WSL2-Linux-Kernel/drivers/net/ethernet/sfc/ef100_nic.c

1281 строка
37 KiB
C
Исходник Обычный вид История

// SPDX-License-Identifier: GPL-2.0-only
/****************************************************************************
* Driver for Solarflare network controllers and boards
* Copyright 2018 Solarflare Communications Inc.
* Copyright 2019-2020 Xilinx Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include "ef100_nic.h"
#include "efx_common.h"
#include "efx_channels.h"
#include "io.h"
#include "selftest.h"
#include "ef100_regs.h"
#include "mcdi.h"
#include "mcdi_pcol.h"
#include "mcdi_port_common.h"
#include "mcdi_functions.h"
#include "mcdi_filters.h"
#include "ef100_rx.h"
#include "ef100_tx.h"
#include "ef100_netdev.h"
#define EF100_MAX_VIS 4096
#define EF100_NUM_MCDI_BUFFERS 1
#define MCDI_BUF_LEN (8 + MCDI_CTL_SDU_LEN_MAX)
#define EF100_RESET_PORT ((ETH_RESET_MAC | ETH_RESET_PHY) << ETH_RESET_SHARED_SHIFT)
/* MCDI
*/
static u8 *ef100_mcdi_buf(struct efx_nic *efx, u8 bufid, dma_addr_t *dma_addr)
{
struct ef100_nic_data *nic_data = efx->nic_data;
if (dma_addr)
*dma_addr = nic_data->mcdi_buf.dma_addr +
bufid * ALIGN(MCDI_BUF_LEN, 256);
return nic_data->mcdi_buf.addr + bufid * ALIGN(MCDI_BUF_LEN, 256);
}
static int ef100_get_warm_boot_count(struct efx_nic *efx)
{
efx_dword_t reg;
efx_readd(efx, &reg, efx_reg(efx, ER_GZ_MC_SFT_STATUS));
if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) == 0xffffffff) {
netif_err(efx, hw, efx->net_dev, "Hardware unavailable\n");
efx->state = STATE_DISABLED;
return -ENETDOWN;
} else {
return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
}
}
static void ef100_mcdi_request(struct efx_nic *efx,
const efx_dword_t *hdr, size_t hdr_len,
const efx_dword_t *sdu, size_t sdu_len)
{
dma_addr_t dma_addr;
u8 *pdu = ef100_mcdi_buf(efx, 0, &dma_addr);
memcpy(pdu, hdr, hdr_len);
memcpy(pdu + hdr_len, sdu, sdu_len);
wmb();
/* The hardware provides 'low' and 'high' (doorbell) registers
* for passing the 64-bit address of an MCDI request to
* firmware. However the dwords are swapped by firmware. The
* least significant bits of the doorbell are then 0 for all
* MCDI requests due to alignment.
*/
_efx_writed(efx, cpu_to_le32((u64)dma_addr >> 32), efx_reg(efx, ER_GZ_MC_DB_LWRD));
_efx_writed(efx, cpu_to_le32((u32)dma_addr), efx_reg(efx, ER_GZ_MC_DB_HWRD));
}
static bool ef100_mcdi_poll_response(struct efx_nic *efx)
{
const efx_dword_t hdr =
*(const efx_dword_t *)(ef100_mcdi_buf(efx, 0, NULL));
rmb();
return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
}
static void ef100_mcdi_read_response(struct efx_nic *efx,
efx_dword_t *outbuf, size_t offset,
size_t outlen)
{
const u8 *pdu = ef100_mcdi_buf(efx, 0, NULL);
memcpy(outbuf, pdu + offset, outlen);
}
static int ef100_mcdi_poll_reboot(struct efx_nic *efx)
{
struct ef100_nic_data *nic_data = efx->nic_data;
int rc;
rc = ef100_get_warm_boot_count(efx);
if (rc < 0) {
/* The firmware is presumably in the process of
* rebooting. However, we are supposed to report each
* reboot just once, so we must only do that once we
* can read and store the updated warm boot count.
*/
return 0;
}
if (rc == nic_data->warm_boot_count)
return 0;
nic_data->warm_boot_count = rc;
return -EIO;
}
static void ef100_mcdi_reboot_detected(struct efx_nic *efx)
{
}
/* MCDI calls
*/
static int ef100_get_mac_address(struct efx_nic *efx, u8 *mac_address)
{
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
size_t outlen;
int rc;
BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc)
return rc;
if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
return -EIO;
ether_addr_copy(mac_address,
MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
return 0;
}
static int efx_ef100_init_datapath_caps(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V7_OUT_LEN);
struct ef100_nic_data *nic_data = efx->nic_data;
u8 vi_window_mode;
size_t outlen;
int rc;
BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc)
return rc;
if (outlen < MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
netif_err(efx, drv, efx->net_dev,
"unable to read datapath firmware capabilities\n");
return -EIO;
}
nic_data->datapath_caps = MCDI_DWORD(outbuf,
GET_CAPABILITIES_OUT_FLAGS1);
nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
GET_CAPABILITIES_V2_OUT_FLAGS2);
if (outlen < MC_CMD_GET_CAPABILITIES_V7_OUT_LEN)
nic_data->datapath_caps3 = 0;
else
nic_data->datapath_caps3 = MCDI_DWORD(outbuf,
GET_CAPABILITIES_V7_OUT_FLAGS3);
vi_window_mode = MCDI_BYTE(outbuf,
GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
if (rc)
return rc;
if (efx_ef100_has_cap(nic_data->datapath_caps2, TX_TSO_V3)) {
struct net_device *net_dev = efx->net_dev;
netdev_features_t tso = NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_PARTIAL |
NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM;
net_dev->features |= tso;
net_dev->hw_features |= tso;
net_dev->hw_enc_features |= tso;
}
efx->num_mac_stats = MCDI_WORD(outbuf,
GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
netif_dbg(efx, probe, efx->net_dev,
"firmware reports num_mac_stats = %u\n",
efx->num_mac_stats);
return 0;
}
/* Event handling
*/
static int ef100_ev_probe(struct efx_channel *channel)
{
/* Allocate an extra descriptor for the QMDA status completion entry */
return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
(channel->eventq_mask + 2) *
sizeof(efx_qword_t),
GFP_KERNEL);
}
static int ef100_ev_init(struct efx_channel *channel)
{
struct ef100_nic_data *nic_data = channel->efx->nic_data;
/* initial phase is 0 */
clear_bit(channel->channel, nic_data->evq_phases);
return efx_mcdi_ev_init(channel, false, false);
}
static void ef100_ev_read_ack(struct efx_channel *channel)
{
efx_dword_t evq_prime;
EFX_POPULATE_DWORD_2(evq_prime,
ERF_GZ_EVQ_ID, channel->channel,
ERF_GZ_IDX, channel->eventq_read_ptr &
channel->eventq_mask);
efx_writed(channel->efx, &evq_prime,
efx_reg(channel->efx, ER_GZ_EVQ_INT_PRIME));
}
static int ef100_ev_process(struct efx_channel *channel, int quota)
{
struct efx_nic *efx = channel->efx;
struct ef100_nic_data *nic_data;
bool evq_phase, old_evq_phase;
unsigned int read_ptr;
efx_qword_t *p_event;
int spent = 0;
bool ev_phase;
int ev_type;
if (unlikely(!channel->enabled))
return 0;
nic_data = efx->nic_data;
evq_phase = test_bit(channel->channel, nic_data->evq_phases);
old_evq_phase = evq_phase;
read_ptr = channel->eventq_read_ptr;
BUILD_BUG_ON(ESF_GZ_EV_RXPKTS_PHASE_LBN != ESF_GZ_EV_TXCMPL_PHASE_LBN);
while (spent < quota) {
p_event = efx_event(channel, read_ptr);
ev_phase = !!EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_RXPKTS_PHASE);
if (ev_phase != evq_phase)
break;
netif_vdbg(efx, drv, efx->net_dev,
"processing event on %d " EFX_QWORD_FMT "\n",
channel->channel, EFX_QWORD_VAL(*p_event));
ev_type = EFX_QWORD_FIELD(*p_event, ESF_GZ_E_TYPE);
switch (ev_type) {
case ESE_GZ_EF100_EV_RX_PKTS:
efx_ef100_ev_rx(channel, p_event);
++spent;
break;
case ESE_GZ_EF100_EV_MCDI:
efx_mcdi_process_event(channel, p_event);
break;
case ESE_GZ_EF100_EV_TX_COMPLETION:
ef100_ev_tx(channel, p_event);
break;
case ESE_GZ_EF100_EV_DRIVER:
netif_info(efx, drv, efx->net_dev,
"Driver initiated event " EFX_QWORD_FMT "\n",
EFX_QWORD_VAL(*p_event));
break;
default:
netif_info(efx, drv, efx->net_dev,
"Unhandled event " EFX_QWORD_FMT "\n",
EFX_QWORD_VAL(*p_event));
}
++read_ptr;
if ((read_ptr & channel->eventq_mask) == 0)
evq_phase = !evq_phase;
}
channel->eventq_read_ptr = read_ptr;
if (evq_phase != old_evq_phase)
change_bit(channel->channel, nic_data->evq_phases);
return spent;
}
static irqreturn_t ef100_msi_interrupt(int irq, void *dev_id)
{
struct efx_msi_context *context = dev_id;
struct efx_nic *efx = context->efx;
netif_vdbg(efx, intr, efx->net_dev,
"IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
if (likely(READ_ONCE(efx->irq_soft_enabled))) {
/* Note test interrupts */
if (context->index == efx->irq_level)
efx->last_irq_cpu = raw_smp_processor_id();
/* Schedule processing of the channel */
efx_schedule_channel_irq(efx->channel[context->index]);
}
return IRQ_HANDLED;
}
static int ef100_phy_probe(struct efx_nic *efx)
{
struct efx_mcdi_phy_data *phy_data;
int rc;
/* Probe for the PHY */
efx->phy_data = kzalloc(sizeof(struct efx_mcdi_phy_data), GFP_KERNEL);
if (!efx->phy_data)
return -ENOMEM;
rc = efx_mcdi_get_phy_cfg(efx, efx->phy_data);
if (rc)
return rc;
/* Populate driver and ethtool settings */
phy_data = efx->phy_data;
mcdi_to_ethtool_linkset(phy_data->media, phy_data->supported_cap,
efx->link_advertising);
efx->fec_config = mcdi_fec_caps_to_ethtool(phy_data->supported_cap,
false);
/* Default to Autonegotiated flow control if the PHY supports it */
efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
if (phy_data->supported_cap & (1 << MC_CMD_PHY_CAP_AN_LBN))
efx->wanted_fc |= EFX_FC_AUTO;
efx_link_set_wanted_fc(efx, efx->wanted_fc);
/* Push settings to the PHY. Failure is not fatal, the user can try to
* fix it using ethtool.
*/
rc = efx_mcdi_port_reconfigure(efx);
if (rc && rc != -EPERM)
netif_warn(efx, drv, efx->net_dev,
"could not initialise PHY settings\n");
return 0;
}
static int ef100_filter_table_probe(struct efx_nic *efx)
{
return efx_mcdi_filter_table_probe(efx, true);
}
static int ef100_filter_table_up(struct efx_nic *efx)
{
int rc;
rc = efx_mcdi_filter_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
if (rc) {
efx_mcdi_filter_table_down(efx);
return rc;
}
rc = efx_mcdi_filter_add_vlan(efx, 0);
if (rc) {
efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC);
efx_mcdi_filter_table_down(efx);
}
return rc;
}
static void ef100_filter_table_down(struct efx_nic *efx)
{
efx_mcdi_filter_del_vlan(efx, 0);
efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC);
efx_mcdi_filter_table_down(efx);
}
/* Other
*/
static int ef100_reconfigure_mac(struct efx_nic *efx, bool mtu_only)
{
WARN_ON(!mutex_is_locked(&efx->mac_lock));
efx_mcdi_filter_sync_rx_mode(efx);
if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
return efx_mcdi_set_mtu(efx);
return efx_mcdi_set_mac(efx);
}
static enum reset_type ef100_map_reset_reason(enum reset_type reason)
{
if (reason == RESET_TYPE_TX_WATCHDOG)
return reason;
return RESET_TYPE_DISABLE;
}
static int ef100_map_reset_flags(u32 *flags)
{
/* Only perform a RESET_TYPE_ALL because we don't support MC_REBOOTs */
if ((*flags & EF100_RESET_PORT)) {
*flags &= ~EF100_RESET_PORT;
return RESET_TYPE_ALL;
}
if (*flags & ETH_RESET_MGMT) {
*flags &= ~ETH_RESET_MGMT;
return RESET_TYPE_DISABLE;
}
return -EINVAL;
}
static int ef100_reset(struct efx_nic *efx, enum reset_type reset_type)
{
int rc;
dev_close(efx->net_dev);
if (reset_type == RESET_TYPE_TX_WATCHDOG) {
netif_device_attach(efx->net_dev);
__clear_bit(reset_type, &efx->reset_pending);
rc = dev_open(efx->net_dev, NULL);
} else if (reset_type == RESET_TYPE_ALL) {
rc = efx_mcdi_reset(efx, reset_type);
if (rc)
return rc;
netif_device_attach(efx->net_dev);
rc = dev_open(efx->net_dev, NULL);
} else {
rc = 1; /* Leave the device closed */
}
return rc;
}
static void ef100_common_stat_mask(unsigned long *mask)
{
__set_bit(EF100_STAT_port_rx_packets, mask);
__set_bit(EF100_STAT_port_tx_packets, mask);
__set_bit(EF100_STAT_port_rx_bytes, mask);
__set_bit(EF100_STAT_port_tx_bytes, mask);
__set_bit(EF100_STAT_port_rx_multicast, mask);
__set_bit(EF100_STAT_port_rx_bad, mask);
__set_bit(EF100_STAT_port_rx_align_error, mask);
__set_bit(EF100_STAT_port_rx_overflow, mask);
}
static void ef100_ethtool_stat_mask(unsigned long *mask)
{
__set_bit(EF100_STAT_port_tx_pause, mask);
__set_bit(EF100_STAT_port_tx_unicast, mask);
__set_bit(EF100_STAT_port_tx_multicast, mask);
__set_bit(EF100_STAT_port_tx_broadcast, mask);
__set_bit(EF100_STAT_port_tx_lt64, mask);
__set_bit(EF100_STAT_port_tx_64, mask);
__set_bit(EF100_STAT_port_tx_65_to_127, mask);
__set_bit(EF100_STAT_port_tx_128_to_255, mask);
__set_bit(EF100_STAT_port_tx_256_to_511, mask);
__set_bit(EF100_STAT_port_tx_512_to_1023, mask);
__set_bit(EF100_STAT_port_tx_1024_to_15xx, mask);
__set_bit(EF100_STAT_port_tx_15xx_to_jumbo, mask);
__set_bit(EF100_STAT_port_rx_good, mask);
__set_bit(EF100_STAT_port_rx_pause, mask);
__set_bit(EF100_STAT_port_rx_unicast, mask);
__set_bit(EF100_STAT_port_rx_broadcast, mask);
__set_bit(EF100_STAT_port_rx_lt64, mask);
__set_bit(EF100_STAT_port_rx_64, mask);
__set_bit(EF100_STAT_port_rx_65_to_127, mask);
__set_bit(EF100_STAT_port_rx_128_to_255, mask);
__set_bit(EF100_STAT_port_rx_256_to_511, mask);
__set_bit(EF100_STAT_port_rx_512_to_1023, mask);
__set_bit(EF100_STAT_port_rx_1024_to_15xx, mask);
__set_bit(EF100_STAT_port_rx_15xx_to_jumbo, mask);
__set_bit(EF100_STAT_port_rx_gtjumbo, mask);
__set_bit(EF100_STAT_port_rx_bad_gtjumbo, mask);
__set_bit(EF100_STAT_port_rx_length_error, mask);
__set_bit(EF100_STAT_port_rx_nodesc_drops, mask);
__set_bit(GENERIC_STAT_rx_nodesc_trunc, mask);
__set_bit(GENERIC_STAT_rx_noskb_drops, mask);
}
#define EF100_DMA_STAT(ext_name, mcdi_name) \
[EF100_STAT_ ## ext_name] = \
{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
static const struct efx_hw_stat_desc ef100_stat_desc[EF100_STAT_COUNT] = {
EF100_DMA_STAT(port_tx_bytes, TX_BYTES),
EF100_DMA_STAT(port_tx_packets, TX_PKTS),
EF100_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
EF100_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
EF100_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
EF100_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
EF100_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
EF100_DMA_STAT(port_tx_64, TX_64_PKTS),
EF100_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
EF100_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
EF100_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
EF100_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
EF100_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
EF100_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
EF100_DMA_STAT(port_rx_bytes, RX_BYTES),
EF100_DMA_STAT(port_rx_packets, RX_PKTS),
EF100_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
EF100_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
EF100_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
EF100_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
EF100_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
EF100_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
EF100_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
EF100_DMA_STAT(port_rx_64, RX_64_PKTS),
EF100_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
EF100_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
EF100_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
EF100_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
EF100_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
EF100_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
EF100_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
EF100_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
EF100_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
EF100_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
EF100_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
EF100_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
EFX_GENERIC_SW_STAT(rx_noskb_drops),
};
static size_t ef100_describe_stats(struct efx_nic *efx, u8 *names)
{
DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
ef100_ethtool_stat_mask(mask);
return efx_nic_describe_stats(ef100_stat_desc, EF100_STAT_COUNT,
mask, names);
}
static size_t ef100_update_stats_common(struct efx_nic *efx, u64 *full_stats,
struct rtnl_link_stats64 *core_stats)
{
struct ef100_nic_data *nic_data = efx->nic_data;
DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
size_t stats_count = 0, index;
u64 *stats = nic_data->stats;
ef100_ethtool_stat_mask(mask);
if (full_stats) {
for_each_set_bit(index, mask, EF100_STAT_COUNT) {
if (ef100_stat_desc[index].name) {
*full_stats++ = stats[index];
++stats_count;
}
}
}
if (!core_stats)
return stats_count;
core_stats->rx_packets = stats[EF100_STAT_port_rx_packets];
core_stats->tx_packets = stats[EF100_STAT_port_tx_packets];
core_stats->rx_bytes = stats[EF100_STAT_port_rx_bytes];
core_stats->tx_bytes = stats[EF100_STAT_port_tx_bytes];
core_stats->rx_dropped = stats[EF100_STAT_port_rx_nodesc_drops] +
stats[GENERIC_STAT_rx_nodesc_trunc] +
stats[GENERIC_STAT_rx_noskb_drops];
core_stats->multicast = stats[EF100_STAT_port_rx_multicast];
core_stats->rx_length_errors =
stats[EF100_STAT_port_rx_gtjumbo] +
stats[EF100_STAT_port_rx_length_error];
core_stats->rx_crc_errors = stats[EF100_STAT_port_rx_bad];
core_stats->rx_frame_errors =
stats[EF100_STAT_port_rx_align_error];
core_stats->rx_fifo_errors = stats[EF100_STAT_port_rx_overflow];
core_stats->rx_errors = (core_stats->rx_length_errors +
core_stats->rx_crc_errors +
core_stats->rx_frame_errors);
return stats_count;
}
static size_t ef100_update_stats(struct efx_nic *efx,
u64 *full_stats,
struct rtnl_link_stats64 *core_stats)
{
__le64 *mc_stats = kmalloc(array_size(efx->num_mac_stats, sizeof(__le64)), GFP_ATOMIC);
struct ef100_nic_data *nic_data = efx->nic_data;
DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
u64 *stats = nic_data->stats;
ef100_common_stat_mask(mask);
ef100_ethtool_stat_mask(mask);
efx_nic_copy_stats(efx, mc_stats);
efx_nic_update_stats(ef100_stat_desc, EF100_STAT_COUNT, mask,
stats, mc_stats, false);
kfree(mc_stats);
return ef100_update_stats_common(efx, full_stats, core_stats);
}
static int efx_ef100_get_phys_port_id(struct efx_nic *efx,
struct netdev_phys_item_id *ppid)
{
struct ef100_nic_data *nic_data = efx->nic_data;
if (!is_valid_ether_addr(nic_data->port_id))
return -EOPNOTSUPP;
ppid->id_len = ETH_ALEN;
memcpy(ppid->id, nic_data->port_id, ppid->id_len);
return 0;
}
static int efx_ef100_irq_test_generate(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
return efx_mcdi_rpc_quiet(efx, MC_CMD_TRIGGER_INTERRUPT,
inbuf, sizeof(inbuf), NULL, 0, NULL);
}
#define EFX_EF100_TEST 1
static void efx_ef100_ev_test_generate(struct efx_channel *channel)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
struct efx_nic *efx = channel->efx;
efx_qword_t event;
int rc;
EFX_POPULATE_QWORD_2(event,
ESF_GZ_E_TYPE, ESE_GZ_EF100_EV_DRIVER,
ESF_GZ_DRIVER_DATA, EFX_EF100_TEST);
MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
* already swapped the data to little-endian order.
*/
memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
sizeof(efx_qword_t));
rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
NULL, 0, NULL);
if (rc && (rc != -ENETDOWN))
goto fail;
return;
fail:
WARN_ON(true);
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
}
static unsigned int ef100_check_caps(const struct efx_nic *efx,
u8 flag, u32 offset)
{
const struct ef100_nic_data *nic_data = efx->nic_data;
switch (offset) {
case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS1_OFST:
return nic_data->datapath_caps & BIT_ULL(flag);
case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS2_OFST:
return nic_data->datapath_caps2 & BIT_ULL(flag);
case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS3_OFST:
return nic_data->datapath_caps3 & BIT_ULL(flag);
default:
return 0;
}
}
/* NIC level access functions
*/
#define EF100_OFFLOAD_FEATURES (NETIF_F_HW_CSUM | NETIF_F_RXCSUM | \
NETIF_F_HIGHDMA | NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_NTUPLE | \
NETIF_F_RXHASH | NETIF_F_RXFCS | NETIF_F_TSO_ECN | NETIF_F_RXALL | \
NETIF_F_HW_VLAN_CTAG_TX)
const struct efx_nic_type ef100_pf_nic_type = {
.revision = EFX_REV_EF100,
.is_vf = false,
.probe = ef100_probe_pf,
.offload_features = EF100_OFFLOAD_FEATURES,
.mcdi_max_ver = 2,
.mcdi_request = ef100_mcdi_request,
.mcdi_poll_response = ef100_mcdi_poll_response,
.mcdi_read_response = ef100_mcdi_read_response,
.mcdi_poll_reboot = ef100_mcdi_poll_reboot,
.mcdi_reboot_detected = ef100_mcdi_reboot_detected,
.irq_enable_master = efx_port_dummy_op_void,
.irq_test_generate = efx_ef100_irq_test_generate,
.irq_disable_non_ev = efx_port_dummy_op_void,
.push_irq_moderation = efx_channel_dummy_op_void,
.min_interrupt_mode = EFX_INT_MODE_MSIX,
.map_reset_reason = ef100_map_reset_reason,
.map_reset_flags = ef100_map_reset_flags,
.reset = ef100_reset,
.check_caps = ef100_check_caps,
.ev_probe = ef100_ev_probe,
.ev_init = ef100_ev_init,
.ev_fini = efx_mcdi_ev_fini,
.ev_remove = efx_mcdi_ev_remove,
.irq_handle_msi = ef100_msi_interrupt,
.ev_process = ef100_ev_process,
.ev_read_ack = ef100_ev_read_ack,
.ev_test_generate = efx_ef100_ev_test_generate,
.tx_probe = ef100_tx_probe,
.tx_init = ef100_tx_init,
.tx_write = ef100_tx_write,
.tx_enqueue = ef100_enqueue_skb,
.rx_probe = efx_mcdi_rx_probe,
.rx_init = efx_mcdi_rx_init,
.rx_remove = efx_mcdi_rx_remove,
.rx_write = ef100_rx_write,
.rx_packet = __ef100_rx_packet,
.rx_buf_hash_valid = ef100_rx_buf_hash_valid,
.fini_dmaq = efx_fini_dmaq,
.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
.filter_table_probe = ef100_filter_table_up,
.filter_table_restore = efx_mcdi_filter_table_restore,
.filter_table_remove = ef100_filter_table_down,
.filter_insert = efx_mcdi_filter_insert,
.filter_remove_safe = efx_mcdi_filter_remove_safe,
.filter_get_safe = efx_mcdi_filter_get_safe,
.filter_clear_rx = efx_mcdi_filter_clear_rx,
.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
#ifdef CONFIG_RFS_ACCEL
.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
#endif
.get_phys_port_id = efx_ef100_get_phys_port_id,
.rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN,
.rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8,
.rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8,
.rx_hash_key_size = 40,
.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
.rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
.rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
.reconfigure_mac = ef100_reconfigure_mac,
.reconfigure_port = efx_mcdi_port_reconfigure,
.test_nvram = efx_new_mcdi_nvram_test_all,
.describe_stats = ef100_describe_stats,
.start_stats = efx_mcdi_mac_start_stats,
.update_stats = ef100_update_stats,
.pull_stats = efx_mcdi_mac_pull_stats,
.stop_stats = efx_mcdi_mac_stop_stats,
/* Per-type bar/size configuration not used on ef100. Location of
* registers is defined by extended capabilities.
*/
.mem_bar = NULL,
.mem_map_size = NULL,
};
const struct efx_nic_type ef100_vf_nic_type = {
.revision = EFX_REV_EF100,
.is_vf = true,
.probe = ef100_probe_vf,
.offload_features = EF100_OFFLOAD_FEATURES,
.mcdi_max_ver = 2,
.mcdi_request = ef100_mcdi_request,
.mcdi_poll_response = ef100_mcdi_poll_response,
.mcdi_read_response = ef100_mcdi_read_response,
.mcdi_poll_reboot = ef100_mcdi_poll_reboot,
.mcdi_reboot_detected = ef100_mcdi_reboot_detected,
.irq_enable_master = efx_port_dummy_op_void,
.irq_test_generate = efx_ef100_irq_test_generate,
.irq_disable_non_ev = efx_port_dummy_op_void,
.push_irq_moderation = efx_channel_dummy_op_void,
.min_interrupt_mode = EFX_INT_MODE_MSIX,
.map_reset_reason = ef100_map_reset_reason,
.map_reset_flags = ef100_map_reset_flags,
.reset = ef100_reset,
.check_caps = ef100_check_caps,
.ev_probe = ef100_ev_probe,
.ev_init = ef100_ev_init,
.ev_fini = efx_mcdi_ev_fini,
.ev_remove = efx_mcdi_ev_remove,
.irq_handle_msi = ef100_msi_interrupt,
.ev_process = ef100_ev_process,
.ev_read_ack = ef100_ev_read_ack,
.ev_test_generate = efx_ef100_ev_test_generate,
.tx_probe = ef100_tx_probe,
.tx_init = ef100_tx_init,
.tx_write = ef100_tx_write,
.tx_enqueue = ef100_enqueue_skb,
.rx_probe = efx_mcdi_rx_probe,
.rx_init = efx_mcdi_rx_init,
.rx_remove = efx_mcdi_rx_remove,
.rx_write = ef100_rx_write,
.rx_packet = __ef100_rx_packet,
.rx_buf_hash_valid = ef100_rx_buf_hash_valid,
.fini_dmaq = efx_fini_dmaq,
.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
.filter_table_probe = ef100_filter_table_up,
.filter_table_restore = efx_mcdi_filter_table_restore,
.filter_table_remove = ef100_filter_table_down,
.filter_insert = efx_mcdi_filter_insert,
.filter_remove_safe = efx_mcdi_filter_remove_safe,
.filter_get_safe = efx_mcdi_filter_get_safe,
.filter_clear_rx = efx_mcdi_filter_clear_rx,
.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
#ifdef CONFIG_RFS_ACCEL
.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
#endif
.rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN,
.rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8,
.rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8,
.rx_hash_key_size = 40,
.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
.reconfigure_mac = ef100_reconfigure_mac,
.test_nvram = efx_new_mcdi_nvram_test_all,
.describe_stats = ef100_describe_stats,
.start_stats = efx_mcdi_mac_start_stats,
.update_stats = ef100_update_stats,
.pull_stats = efx_mcdi_mac_pull_stats,
.stop_stats = efx_mcdi_mac_stop_stats,
.mem_bar = NULL,
.mem_map_size = NULL,
};
static int compare_versions(const char *a, const char *b)
{
int a_major, a_minor, a_point, a_patch;
int b_major, b_minor, b_point, b_patch;
int a_matched, b_matched;
a_matched = sscanf(a, "%d.%d.%d.%d", &a_major, &a_minor, &a_point, &a_patch);
b_matched = sscanf(b, "%d.%d.%d.%d", &b_major, &b_minor, &b_point, &b_patch);
if (a_matched == 4 && b_matched != 4)
return +1;
if (a_matched != 4 && b_matched == 4)
return -1;
if (a_matched != 4 && b_matched != 4)
return 0;
if (a_major != b_major)
return a_major - b_major;
if (a_minor != b_minor)
return a_minor - b_minor;
if (a_point != b_point)
return a_point - b_point;
return a_patch - b_patch;
}
enum ef100_tlv_state_machine {
EF100_TLV_TYPE,
EF100_TLV_TYPE_CONT,
EF100_TLV_LENGTH,
EF100_TLV_VALUE
};
struct ef100_tlv_state {
enum ef100_tlv_state_machine state;
u64 value;
u32 value_offset;
u16 type;
u8 len;
};
static int ef100_tlv_feed(struct ef100_tlv_state *state, u8 byte)
{
switch (state->state) {
case EF100_TLV_TYPE:
state->type = byte & 0x7f;
state->state = (byte & 0x80) ? EF100_TLV_TYPE_CONT
: EF100_TLV_LENGTH;
/* Clear ready to read in a new entry */
state->value = 0;
state->value_offset = 0;
return 0;
case EF100_TLV_TYPE_CONT:
state->type |= byte << 7;
state->state = EF100_TLV_LENGTH;
return 0;
case EF100_TLV_LENGTH:
state->len = byte;
/* We only handle TLVs that fit in a u64 */
if (state->len > sizeof(state->value))
return -EOPNOTSUPP;
/* len may be zero, implying a value of zero */
state->state = state->len ? EF100_TLV_VALUE : EF100_TLV_TYPE;
return 0;
case EF100_TLV_VALUE:
state->value |= ((u64)byte) << (state->value_offset * 8);
state->value_offset++;
if (state->value_offset >= state->len)
state->state = EF100_TLV_TYPE;
return 0;
default: /* state machine error, can't happen */
WARN_ON_ONCE(1);
return -EIO;
}
}
static int ef100_process_design_param(struct efx_nic *efx,
const struct ef100_tlv_state *reader)
{
struct ef100_nic_data *nic_data = efx->nic_data;
switch (reader->type) {
case ESE_EF100_DP_GZ_PAD: /* padding, skip it */
return 0;
case ESE_EF100_DP_GZ_PARTIAL_TSTAMP_SUB_NANO_BITS:
/* Driver doesn't support timestamping yet, so we don't care */
return 0;
case ESE_EF100_DP_GZ_EVQ_UNSOL_CREDIT_SEQ_BITS:
/* Driver doesn't support unsolicited-event credits yet, so
* we don't care
*/
return 0;
case ESE_EF100_DP_GZ_NMMU_GROUP_SIZE:
/* Driver doesn't manage the NMMU (so we don't care) */
return 0;
case ESE_EF100_DP_GZ_RX_L4_CSUM_PROTOCOLS:
/* Driver uses CHECKSUM_COMPLETE, so we don't care about
* protocol checksum validation
*/
return 0;
case ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN:
nic_data->tso_max_hdr_len = min_t(u64, reader->value, 0xffff);
return 0;
case ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS:
/* We always put HDR_NUM_SEGS=1 in our TSO descriptors */
if (!reader->value) {
netif_err(efx, probe, efx->net_dev,
"TSO_MAX_HDR_NUM_SEGS < 1\n");
return -EOPNOTSUPP;
}
return 0;
case ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY:
case ESE_EF100_DP_GZ_TXQ_SIZE_GRANULARITY:
/* Our TXQ and RXQ sizes are always power-of-two and thus divisible by
* EFX_MIN_DMAQ_SIZE, so we just need to check that
* EFX_MIN_DMAQ_SIZE is divisible by GRANULARITY.
* This is very unlikely to fail.
*/
if (!reader->value || reader->value > EFX_MIN_DMAQ_SIZE ||
EFX_MIN_DMAQ_SIZE % (u32)reader->value) {
netif_err(efx, probe, efx->net_dev,
"%s size granularity is %llu, can't guarantee safety\n",
reader->type == ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY ? "RXQ" : "TXQ",
reader->value);
return -EOPNOTSUPP;
}
return 0;
case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN:
nic_data->tso_max_payload_len = min_t(u64, reader->value, GSO_MAX_SIZE);
efx->net_dev->gso_max_size = nic_data->tso_max_payload_len;
return 0;
case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS:
nic_data->tso_max_payload_num_segs = min_t(u64, reader->value, 0xffff);
efx->net_dev->gso_max_segs = nic_data->tso_max_payload_num_segs;
return 0;
case ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES:
nic_data->tso_max_frames = min_t(u64, reader->value, 0xffff);
return 0;
case ESE_EF100_DP_GZ_COMPAT:
if (reader->value) {
netif_err(efx, probe, efx->net_dev,
"DP_COMPAT has unknown bits %#llx, driver not compatible with this hw\n",
reader->value);
return -EOPNOTSUPP;
}
return 0;
case ESE_EF100_DP_GZ_MEM2MEM_MAX_LEN:
/* Driver doesn't use mem2mem transfers */
return 0;
case ESE_EF100_DP_GZ_EVQ_TIMER_TICK_NANOS:
/* Driver doesn't currently use EVQ_TIMER */
return 0;
case ESE_EF100_DP_GZ_NMMU_PAGE_SIZES:
/* Driver doesn't manage the NMMU (so we don't care) */
return 0;
case ESE_EF100_DP_GZ_VI_STRIDES:
/* We never try to set the VI stride, and we don't rely on
* being able to find VIs past VI 0 until after we've learned
* the current stride from MC_CMD_GET_CAPABILITIES.
* So the value of this shouldn't matter.
*/
if (reader->value != ESE_EF100_DP_GZ_VI_STRIDES_DEFAULT)
netif_dbg(efx, probe, efx->net_dev,
"NIC has other than default VI_STRIDES (mask "
"%#llx), early probing might use wrong one\n",
reader->value);
return 0;
case ESE_EF100_DP_GZ_RX_MAX_RUNT:
/* Driver doesn't look at L2_STATUS:LEN_ERR bit, so we don't
* care whether it indicates runt or overlength for any given
* packet, so we don't care about this parameter.
*/
return 0;
default:
/* Host interface says "Drivers should ignore design parameters
* that they do not recognise."
*/
netif_dbg(efx, probe, efx->net_dev,
"Ignoring unrecognised design parameter %u\n",
reader->type);
return 0;
}
}
static int ef100_check_design_params(struct efx_nic *efx)
{
struct ef100_tlv_state reader = {};
u32 total_len, offset = 0;
efx_dword_t reg;
int rc = 0, i;
u32 data;
efx_readd(efx, &reg, ER_GZ_PARAMS_TLV_LEN);
total_len = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
netif_dbg(efx, probe, efx->net_dev, "%u bytes of design parameters\n",
total_len);
while (offset < total_len) {
efx_readd(efx, &reg, ER_GZ_PARAMS_TLV + offset);
data = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
for (i = 0; i < sizeof(data); i++) {
rc = ef100_tlv_feed(&reader, data);
/* Got a complete value? */
if (!rc && reader.state == EF100_TLV_TYPE)
rc = ef100_process_design_param(efx, &reader);
if (rc)
goto out;
data >>= 8;
offset++;
}
}
/* Check we didn't end halfway through a TLV entry, which could either
* mean that the TLV stream is truncated or just that it's corrupted
* and our state machine is out of sync.
*/
if (reader.state != EF100_TLV_TYPE) {
if (reader.state == EF100_TLV_TYPE_CONT)
netif_err(efx, probe, efx->net_dev,
"truncated design parameter (incomplete type %u)\n",
reader.type);
else
netif_err(efx, probe, efx->net_dev,
"truncated design parameter %u\n",
reader.type);
rc = -EIO;
}
out:
return rc;
}
/* NIC probe and remove
*/
static int ef100_probe_main(struct efx_nic *efx)
{
unsigned int bar_size = resource_size(&efx->pci_dev->resource[efx->mem_bar]);
struct net_device *net_dev = efx->net_dev;
struct ef100_nic_data *nic_data;
char fw_version[32];
int i, rc;
if (WARN_ON(bar_size == 0))
return -EIO;
nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
if (!nic_data)
return -ENOMEM;
efx->nic_data = nic_data;
nic_data->efx = efx;
net_dev->features |= efx->type->offload_features;
net_dev->hw_features |= efx->type->offload_features;
net_dev->hw_enc_features |= efx->type->offload_features;
net_dev->vlan_features |= NETIF_F_HW_CSUM | NETIF_F_SG |
NETIF_F_HIGHDMA | NETIF_F_ALL_TSO;
/* Populate design-parameter defaults */
nic_data->tso_max_hdr_len = ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN_DEFAULT;
nic_data->tso_max_frames = ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES_DEFAULT;
nic_data->tso_max_payload_num_segs = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS_DEFAULT;
nic_data->tso_max_payload_len = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN_DEFAULT;
net_dev->gso_max_segs = ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS_DEFAULT;
/* Read design parameters */
rc = ef100_check_design_params(efx);
if (rc) {
netif_err(efx, probe, efx->net_dev,
"Unsupported design parameters\n");
goto fail;
}
/* we assume later that we can copy from this buffer in dwords */
BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
/* MCDI buffers must be 256 byte aligned. */
rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, MCDI_BUF_LEN,
GFP_KERNEL);
if (rc)
goto fail;
/* Get the MC's warm boot count. In case it's rebooting right
* now, be prepared to retry.
*/
i = 0;
for (;;) {
rc = ef100_get_warm_boot_count(efx);
if (rc >= 0)
break;
if (++i == 5)
goto fail;
ssleep(1);
}
nic_data->warm_boot_count = rc;
/* In case we're recovering from a crash (kexec), we want to
* cancel any outstanding request by the previous user of this
* function. We send a special message using the least
* significant bits of the 'high' (doorbell) register.
*/
_efx_writed(efx, cpu_to_le32(1), efx_reg(efx, ER_GZ_MC_DB_HWRD));
/* Post-IO section. */
rc = efx_mcdi_init(efx);
if (!rc && efx->mcdi->fn_flags &
(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_NO_ACTIVE_PORT)) {
netif_info(efx, probe, efx->net_dev,
"No network port on this PCI function");
rc = -ENODEV;
}
if (rc)
goto fail;
/* Reset (most) configuration for this function */
rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
if (rc)
goto fail;
/* Enable event logging */
rc = efx_mcdi_log_ctrl(efx, true, false, 0);
if (rc)
goto fail;
rc = efx_get_pf_index(efx, &nic_data->pf_index);
if (rc)
goto fail;
rc = efx_ef100_init_datapath_caps(efx);
if (rc < 0)
goto fail;
efx->max_vis = EF100_MAX_VIS;
rc = efx_mcdi_port_get_number(efx);
if (rc < 0)
goto fail;
efx->port_num = rc;
efx_mcdi_print_fwver(efx, fw_version, sizeof(fw_version));
netif_dbg(efx, drv, efx->net_dev, "Firmware version %s\n", fw_version);
if (compare_versions(fw_version, "1.1.0.1000") < 0) {
netif_info(efx, drv, efx->net_dev, "Firmware uses old event descriptors\n");
rc = -EINVAL;
goto fail;
}
if (efx_has_cap(efx, UNSOL_EV_CREDIT_SUPPORTED)) {
netif_info(efx, drv, efx->net_dev, "Firmware uses unsolicited-event credits\n");
rc = -EINVAL;
goto fail;
}
rc = ef100_phy_probe(efx);
if (rc)
goto fail;
down_write(&efx->filter_sem);
rc = ef100_filter_table_probe(efx);
up_write(&efx->filter_sem);
if (rc)
goto fail;
netdev_rss_key_fill(efx->rss_context.rx_hash_key,
sizeof(efx->rss_context.rx_hash_key));
/* Don't fail init if RSS setup doesn't work. */
efx_mcdi_push_default_indir_table(efx, efx->n_rx_channels);
rc = ef100_register_netdev(efx);
if (rc)
goto fail;
return 0;
fail:
return rc;
}
int ef100_probe_pf(struct efx_nic *efx)
{
struct net_device *net_dev = efx->net_dev;
struct ef100_nic_data *nic_data;
int rc = ef100_probe_main(efx);
if (rc)
goto fail;
nic_data = efx->nic_data;
rc = ef100_get_mac_address(efx, net_dev->perm_addr);
if (rc)
goto fail;
/* Assign MAC address */
memcpy(net_dev->dev_addr, net_dev->perm_addr, ETH_ALEN);
memcpy(nic_data->port_id, net_dev->perm_addr, ETH_ALEN);
return 0;
fail:
return rc;
}
int ef100_probe_vf(struct efx_nic *efx)
{
return ef100_probe_main(efx);
}
void ef100_remove(struct efx_nic *efx)
{
struct ef100_nic_data *nic_data = efx->nic_data;
ef100_unregister_netdev(efx);
down_write(&efx->filter_sem);
efx_mcdi_filter_table_remove(efx);
up_write(&efx->filter_sem);
efx_fini_channels(efx);
kfree(efx->phy_data);
efx->phy_data = NULL;
efx_mcdi_detach(efx);
efx_mcdi_fini(efx);
if (nic_data)
efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
kfree(nic_data);
efx->nic_data = NULL;
}