WSL2-Linux-Kernel/include/linux/poll.h

150 строки
4.1 KiB
C
Исходник Обычный вид История

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 17:07:57 +03:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_POLL_H
#define _LINUX_POLL_H
#include <linux/compiler.h>
#include <linux/ktime.h>
#include <linux/wait.h>
#include <linux/string.h>
#include <linux/fs.h>
#include <linux/sysctl.h>
#include <linux/uaccess.h>
#include <uapi/linux/poll.h>
#include <uapi/linux/eventpoll.h>
extern struct ctl_table epoll_table[]; /* for sysctl */
[PATCH] Optimize select/poll by putting small data sets on the stack Optimize select and poll by a using stack space for small fd sets This brings back an old optimization from Linux 2.0. Using the stack is faster than kmalloc. On a Intel P4 system it speeds up a select of a single pty fd by about 13% (~4000 cycles -> ~3500) It also saves memory because a daemon hanging in select or poll will usually save one or two less pages. This can add up - e.g. if you have 10 daemons blocking in poll/select you save 40KB of memory. I did a patch for this long ago, but it was never applied. This version is a reimplementation of the old patch that tries to be less intrusive. I only did the minimal changes needed for the stack allocation. The cut off point before external memory is allocated is currently at 832bytes. The system calls always allocate this much memory on the stack. These 832 bytes are divided into 256 bytes frontend data (for the select bitmaps of the pollfds) and the rest of the space for the wait queues used by the low level drivers. There are some extreme cases where this won't work out for select and it falls back to allocating memory too early - especially with very sparse large select bitmaps - but the majority of processes who only have a small number of file descriptors should be ok. [TBD: 832/256 might not be the best split for select or poll] I suspect more optimizations might be possible, but they would be more complicated. One way would be to cache the select/poll context over multiple system calls because typically the input values should be similar. Problem is when to flush the file descriptors out though. Signed-off-by: Andi Kleen <ak@suse.de> Cc: Eric Dumazet <dada1@cosmosbay.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28 13:56:33 +04:00
/* ~832 bytes of stack space used max in sys_select/sys_poll before allocating
additional memory. */
#ifdef __clang__
#define MAX_STACK_ALLOC 768
#else
[PATCH] Optimize select/poll by putting small data sets on the stack Optimize select and poll by a using stack space for small fd sets This brings back an old optimization from Linux 2.0. Using the stack is faster than kmalloc. On a Intel P4 system it speeds up a select of a single pty fd by about 13% (~4000 cycles -> ~3500) It also saves memory because a daemon hanging in select or poll will usually save one or two less pages. This can add up - e.g. if you have 10 daemons blocking in poll/select you save 40KB of memory. I did a patch for this long ago, but it was never applied. This version is a reimplementation of the old patch that tries to be less intrusive. I only did the minimal changes needed for the stack allocation. The cut off point before external memory is allocated is currently at 832bytes. The system calls always allocate this much memory on the stack. These 832 bytes are divided into 256 bytes frontend data (for the select bitmaps of the pollfds) and the rest of the space for the wait queues used by the low level drivers. There are some extreme cases where this won't work out for select and it falls back to allocating memory too early - especially with very sparse large select bitmaps - but the majority of processes who only have a small number of file descriptors should be ok. [TBD: 832/256 might not be the best split for select or poll] I suspect more optimizations might be possible, but they would be more complicated. One way would be to cache the select/poll context over multiple system calls because typically the input values should be similar. Problem is when to flush the file descriptors out though. Signed-off-by: Andi Kleen <ak@suse.de> Cc: Eric Dumazet <dada1@cosmosbay.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28 13:56:33 +04:00
#define MAX_STACK_ALLOC 832
#endif
[PATCH] Optimize select/poll by putting small data sets on the stack Optimize select and poll by a using stack space for small fd sets This brings back an old optimization from Linux 2.0. Using the stack is faster than kmalloc. On a Intel P4 system it speeds up a select of a single pty fd by about 13% (~4000 cycles -> ~3500) It also saves memory because a daemon hanging in select or poll will usually save one or two less pages. This can add up - e.g. if you have 10 daemons blocking in poll/select you save 40KB of memory. I did a patch for this long ago, but it was never applied. This version is a reimplementation of the old patch that tries to be less intrusive. I only did the minimal changes needed for the stack allocation. The cut off point before external memory is allocated is currently at 832bytes. The system calls always allocate this much memory on the stack. These 832 bytes are divided into 256 bytes frontend data (for the select bitmaps of the pollfds) and the rest of the space for the wait queues used by the low level drivers. There are some extreme cases where this won't work out for select and it falls back to allocating memory too early - especially with very sparse large select bitmaps - but the majority of processes who only have a small number of file descriptors should be ok. [TBD: 832/256 might not be the best split for select or poll] I suspect more optimizations might be possible, but they would be more complicated. One way would be to cache the select/poll context over multiple system calls because typically the input values should be similar. Problem is when to flush the file descriptors out though. Signed-off-by: Andi Kleen <ak@suse.de> Cc: Eric Dumazet <dada1@cosmosbay.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28 13:56:33 +04:00
#define FRONTEND_STACK_ALLOC 256
#define SELECT_STACK_ALLOC FRONTEND_STACK_ALLOC
#define POLL_STACK_ALLOC FRONTEND_STACK_ALLOC
#define WQUEUES_STACK_ALLOC (MAX_STACK_ALLOC - FRONTEND_STACK_ALLOC)
#define N_INLINE_POLL_ENTRIES (WQUEUES_STACK_ALLOC / sizeof(struct poll_table_entry))
#define DEFAULT_POLLMASK (EPOLLIN | EPOLLOUT | EPOLLRDNORM | EPOLLWRNORM)
struct poll_table_struct;
/*
* structures and helpers for f_op->poll implementations
*/
typedef void (*poll_queue_proc)(struct file *, wait_queue_head_t *, struct poll_table_struct *);
poll: add poll_requested_events() and poll_does_not_wait() functions In some cases the poll() implementation in a driver has to do different things depending on the events the caller wants to poll for. An example is when a driver needs to start a DMA engine if the caller polls for POLLIN, but doesn't want to do that if POLLIN is not requested but instead only POLLOUT or POLLPRI is requested. This is something that can happen in the video4linux subsystem among others. Unfortunately, the current epoll/poll/select implementation doesn't provide that information reliably. The poll_table_struct does have it: it has a key field with the event mask. But once a poll() call matches one or more bits of that mask any following poll() calls are passed a NULL poll_table pointer. Also, the eventpoll implementation always left the key field at ~0 instead of using the requested events mask. This was changed in eventpoll.c so the key field now contains the actual events that should be polled for as set by the caller. The solution to the NULL poll_table pointer is to set the qproc field to NULL in poll_table once poll() matches the events, not the poll_table pointer itself. That way drivers can obtain the mask through a new poll_requested_events inline. The poll_table_struct can still be NULL since some kernel code calls it internally (netfs_state_poll() in ./drivers/staging/pohmelfs/netfs.h). In that case poll_requested_events() returns ~0 (i.e. all events). Very rarely drivers might want to know whether poll_wait will actually wait. If another earlier file descriptor in the set already matched the events the caller wanted to wait for, then the kernel will return from the select() call without waiting. This might be useful information in order to avoid doing expensive work. A new helper function poll_does_not_wait() is added that drivers can use to detect this situation. This is now used in sock_poll_wait() in include/net/sock.h. This was the only place in the kernel that needed this information. Drivers should no longer access any of the poll_table internals, but use the poll_requested_events() and poll_does_not_wait() access functions instead. In order to enforce that the poll_table fields are now prepended with an underscore and a comment was added warning against using them directly. This required a change in unix_dgram_poll() in unix/af_unix.c which used the key field to get the requested events. It's been replaced by a call to poll_requested_events(). For qproc it was especially important to change its name since the behavior of that field changes with this patch since this function pointer can now be NULL when that wasn't possible in the past. Any driver accessing the qproc or key fields directly will now fail to compile. Some notes regarding the correctness of this patch: the driver's poll() function is called with a 'struct poll_table_struct *wait' argument. This pointer may or may not be NULL, drivers can never rely on it being one or the other as that depends on whether or not an earlier file descriptor in the select()'s fdset matched the requested events. There are only three things a driver can do with the wait argument: 1) obtain the key field: events = wait ? wait->key : ~0; This will still work although it should be replaced with the new poll_requested_events() function (which does exactly the same). This will now even work better, since wait is no longer set to NULL unnecessarily. 2) use the qproc callback. This could be deadly since qproc can now be NULL. Renaming qproc should prevent this from happening. There are no kernel drivers that actually access this callback directly, BTW. 3) test whether wait == NULL to determine whether poll would return without waiting. This is no longer sufficient as the correct test is now wait == NULL || wait->_qproc == NULL. However, the worst that can happen here is a slight performance hit in the case where wait != NULL and wait->_qproc == NULL. In that case the driver will assume that poll_wait() will actually add the fd to the set of waiting file descriptors. Of course, poll_wait() will not do that since it tests for wait->_qproc. This will not break anything, though. There is only one place in the whole kernel where this happens (sock_poll_wait() in include/net/sock.h) and that code will be replaced by a call to poll_does_not_wait() in the next patch. Note that even if wait->_qproc != NULL drivers cannot rely on poll_wait() actually waiting. The next file descriptor from the set might match the event mask and thus any possible waits will never happen. Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com> Reviewed-by: Jonathan Corbet <corbet@lwn.net> Reviewed-by: Al Viro <viro@zeniv.linux.org.uk> Cc: Davide Libenzi <davidel@xmailserver.org> Signed-off-by: Hans de Goede <hdegoede@redhat.com> Cc: Mauro Carvalho Chehab <mchehab@infradead.org> Cc: David Miller <davem@davemloft.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-24 02:02:27 +04:00
/*
* Do not touch the structure directly, use the access functions
* poll_does_not_wait() and poll_requested_events() instead.
*/
typedef struct poll_table_struct {
poll: add poll_requested_events() and poll_does_not_wait() functions In some cases the poll() implementation in a driver has to do different things depending on the events the caller wants to poll for. An example is when a driver needs to start a DMA engine if the caller polls for POLLIN, but doesn't want to do that if POLLIN is not requested but instead only POLLOUT or POLLPRI is requested. This is something that can happen in the video4linux subsystem among others. Unfortunately, the current epoll/poll/select implementation doesn't provide that information reliably. The poll_table_struct does have it: it has a key field with the event mask. But once a poll() call matches one or more bits of that mask any following poll() calls are passed a NULL poll_table pointer. Also, the eventpoll implementation always left the key field at ~0 instead of using the requested events mask. This was changed in eventpoll.c so the key field now contains the actual events that should be polled for as set by the caller. The solution to the NULL poll_table pointer is to set the qproc field to NULL in poll_table once poll() matches the events, not the poll_table pointer itself. That way drivers can obtain the mask through a new poll_requested_events inline. The poll_table_struct can still be NULL since some kernel code calls it internally (netfs_state_poll() in ./drivers/staging/pohmelfs/netfs.h). In that case poll_requested_events() returns ~0 (i.e. all events). Very rarely drivers might want to know whether poll_wait will actually wait. If another earlier file descriptor in the set already matched the events the caller wanted to wait for, then the kernel will return from the select() call without waiting. This might be useful information in order to avoid doing expensive work. A new helper function poll_does_not_wait() is added that drivers can use to detect this situation. This is now used in sock_poll_wait() in include/net/sock.h. This was the only place in the kernel that needed this information. Drivers should no longer access any of the poll_table internals, but use the poll_requested_events() and poll_does_not_wait() access functions instead. In order to enforce that the poll_table fields are now prepended with an underscore and a comment was added warning against using them directly. This required a change in unix_dgram_poll() in unix/af_unix.c which used the key field to get the requested events. It's been replaced by a call to poll_requested_events(). For qproc it was especially important to change its name since the behavior of that field changes with this patch since this function pointer can now be NULL when that wasn't possible in the past. Any driver accessing the qproc or key fields directly will now fail to compile. Some notes regarding the correctness of this patch: the driver's poll() function is called with a 'struct poll_table_struct *wait' argument. This pointer may or may not be NULL, drivers can never rely on it being one or the other as that depends on whether or not an earlier file descriptor in the select()'s fdset matched the requested events. There are only three things a driver can do with the wait argument: 1) obtain the key field: events = wait ? wait->key : ~0; This will still work although it should be replaced with the new poll_requested_events() function (which does exactly the same). This will now even work better, since wait is no longer set to NULL unnecessarily. 2) use the qproc callback. This could be deadly since qproc can now be NULL. Renaming qproc should prevent this from happening. There are no kernel drivers that actually access this callback directly, BTW. 3) test whether wait == NULL to determine whether poll would return without waiting. This is no longer sufficient as the correct test is now wait == NULL || wait->_qproc == NULL. However, the worst that can happen here is a slight performance hit in the case where wait != NULL and wait->_qproc == NULL. In that case the driver will assume that poll_wait() will actually add the fd to the set of waiting file descriptors. Of course, poll_wait() will not do that since it tests for wait->_qproc. This will not break anything, though. There is only one place in the whole kernel where this happens (sock_poll_wait() in include/net/sock.h) and that code will be replaced by a call to poll_does_not_wait() in the next patch. Note that even if wait->_qproc != NULL drivers cannot rely on poll_wait() actually waiting. The next file descriptor from the set might match the event mask and thus any possible waits will never happen. Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com> Reviewed-by: Jonathan Corbet <corbet@lwn.net> Reviewed-by: Al Viro <viro@zeniv.linux.org.uk> Cc: Davide Libenzi <davidel@xmailserver.org> Signed-off-by: Hans de Goede <hdegoede@redhat.com> Cc: Mauro Carvalho Chehab <mchehab@infradead.org> Cc: David Miller <davem@davemloft.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-24 02:02:27 +04:00
poll_queue_proc _qproc;
__poll_t _key;
} poll_table;
static inline void poll_wait(struct file * filp, wait_queue_head_t * wait_address, poll_table *p)
{
poll: add poll_requested_events() and poll_does_not_wait() functions In some cases the poll() implementation in a driver has to do different things depending on the events the caller wants to poll for. An example is when a driver needs to start a DMA engine if the caller polls for POLLIN, but doesn't want to do that if POLLIN is not requested but instead only POLLOUT or POLLPRI is requested. This is something that can happen in the video4linux subsystem among others. Unfortunately, the current epoll/poll/select implementation doesn't provide that information reliably. The poll_table_struct does have it: it has a key field with the event mask. But once a poll() call matches one or more bits of that mask any following poll() calls are passed a NULL poll_table pointer. Also, the eventpoll implementation always left the key field at ~0 instead of using the requested events mask. This was changed in eventpoll.c so the key field now contains the actual events that should be polled for as set by the caller. The solution to the NULL poll_table pointer is to set the qproc field to NULL in poll_table once poll() matches the events, not the poll_table pointer itself. That way drivers can obtain the mask through a new poll_requested_events inline. The poll_table_struct can still be NULL since some kernel code calls it internally (netfs_state_poll() in ./drivers/staging/pohmelfs/netfs.h). In that case poll_requested_events() returns ~0 (i.e. all events). Very rarely drivers might want to know whether poll_wait will actually wait. If another earlier file descriptor in the set already matched the events the caller wanted to wait for, then the kernel will return from the select() call without waiting. This might be useful information in order to avoid doing expensive work. A new helper function poll_does_not_wait() is added that drivers can use to detect this situation. This is now used in sock_poll_wait() in include/net/sock.h. This was the only place in the kernel that needed this information. Drivers should no longer access any of the poll_table internals, but use the poll_requested_events() and poll_does_not_wait() access functions instead. In order to enforce that the poll_table fields are now prepended with an underscore and a comment was added warning against using them directly. This required a change in unix_dgram_poll() in unix/af_unix.c which used the key field to get the requested events. It's been replaced by a call to poll_requested_events(). For qproc it was especially important to change its name since the behavior of that field changes with this patch since this function pointer can now be NULL when that wasn't possible in the past. Any driver accessing the qproc or key fields directly will now fail to compile. Some notes regarding the correctness of this patch: the driver's poll() function is called with a 'struct poll_table_struct *wait' argument. This pointer may or may not be NULL, drivers can never rely on it being one or the other as that depends on whether or not an earlier file descriptor in the select()'s fdset matched the requested events. There are only three things a driver can do with the wait argument: 1) obtain the key field: events = wait ? wait->key : ~0; This will still work although it should be replaced with the new poll_requested_events() function (which does exactly the same). This will now even work better, since wait is no longer set to NULL unnecessarily. 2) use the qproc callback. This could be deadly since qproc can now be NULL. Renaming qproc should prevent this from happening. There are no kernel drivers that actually access this callback directly, BTW. 3) test whether wait == NULL to determine whether poll would return without waiting. This is no longer sufficient as the correct test is now wait == NULL || wait->_qproc == NULL. However, the worst that can happen here is a slight performance hit in the case where wait != NULL and wait->_qproc == NULL. In that case the driver will assume that poll_wait() will actually add the fd to the set of waiting file descriptors. Of course, poll_wait() will not do that since it tests for wait->_qproc. This will not break anything, though. There is only one place in the whole kernel where this happens (sock_poll_wait() in include/net/sock.h) and that code will be replaced by a call to poll_does_not_wait() in the next patch. Note that even if wait->_qproc != NULL drivers cannot rely on poll_wait() actually waiting. The next file descriptor from the set might match the event mask and thus any possible waits will never happen. Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com> Reviewed-by: Jonathan Corbet <corbet@lwn.net> Reviewed-by: Al Viro <viro@zeniv.linux.org.uk> Cc: Davide Libenzi <davidel@xmailserver.org> Signed-off-by: Hans de Goede <hdegoede@redhat.com> Cc: Mauro Carvalho Chehab <mchehab@infradead.org> Cc: David Miller <davem@davemloft.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-24 02:02:27 +04:00
if (p && p->_qproc && wait_address)
p->_qproc(filp, wait_address, p);
}
/*
* Return true if it is guaranteed that poll will not wait. This is the case
* if the poll() of another file descriptor in the set got an event, so there
* is no need for waiting.
*/
static inline bool poll_does_not_wait(const poll_table *p)
{
return p == NULL || p->_qproc == NULL;
}
/*
* Return the set of events that the application wants to poll for.
* This is useful for drivers that need to know whether a DMA transfer has
* to be started implicitly on poll(). You typically only want to do that
* if the application is actually polling for POLLIN and/or POLLOUT.
*/
static inline __poll_t poll_requested_events(const poll_table *p)
poll: add poll_requested_events() and poll_does_not_wait() functions In some cases the poll() implementation in a driver has to do different things depending on the events the caller wants to poll for. An example is when a driver needs to start a DMA engine if the caller polls for POLLIN, but doesn't want to do that if POLLIN is not requested but instead only POLLOUT or POLLPRI is requested. This is something that can happen in the video4linux subsystem among others. Unfortunately, the current epoll/poll/select implementation doesn't provide that information reliably. The poll_table_struct does have it: it has a key field with the event mask. But once a poll() call matches one or more bits of that mask any following poll() calls are passed a NULL poll_table pointer. Also, the eventpoll implementation always left the key field at ~0 instead of using the requested events mask. This was changed in eventpoll.c so the key field now contains the actual events that should be polled for as set by the caller. The solution to the NULL poll_table pointer is to set the qproc field to NULL in poll_table once poll() matches the events, not the poll_table pointer itself. That way drivers can obtain the mask through a new poll_requested_events inline. The poll_table_struct can still be NULL since some kernel code calls it internally (netfs_state_poll() in ./drivers/staging/pohmelfs/netfs.h). In that case poll_requested_events() returns ~0 (i.e. all events). Very rarely drivers might want to know whether poll_wait will actually wait. If another earlier file descriptor in the set already matched the events the caller wanted to wait for, then the kernel will return from the select() call without waiting. This might be useful information in order to avoid doing expensive work. A new helper function poll_does_not_wait() is added that drivers can use to detect this situation. This is now used in sock_poll_wait() in include/net/sock.h. This was the only place in the kernel that needed this information. Drivers should no longer access any of the poll_table internals, but use the poll_requested_events() and poll_does_not_wait() access functions instead. In order to enforce that the poll_table fields are now prepended with an underscore and a comment was added warning against using them directly. This required a change in unix_dgram_poll() in unix/af_unix.c which used the key field to get the requested events. It's been replaced by a call to poll_requested_events(). For qproc it was especially important to change its name since the behavior of that field changes with this patch since this function pointer can now be NULL when that wasn't possible in the past. Any driver accessing the qproc or key fields directly will now fail to compile. Some notes regarding the correctness of this patch: the driver's poll() function is called with a 'struct poll_table_struct *wait' argument. This pointer may or may not be NULL, drivers can never rely on it being one or the other as that depends on whether or not an earlier file descriptor in the select()'s fdset matched the requested events. There are only three things a driver can do with the wait argument: 1) obtain the key field: events = wait ? wait->key : ~0; This will still work although it should be replaced with the new poll_requested_events() function (which does exactly the same). This will now even work better, since wait is no longer set to NULL unnecessarily. 2) use the qproc callback. This could be deadly since qproc can now be NULL. Renaming qproc should prevent this from happening. There are no kernel drivers that actually access this callback directly, BTW. 3) test whether wait == NULL to determine whether poll would return without waiting. This is no longer sufficient as the correct test is now wait == NULL || wait->_qproc == NULL. However, the worst that can happen here is a slight performance hit in the case where wait != NULL and wait->_qproc == NULL. In that case the driver will assume that poll_wait() will actually add the fd to the set of waiting file descriptors. Of course, poll_wait() will not do that since it tests for wait->_qproc. This will not break anything, though. There is only one place in the whole kernel where this happens (sock_poll_wait() in include/net/sock.h) and that code will be replaced by a call to poll_does_not_wait() in the next patch. Note that even if wait->_qproc != NULL drivers cannot rely on poll_wait() actually waiting. The next file descriptor from the set might match the event mask and thus any possible waits will never happen. Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com> Reviewed-by: Jonathan Corbet <corbet@lwn.net> Reviewed-by: Al Viro <viro@zeniv.linux.org.uk> Cc: Davide Libenzi <davidel@xmailserver.org> Signed-off-by: Hans de Goede <hdegoede@redhat.com> Cc: Mauro Carvalho Chehab <mchehab@infradead.org> Cc: David Miller <davem@davemloft.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-24 02:02:27 +04:00
{
return p ? p->_key : ~(__poll_t)0;
}
static inline void init_poll_funcptr(poll_table *pt, poll_queue_proc qproc)
{
poll: add poll_requested_events() and poll_does_not_wait() functions In some cases the poll() implementation in a driver has to do different things depending on the events the caller wants to poll for. An example is when a driver needs to start a DMA engine if the caller polls for POLLIN, but doesn't want to do that if POLLIN is not requested but instead only POLLOUT or POLLPRI is requested. This is something that can happen in the video4linux subsystem among others. Unfortunately, the current epoll/poll/select implementation doesn't provide that information reliably. The poll_table_struct does have it: it has a key field with the event mask. But once a poll() call matches one or more bits of that mask any following poll() calls are passed a NULL poll_table pointer. Also, the eventpoll implementation always left the key field at ~0 instead of using the requested events mask. This was changed in eventpoll.c so the key field now contains the actual events that should be polled for as set by the caller. The solution to the NULL poll_table pointer is to set the qproc field to NULL in poll_table once poll() matches the events, not the poll_table pointer itself. That way drivers can obtain the mask through a new poll_requested_events inline. The poll_table_struct can still be NULL since some kernel code calls it internally (netfs_state_poll() in ./drivers/staging/pohmelfs/netfs.h). In that case poll_requested_events() returns ~0 (i.e. all events). Very rarely drivers might want to know whether poll_wait will actually wait. If another earlier file descriptor in the set already matched the events the caller wanted to wait for, then the kernel will return from the select() call without waiting. This might be useful information in order to avoid doing expensive work. A new helper function poll_does_not_wait() is added that drivers can use to detect this situation. This is now used in sock_poll_wait() in include/net/sock.h. This was the only place in the kernel that needed this information. Drivers should no longer access any of the poll_table internals, but use the poll_requested_events() and poll_does_not_wait() access functions instead. In order to enforce that the poll_table fields are now prepended with an underscore and a comment was added warning against using them directly. This required a change in unix_dgram_poll() in unix/af_unix.c which used the key field to get the requested events. It's been replaced by a call to poll_requested_events(). For qproc it was especially important to change its name since the behavior of that field changes with this patch since this function pointer can now be NULL when that wasn't possible in the past. Any driver accessing the qproc or key fields directly will now fail to compile. Some notes regarding the correctness of this patch: the driver's poll() function is called with a 'struct poll_table_struct *wait' argument. This pointer may or may not be NULL, drivers can never rely on it being one or the other as that depends on whether or not an earlier file descriptor in the select()'s fdset matched the requested events. There are only three things a driver can do with the wait argument: 1) obtain the key field: events = wait ? wait->key : ~0; This will still work although it should be replaced with the new poll_requested_events() function (which does exactly the same). This will now even work better, since wait is no longer set to NULL unnecessarily. 2) use the qproc callback. This could be deadly since qproc can now be NULL. Renaming qproc should prevent this from happening. There are no kernel drivers that actually access this callback directly, BTW. 3) test whether wait == NULL to determine whether poll would return without waiting. This is no longer sufficient as the correct test is now wait == NULL || wait->_qproc == NULL. However, the worst that can happen here is a slight performance hit in the case where wait != NULL and wait->_qproc == NULL. In that case the driver will assume that poll_wait() will actually add the fd to the set of waiting file descriptors. Of course, poll_wait() will not do that since it tests for wait->_qproc. This will not break anything, though. There is only one place in the whole kernel where this happens (sock_poll_wait() in include/net/sock.h) and that code will be replaced by a call to poll_does_not_wait() in the next patch. Note that even if wait->_qproc != NULL drivers cannot rely on poll_wait() actually waiting. The next file descriptor from the set might match the event mask and thus any possible waits will never happen. Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com> Reviewed-by: Jonathan Corbet <corbet@lwn.net> Reviewed-by: Al Viro <viro@zeniv.linux.org.uk> Cc: Davide Libenzi <davidel@xmailserver.org> Signed-off-by: Hans de Goede <hdegoede@redhat.com> Cc: Mauro Carvalho Chehab <mchehab@infradead.org> Cc: David Miller <davem@davemloft.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-24 02:02:27 +04:00
pt->_qproc = qproc;
pt->_key = ~(__poll_t)0; /* all events enabled */
}
static inline bool file_can_poll(struct file *file)
{
return file->f_op->poll;
}
static inline __poll_t vfs_poll(struct file *file, struct poll_table_struct *pt)
{
if (unlikely(!file->f_op->poll))
return DEFAULT_POLLMASK;
return file->f_op->poll(file, pt);
}
[PATCH] Optimize select/poll by putting small data sets on the stack Optimize select and poll by a using stack space for small fd sets This brings back an old optimization from Linux 2.0. Using the stack is faster than kmalloc. On a Intel P4 system it speeds up a select of a single pty fd by about 13% (~4000 cycles -> ~3500) It also saves memory because a daemon hanging in select or poll will usually save one or two less pages. This can add up - e.g. if you have 10 daemons blocking in poll/select you save 40KB of memory. I did a patch for this long ago, but it was never applied. This version is a reimplementation of the old patch that tries to be less intrusive. I only did the minimal changes needed for the stack allocation. The cut off point before external memory is allocated is currently at 832bytes. The system calls always allocate this much memory on the stack. These 832 bytes are divided into 256 bytes frontend data (for the select bitmaps of the pollfds) and the rest of the space for the wait queues used by the low level drivers. There are some extreme cases where this won't work out for select and it falls back to allocating memory too early - especially with very sparse large select bitmaps - but the majority of processes who only have a small number of file descriptors should be ok. [TBD: 832/256 might not be the best split for select or poll] I suspect more optimizations might be possible, but they would be more complicated. One way would be to cache the select/poll context over multiple system calls because typically the input values should be similar. Problem is when to flush the file descriptors out though. Signed-off-by: Andi Kleen <ak@suse.de> Cc: Eric Dumazet <dada1@cosmosbay.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28 13:56:33 +04:00
struct poll_table_entry {
poll: allow f_op->poll to sleep f_op->poll is the only vfs operation which is not allowed to sleep. It's because poll and select implementation used task state to synchronize against wake ups, which doesn't have to be the case anymore as wait/wake interface can now use custom wake up functions. The non-sleep restriction can be a bit tricky because ->poll is not called from an atomic context and the result of accidentally sleeping in ->poll only shows up as temporary busy looping when the timing is right or rather wrong. This patch converts poll/select to use custom wake up function and use separate triggered variable to synchronize against wake up events. The only added overhead is an extra function call during wake up and negligible. This patch removes the one non-sleep exception from vfs locking rules and is beneficial to userland filesystem implementations like FUSE, 9p or peculiar fs like spufs as it's very difficult for those to implement non-sleeping poll method. While at it, make the following cosmetic changes to make poll.h and select.c checkpatch friendly. * s/type * symbol/type *symbol/ : three places in poll.h * remove blank line before EXPORT_SYMBOL() : two places in select.c Oleg: spotted missing barrier in poll_schedule_timeout() Davide: spotted missing write barrier in pollwake() Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Eric Van Hensbergen <ericvh@gmail.com> Cc: Ron Minnich <rminnich@sandia.gov> Cc: Ingo Molnar <mingo@elte.hu> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Cc: Davide Libenzi <davidel@xmailserver.org> Cc: Brad Boyer <flar@allandria.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Roland McGrath <roland@redhat.com> Cc: Mauro Carvalho Chehab <mchehab@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Davide Libenzi <davidel@xmailserver.org> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-07 01:40:59 +03:00
struct file *filp;
__poll_t key;
wait_queue_entry_t wait;
poll: allow f_op->poll to sleep f_op->poll is the only vfs operation which is not allowed to sleep. It's because poll and select implementation used task state to synchronize against wake ups, which doesn't have to be the case anymore as wait/wake interface can now use custom wake up functions. The non-sleep restriction can be a bit tricky because ->poll is not called from an atomic context and the result of accidentally sleeping in ->poll only shows up as temporary busy looping when the timing is right or rather wrong. This patch converts poll/select to use custom wake up function and use separate triggered variable to synchronize against wake up events. The only added overhead is an extra function call during wake up and negligible. This patch removes the one non-sleep exception from vfs locking rules and is beneficial to userland filesystem implementations like FUSE, 9p or peculiar fs like spufs as it's very difficult for those to implement non-sleeping poll method. While at it, make the following cosmetic changes to make poll.h and select.c checkpatch friendly. * s/type * symbol/type *symbol/ : three places in poll.h * remove blank line before EXPORT_SYMBOL() : two places in select.c Oleg: spotted missing barrier in poll_schedule_timeout() Davide: spotted missing write barrier in pollwake() Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Eric Van Hensbergen <ericvh@gmail.com> Cc: Ron Minnich <rminnich@sandia.gov> Cc: Ingo Molnar <mingo@elte.hu> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Cc: Davide Libenzi <davidel@xmailserver.org> Cc: Brad Boyer <flar@allandria.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Roland McGrath <roland@redhat.com> Cc: Mauro Carvalho Chehab <mchehab@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Davide Libenzi <davidel@xmailserver.org> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-07 01:40:59 +03:00
wait_queue_head_t *wait_address;
[PATCH] Optimize select/poll by putting small data sets on the stack Optimize select and poll by a using stack space for small fd sets This brings back an old optimization from Linux 2.0. Using the stack is faster than kmalloc. On a Intel P4 system it speeds up a select of a single pty fd by about 13% (~4000 cycles -> ~3500) It also saves memory because a daemon hanging in select or poll will usually save one or two less pages. This can add up - e.g. if you have 10 daemons blocking in poll/select you save 40KB of memory. I did a patch for this long ago, but it was never applied. This version is a reimplementation of the old patch that tries to be less intrusive. I only did the minimal changes needed for the stack allocation. The cut off point before external memory is allocated is currently at 832bytes. The system calls always allocate this much memory on the stack. These 832 bytes are divided into 256 bytes frontend data (for the select bitmaps of the pollfds) and the rest of the space for the wait queues used by the low level drivers. There are some extreme cases where this won't work out for select and it falls back to allocating memory too early - especially with very sparse large select bitmaps - but the majority of processes who only have a small number of file descriptors should be ok. [TBD: 832/256 might not be the best split for select or poll] I suspect more optimizations might be possible, but they would be more complicated. One way would be to cache the select/poll context over multiple system calls because typically the input values should be similar. Problem is when to flush the file descriptors out though. Signed-off-by: Andi Kleen <ak@suse.de> Cc: Eric Dumazet <dada1@cosmosbay.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28 13:56:33 +04:00
};
/*
* Structures and helpers for select/poll syscall
*/
struct poll_wqueues {
poll_table pt;
poll: allow f_op->poll to sleep f_op->poll is the only vfs operation which is not allowed to sleep. It's because poll and select implementation used task state to synchronize against wake ups, which doesn't have to be the case anymore as wait/wake interface can now use custom wake up functions. The non-sleep restriction can be a bit tricky because ->poll is not called from an atomic context and the result of accidentally sleeping in ->poll only shows up as temporary busy looping when the timing is right or rather wrong. This patch converts poll/select to use custom wake up function and use separate triggered variable to synchronize against wake up events. The only added overhead is an extra function call during wake up and negligible. This patch removes the one non-sleep exception from vfs locking rules and is beneficial to userland filesystem implementations like FUSE, 9p or peculiar fs like spufs as it's very difficult for those to implement non-sleeping poll method. While at it, make the following cosmetic changes to make poll.h and select.c checkpatch friendly. * s/type * symbol/type *symbol/ : three places in poll.h * remove blank line before EXPORT_SYMBOL() : two places in select.c Oleg: spotted missing barrier in poll_schedule_timeout() Davide: spotted missing write barrier in pollwake() Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Eric Van Hensbergen <ericvh@gmail.com> Cc: Ron Minnich <rminnich@sandia.gov> Cc: Ingo Molnar <mingo@elte.hu> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Cc: Davide Libenzi <davidel@xmailserver.org> Cc: Brad Boyer <flar@allandria.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Roland McGrath <roland@redhat.com> Cc: Mauro Carvalho Chehab <mchehab@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Davide Libenzi <davidel@xmailserver.org> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-07 01:40:59 +03:00
struct poll_table_page *table;
struct task_struct *polling_task;
int triggered;
int error;
[PATCH] Optimize select/poll by putting small data sets on the stack Optimize select and poll by a using stack space for small fd sets This brings back an old optimization from Linux 2.0. Using the stack is faster than kmalloc. On a Intel P4 system it speeds up a select of a single pty fd by about 13% (~4000 cycles -> ~3500) It also saves memory because a daemon hanging in select or poll will usually save one or two less pages. This can add up - e.g. if you have 10 daemons blocking in poll/select you save 40KB of memory. I did a patch for this long ago, but it was never applied. This version is a reimplementation of the old patch that tries to be less intrusive. I only did the minimal changes needed for the stack allocation. The cut off point before external memory is allocated is currently at 832bytes. The system calls always allocate this much memory on the stack. These 832 bytes are divided into 256 bytes frontend data (for the select bitmaps of the pollfds) and the rest of the space for the wait queues used by the low level drivers. There are some extreme cases where this won't work out for select and it falls back to allocating memory too early - especially with very sparse large select bitmaps - but the majority of processes who only have a small number of file descriptors should be ok. [TBD: 832/256 might not be the best split for select or poll] I suspect more optimizations might be possible, but they would be more complicated. One way would be to cache the select/poll context over multiple system calls because typically the input values should be similar. Problem is when to flush the file descriptors out though. Signed-off-by: Andi Kleen <ak@suse.de> Cc: Eric Dumazet <dada1@cosmosbay.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28 13:56:33 +04:00
int inline_index;
struct poll_table_entry inline_entries[N_INLINE_POLL_ENTRIES];
};
extern void poll_initwait(struct poll_wqueues *pwq);
extern void poll_freewait(struct poll_wqueues *pwq);
extern u64 select_estimate_accuracy(struct timespec64 *tv);
[PATCH] Add pselect/ppoll system call implementation The following implementation of ppoll() and pselect() system calls depends on the architecture providing a TIF_RESTORE_SIGMASK flag in the thread_info. These system calls have to change the signal mask during their operation, and signal handlers must be invoked using the new, temporary signal mask. The old signal mask must be restored either upon successful exit from the system call, or upon returning from the invoked signal handler if the system call is interrupted. We can't simply restore the original signal mask and return to userspace, since the restored signal mask may actually block the signal which interrupted the system call. The TIF_RESTORE_SIGMASK flag deals with this by causing the syscall exit path to trap into do_signal() just as TIF_SIGPENDING does, and by causing do_signal() to use the saved signal mask instead of the current signal mask when setting up the stack frame for the signal handler -- or by causing do_signal() to simply restore the saved signal mask in the case where there is no handler to be invoked. The first patch implements the sys_pselect() and sys_ppoll() system calls, which are present only if TIF_RESTORE_SIGMASK is defined. That #ifdef should go away in time when all architectures have implemented it. The second patch implements TIF_RESTORE_SIGMASK for the PowerPC kernel (in the -mm tree), and the third patch then removes the arch-specific implementations of sys_rt_sigsuspend() and replaces them with generic versions using the same trick. The fourth and fifth patches, provided by David Howells, implement TIF_RESTORE_SIGMASK for FR-V and i386 respectively, and the sixth patch adds the syscalls to the i386 syscall table. This patch: Add the pselect() and ppoll() system calls, providing core routines usable by the original select() and poll() system calls and also the new calls (with their semantics w.r.t timeouts). Signed-off-by: David Woodhouse <dwmw2@infradead.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-19 04:44:05 +03:00
#define MAX_INT64_SECONDS (((s64)(~((u64)0)>>1)/HZ)-1)
extern int core_sys_select(int n, fd_set __user *inp, fd_set __user *outp,
fd_set __user *exp, struct timespec64 *end_time);
extern int poll_select_set_timeout(struct timespec64 *to, time64_t sec,
long nsec);
#define __MAP(v, from, to) \
(from < to ? (v & from) * (to/from) : (v & from) / (from/to))
static inline __u16 mangle_poll(__poll_t val)
{
__u16 v = (__force __u16)val;
#define M(X) __MAP(v, (__force __u16)EPOLL##X, POLL##X)
return M(IN) | M(OUT) | M(PRI) | M(ERR) | M(NVAL) |
M(RDNORM) | M(RDBAND) | M(WRNORM) | M(WRBAND) |
M(HUP) | M(RDHUP) | M(MSG);
#undef M
}
static inline __poll_t demangle_poll(u16 val)
{
#define M(X) (__force __poll_t)__MAP(val, POLL##X, (__force __u16)EPOLL##X)
return M(IN) | M(OUT) | M(PRI) | M(ERR) | M(NVAL) |
M(RDNORM) | M(RDBAND) | M(WRNORM) | M(WRBAND) |
M(HUP) | M(RDHUP) | M(MSG);
#undef M
}
#undef __MAP
#endif /* _LINUX_POLL_H */