WSL2-Linux-Kernel/init/Kconfig

575 строки
20 KiB
Plaintext
Исходник Обычный вид История

config DEFCONFIG_LIST
string
[PATCH] uml: use DEFCONFIG_LIST to avoid reading host's config This should make sure that, for UML, host's configuration files are not considered, which avoids various pains to the user. Our dependency are such that the obtained Kconfig will be valid and will lead to successful compilation - however they cannot prevent an user from disabling any boot device, and if an option is not set in the read .config (say /boot/config-XXX), with make menuconfig ARCH=um, it is not set. This always disables UBD and all console I/O channels, which leads to non-working UML kernels, so this bothers users - especially now, since it will happen on almost every machine (/boot/config-`uname -r` exists almost on every machine). It can be workarounded with make defconfig ARCH=um, but it is non-obvious and can be avoided, so please _do_ merge this patch. Given the existence of options, it could be interesting to implement (additionally) "option required" - with it, Kconfig will refuse reading a .config file (from wherever it comes) if the given option is not set. With this, one could mark with it the option characteristic of the given architecture (it was an old proposal of Roman Zippel, when I pointed out our problem): config UML option required default y However this should be further discussed: *) for x86, it must support constructs like: ==arch/i386/Kconfig== config 64BIT option required default n where Kconfig must require that CONFIG_64BIT is disabled or not present in the read .config. *) do we want to do such checks only for the starting defconfig or also for .config? Which leads to: *) I may want to port a x86_64 .config to x86 and viceversa, or even among more different archs. Should that be allowed, and in which measure (the user may force skipping the check for a .config or it is only given a warning by default)? Cc: Roman Zippel <zippel@linux-m68k.org> Cc: <kbuild-devel@lists.sourceforge.net> Signed-off-by: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-20 10:28:23 +04:00
depends on !UML
option defconfig_list
default "/lib/modules/$UNAME_RELEASE/.config"
default "/etc/kernel-config"
default "/boot/config-$UNAME_RELEASE"
default "arch/$ARCH/defconfig"
menu "Code maturity level options"
config EXPERIMENTAL
bool "Prompt for development and/or incomplete code/drivers"
---help---
Some of the various things that Linux supports (such as network
drivers, file systems, network protocols, etc.) can be in a state
of development where the functionality, stability, or the level of
testing is not yet high enough for general use. This is usually
known as the "alpha-test" phase among developers. If a feature is
currently in alpha-test, then the developers usually discourage
uninformed widespread use of this feature by the general public to
avoid "Why doesn't this work?" type mail messages. However, active
testing and use of these systems is welcomed. Just be aware that it
may not meet the normal level of reliability or it may fail to work
in some special cases. Detailed bug reports from people familiar
with the kernel internals are usually welcomed by the developers
(before submitting bug reports, please read the documents
<file:README>, <file:MAINTAINERS>, <file:REPORTING-BUGS>,
<file:Documentation/BUG-HUNTING>, and
<file:Documentation/oops-tracing.txt> in the kernel source).
This option will also make obsoleted drivers available. These are
drivers that have been replaced by something else, and/or are
scheduled to be removed in a future kernel release.
Unless you intend to help test and develop a feature or driver that
falls into this category, or you have a situation that requires
using these features, you should probably say N here, which will
cause the configurator to present you with fewer choices. If
you say Y here, you will be offered the choice of using features or
drivers that are currently considered to be in the alpha-test phase.
config BROKEN
bool
config BROKEN_ON_SMP
bool
depends on BROKEN || !SMP
default y
config LOCK_KERNEL
bool
depends on SMP || PREEMPT
default y
config INIT_ENV_ARG_LIMIT
int
default 32 if !UML
default 128 if UML
help
Maximum of each of the number of arguments and environment
variables passed to init from the kernel command line.
endmenu
menu "General setup"
config LOCALVERSION
string "Local version - append to kernel release"
help
Append an extra string to the end of your kernel version.
This will show up when you type uname, for example.
The string you set here will be appended after the contents of
any files with a filename matching localversion* in your
object and source tree, in that order. Your total string can
be a maximum of 64 characters.
config LOCALVERSION_AUTO
bool "Automatically append version information to the version string"
default y
help
This will try to automatically determine if the current tree is a
release tree by looking for git tags that
belong to the current top of tree revision.
A string of the format -gxxxxxxxx will be added to the localversion
if a git based tree is found. The string generated by this will be
appended after any matching localversion* files, and after the value
set in CONFIG_LOCALVERSION
Note: This requires Perl, and a git repository, but not necessarily
the git or cogito tools to be installed.
config SWAP
bool "Support for paging of anonymous memory (swap)"
[PATCH] BLOCK: Make it possible to disable the block layer [try #6] Make it possible to disable the block layer. Not all embedded devices require it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require the block layer to be present. This patch does the following: (*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev support. (*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls an item that uses the block layer. This includes: (*) Block I/O tracing. (*) Disk partition code. (*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS. (*) The SCSI layer. As far as I can tell, even SCSI chardevs use the block layer to do scheduling. Some drivers that use SCSI facilities - such as USB storage - end up disabled indirectly from this. (*) Various block-based device drivers, such as IDE and the old CDROM drivers. (*) MTD blockdev handling and FTL. (*) JFFS - which uses set_bdev_super(), something it could avoid doing by taking a leaf out of JFFS2's book. (*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is, however, still used in places, and so is still available. (*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and parts of linux/fs.h. (*) Makes a number of files in fs/ contingent on CONFIG_BLOCK. (*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK. (*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK is not enabled. (*) fs/no-block.c is created to hold out-of-line stubs and things that are required when CONFIG_BLOCK is not set: (*) Default blockdev file operations (to give error ENODEV on opening). (*) Makes some /proc changes: (*) /proc/devices does not list any blockdevs. (*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK. (*) Makes some compat ioctl handling contingent on CONFIG_BLOCK. (*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if given command other than Q_SYNC or if a special device is specified. (*) In init/do_mounts.c, no reference is made to the blockdev routines if CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2. (*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return error ENOSYS by way of cond_syscall if so). (*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if CONFIG_BLOCK is not set, since they can't then happen. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2006-09-30 22:45:40 +04:00
depends on MMU && BLOCK
default y
help
This option allows you to choose whether you want to have support
for so called swap devices or swap files in your kernel that are
used to provide more virtual memory than the actual RAM present
in your computer. If unsure say Y.
config SYSVIPC
bool "System V IPC"
---help---
Inter Process Communication is a suite of library functions and
system calls which let processes (running programs) synchronize and
exchange information. It is generally considered to be a good thing,
and some programs won't run unless you say Y here. In particular, if
you want to run the DOS emulator dosemu under Linux (read the
DOSEMU-HOWTO, available from <http://www.tldp.org/docs.html#howto>),
you'll need to say Y here.
You can find documentation about IPC with "info ipc" and also in
section 6.4 of the Linux Programmer's Guide, available from
<http://www.tldp.org/guides.html>.
config IPC_NS
bool "IPC Namespaces"
depends on SYSVIPC
default n
help
Support ipc namespaces. This allows containers, i.e. virtual
environments, to use ipc namespaces to provide different ipc
objects for different servers. If unsure, say N.
config POSIX_MQUEUE
bool "POSIX Message Queues"
depends on NET && EXPERIMENTAL
---help---
POSIX variant of message queues is a part of IPC. In POSIX message
queues every message has a priority which decides about succession
of receiving it by a process. If you want to compile and run
programs written e.g. for Solaris with use of its POSIX message
queues (functions mq_*) say Y here. To use this feature you will
also need mqueue library, available from
<http://www.mat.uni.torun.pl/~wrona/posix_ipc/>
POSIX message queues are visible as a filesystem called 'mqueue'
and can be mounted somewhere if you want to do filesystem
operations on message queues.
If unsure, say Y.
config BSD_PROCESS_ACCT
bool "BSD Process Accounting"
help
If you say Y here, a user level program will be able to instruct the
kernel (via a special system call) to write process accounting
information to a file: whenever a process exits, information about
that process will be appended to the file by the kernel. The
information includes things such as creation time, owning user,
command name, memory usage, controlling terminal etc. (the complete
list is in the struct acct in <file:include/linux/acct.h>). It is
up to the user level program to do useful things with this
information. This is generally a good idea, so say Y.
config BSD_PROCESS_ACCT_V3
bool "BSD Process Accounting version 3 file format"
depends on BSD_PROCESS_ACCT
default n
help
If you say Y here, the process accounting information is written
in a new file format that also logs the process IDs of each
process and it's parent. Note that this file format is incompatible
with previous v0/v1/v2 file formats, so you will need updated tools
for processing it. A preliminary version of these tools is available
at <http://www.physik3.uni-rostock.de/tim/kernel/utils/acct/>.
config TASKSTATS
bool "Export task/process statistics through netlink (EXPERIMENTAL)"
depends on NET
default n
help
Export selected statistics for tasks/processes through the
generic netlink interface. Unlike BSD process accounting, the
statistics are available during the lifetime of tasks/processes as
responses to commands. Like BSD accounting, they are sent to user
space on task exit.
Say N if unsure.
config TASK_DELAY_ACCT
bool "Enable per-task delay accounting (EXPERIMENTAL)"
depends on TASKSTATS
help
Collect information on time spent by a task waiting for system
resources like cpu, synchronous block I/O completion and swapping
in pages. Such statistics can help in setting a task's priorities
relative to other tasks for cpu, io, rss limits etc.
Say N if unsure.
config UTS_NS
bool "UTS Namespaces"
default n
help
Support uts namespaces. This allows containers, i.e.
vservers, to use uts namespaces to provide different
uts info for different servers. If unsure, say N.
config AUDIT
bool "Auditing support"
depends on NET
help
Enable auditing infrastructure that can be used with another
kernel subsystem, such as SELinux (which requires this for
logging of avc messages output). Does not do system-call
auditing without CONFIG_AUDITSYSCALL.
config AUDITSYSCALL
bool "Enable system-call auditing support"
depends on AUDIT && (X86 || PPC || PPC64 || S390 || IA64 || UML || SPARC64)
default y if SECURITY_SELINUX
help
Enable low-overhead system-call auditing infrastructure that
can be used independently or with another kernel subsystem,
such as SELinux. To use audit's filesystem watch feature, please
ensure that INOTIFY is configured.
config IKCONFIG
tristate "Kernel .config support"
---help---
This option enables the complete Linux kernel ".config" file
contents to be saved in the kernel. It provides documentation
of which kernel options are used in a running kernel or in an
on-disk kernel. This information can be extracted from the kernel
image file with the script scripts/extract-ikconfig and used as
input to rebuild the current kernel or to build another kernel.
It can also be extracted from a running kernel by reading
/proc/config.gz if enabled (below).
config IKCONFIG_PROC
bool "Enable access to .config through /proc/config.gz"
depends on IKCONFIG && PROC_FS
---help---
This option enables access to the kernel configuration file
through /proc/config.gz.
config CPUSETS
bool "Cpuset support"
depends on SMP
help
This option will let you create and manage CPUSETs which
allow dynamically partitioning a system into sets of CPUs and
Memory Nodes and assigning tasks to run only within those sets.
This is primarily useful on large SMP or NUMA systems.
Say N if unsure.
config SYSFS_DEPRECATED
bool "Create deprecated sysfs files"
default y
help
This option creates deprecated symlinks such as the
"device"-link, the <subsystem>:<name>-link, and the
"bus"-link. It may also add deprecated key in the
uevent environment.
None of these features or values should be used today, as
they export driver core implementation details to userspace
or export properties which can't be kept stable across kernel
releases.
If enabled, this option will also move any device structures
that belong to a class, back into the /sys/class heirachy, in
order to support older versions of udev.
If you are using a distro that was released in 2006 or later,
it should be safe to say N here.
config RELAY
bool "Kernel->user space relay support (formerly relayfs)"
help
This option enables support for relay interface support in
certain file systems (such as debugfs).
It is designed to provide an efficient mechanism for tools and
facilities to relay large amounts of data from kernel space to
user space.
If unsure, say N.
source "usr/Kconfig"
config CC_OPTIMIZE_FOR_SIZE
bool "Optimize for size (Look out for broken compilers!)"
default y
depends on ARM || H8300 || EXPERIMENTAL
help
Enabling this option will pass "-Os" instead of "-O2" to gcc
resulting in a smaller kernel.
WARNING: some versions of gcc may generate incorrect code with this
option. If problems are observed, a gcc upgrade may be needed.
If unsure, say N.
config TASK_XACCT
bool "Enable extended accounting over taskstats (EXPERIMENTAL)"
depends on TASKSTATS
help
Collect extended task accounting data and send the data
to userland for processing over the taskstats interface.
Say N if unsure.
[PATCH] io-accounting: core statistics The present per-task IO accounting isn't very useful. It simply counts the number of bytes passed into read() and write(). So if a process reads 1MB from an already-cached file, it is accused of having performed 1MB of I/O, which is wrong. (David Wright had some comments on the applicability of the present logical IO accounting: For billing purposes it is useless but for workload analysis it is very useful read_bytes/read_calls average read request size write_bytes/write_calls average write request size read_bytes/read_blocks ie logical/physical can indicate hit rate or thrashing write_bytes/write_blocks ie logical/physical guess since pdflush writes can be missed I often look for logical larger than physical to see filesystem cache problems. And the bytes/cpusec can help find applications that are dominating the cache and causing slow interactive response from page cache contention. I want to find the IO intensive applications and make sure they are doing efficient IO. Thus the acctcms(sysV) or csacms command would give the high IO commands). This patchset adds new accounting which tries to be more accurate. We account for three things: reads: attempt to count the number of bytes which this process really did cause to be fetched from the storage layer. Done at the submit_bio() level, so it is accurate for block-backed filesystems. I also attempt to wire up NFS and CIFS. writes: attempt to count the number of bytes which this process caused to be sent to the storage layer. This is done at page-dirtying time. The big inaccuracy here is truncate. If a process writes 1MB to a file and then deletes the file, it will in fact perform no writeout. But it will have been accounted as having caused 1MB of write. So... cancelled_writes: account the number of bytes which this process caused to not happen, by truncating pagecache. We _could_ just subtract this from the process's `write' accounting. But that means that some processes would be reported to have done negative amounts of write IO, which is silly. So we just report the raw number and punt this decision up to userspace. Now, we _could_ account for writes at the physical I/O level. But - This would require that we track memory-dirtying tasks at the per-page level (would require a new pointer in struct page). - It would mean that IO statistics for a process are usually only available long after that process has exitted. Which means that we probably cannot communicate this info via taskstats. This patch: Wire up the kernel-private data structures and the accessor functions to manipulate them. Cc: Jay Lan <jlan@sgi.com> Cc: Shailabh Nagar <nagar@watson.ibm.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Chris Sturtivant <csturtiv@sgi.com> Cc: Tony Ernst <tee@sgi.com> Cc: Guillaume Thouvenin <guillaume.thouvenin@bull.net> Cc: David Wright <daw@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 13:19:19 +03:00
config TASK_IO_ACCOUNTING
bool "Enable per-task storage I/O accounting (EXPERIMENTAL)"
depends on TASK_XACCT
help
Collect information on the number of bytes of storage I/O which this
task has caused.
Say N if unsure.
config SYSCTL
bool
menuconfig EMBEDDED
bool "Configure standard kernel features (for small systems)"
help
This option allows certain base kernel options and settings
to be disabled or tweaked. This is for specialized
environments which can tolerate a "non-standard" kernel.
Only use this if you really know what you are doing.
config UID16
bool "Enable 16-bit UID system calls" if EMBEDDED
depends on ARM || CRIS || FRV || H8300 || X86_32 || M68K || (S390 && !64BIT) || SUPERH || SPARC32 || (SPARC64 && SPARC32_COMPAT) || UML || (X86_64 && IA32_EMULATION)
default y
help
This enables the legacy 16-bit UID syscall wrappers.
config SYSCTL_SYSCALL
bool "Sysctl syscall support" if EMBEDDED
[PATCH] sysctl: Undeprecate sys_sysctl The basic issue is that despite have been deprecated and warned about as a very bad thing in the man pages since its inception there are a few real users of sys_sysctl. It was my assumption that because sysctl had been deprecated for all of 2.6 there would be no user space users by this point, so I initially gave sys_sysctl a very short deprecation period. Now that I know there are a few real users the only sane way to proceed with deprecation is to push the time limit out to a year or two work and work with distributions that have big testing pools like fedora core to find these last remaining users. Which means that the sys_sysctl interface needs to be maintained in the meantime. Since I have provided a technical measure that allows us to add new sysctl entries without reserving more binary numbers I believe that is enough to fix the sys_sysctl binary interface maintenance problems, because there is no longer a need to change the binary interface at all. Since the sys_sysctl implementation needs to stay around for a while and the worst of the maintenance issues that caused us to occasionally break the ABI have been addressed I don't see any advantage in continuing with the removal of sys_sysctl. So instead of merely increasing the deprecation period this patch removes the deprecation of sys_sysctl and modifies the kernel to compile the code in by default. With committing to maintain sys_sysctl we get all of the advantages of a fast interface for anything that needs it. Currently sys_sysctl is about 5x faster than /proc/sys, for the same string data. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Acked-by: Alan Cox <alan@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-11-09 04:44:51 +03:00
default y
select SYSCTL
---help---
[PATCH] sysctl: Undeprecate sys_sysctl The basic issue is that despite have been deprecated and warned about as a very bad thing in the man pages since its inception there are a few real users of sys_sysctl. It was my assumption that because sysctl had been deprecated for all of 2.6 there would be no user space users by this point, so I initially gave sys_sysctl a very short deprecation period. Now that I know there are a few real users the only sane way to proceed with deprecation is to push the time limit out to a year or two work and work with distributions that have big testing pools like fedora core to find these last remaining users. Which means that the sys_sysctl interface needs to be maintained in the meantime. Since I have provided a technical measure that allows us to add new sysctl entries without reserving more binary numbers I believe that is enough to fix the sys_sysctl binary interface maintenance problems, because there is no longer a need to change the binary interface at all. Since the sys_sysctl implementation needs to stay around for a while and the worst of the maintenance issues that caused us to occasionally break the ABI have been addressed I don't see any advantage in continuing with the removal of sys_sysctl. So instead of merely increasing the deprecation period this patch removes the deprecation of sys_sysctl and modifies the kernel to compile the code in by default. With committing to maintain sys_sysctl we get all of the advantages of a fast interface for anything that needs it. Currently sys_sysctl is about 5x faster than /proc/sys, for the same string data. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Acked-by: Alan Cox <alan@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-11-09 04:44:51 +03:00
sys_sysctl uses binary paths that have been found challenging
to properly maintain and use. The interface in /proc/sys
using paths with ascii names is now the primary path to this
information.
[PATCH] sysctl: Undeprecate sys_sysctl The basic issue is that despite have been deprecated and warned about as a very bad thing in the man pages since its inception there are a few real users of sys_sysctl. It was my assumption that because sysctl had been deprecated for all of 2.6 there would be no user space users by this point, so I initially gave sys_sysctl a very short deprecation period. Now that I know there are a few real users the only sane way to proceed with deprecation is to push the time limit out to a year or two work and work with distributions that have big testing pools like fedora core to find these last remaining users. Which means that the sys_sysctl interface needs to be maintained in the meantime. Since I have provided a technical measure that allows us to add new sysctl entries without reserving more binary numbers I believe that is enough to fix the sys_sysctl binary interface maintenance problems, because there is no longer a need to change the binary interface at all. Since the sys_sysctl implementation needs to stay around for a while and the worst of the maintenance issues that caused us to occasionally break the ABI have been addressed I don't see any advantage in continuing with the removal of sys_sysctl. So instead of merely increasing the deprecation period this patch removes the deprecation of sys_sysctl and modifies the kernel to compile the code in by default. With committing to maintain sys_sysctl we get all of the advantages of a fast interface for anything that needs it. Currently sys_sysctl is about 5x faster than /proc/sys, for the same string data. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Acked-by: Alan Cox <alan@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-11-09 04:44:51 +03:00
Almost nothing using the binary sysctl interface so if you are
trying to save some space it is probably safe to disable this,
making your kernel marginally smaller.
[PATCH] sysctl: Undeprecate sys_sysctl The basic issue is that despite have been deprecated and warned about as a very bad thing in the man pages since its inception there are a few real users of sys_sysctl. It was my assumption that because sysctl had been deprecated for all of 2.6 there would be no user space users by this point, so I initially gave sys_sysctl a very short deprecation period. Now that I know there are a few real users the only sane way to proceed with deprecation is to push the time limit out to a year or two work and work with distributions that have big testing pools like fedora core to find these last remaining users. Which means that the sys_sysctl interface needs to be maintained in the meantime. Since I have provided a technical measure that allows us to add new sysctl entries without reserving more binary numbers I believe that is enough to fix the sys_sysctl binary interface maintenance problems, because there is no longer a need to change the binary interface at all. Since the sys_sysctl implementation needs to stay around for a while and the worst of the maintenance issues that caused us to occasionally break the ABI have been addressed I don't see any advantage in continuing with the removal of sys_sysctl. So instead of merely increasing the deprecation period this patch removes the deprecation of sys_sysctl and modifies the kernel to compile the code in by default. With committing to maintain sys_sysctl we get all of the advantages of a fast interface for anything that needs it. Currently sys_sysctl is about 5x faster than /proc/sys, for the same string data. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Acked-by: Alan Cox <alan@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-11-09 04:44:51 +03:00
If unsure say Y here.
config KALLSYMS
bool "Load all symbols for debugging/ksymoops" if EMBEDDED
default y
help
Say Y here to let the kernel print out symbolic crash information and
symbolic stack backtraces. This increases the size of the kernel
somewhat, as all symbols have to be loaded into the kernel image.
config KALLSYMS_ALL
bool "Include all symbols in kallsyms"
depends on DEBUG_KERNEL && KALLSYMS
help
Normally kallsyms only contains the symbols of functions, for nicer
OOPS messages. Some debuggers can use kallsyms for other
symbols too: say Y here to include all symbols, if you need them
and you don't care about adding 300k to the size of your kernel.
Say N.
config KALLSYMS_EXTRA_PASS
bool "Do an extra kallsyms pass"
depends on KALLSYMS
help
If kallsyms is not working correctly, the build will fail with
inconsistent kallsyms data. If that occurs, log a bug report and
turn on KALLSYMS_EXTRA_PASS which should result in a stable build.
Always say N here unless you find a bug in kallsyms, which must be
reported. KALLSYMS_EXTRA_PASS is only a temporary workaround while
you wait for kallsyms to be fixed.
config HOTPLUG
bool "Support for hot-pluggable devices" if EMBEDDED
default y
help
This option is provided for the case where no hotplug or uevent
capabilities is wanted by the kernel. You should only consider
disabling this option for embedded systems that do not use modules, a
dynamic /dev tree, or dynamic device discovery. Just say Y.
config PRINTK
default y
bool "Enable support for printk" if EMBEDDED
help
This option enables normal printk support. Removing it
eliminates most of the message strings from the kernel image
and makes the kernel more or less silent. As this makes it
very difficult to diagnose system problems, saying N here is
strongly discouraged.
config BUG
bool "BUG() support" if EMBEDDED
default y
help
Disabling this option eliminates support for BUG and WARN, reducing
the size of your kernel image and potentially quietly ignoring
numerous fatal conditions. You should only consider disabling this
option for embedded systems with no facilities for reporting errors.
Just say Y.
config ELF_CORE
default y
bool "Enable ELF core dumps" if EMBEDDED
help
Enable support for generating core dumps. Disabling saves about 4k.
config BASE_FULL
default y
bool "Enable full-sized data structures for core" if EMBEDDED
help
Disabling this option reduces the size of miscellaneous core
kernel data structures. This saves memory on small machines,
but may reduce performance.
config FUTEX
bool "Enable futex support" if EMBEDDED
default y
select RT_MUTEXES
help
Disabling this option will cause the kernel to be built without
support for "fast userspace mutexes". The resulting kernel may not
run glibc-based applications correctly.
config EPOLL
bool "Enable eventpoll support" if EMBEDDED
default y
help
Disabling this option will cause the kernel to be built without
support for epoll family of system calls.
config SHMEM
bool "Use full shmem filesystem" if EMBEDDED
default y
depends on MMU
help
The shmem is an internal filesystem used to manage shared memory.
It is backed by swap and manages resource limits. It is also exported
to userspace as tmpfs if TMPFS is enabled. Disabling this
option replaces shmem and tmpfs with the much simpler ramfs code,
which may be appropriate on small systems without swap.
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 12:01:45 +03:00
config SLAB
default y
bool "Use full SLAB allocator" if (EMBEDDED && !SMP && !SPARSEMEM)
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 12:01:45 +03:00
help
Disabling this replaces the advanced SLAB allocator and
kmalloc support with the drastically simpler SLOB allocator.
SLOB is more space efficient but does not scale well and is
more susceptible to fragmentation.
[PATCH] Light weight event counters The remaining counters in page_state after the zoned VM counter patches have been applied are all just for show in /proc/vmstat. They have no essential function for the VM. We use a simple increment of per cpu variables. In order to avoid the most severe races we disable preempt. Preempt does not prevent the race between an increment and an interrupt handler incrementing the same statistics counter. However, that race is exceedingly rare, we may only loose one increment or so and there is no requirement (at least not in kernel) that the vm event counters have to be accurate. In the non preempt case this results in a simple increment for each counter. For many architectures this will be reduced by the compiler to a single instruction. This single instruction is atomic for i386 and x86_64. And therefore even the rare race condition in an interrupt is avoided for both architectures in most cases. The patchset also adds an off switch for embedded systems that allows a building of linux kernels without these counters. The implementation of these counters is through inline code that hopefully results in only a single instruction increment instruction being emitted (i386, x86_64) or in the increment being hidden though instruction concurrency (EPIC architectures such as ia64 can get that done). Benefits: - VM event counter operations usually reduce to a single inline instruction on i386 and x86_64. - No interrupt disable, only preempt disable for the preempt case. Preempt disable can also be avoided by moving the counter into a spinlock. - Handling is similar to zoned VM counters. - Simple and easily extendable. - Can be omitted to reduce memory use for embedded use. References: RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=113512330605497&w=2 RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=114988082814934&w=2 local_t http://marc.theaimsgroup.com/?l=linux-kernel&m=114991748606690&w=2 V2 http://marc.theaimsgroup.com/?t=115014808400007&r=1&w=2 V3 http://marc.theaimsgroup.com/?l=linux-kernel&m=115024767022346&w=2 V4 http://marc.theaimsgroup.com/?l=linux-kernel&m=115047968808926&w=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 12:55:45 +04:00
config VM_EVENT_COUNTERS
default y
bool "Enable VM event counters for /proc/vmstat" if EMBEDDED
help
VM event counters are needed for event counts to be shown.
This option allows the disabling of the VM event counters
on EMBEDDED systems. /proc/vmstat will only show page counts
if VM event counters are disabled.
[PATCH] Light weight event counters The remaining counters in page_state after the zoned VM counter patches have been applied are all just for show in /proc/vmstat. They have no essential function for the VM. We use a simple increment of per cpu variables. In order to avoid the most severe races we disable preempt. Preempt does not prevent the race between an increment and an interrupt handler incrementing the same statistics counter. However, that race is exceedingly rare, we may only loose one increment or so and there is no requirement (at least not in kernel) that the vm event counters have to be accurate. In the non preempt case this results in a simple increment for each counter. For many architectures this will be reduced by the compiler to a single instruction. This single instruction is atomic for i386 and x86_64. And therefore even the rare race condition in an interrupt is avoided for both architectures in most cases. The patchset also adds an off switch for embedded systems that allows a building of linux kernels without these counters. The implementation of these counters is through inline code that hopefully results in only a single instruction increment instruction being emitted (i386, x86_64) or in the increment being hidden though instruction concurrency (EPIC architectures such as ia64 can get that done). Benefits: - VM event counter operations usually reduce to a single inline instruction on i386 and x86_64. - No interrupt disable, only preempt disable for the preempt case. Preempt disable can also be avoided by moving the counter into a spinlock. - Handling is similar to zoned VM counters. - Simple and easily extendable. - Can be omitted to reduce memory use for embedded use. References: RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=113512330605497&w=2 RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=114988082814934&w=2 local_t http://marc.theaimsgroup.com/?l=linux-kernel&m=114991748606690&w=2 V2 http://marc.theaimsgroup.com/?t=115014808400007&r=1&w=2 V3 http://marc.theaimsgroup.com/?l=linux-kernel&m=115024767022346&w=2 V4 http://marc.theaimsgroup.com/?l=linux-kernel&m=115047968808926&w=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 12:55:45 +04:00
endmenu # General setup
config RT_MUTEXES
boolean
select PLIST
config TINY_SHMEM
default !SHMEM
bool
config BASE_SMALL
int
default 0 if BASE_FULL
default 1 if !BASE_FULL
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 12:01:45 +03:00
config SLOB
default !SLAB
bool
menu "Loadable module support"
config MODULES
bool "Enable loadable module support"
help
Kernel modules are small pieces of compiled code which can
be inserted in the running kernel, rather than being
permanently built into the kernel. You use the "modprobe"
tool to add (and sometimes remove) them. If you say Y here,
many parts of the kernel can be built as modules (by
answering M instead of Y where indicated): this is most
useful for infrequently used options which are not required
for booting. For more information, see the man pages for
modprobe, lsmod, modinfo, insmod and rmmod.
If you say Y here, you will need to run "make
modules_install" to put the modules under /lib/modules/
where modprobe can find them (you may need to be root to do
this).
If unsure, say Y.
config MODULE_UNLOAD
bool "Module unloading"
depends on MODULES
help
Without this option you will not be able to unload any
modules (note that some modules may not be unloadable
anyway), which makes your kernel slightly smaller and
simpler. If unsure, say Y.
config MODULE_FORCE_UNLOAD
bool "Forced module unloading"
depends on MODULE_UNLOAD && EXPERIMENTAL
help
This option allows you to force a module to unload, even if the
kernel believes it is unsafe: the kernel will remove the module
without waiting for anyone to stop using it (using the -f option to
rmmod). This is mainly for kernel developers and desperate users.
If unsure, say N.
config MODVERSIONS
bool "Module versioning support"
depends on MODULES
help
Usually, you have to use modules compiled with your kernel.
Saying Y here makes it sometimes possible to use modules
compiled for different kernels, by adding enough information
to the modules to (hopefully) spot any changes which would
make them incompatible with the kernel you are running. If
unsure, say N.
config MODULE_SRCVERSION_ALL
bool "Source checksum for all modules"
depends on MODULES
help
Modules which contain a MODULE_VERSION get an extra "srcversion"
field inserted into their modinfo section, which contains a
sum of the source files which made it. This helps maintainers
see exactly which source was used to build a module (since
others sometimes change the module source without updating
the version). With this option, such a "srcversion" field
will be created for all modules. If unsure, say N.
config KMOD
bool "Automatic kernel module loading"
depends on MODULES
help
Normally when you have selected some parts of the kernel to
be created as kernel modules, you must load them (using the
"modprobe" command) before you can use them. If you say Y
here, some parts of the kernel will be able to load modules
automatically: when a part of the kernel needs a module, it
runs modprobe with the appropriate arguments, thereby
loading the module if it is available. If unsure, say Y.
config STOP_MACHINE
bool
default y
depends on (SMP && MODULE_UNLOAD) || HOTPLUG_CPU
help
Need stop_machine() primitive.
endmenu
menu "Block layer"
source "block/Kconfig"
endmenu