WSL2-Linux-Kernel/drivers/crypto/hisilicon/sec2/sec_crypto.c

876 строки
21 KiB
C
Исходник Обычный вид История

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019 HiSilicon Limited. */
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <crypto/des.h>
#include <crypto/skcipher.h>
#include <crypto/xts.h>
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/idr.h>
#include "sec.h"
#include "sec_crypto.h"
#define SEC_PRIORITY 4001
#define SEC_XTS_MIN_KEY_SIZE (2 * AES_MIN_KEY_SIZE)
#define SEC_XTS_MAX_KEY_SIZE (2 * AES_MAX_KEY_SIZE)
#define SEC_DES3_2KEY_SIZE (2 * DES_KEY_SIZE)
#define SEC_DES3_3KEY_SIZE (3 * DES_KEY_SIZE)
/* SEC sqe(bd) bit operational relative MACRO */
#define SEC_DE_OFFSET 1
#define SEC_CIPHER_OFFSET 4
#define SEC_SCENE_OFFSET 3
#define SEC_DST_SGL_OFFSET 2
#define SEC_SRC_SGL_OFFSET 7
#define SEC_CKEY_OFFSET 9
#define SEC_CMODE_OFFSET 12
#define SEC_FLAG_OFFSET 7
#define SEC_FLAG_MASK 0x0780
#define SEC_TYPE_MASK 0x0F
#define SEC_DONE_MASK 0x0001
#define SEC_TOTAL_IV_SZ (SEC_IV_SIZE * QM_Q_DEPTH)
#define SEC_SGL_SGE_NR 128
#define SEC_CTX_DEV(ctx) (&(ctx)->sec->qm.pdev->dev)
#define SEC_SQE_CFLAG 2
#define SEC_SQE_DONE 0x1
static DEFINE_MUTEX(sec_algs_lock);
static unsigned int sec_active_devs;
/* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
{
if (req->c_req.encrypt)
return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
ctx->hlf_q_num;
return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
ctx->hlf_q_num;
}
static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
{
if (req->c_req.encrypt)
atomic_dec(&ctx->enc_qcyclic);
else
atomic_dec(&ctx->dec_qcyclic);
}
static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
{
int req_id;
mutex_lock(&qp_ctx->req_lock);
req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL,
0, QM_Q_DEPTH, GFP_ATOMIC);
mutex_unlock(&qp_ctx->req_lock);
if (req_id < 0) {
dev_err(SEC_CTX_DEV(req->ctx), "alloc req id fail!\n");
return req_id;
}
req->qp_ctx = qp_ctx;
qp_ctx->req_list[req_id] = req;
return req_id;
}
static void sec_free_req_id(struct sec_req *req)
{
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
int req_id = req->req_id;
if (req_id < 0 || req_id >= QM_Q_DEPTH) {
dev_err(SEC_CTX_DEV(req->ctx), "free request id invalid!\n");
return;
}
qp_ctx->req_list[req_id] = NULL;
req->qp_ctx = NULL;
mutex_lock(&qp_ctx->req_lock);
idr_remove(&qp_ctx->req_idr, req_id);
mutex_unlock(&qp_ctx->req_lock);
}
static void sec_req_cb(struct hisi_qp *qp, void *resp)
{
struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
struct sec_sqe *bd = resp;
struct sec_ctx *ctx;
struct sec_req *req;
u16 done, flag;
int err = 0;
u8 type;
type = bd->type_cipher_auth & SEC_TYPE_MASK;
if (type != SEC_BD_TYPE2) {
pr_err("err bd type [%d]\n", type);
return;
}
req = qp_ctx->req_list[le16_to_cpu(bd->type2.tag)];
req->err_type = bd->type2.error_type;
ctx = req->ctx;
done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
flag = (le16_to_cpu(bd->type2.done_flag) &
SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
if (req->err_type || done != SEC_SQE_DONE ||
flag != SEC_SQE_CFLAG) {
dev_err(SEC_CTX_DEV(ctx),
"err_type[%d],done[%d],flag[%d]\n",
req->err_type, done, flag);
err = -EIO;
}
atomic64_inc(&ctx->sec->debug.dfx.recv_cnt);
ctx->req_op->buf_unmap(ctx, req);
ctx->req_op->callback(ctx, req, err);
}
static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
{
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
int ret;
mutex_lock(&qp_ctx->req_lock);
ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
mutex_unlock(&qp_ctx->req_lock);
atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
if (ret == -EBUSY)
return -ENOBUFS;
if (!ret) {
if (req->fake_busy)
ret = -EBUSY;
else
ret = -EINPROGRESS;
}
return ret;
}
/* Get DMA memory resources */
static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
{
int i;
res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ,
&res->c_ivin_dma, GFP_KERNEL);
if (!res->c_ivin)
return -ENOMEM;
for (i = 1; i < QM_Q_DEPTH; i++) {
res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
}
return 0;
}
static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
{
if (res->c_ivin)
dma_free_coherent(dev, SEC_TOTAL_IV_SZ,
res->c_ivin, res->c_ivin_dma);
}
static int sec_alg_resource_alloc(struct sec_ctx *ctx,
struct sec_qp_ctx *qp_ctx)
{
struct device *dev = SEC_CTX_DEV(ctx);
return sec_alloc_civ_resource(dev, qp_ctx->res);
}
static void sec_alg_resource_free(struct sec_ctx *ctx,
struct sec_qp_ctx *qp_ctx)
{
struct device *dev = SEC_CTX_DEV(ctx);
sec_free_civ_resource(dev, qp_ctx->res);
}
static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
int qp_ctx_id, int alg_type)
{
struct device *dev = SEC_CTX_DEV(ctx);
struct sec_qp_ctx *qp_ctx;
struct hisi_qp *qp;
int ret = -ENOMEM;
qp = hisi_qm_create_qp(qm, alg_type);
if (IS_ERR(qp))
return PTR_ERR(qp);
qp_ctx = &ctx->qp_ctx[qp_ctx_id];
qp->req_type = 0;
qp->qp_ctx = qp_ctx;
qp->req_cb = sec_req_cb;
qp_ctx->qp = qp;
qp_ctx->ctx = ctx;
mutex_init(&qp_ctx->req_lock);
atomic_set(&qp_ctx->pending_reqs, 0);
idr_init(&qp_ctx->req_idr);
qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
SEC_SGL_SGE_NR);
if (IS_ERR(qp_ctx->c_in_pool)) {
dev_err(dev, "fail to create sgl pool for input!\n");
goto err_destroy_idr;
}
qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
SEC_SGL_SGE_NR);
if (IS_ERR(qp_ctx->c_out_pool)) {
dev_err(dev, "fail to create sgl pool for output!\n");
goto err_free_c_in_pool;
}
ret = sec_alg_resource_alloc(ctx, qp_ctx);
if (ret)
goto err_free_c_out_pool;
ret = hisi_qm_start_qp(qp, 0);
if (ret < 0)
goto err_queue_free;
return 0;
err_queue_free:
sec_alg_resource_free(ctx, qp_ctx);
err_free_c_out_pool:
hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
err_free_c_in_pool:
hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
err_destroy_idr:
idr_destroy(&qp_ctx->req_idr);
hisi_qm_release_qp(qp);
return ret;
}
static void sec_release_qp_ctx(struct sec_ctx *ctx,
struct sec_qp_ctx *qp_ctx)
{
struct device *dev = SEC_CTX_DEV(ctx);
hisi_qm_stop_qp(qp_ctx->qp);
sec_alg_resource_free(ctx, qp_ctx);
hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
idr_destroy(&qp_ctx->req_idr);
hisi_qm_release_qp(qp_ctx->qp);
}
static int sec_skcipher_init(struct crypto_skcipher *tfm)
{
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
struct sec_cipher_ctx *c_ctx;
struct sec_dev *sec;
struct device *dev;
struct hisi_qm *qm;
int i, ret;
crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
sec = sec_find_device(cpu_to_node(smp_processor_id()));
if (!sec) {
pr_err("Can not find proper Hisilicon SEC device!\n");
return -ENODEV;
}
ctx->sec = sec;
qm = &sec->qm;
dev = &qm->pdev->dev;
ctx->hlf_q_num = sec->ctx_q_num >> 1;
/* Half of queue depth is taken as fake requests limit in the queue. */
ctx->fake_req_limit = QM_Q_DEPTH >> 1;
ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
GFP_KERNEL);
if (!ctx->qp_ctx)
return -ENOMEM;
for (i = 0; i < sec->ctx_q_num; i++) {
ret = sec_create_qp_ctx(qm, ctx, i, 0);
if (ret)
goto err_sec_release_qp_ctx;
}
c_ctx = &ctx->c_ctx;
c_ctx->ivsize = crypto_skcipher_ivsize(tfm);
if (c_ctx->ivsize > SEC_IV_SIZE) {
dev_err(dev, "get error iv size!\n");
ret = -EINVAL;
goto err_sec_release_qp_ctx;
}
c_ctx->c_key = dma_alloc_coherent(dev, SEC_MAX_KEY_SIZE,
&c_ctx->c_key_dma, GFP_KERNEL);
if (!c_ctx->c_key) {
ret = -ENOMEM;
goto err_sec_release_qp_ctx;
}
return 0;
err_sec_release_qp_ctx:
for (i = i - 1; i >= 0; i--)
sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
kfree(ctx->qp_ctx);
return ret;
}
static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
{
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
int i = 0;
if (c_ctx->c_key) {
dma_free_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
c_ctx->c_key, c_ctx->c_key_dma);
c_ctx->c_key = NULL;
}
for (i = 0; i < ctx->sec->ctx_q_num; i++)
sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
kfree(ctx->qp_ctx);
}
static int sec_skcipher_3des_setkey(struct sec_cipher_ctx *c_ctx,
const u32 keylen,
const enum sec_cmode c_mode)
{
switch (keylen) {
case SEC_DES3_2KEY_SIZE:
c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
break;
case SEC_DES3_3KEY_SIZE:
c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
break;
default:
return -EINVAL;
}
return 0;
}
static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
const u32 keylen,
const enum sec_cmode c_mode)
{
if (c_mode == SEC_CMODE_XTS) {
switch (keylen) {
case SEC_XTS_MIN_KEY_SIZE:
c_ctx->c_key_len = SEC_CKEY_128BIT;
break;
case SEC_XTS_MAX_KEY_SIZE:
c_ctx->c_key_len = SEC_CKEY_256BIT;
break;
default:
pr_err("hisi_sec2: xts mode key error!\n");
return -EINVAL;
}
} else {
switch (keylen) {
case AES_KEYSIZE_128:
c_ctx->c_key_len = SEC_CKEY_128BIT;
break;
case AES_KEYSIZE_192:
c_ctx->c_key_len = SEC_CKEY_192BIT;
break;
case AES_KEYSIZE_256:
c_ctx->c_key_len = SEC_CKEY_256BIT;
break;
default:
pr_err("hisi_sec2: aes key error!\n");
return -EINVAL;
}
}
return 0;
}
static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
const u32 keylen, const enum sec_calg c_alg,
const enum sec_cmode c_mode)
{
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
int ret;
if (c_mode == SEC_CMODE_XTS) {
ret = xts_verify_key(tfm, key, keylen);
if (ret) {
dev_err(SEC_CTX_DEV(ctx), "xts mode key err!\n");
return ret;
}
}
c_ctx->c_alg = c_alg;
c_ctx->c_mode = c_mode;
switch (c_alg) {
case SEC_CALG_3DES:
ret = sec_skcipher_3des_setkey(c_ctx, keylen, c_mode);
break;
case SEC_CALG_AES:
case SEC_CALG_SM4:
ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
break;
default:
return -EINVAL;
}
if (ret) {
dev_err(SEC_CTX_DEV(ctx), "set sec key err!\n");
return ret;
}
memcpy(c_ctx->c_key, key, keylen);
return 0;
}
#define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode) \
static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
u32 keylen) \
{ \
return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode); \
}
GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
static int sec_cipher_map(struct device *dev, struct sec_req *req,
struct scatterlist *src, struct scatterlist *dst)
{
struct sec_cipher_req *c_req = &req->c_req;
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
c_req->c_in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
qp_ctx->c_in_pool,
req->req_id,
&c_req->c_in_dma);
if (IS_ERR(c_req->c_in)) {
dev_err(dev, "fail to dma map input sgl buffers!\n");
return PTR_ERR(c_req->c_in);
}
if (dst == src) {
c_req->c_out = c_req->c_in;
c_req->c_out_dma = c_req->c_in_dma;
} else {
c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
qp_ctx->c_out_pool,
req->req_id,
&c_req->c_out_dma);
if (IS_ERR(c_req->c_out)) {
dev_err(dev, "fail to dma map output sgl buffers!\n");
hisi_acc_sg_buf_unmap(dev, src, c_req->c_in);
return PTR_ERR(c_req->c_out);
}
}
return 0;
}
static void sec_cipher_unmap(struct device *dev, struct sec_cipher_req *req,
struct scatterlist *src, struct scatterlist *dst)
{
if (dst != src)
hisi_acc_sg_buf_unmap(dev, src, req->c_in);
hisi_acc_sg_buf_unmap(dev, dst, req->c_out);
}
static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
{
struct skcipher_request *sq = req->c_req.sk_req;
return sec_cipher_map(SEC_CTX_DEV(ctx), req, sq->src, sq->dst);
}
static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
{
struct device *dev = SEC_CTX_DEV(ctx);
struct sec_cipher_req *c_req = &req->c_req;
struct skcipher_request *sk_req = c_req->sk_req;
sec_cipher_unmap(dev, c_req, sk_req->src, sk_req->dst);
}
static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
{
int ret;
ret = ctx->req_op->buf_map(ctx, req);
if (ret)
return ret;
ctx->req_op->do_transfer(ctx, req);
ret = ctx->req_op->bd_fill(ctx, req);
if (ret)
goto unmap_req_buf;
return ret;
unmap_req_buf:
ctx->req_op->buf_unmap(ctx, req);
return ret;
}
static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
{
ctx->req_op->buf_unmap(ctx, req);
}
static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
{
struct skcipher_request *sk_req = req->c_req.sk_req;
u8 *c_ivin = req->qp_ctx->res[req->req_id].c_ivin;
memcpy(c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
}
static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
{
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
struct sec_cipher_req *c_req = &req->c_req;
struct sec_sqe *sec_sqe = &req->sec_sqe;
u8 scene, sa_type, da_type;
u8 bd_type, cipher;
u8 de = 0;
memset(sec_sqe, 0, sizeof(struct sec_sqe));
sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
sec_sqe->type2.c_ivin_addr =
cpu_to_le64(req->qp_ctx->res[req->req_id].c_ivin_dma);
sec_sqe->type2.data_src_addr = cpu_to_le64(c_req->c_in_dma);
sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);
sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
SEC_CMODE_OFFSET);
sec_sqe->type2.c_alg = c_ctx->c_alg;
sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
SEC_CKEY_OFFSET);
bd_type = SEC_BD_TYPE2;
if (c_req->encrypt)
cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
else
cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
sec_sqe->type_cipher_auth = bd_type | cipher;
sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
if (c_req->c_in_dma != c_req->c_out_dma)
de = 0x1 << SEC_DE_OFFSET;
sec_sqe->sds_sa_type = (de | scene | sa_type);
/* Just set DST address type */
da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
sec_sqe->sdm_addr_type |= da_type;
sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);
return 0;
}
static void sec_update_iv(struct sec_req *req)
{
struct skcipher_request *sk_req = req->c_req.sk_req;
u32 iv_size = req->ctx->c_ctx.ivsize;
struct scatterlist *sgl;
size_t sz;
if (req->c_req.encrypt)
sgl = sk_req->dst;
else
sgl = sk_req->src;
sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), sk_req->iv,
iv_size, sk_req->cryptlen - iv_size);
if (sz != iv_size)
dev_err(SEC_CTX_DEV(req->ctx), "copy output iv error!\n");
}
static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
int err)
{
struct skcipher_request *sk_req = req->c_req.sk_req;
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
atomic_dec(&qp_ctx->pending_reqs);
sec_free_req_id(req);
/* IV output at encrypto of CBC mode */
if (!err && ctx->c_ctx.c_mode == SEC_CMODE_CBC && req->c_req.encrypt)
sec_update_iv(req);
if (req->fake_busy)
sk_req->base.complete(&sk_req->base, -EINPROGRESS);
sk_req->base.complete(&sk_req->base, err);
}
static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
{
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
atomic_dec(&qp_ctx->pending_reqs);
sec_free_req_id(req);
sec_free_queue_id(ctx, req);
}
static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
{
struct sec_qp_ctx *qp_ctx;
int queue_id;
/* To load balance */
queue_id = sec_alloc_queue_id(ctx, req);
qp_ctx = &ctx->qp_ctx[queue_id];
req->req_id = sec_alloc_req_id(req, qp_ctx);
if (req->req_id < 0) {
sec_free_queue_id(ctx, req);
return req->req_id;
}
if (ctx->fake_req_limit <= atomic_inc_return(&qp_ctx->pending_reqs))
req->fake_busy = true;
else
req->fake_busy = false;
return 0;
}
static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
{
int ret;
ret = sec_request_init(ctx, req);
if (ret)
return ret;
ret = sec_request_transfer(ctx, req);
if (ret)
goto err_uninit_req;
/* Output IV as decrypto */
if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt)
sec_update_iv(req);
ret = ctx->req_op->bd_send(ctx, req);
if (ret != -EBUSY && ret != -EINPROGRESS) {
dev_err_ratelimited(SEC_CTX_DEV(ctx), "send sec request failed!\n");
goto err_send_req;
}
return ret;
err_send_req:
/* As failing, restore the IV from user */
if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt)
memcpy(req->c_req.sk_req->iv,
req->qp_ctx->res[req->req_id].c_ivin,
ctx->c_ctx.ivsize);
sec_request_untransfer(ctx, req);
err_uninit_req:
sec_request_uninit(ctx, req);
return ret;
}
static const struct sec_req_op sec_skcipher_req_ops = {
.buf_map = sec_skcipher_sgl_map,
.buf_unmap = sec_skcipher_sgl_unmap,
.do_transfer = sec_skcipher_copy_iv,
.bd_fill = sec_skcipher_bd_fill,
.bd_send = sec_bd_send,
.callback = sec_skcipher_callback,
.process = sec_process,
};
static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
{
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
ctx->req_op = &sec_skcipher_req_ops;
return sec_skcipher_init(tfm);
}
static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
{
sec_skcipher_uninit(tfm);
}
static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
{
struct skcipher_request *sk_req = sreq->c_req.sk_req;
struct device *dev = SEC_CTX_DEV(ctx);
u8 c_alg = ctx->c_ctx.c_alg;
if (!sk_req->src || !sk_req->dst) {
dev_err(dev, "skcipher input param error!\n");
return -EINVAL;
}
sreq->c_req.c_len = sk_req->cryptlen;
if (c_alg == SEC_CALG_3DES) {
if (sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1)) {
dev_err(dev, "skcipher 3des input length error!\n");
return -EINVAL;
}
return 0;
} else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
if (sk_req->cryptlen & (AES_BLOCK_SIZE - 1)) {
dev_err(dev, "skcipher aes input length error!\n");
return -EINVAL;
}
return 0;
}
dev_err(dev, "skcipher algorithm error!\n");
return -EINVAL;
}
static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
struct sec_req *req = skcipher_request_ctx(sk_req);
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
int ret;
if (!sk_req->cryptlen)
return 0;
req->c_req.sk_req = sk_req;
req->c_req.encrypt = encrypt;
req->ctx = ctx;
ret = sec_skcipher_param_check(ctx, req);
if (unlikely(ret))
return -EINVAL;
return ctx->req_op->process(ctx, req);
}
static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
{
return sec_skcipher_crypto(sk_req, true);
}
static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
{
return sec_skcipher_crypto(sk_req, false);
}
#define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
{\
.base = {\
.cra_name = sec_cra_name,\
.cra_driver_name = "hisi_sec_"sec_cra_name,\
.cra_priority = SEC_PRIORITY,\
.cra_flags = CRYPTO_ALG_ASYNC,\
.cra_blocksize = blk_size,\
.cra_ctxsize = sizeof(struct sec_ctx),\
.cra_module = THIS_MODULE,\
},\
.init = ctx_init,\
.exit = ctx_exit,\
.setkey = sec_set_key,\
.decrypt = sec_skcipher_decrypt,\
.encrypt = sec_skcipher_encrypt,\
.min_keysize = sec_min_key_size,\
.max_keysize = sec_max_key_size,\
.ivsize = iv_size,\
},
#define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
max_key_size, blk_size, iv_size) \
SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)
static struct skcipher_alg sec_skciphers[] = {
SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb,
AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
AES_BLOCK_SIZE, 0)
SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc,
AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
AES_BLOCK_SIZE, AES_BLOCK_SIZE)
SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts,
SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MAX_KEY_SIZE,
AES_BLOCK_SIZE, AES_BLOCK_SIZE)
SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb,
SEC_DES3_2KEY_SIZE, SEC_DES3_3KEY_SIZE,
DES3_EDE_BLOCK_SIZE, 0)
SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc,
SEC_DES3_2KEY_SIZE, SEC_DES3_3KEY_SIZE,
DES3_EDE_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE)
SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts,
SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MIN_KEY_SIZE,
AES_BLOCK_SIZE, AES_BLOCK_SIZE)
SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc,
AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
AES_BLOCK_SIZE, AES_BLOCK_SIZE)
};
int sec_register_to_crypto(void)
{
int ret = 0;
/* To avoid repeat register */
mutex_lock(&sec_algs_lock);
if (++sec_active_devs == 1)
ret = crypto_register_skciphers(sec_skciphers,
ARRAY_SIZE(sec_skciphers));
mutex_unlock(&sec_algs_lock);
return ret;
}
void sec_unregister_from_crypto(void)
{
mutex_lock(&sec_algs_lock);
if (--sec_active_devs == 0)
crypto_unregister_skciphers(sec_skciphers,
ARRAY_SIZE(sec_skciphers));
mutex_unlock(&sec_algs_lock);
}