system. A counter device is registered to the system by passing the respective initialized counter_device structure to the counter_register function; similarly, the counter_unregister function unregisters the respective Counter. The devm_counter_register and devm_counter_unregister functions serve as device memory-managed versions of the counter_register and counter_unregister functions respectively. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-02 09:30:36 +03:00
*/
struct counter_count {
int id;
const char *name;
const enum counter_function *functions_list;
counter: Introduce the Generic Counter interface This patch introduces the Generic Counter interface for supporting counter devices. In the context of the Generic Counter interface, a counter is defined as a device that reports one or more "counts" based on the state changes of one or more "signals" as evaluated by a defined "count function." Driver callbacks should be provided to communicate with the device: to read and write various Signals and Counts, and to set and get the "action mode" and "count function" for various Synapses and Counts respectively. To support a counter device, a driver must first allocate the available Counter Signals via counter_signal structures. These Signals should be stored as an array and set to the signals array member of an allocated counter_device structure before the Counter is registered to the system. Counter Counts may be allocated via counter_count structures, and respective Counter Signal associations (Synapses) made via counter_synapse structures. Associated counter_synapse structures are stored as an array and set to the the synapses array member of the respective counter_count structure. These counter_count structures are set to the counts array member of an allocated counter_device structure before the Counter is registered to the system. A counter device is registered to the system by passing the respective initialized counter_device structure to the counter_register function; similarly, the counter_unregister function unregisters the respective Counter. The devm_counter_register and devm_counter_unregister functions serve as device memory-managed versions of the counter_register and counter_unregister functions respectively. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-02 09:30:36 +03:00
size_t num_functions;
struct counter_synapse *synapses;
size_t num_synapses;
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 06:47:47 +03:00
struct counter_comp *ext;
counter: Introduce the Generic Counter interface This patch introduces the Generic Counter interface for supporting counter devices. In the context of the Generic Counter interface, a counter is defined as a device that reports one or more "counts" based on the state changes of one or more "signals" as evaluated by a defined "count function." Driver callbacks should be provided to communicate with the device: to read and write various Signals and Counts, and to set and get the "action mode" and "count function" for various Synapses and Counts respectively. To support a counter device, a driver must first allocate the available Counter Signals via counter_signal structures. These Signals should be stored as an array and set to the signals array member of an allocated counter_device structure before the Counter is registered to the system. Counter Counts may be allocated via counter_count structures, and respective Counter Signal associations (Synapses) made via counter_synapse structures. Associated counter_synapse structures are stored as an array and set to the the synapses array member of the respective counter_count structure. These counter_count structures are set to the counts array member of an allocated counter_device structure before the Counter is registered to the system. A counter device is registered to the system by passing the respective initialized counter_device structure to the counter_register function; similarly, the counter_unregister function unregisters the respective Counter. The devm_counter_register and devm_counter_unregister functions serve as device memory-managed versions of the counter_register and counter_unregister functions respectively. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-02 09:30:36 +03:00
size_t num_ext;
};
/**
* struct counter_event_node - Counter Event node
* @l: list of current watching Counter events
* @event: event that triggers
* @channel: event channel
* @comp_list: list of components to watch when event triggers
*/
struct counter_event_node {
struct list_head l;
u8 event;
u8 channel;
struct list_head comp_list;
};
counter: Introduce the Generic Counter interface This patch introduces the Generic Counter interface for supporting counter devices. In the context of the Generic Counter interface, a counter is defined as a device that reports one or more "counts" based on the state changes of one or more "signals" as evaluated by a defined "count function." Driver callbacks should be provided to communicate with the device: to read and write various Signals and Counts, and to set and get the "action mode" and "count function" for various Synapses and Counts respectively. To support a counter device, a driver must first allocate the available Counter Signals via counter_signal structures. These Signals should be stored as an array and set to the signals array member of an allocated counter_device structure before the Counter is registered to the system. Counter Counts may be allocated via counter_count structures, and respective Counter Signal associations (Synapses) made via counter_synapse structures. Associated counter_synapse structures are stored as an array and set to the the synapses array member of the respective counter_count structure. These counter_count structures are set to the counts array member of an allocated counter_device structure before the Counter is registered to the system. A counter device is registered to the system by passing the respective initialized counter_device structure to the counter_register function; similarly, the counter_unregister function unregisters the respective Counter. The devm_counter_register and devm_counter_unregister functions serve as device memory-managed versions of the counter_register and counter_unregister functions respectively. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-02 09:30:36 +03:00
/**
* struct counter_ops - Callbacks from driver
* @signal_read: optional read callback for Signals. The read level of
* the respective Signal should be passed back via the
* level parameter.
* @count_read: read callback for Counts. The read value of the
* respective Count should be passed back via the value
* parameter.
* @count_write: optional write callback for Counts. The write value for
* the respective Count is passed in via the value
* parameter.
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 06:47:47 +03:00
* @function_read: read callback the Count function modes. The read
* function mode of the respective Count should be passed
* back via the function parameter.
* @function_write: optional write callback for Count function modes. The
* function mode to write for the respective Count is
* passed in via the function parameter.
* @action_read: optional read callback the Synapse action modes. The
* read action mode of the respective Synapse should be
* passed back via the action parameter.
* @action_write: optional write callback for Synapse action modes. The
* action mode to write for the respective Synapse is
* passed in via the action parameter.
* @events_configure: optional write callback to configure events. The list of
* struct counter_event_node may be accessed via the
* events_list member of the counter parameter.
* @watch_validate: optional callback to validate a watch. The Counter
* component watch configuration is passed in via the watch
* parameter. A return value of 0 indicates a valid Counter
* component watch configuration.
counter: Introduce the Generic Counter interface This patch introduces the Generic Counter interface for supporting counter devices. In the context of the Generic Counter interface, a counter is defined as a device that reports one or more "counts" based on the state changes of one or more "signals" as evaluated by a defined "count function." Driver callbacks should be provided to communicate with the device: to read and write various Signals and Counts, and to set and get the "action mode" and "count function" for various Synapses and Counts respectively. To support a counter device, a driver must first allocate the available Counter Signals via counter_signal structures. These Signals should be stored as an array and set to the signals array member of an allocated counter_device structure before the Counter is registered to the system. Counter Counts may be allocated via counter_count structures, and respective Counter Signal associations (Synapses) made via counter_synapse structures. Associated counter_synapse structures are stored as an array and set to the the synapses array member of the respective counter_count structure. These counter_count structures are set to the counts array member of an allocated counter_device structure before the Counter is registered to the system. A counter device is registered to the system by passing the respective initialized counter_device structure to the counter_register function; similarly, the counter_unregister function unregisters the respective Counter. The devm_counter_register and devm_counter_unregister functions serve as device memory-managed versions of the counter_register and counter_unregister functions respectively. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-02 09:30:36 +03:00
*/
struct counter_ops {
int (*signal_read)(struct counter_device *counter,
struct counter_signal *signal,
enum counter_signal_level *level);
counter: Introduce the Generic Counter interface This patch introduces the Generic Counter interface for supporting counter devices. In the context of the Generic Counter interface, a counter is defined as a device that reports one or more "counts" based on the state changes of one or more "signals" as evaluated by a defined "count function." Driver callbacks should be provided to communicate with the device: to read and write various Signals and Counts, and to set and get the "action mode" and "count function" for various Synapses and Counts respectively. To support a counter device, a driver must first allocate the available Counter Signals via counter_signal structures. These Signals should be stored as an array and set to the signals array member of an allocated counter_device structure before the Counter is registered to the system. Counter Counts may be allocated via counter_count structures, and respective Counter Signal associations (Synapses) made via counter_synapse structures. Associated counter_synapse structures are stored as an array and set to the the synapses array member of the respective counter_count structure. These counter_count structures are set to the counts array member of an allocated counter_device structure before the Counter is registered to the system. A counter device is registered to the system by passing the respective initialized counter_device structure to the counter_register function; similarly, the counter_unregister function unregisters the respective Counter. The devm_counter_register and devm_counter_unregister functions serve as device memory-managed versions of the counter_register and counter_unregister functions respectively. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-02 09:30:36 +03:00
int (*count_read)(struct counter_device *counter,
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 06:47:47 +03:00
struct counter_count *count, u64 *value);
counter: Introduce the Generic Counter interface This patch introduces the Generic Counter interface for supporting counter devices. In the context of the Generic Counter interface, a counter is defined as a device that reports one or more "counts" based on the state changes of one or more "signals" as evaluated by a defined "count function." Driver callbacks should be provided to communicate with the device: to read and write various Signals and Counts, and to set and get the "action mode" and "count function" for various Synapses and Counts respectively. To support a counter device, a driver must first allocate the available Counter Signals via counter_signal structures. These Signals should be stored as an array and set to the signals array member of an allocated counter_device structure before the Counter is registered to the system. Counter Counts may be allocated via counter_count structures, and respective Counter Signal associations (Synapses) made via counter_synapse structures. Associated counter_synapse structures are stored as an array and set to the the synapses array member of the respective counter_count structure. These counter_count structures are set to the counts array member of an allocated counter_device structure before the Counter is registered to the system. A counter device is registered to the system by passing the respective initialized counter_device structure to the counter_register function; similarly, the counter_unregister function unregisters the respective Counter. The devm_counter_register and devm_counter_unregister functions serve as device memory-managed versions of the counter_register and counter_unregister functions respectively. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-02 09:30:36 +03:00
int (*count_write)(struct counter_device *counter,
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 06:47:47 +03:00
struct counter_count *count, u64 value);
int (*function_read)(struct counter_device *counter,
struct counter_count *count,
enum counter_function *function);
int (*function_write)(struct counter_device *counter,
struct counter_count *count,
enum counter_function function);
int (*action_read)(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
enum counter_synapse_action *action);
int (*action_write)(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
enum counter_synapse_action action);
int (*events_configure)(struct counter_device *counter);
int (*watch_validate)(struct counter_device *counter,
const struct counter_watch *watch);
counter: Introduce the Generic Counter interface This patch introduces the Generic Counter interface for supporting counter devices. In the context of the Generic Counter interface, a counter is defined as a device that reports one or more "counts" based on the state changes of one or more "signals" as evaluated by a defined "count function." Driver callbacks should be provided to communicate with the device: to read and write various Signals and Counts, and to set and get the "action mode" and "count function" for various Synapses and Counts respectively. To support a counter device, a driver must first allocate the available Counter Signals via counter_signal structures. These Signals should be stored as an array and set to the signals array member of an allocated counter_device structure before the Counter is registered to the system. Counter Counts may be allocated via counter_count structures, and respective Counter Signal associations (Synapses) made via counter_synapse structures. Associated counter_synapse structures are stored as an array and set to the the synapses array member of the respective counter_count structure. These counter_count structures are set to the counts array member of an allocated counter_device structure before the Counter is registered to the system. A counter device is registered to the system by passing the respective initialized counter_device structure to the counter_register function; similarly, the counter_unregister function unregisters the respective Counter. The devm_counter_register and devm_counter_unregister functions serve as device memory-managed versions of the counter_register and counter_unregister functions respectively. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-02 09:30:36 +03:00
};
/**
* struct counter_device - Counter data structure
* @name: name of the device
counter: Introduce the Generic Counter interface This patch introduces the Generic Counter interface for supporting counter devices. In the context of the Generic Counter interface, a counter is defined as a device that reports one or more "counts" based on the state changes of one or more "signals" as evaluated by a defined "count function." Driver callbacks should be provided to communicate with the device: to read and write various Signals and Counts, and to set and get the "action mode" and "count function" for various Synapses and Counts respectively. To support a counter device, a driver must first allocate the available Counter Signals via counter_signal structures. These Signals should be stored as an array and set to the signals array member of an allocated counter_device structure before the Counter is registered to the system. Counter Counts may be allocated via counter_count structures, and respective Counter Signal associations (Synapses) made via counter_synapse structures. Associated counter_synapse structures are stored as an array and set to the the synapses array member of the respective counter_count structure. These counter_count structures are set to the counts array member of an allocated counter_device structure before the Counter is registered to the system. A counter device is registered to the system by passing the respective initialized counter_device structure to the counter_register function; similarly, the counter_unregister function unregisters the respective Counter. The devm_counter_register and devm_counter_unregister functions serve as device memory-managed versions of the counter_register and counter_unregister functions respectively. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-02 09:30:36 +03:00
* @parent: optional parent device providing the counters
* @ops: callbacks from driver
* @signals: array of Signals
* @num_signals: number of Signals specified in @signals
* @counts: array of Counts
* @num_counts: number of Counts specified in @counts
* @ext: optional array of Counter device extensions
* @num_ext: number of Counter device extensions specified in @ext
* @priv: optional private data supplied by driver
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 06:47:47 +03:00
* @dev: internal device structure
* @chrdev: internal character device structure
* @events_list: list of current watching Counter events
* @events_list_lock: lock to protect Counter events list operations
* @next_events_list: list of next watching Counter events
* @n_events_list_lock: lock to protect Counter next events list operations
* @events: queue of detected Counter events
* @events_wait: wait queue to allow blocking reads of Counter events
* @events_lock: lock to protect Counter events queue read operations
* @ops_exist_lock: lock to prevent use during removal
counter: Introduce the Generic Counter interface This patch introduces the Generic Counter interface for supporting counter devices. In the context of the Generic Counter interface, a counter is defined as a device that reports one or more "counts" based on the state changes of one or more "signals" as evaluated by a defined "count function." Driver callbacks should be provided to communicate with the device: to read and write various Signals and Counts, and to set and get the "action mode" and "count function" for various Synapses and Counts respectively. To support a counter device, a driver must first allocate the available Counter Signals via counter_signal structures. These Signals should be stored as an array and set to the signals array member of an allocated counter_device structure before the Counter is registered to the system. Counter Counts may be allocated via counter_count structures, and respective Counter Signal associations (Synapses) made via counter_synapse structures. Associated counter_synapse structures are stored as an array and set to the the synapses array member of the respective counter_count structure. These counter_count structures are set to the counts array member of an allocated counter_device structure before the Counter is registered to the system. A counter device is registered to the system by passing the respective initialized counter_device structure to the counter_register function; similarly, the counter_unregister function unregisters the respective Counter. The devm_counter_register and devm_counter_unregister functions serve as device memory-managed versions of the counter_register and counter_unregister functions respectively. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-02 09:30:36 +03:00
*/
struct counter_device {
const char *name;
struct device *parent;
const struct counter_ops *ops;
struct counter_signal *signals;
size_t num_signals;
struct counter_count *counts;
size_t num_counts;
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 06:47:47 +03:00
struct counter_comp *ext;
counter: Introduce the Generic Counter interface This patch introduces the Generic Counter interface for supporting counter devices. In the context of the Generic Counter interface, a counter is defined as a device that reports one or more "counts" based on the state changes of one or more "signals" as evaluated by a defined "count function." Driver callbacks should be provided to communicate with the device: to read and write various Signals and Counts, and to set and get the "action mode" and "count function" for various Synapses and Counts respectively. To support a counter device, a driver must first allocate the available Counter Signals via counter_signal structures. These Signals should be stored as an array and set to the signals array member of an allocated counter_device structure before the Counter is registered to the system. Counter Counts may be allocated via counter_count structures, and respective Counter Signal associations (Synapses) made via counter_synapse structures. Associated counter_synapse structures are stored as an array and set to the the synapses array member of the respective counter_count structure. These counter_count structures are set to the counts array member of an allocated counter_device structure before the Counter is registered to the system. A counter device is registered to the system by passing the respective initialized counter_device structure to the counter_register function; similarly, the counter_unregister function unregisters the respective Counter. The devm_counter_register and devm_counter_unregister functions serve as device memory-managed versions of the counter_register and counter_unregister functions respectively. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-02 09:30:36 +03:00
size_t num_ext;
void *priv;
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 06:47:47 +03:00
struct device dev;
struct cdev chrdev;
struct list_head events_list;
spinlock_t events_list_lock;
struct list_head next_events_list;
struct mutex n_events_list_lock;
DECLARE_KFIFO_PTR(events, struct counter_event);
wait_queue_head_t events_wait;
struct mutex events_lock;
struct mutex ops_exist_lock;
counter: Introduce the Generic Counter interface This patch introduces the Generic Counter interface for supporting counter devices. In the context of the Generic Counter interface, a counter is defined as a device that reports one or more "counts" based on the state changes of one or more "signals" as evaluated by a defined "count function." Driver callbacks should be provided to communicate with the device: to read and write various Signals and Counts, and to set and get the "action mode" and "count function" for various Synapses and Counts respectively. To support a counter device, a driver must first allocate the available Counter Signals via counter_signal structures. These Signals should be stored as an array and set to the signals array member of an allocated counter_device structure before the Counter is registered to the system. Counter Counts may be allocated via counter_count structures, and respective Counter Signal associations (Synapses) made via counter_synapse structures. Associated counter_synapse structures are stored as an array and set to the the synapses array member of the respective counter_count structure. These counter_count structures are set to the counts array member of an allocated counter_device structure before the Counter is registered to the system. A counter device is registered to the system by passing the respective initialized counter_device structure to the counter_register function; similarly, the counter_unregister function unregisters the respective Counter. The devm_counter_register and devm_counter_unregister functions serve as device memory-managed versions of the counter_register and counter_unregister functions respectively. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-02 09:30:36 +03:00
};
int counter_register(struct counter_device *const counter);
void counter_unregister(struct counter_device *const counter);
int devm_counter_register(struct device *dev,
struct counter_device *const counter);
void counter_push_event(struct counter_device *const counter, const u8 event,
const u8 channel);
counter: Internalize sysfs interface code This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-08-27 06:47:47 +03:00
#define COUNTER_COMP_DEVICE_U8(_name, _read, _write) \
{ \
.type = COUNTER_COMP_U8, \
.name = (_name), \
.device_u8_read = (_read), \
.device_u8_write = (_write), \
}
#define COUNTER_COMP_COUNT_U8(_name, _read, _write) \
{ \
.type = COUNTER_COMP_U8, \
.name = (_name), \
.count_u8_read = (_read), \
.count_u8_write = (_write), \
}
#define COUNTER_COMP_SIGNAL_U8(_name, _read, _write) \
{ \
.type = COUNTER_COMP_U8, \
.name = (_name), \
.signal_u8_read = (_read), \
.signal_u8_write = (_write), \
}
#define COUNTER_COMP_DEVICE_U64(_name, _read, _write) \
{ \
.type = COUNTER_COMP_U64, \
.name = (_name), \
.device_u64_read = (_read), \
.device_u64_write = (_write), \
}
#define COUNTER_COMP_COUNT_U64(_name, _read, _write) \
{ \
.type = COUNTER_COMP_U64, \
.name = (_name), \
.count_u64_read = (_read), \
.count_u64_write = (_write), \
}
#define COUNTER_COMP_SIGNAL_U64(_name, _read, _write) \
{ \
.type = COUNTER_COMP_U64, \
.name = (_name), \
.signal_u64_read = (_read), \
.signal_u64_write = (_write), \
}
#define COUNTER_COMP_DEVICE_BOOL(_name, _read, _write) \
{ \
.type = COUNTER_COMP_BOOL, \
.name = (_name), \
.device_u8_read = (_read), \
.device_u8_write = (_write), \
}
#define COUNTER_COMP_COUNT_BOOL(_name, _read, _write) \
{ \
.type = COUNTER_COMP_BOOL, \
.name = (_name), \
.count_u8_read = (_read), \
.count_u8_write = (_write), \
}
#define COUNTER_COMP_SIGNAL_BOOL(_name, _read, _write) \
{ \
.type = COUNTER_COMP_BOOL, \
.name = (_name), \
.signal_u8_read = (_read), \
.signal_u8_write = (_write), \
}
struct counter_available {
union {
const u32 *enums;
const char *const *strs;
};
size_t num_items;
};
#define DEFINE_COUNTER_AVAILABLE(_name, _enums) \
struct counter_available _name = { \
.enums = (_enums), \
.num_items = ARRAY_SIZE(_enums), \
}
#define DEFINE_COUNTER_ENUM(_name, _strs) \
struct counter_available _name = { \
.strs = (_strs), \
.num_items = ARRAY_SIZE(_strs), \
}
#define COUNTER_COMP_DEVICE_ENUM(_name, _get, _set, _available) \
{ \
.type = COUNTER_COMP_ENUM, \
.name = (_name), \
.device_u32_read = (_get), \
.device_u32_write = (_set), \
.priv = &(_available), \
}
#define COUNTER_COMP_COUNT_ENUM(_name, _get, _set, _available) \
{ \
.type = COUNTER_COMP_ENUM, \
.name = (_name), \
.count_u32_read = (_get), \
.count_u32_write = (_set), \
.priv = &(_available), \
}
#define COUNTER_COMP_SIGNAL_ENUM(_name, _get, _set, _available) \
{ \
.type = COUNTER_COMP_ENUM, \
.name = (_name), \
.signal_u32_read = (_get), \
.signal_u32_write = (_set), \
.priv = &(_available), \
}
#define COUNTER_COMP_CEILING(_read, _write) \
COUNTER_COMP_COUNT_U64("ceiling", _read, _write)
#define COUNTER_COMP_COUNT_MODE(_read, _write, _available) \
{ \
.type = COUNTER_COMP_COUNT_MODE, \
.name = "count_mode", \
.count_u32_read = (_read), \
.count_u32_write = (_write), \
.priv = &(_available), \
}
#define COUNTER_COMP_DIRECTION(_read) \
{ \
.type = COUNTER_COMP_COUNT_DIRECTION, \
.name = "direction", \
.count_u32_read = (_read), \
}
#define COUNTER_COMP_ENABLE(_read, _write) \
COUNTER_COMP_COUNT_BOOL("enable", _read, _write)
#define COUNTER_COMP_FLOOR(_read, _write) \
COUNTER_COMP_COUNT_U64("floor", _read, _write)
#define COUNTER_COMP_PRESET(_read, _write) \
COUNTER_COMP_COUNT_U64("preset", _read, _write)
#define COUNTER_COMP_PRESET_ENABLE(_read, _write) \
COUNTER_COMP_COUNT_BOOL("preset_enable", _read, _write)
counter: Introduce the Generic Counter interface This patch introduces the Generic Counter interface for supporting counter devices. In the context of the Generic Counter interface, a counter is defined as a device that reports one or more "counts" based on the state changes of one or more "signals" as evaluated by a defined "count function." Driver callbacks should be provided to communicate with the device: to read and write various Signals and Counts, and to set and get the "action mode" and "count function" for various Synapses and Counts respectively. To support a counter device, a driver must first allocate the available Counter Signals via counter_signal structures. These Signals should be stored as an array and set to the signals array member of an allocated counter_device structure before the Counter is registered to the system. Counter Counts may be allocated via counter_count structures, and respective Counter Signal associations (Synapses) made via counter_synapse structures. Associated counter_synapse structures are stored as an array and set to the the synapses array member of the respective counter_count structure. These counter_count structures are set to the counts array member of an allocated counter_device structure before the Counter is registered to the system. A counter device is registered to the system by passing the respective initialized counter_device structure to the counter_register function; similarly, the counter_unregister function unregisters the respective Counter. The devm_counter_register and devm_counter_unregister functions serve as device memory-managed versions of the counter_register and counter_unregister functions respectively. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-02 09:30:36 +03:00
#endif /* _COUNTER_H_ */