WSL2-Linux-Kernel/sound/aoa/codecs/tas.c

950 строки
24 KiB
C
Исходник Обычный вид История

/*
* Apple Onboard Audio driver for tas codec
*
* Copyright 2006 Johannes Berg <johannes@sipsolutions.net>
*
* GPL v2, can be found in COPYING.
*
* Open questions:
* - How to distinguish between 3004 and versions?
*
* FIXMEs:
* - This codec driver doesn't honour the 'connected'
* property of the aoa_codec struct, hence if
* it is used in machines where not everything is
* connected it will display wrong mixer elements.
* - Driver assumes that the microphone is always
* monaureal and connected to the right channel of
* the input. This should also be a codec-dependent
* flag, maybe the codec should have 3 different
* bits for the three different possibilities how
* it can be hooked up...
* But as long as I don't see any hardware hooked
* up that way...
* - As Apple notes in their code, the tas3004 seems
* to delay the right channel by one sample. You can
* see this when for example recording stereo in
* audacity, or recording the tas output via cable
* on another machine (use a sinus generator or so).
* I tried programming the BiQuads but couldn't
* make the delay work, maybe someone can read the
* datasheet and fix it. The relevant Apple comment
* is in AppleTAS3004Audio.cpp lines 1637 ff. Note
* that their comment describing how they program
* the filters sucks...
*
* Other things:
* - this should actually register *two* aoa_codec
* structs since it has two inputs. Then it must
* use the prepare callback to forbid running the
* secondary output on a different clock.
* Also, whatever bus knows how to do this must
* provide two soundbus_dev devices and the fabric
* must be able to link them correctly.
*
* I don't even know if Apple ever uses the second
* port on the tas3004 though, I don't think their
* i2s controllers can even do it. OTOH, they all
* derive the clocks from common clocks, so it
* might just be possible. The framework allows the
* codec to refine the transfer_info items in the
* usable callback, so we can simply remove the
* rates the second instance is not using when it
* actually is in use.
* Maybe we'll need to make the sound busses have
* a 'clock group id' value so the codec can
* determine if the two outputs can be driven at
* the same time. But that is likely overkill, up
* to the fabric to not link them up incorrectly,
* and up to the hardware designer to not wire
* them up in some weird unusable way.
*/
#include <stddef.h>
#include <linux/i2c.h>
#include <asm/pmac_low_i2c.h>
#include <asm/prom.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/mutex.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
#include <linux/slab.h>
MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("tas codec driver for snd-aoa");
#include "tas.h"
#include "tas-gain-table.h"
#include "tas-basstreble.h"
#include "../aoa.h"
#include "../soundbus/soundbus.h"
#define PFX "snd-aoa-codec-tas: "
struct tas {
struct aoa_codec codec;
struct i2c_client *i2c;
u32 mute_l:1, mute_r:1 ,
controls_created:1 ,
drc_enabled:1,
hw_enabled:1;
u8 cached_volume_l, cached_volume_r;
u8 mixer_l[3], mixer_r[3];
u8 bass, treble;
u8 acr;
int drc_range;
/* protects hardware access against concurrency from
* userspace when hitting controls and during
* codec init/suspend/resume */
struct mutex mtx;
};
static int tas_reset_init(struct tas *tas);
static struct tas *codec_to_tas(struct aoa_codec *codec)
{
return container_of(codec, struct tas, codec);
}
static inline int tas_write_reg(struct tas *tas, u8 reg, u8 len, u8 *data)
{
if (len == 1)
return i2c_smbus_write_byte_data(tas->i2c, reg, *data);
else
return i2c_smbus_write_i2c_block_data(tas->i2c, reg, len, data);
}
static void tas3004_set_drc(struct tas *tas)
{
unsigned char val[6];
if (tas->drc_enabled)
val[0] = 0x50; /* 3:1 above threshold */
else
val[0] = 0x51; /* disabled */
val[1] = 0x02; /* 1:1 below threshold */
if (tas->drc_range > 0xef)
val[2] = 0xef;
else if (tas->drc_range < 0)
val[2] = 0x00;
else
val[2] = tas->drc_range;
val[3] = 0xb0;
val[4] = 0x60;
val[5] = 0xa0;
tas_write_reg(tas, TAS_REG_DRC, 6, val);
}
static void tas_set_treble(struct tas *tas)
{
u8 tmp;
tmp = tas3004_treble(tas->treble);
tas_write_reg(tas, TAS_REG_TREBLE, 1, &tmp);
}
static void tas_set_bass(struct tas *tas)
{
u8 tmp;
tmp = tas3004_bass(tas->bass);
tas_write_reg(tas, TAS_REG_BASS, 1, &tmp);
}
static void tas_set_volume(struct tas *tas)
{
u8 block[6];
int tmp;
u8 left, right;
left = tas->cached_volume_l;
right = tas->cached_volume_r;
if (left > 177) left = 177;
if (right > 177) right = 177;
if (tas->mute_l) left = 0;
if (tas->mute_r) right = 0;
/* analysing the volume and mixer tables shows
* that they are similar enough when we shift
* the mixer table down by 4 bits. The error
* is miniscule, in just one item the error
* is 1, at a value of 0x07f17b (mixer table
* value is 0x07f17a) */
tmp = tas_gaintable[left];
block[0] = tmp>>20;
block[1] = tmp>>12;
block[2] = tmp>>4;
tmp = tas_gaintable[right];
block[3] = tmp>>20;
block[4] = tmp>>12;
block[5] = tmp>>4;
tas_write_reg(tas, TAS_REG_VOL, 6, block);
}
static void tas_set_mixer(struct tas *tas)
{
u8 block[9];
int tmp, i;
u8 val;
for (i=0;i<3;i++) {
val = tas->mixer_l[i];
if (val > 177) val = 177;
tmp = tas_gaintable[val];
block[3*i+0] = tmp>>16;
block[3*i+1] = tmp>>8;
block[3*i+2] = tmp;
}
tas_write_reg(tas, TAS_REG_LMIX, 9, block);
for (i=0;i<3;i++) {
val = tas->mixer_r[i];
if (val > 177) val = 177;
tmp = tas_gaintable[val];
block[3*i+0] = tmp>>16;
block[3*i+1] = tmp>>8;
block[3*i+2] = tmp;
}
tas_write_reg(tas, TAS_REG_RMIX, 9, block);
}
/* alsa stuff */
static int tas_dev_register(struct snd_device *dev)
{
return 0;
}
static struct snd_device_ops ops = {
.dev_register = tas_dev_register,
};
static int tas_snd_vol_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 177;
return 0;
}
static int tas_snd_vol_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
mutex_lock(&tas->mtx);
ucontrol->value.integer.value[0] = tas->cached_volume_l;
ucontrol->value.integer.value[1] = tas->cached_volume_r;
mutex_unlock(&tas->mtx);
return 0;
}
static int tas_snd_vol_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
if (ucontrol->value.integer.value[0] < 0 ||
ucontrol->value.integer.value[0] > 177)
return -EINVAL;
if (ucontrol->value.integer.value[1] < 0 ||
ucontrol->value.integer.value[1] > 177)
return -EINVAL;
mutex_lock(&tas->mtx);
if (tas->cached_volume_l == ucontrol->value.integer.value[0]
&& tas->cached_volume_r == ucontrol->value.integer.value[1]) {
mutex_unlock(&tas->mtx);
return 0;
}
tas->cached_volume_l = ucontrol->value.integer.value[0];
tas->cached_volume_r = ucontrol->value.integer.value[1];
if (tas->hw_enabled)
tas_set_volume(tas);
mutex_unlock(&tas->mtx);
return 1;
}
static struct snd_kcontrol_new volume_control = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Master Playback Volume",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = tas_snd_vol_info,
.get = tas_snd_vol_get,
.put = tas_snd_vol_put,
};
#define tas_snd_mute_info snd_ctl_boolean_stereo_info
static int tas_snd_mute_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
mutex_lock(&tas->mtx);
ucontrol->value.integer.value[0] = !tas->mute_l;
ucontrol->value.integer.value[1] = !tas->mute_r;
mutex_unlock(&tas->mtx);
return 0;
}
static int tas_snd_mute_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
mutex_lock(&tas->mtx);
if (tas->mute_l == !ucontrol->value.integer.value[0]
&& tas->mute_r == !ucontrol->value.integer.value[1]) {
mutex_unlock(&tas->mtx);
return 0;
}
tas->mute_l = !ucontrol->value.integer.value[0];
tas->mute_r = !ucontrol->value.integer.value[1];
if (tas->hw_enabled)
tas_set_volume(tas);
mutex_unlock(&tas->mtx);
return 1;
}
static struct snd_kcontrol_new mute_control = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Master Playback Switch",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = tas_snd_mute_info,
.get = tas_snd_mute_get,
.put = tas_snd_mute_put,
};
static int tas_snd_mixer_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 177;
return 0;
}
static int tas_snd_mixer_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
int idx = kcontrol->private_value;
mutex_lock(&tas->mtx);
ucontrol->value.integer.value[0] = tas->mixer_l[idx];
ucontrol->value.integer.value[1] = tas->mixer_r[idx];
mutex_unlock(&tas->mtx);
return 0;
}
static int tas_snd_mixer_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
int idx = kcontrol->private_value;
mutex_lock(&tas->mtx);
if (tas->mixer_l[idx] == ucontrol->value.integer.value[0]
&& tas->mixer_r[idx] == ucontrol->value.integer.value[1]) {
mutex_unlock(&tas->mtx);
return 0;
}
tas->mixer_l[idx] = ucontrol->value.integer.value[0];
tas->mixer_r[idx] = ucontrol->value.integer.value[1];
if (tas->hw_enabled)
tas_set_mixer(tas);
mutex_unlock(&tas->mtx);
return 1;
}
#define MIXER_CONTROL(n,descr,idx) \
static struct snd_kcontrol_new n##_control = { \
.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
.name = descr " Playback Volume", \
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
.info = tas_snd_mixer_info, \
.get = tas_snd_mixer_get, \
.put = tas_snd_mixer_put, \
.private_value = idx, \
}
MIXER_CONTROL(pcm1, "PCM", 0);
MIXER_CONTROL(monitor, "Monitor", 2);
static int tas_snd_drc_range_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = TAS3004_DRC_MAX;
return 0;
}
static int tas_snd_drc_range_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
mutex_lock(&tas->mtx);
ucontrol->value.integer.value[0] = tas->drc_range;
mutex_unlock(&tas->mtx);
return 0;
}
static int tas_snd_drc_range_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
if (ucontrol->value.integer.value[0] < 0 ||
ucontrol->value.integer.value[0] > TAS3004_DRC_MAX)
return -EINVAL;
mutex_lock(&tas->mtx);
if (tas->drc_range == ucontrol->value.integer.value[0]) {
mutex_unlock(&tas->mtx);
return 0;
}
tas->drc_range = ucontrol->value.integer.value[0];
if (tas->hw_enabled)
tas3004_set_drc(tas);
mutex_unlock(&tas->mtx);
return 1;
}
static struct snd_kcontrol_new drc_range_control = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "DRC Range",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = tas_snd_drc_range_info,
.get = tas_snd_drc_range_get,
.put = tas_snd_drc_range_put,
};
#define tas_snd_drc_switch_info snd_ctl_boolean_mono_info
static int tas_snd_drc_switch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
mutex_lock(&tas->mtx);
ucontrol->value.integer.value[0] = tas->drc_enabled;
mutex_unlock(&tas->mtx);
return 0;
}
static int tas_snd_drc_switch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
mutex_lock(&tas->mtx);
if (tas->drc_enabled == ucontrol->value.integer.value[0]) {
mutex_unlock(&tas->mtx);
return 0;
}
tas->drc_enabled = !!ucontrol->value.integer.value[0];
if (tas->hw_enabled)
tas3004_set_drc(tas);
mutex_unlock(&tas->mtx);
return 1;
}
static struct snd_kcontrol_new drc_switch_control = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "DRC Range Switch",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = tas_snd_drc_switch_info,
.get = tas_snd_drc_switch_get,
.put = tas_snd_drc_switch_put,
};
static int tas_snd_capture_source_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
static const char * const texts[] = { "Line-In", "Microphone" };
return snd_ctl_enum_info(uinfo, 1, 2, texts);
}
static int tas_snd_capture_source_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
mutex_lock(&tas->mtx);
ucontrol->value.enumerated.item[0] = !!(tas->acr & TAS_ACR_INPUT_B);
mutex_unlock(&tas->mtx);
return 0;
}
static int tas_snd_capture_source_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
int oldacr;
if (ucontrol->value.enumerated.item[0] > 1)
return -EINVAL;
mutex_lock(&tas->mtx);
oldacr = tas->acr;
/*
* Despite what the data sheet says in one place, the
* TAS_ACR_B_MONAUREAL bit forces mono output even when
* input A (line in) is selected.
*/
tas->acr &= ~(TAS_ACR_INPUT_B | TAS_ACR_B_MONAUREAL);
if (ucontrol->value.enumerated.item[0])
tas->acr |= TAS_ACR_INPUT_B | TAS_ACR_B_MONAUREAL |
TAS_ACR_B_MON_SEL_RIGHT;
if (oldacr == tas->acr) {
mutex_unlock(&tas->mtx);
return 0;
}
if (tas->hw_enabled)
tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr);
mutex_unlock(&tas->mtx);
return 1;
}
static struct snd_kcontrol_new capture_source_control = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
/* If we name this 'Input Source', it properly shows up in
* alsamixer as a selection, * but it's shown under the
* 'Playback' category.
* If I name it 'Capture Source', it shows up in strange
* ways (two bools of which one can be selected at a
* time) but at least it's shown in the 'Capture'
* category.
* I was told that this was due to backward compatibility,
* but I don't understand then why the mangling is *not*
* done when I name it "Input Source".....
*/
.name = "Capture Source",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = tas_snd_capture_source_info,
.get = tas_snd_capture_source_get,
.put = tas_snd_capture_source_put,
};
static int tas_snd_treble_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = TAS3004_TREBLE_MIN;
uinfo->value.integer.max = TAS3004_TREBLE_MAX;
return 0;
}
static int tas_snd_treble_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
mutex_lock(&tas->mtx);
ucontrol->value.integer.value[0] = tas->treble;
mutex_unlock(&tas->mtx);
return 0;
}
static int tas_snd_treble_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
if (ucontrol->value.integer.value[0] < TAS3004_TREBLE_MIN ||
ucontrol->value.integer.value[0] > TAS3004_TREBLE_MAX)
return -EINVAL;
mutex_lock(&tas->mtx);
if (tas->treble == ucontrol->value.integer.value[0]) {
mutex_unlock(&tas->mtx);
return 0;
}
tas->treble = ucontrol->value.integer.value[0];
if (tas->hw_enabled)
tas_set_treble(tas);
mutex_unlock(&tas->mtx);
return 1;
}
static struct snd_kcontrol_new treble_control = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Treble",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = tas_snd_treble_info,
.get = tas_snd_treble_get,
.put = tas_snd_treble_put,
};
static int tas_snd_bass_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = TAS3004_BASS_MIN;
uinfo->value.integer.max = TAS3004_BASS_MAX;
return 0;
}
static int tas_snd_bass_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
mutex_lock(&tas->mtx);
ucontrol->value.integer.value[0] = tas->bass;
mutex_unlock(&tas->mtx);
return 0;
}
static int tas_snd_bass_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
if (ucontrol->value.integer.value[0] < TAS3004_BASS_MIN ||
ucontrol->value.integer.value[0] > TAS3004_BASS_MAX)
return -EINVAL;
mutex_lock(&tas->mtx);
if (tas->bass == ucontrol->value.integer.value[0]) {
mutex_unlock(&tas->mtx);
return 0;
}
tas->bass = ucontrol->value.integer.value[0];
if (tas->hw_enabled)
tas_set_bass(tas);
mutex_unlock(&tas->mtx);
return 1;
}
static struct snd_kcontrol_new bass_control = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Bass",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = tas_snd_bass_info,
.get = tas_snd_bass_get,
.put = tas_snd_bass_put,
};
static struct transfer_info tas_transfers[] = {
{
/* input */
.formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S24_BE,
.rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
.transfer_in = 1,
},
{
/* output */
.formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S24_BE,
.rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
.transfer_in = 0,
},
{}
};
static int tas_usable(struct codec_info_item *cii,
struct transfer_info *ti,
struct transfer_info *out)
{
return 1;
}
static int tas_reset_init(struct tas *tas)
{
u8 tmp;
tas->codec.gpio->methods->all_amps_off(tas->codec.gpio);
msleep(5);
tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0);
msleep(5);
tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 1);
msleep(20);
tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0);
msleep(10);
tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio);
tmp = TAS_MCS_SCLK64 | TAS_MCS_SPORT_MODE_I2S | TAS_MCS_SPORT_WL_24BIT;
if (tas_write_reg(tas, TAS_REG_MCS, 1, &tmp))
goto outerr;
tas->acr |= TAS_ACR_ANALOG_PDOWN;
if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr))
goto outerr;
tmp = 0;
if (tas_write_reg(tas, TAS_REG_MCS2, 1, &tmp))
goto outerr;
tas3004_set_drc(tas);
/* Set treble & bass to 0dB */
tas->treble = TAS3004_TREBLE_ZERO;
tas->bass = TAS3004_BASS_ZERO;
tas_set_treble(tas);
tas_set_bass(tas);
tas->acr &= ~TAS_ACR_ANALOG_PDOWN;
if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr))
goto outerr;
return 0;
outerr:
return -ENODEV;
}
static int tas_switch_clock(struct codec_info_item *cii, enum clock_switch clock)
{
struct tas *tas = cii->codec_data;
switch(clock) {
case CLOCK_SWITCH_PREPARE_SLAVE:
/* Clocks are going away, mute mute mute */
tas->codec.gpio->methods->all_amps_off(tas->codec.gpio);
tas->hw_enabled = 0;
break;
case CLOCK_SWITCH_SLAVE:
/* Clocks are back, re-init the codec */
mutex_lock(&tas->mtx);
tas_reset_init(tas);
tas_set_volume(tas);
tas_set_mixer(tas);
tas->hw_enabled = 1;
tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio);
mutex_unlock(&tas->mtx);
break;
default:
/* doesn't happen as of now */
return -EINVAL;
}
return 0;
}
#ifdef CONFIG_PM
/* we are controlled via i2c and assume that is always up
* If that wasn't the case, we'd have to suspend once
* our i2c device is suspended, and then take note of that! */
static int tas_suspend(struct tas *tas)
{
mutex_lock(&tas->mtx);
tas->hw_enabled = 0;
tas->acr |= TAS_ACR_ANALOG_PDOWN;
tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr);
mutex_unlock(&tas->mtx);
return 0;
}
static int tas_resume(struct tas *tas)
{
/* reset codec */
mutex_lock(&tas->mtx);
tas_reset_init(tas);
tas_set_volume(tas);
tas_set_mixer(tas);
tas->hw_enabled = 1;
mutex_unlock(&tas->mtx);
return 0;
}
static int _tas_suspend(struct codec_info_item *cii, pm_message_t state)
{
return tas_suspend(cii->codec_data);
}
static int _tas_resume(struct codec_info_item *cii)
{
return tas_resume(cii->codec_data);
}
#else /* CONFIG_PM */
#define _tas_suspend NULL
#define _tas_resume NULL
#endif /* CONFIG_PM */
static struct codec_info tas_codec_info = {
.transfers = tas_transfers,
/* in theory, we can drive it at 512 too...
* but so far the framework doesn't allow
* for that and I don't see much point in it. */
.sysclock_factor = 256,
/* same here, could be 32 for just one 16 bit format */
.bus_factor = 64,
.owner = THIS_MODULE,
.usable = tas_usable,
.switch_clock = tas_switch_clock,
.suspend = _tas_suspend,
.resume = _tas_resume,
};
static int tas_init_codec(struct aoa_codec *codec)
{
struct tas *tas = codec_to_tas(codec);
int err;
if (!tas->codec.gpio || !tas->codec.gpio->methods) {
printk(KERN_ERR PFX "gpios not assigned!!\n");
return -EINVAL;
}
mutex_lock(&tas->mtx);
if (tas_reset_init(tas)) {
printk(KERN_ERR PFX "tas failed to initialise\n");
mutex_unlock(&tas->mtx);
return -ENXIO;
}
tas->hw_enabled = 1;
mutex_unlock(&tas->mtx);
if (tas->codec.soundbus_dev->attach_codec(tas->codec.soundbus_dev,
aoa_get_card(),
&tas_codec_info, tas)) {
printk(KERN_ERR PFX "error attaching tas to soundbus\n");
return -ENODEV;
}
if (aoa_snd_device_new(SNDRV_DEV_CODEC, tas, &ops)) {
printk(KERN_ERR PFX "failed to create tas snd device!\n");
return -ENODEV;
}
err = aoa_snd_ctl_add(snd_ctl_new1(&volume_control, tas));
if (err)
goto error;
err = aoa_snd_ctl_add(snd_ctl_new1(&mute_control, tas));
if (err)
goto error;
err = aoa_snd_ctl_add(snd_ctl_new1(&pcm1_control, tas));
if (err)
goto error;
err = aoa_snd_ctl_add(snd_ctl_new1(&monitor_control, tas));
if (err)
goto error;
err = aoa_snd_ctl_add(snd_ctl_new1(&capture_source_control, tas));
if (err)
goto error;
err = aoa_snd_ctl_add(snd_ctl_new1(&drc_range_control, tas));
if (err)
goto error;
err = aoa_snd_ctl_add(snd_ctl_new1(&drc_switch_control, tas));
if (err)
goto error;
err = aoa_snd_ctl_add(snd_ctl_new1(&treble_control, tas));
if (err)
goto error;
err = aoa_snd_ctl_add(snd_ctl_new1(&bass_control, tas));
if (err)
goto error;
return 0;
error:
tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas);
snd_device_free(aoa_get_card(), tas);
return err;
}
static void tas_exit_codec(struct aoa_codec *codec)
{
struct tas *tas = codec_to_tas(codec);
if (!tas->codec.soundbus_dev)
return;
tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas);
}
static int tas_i2c_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct device_node *node = client->dev.of_node;
struct tas *tas;
tas = kzalloc(sizeof(struct tas), GFP_KERNEL);
if (!tas)
return -ENOMEM;
mutex_init(&tas->mtx);
tas->i2c = client;
i2c_set_clientdata(client, tas);
/* seems that half is a saner default */
tas->drc_range = TAS3004_DRC_MAX / 2;
strlcpy(tas->codec.name, "tas", MAX_CODEC_NAME_LEN);
tas->codec.owner = THIS_MODULE;
tas->codec.init = tas_init_codec;
tas->codec.exit = tas_exit_codec;
tas->codec.node = of_node_get(node);
if (aoa_codec_register(&tas->codec)) {
goto fail;
}
printk(KERN_DEBUG
"snd-aoa-codec-tas: tas found, addr 0x%02x on %s\n",
(unsigned int)client->addr, node->full_name);
return 0;
fail:
mutex_destroy(&tas->mtx);
kfree(tas);
return -EINVAL;
}
static int tas_i2c_remove(struct i2c_client *client)
{
struct tas *tas = i2c_get_clientdata(client);
u8 tmp = TAS_ACR_ANALOG_PDOWN;
aoa_codec_unregister(&tas->codec);
of_node_put(tas->codec.node);
/* power down codec chip */
tas_write_reg(tas, TAS_REG_ACR, 1, &tmp);
mutex_destroy(&tas->mtx);
kfree(tas);
return 0;
}
static const struct i2c_device_id tas_i2c_id[] = {
{ "MAC,tas3004", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c,tas_i2c_id);
static struct i2c_driver tas_driver = {
.driver = {
.name = "aoa_codec_tas",
.owner = THIS_MODULE,
},
.probe = tas_i2c_probe,
.remove = tas_i2c_remove,
.id_table = tas_i2c_id,
};
module_i2c_driver(tas_driver);